Contents

0 Sample Chapter 3
0.1 Some recomendations 3
0.2 Dictionary 4
1 Linear spaces with indefinite metric 5
1.1 Bounded Hermitian forms 5
1.2 Orthogonality and isotropic subspaces 8
1.3 Decomposition of subspaces 9
1.4 Quotient spaces 10
References 11

Chapter 0

Chapter:00

Sample Chapter

0.1 Some recomendations

- Please use the environments theorem, corollary, proposition etc. and proof.
- In definitions, use define\{\} for what you want to define.
- For labels, please use the following conventions:
- \label\{chapter:1\} for chapters
- \label\{sec:1\} for sections
- \label\{thm:number-of-chapter:something\} for theorems,
- \label\{lem:number-of-chapter:something\} for lemmas,
- \label\{prop:number-of-chapter:something\} for propositions
- \label\{cor:number-of-chapter:something\} for corollaries
- \label\{eq:number-of-chapter:something\} for equations
- If you refer to a formula, use eqref $\}$. If you refer to something in an enumerated list, use enumiref $\}$.
- Do not use eqnarray. Use equation, align gather, etc. (see, e.g., amsldoc.pdf).
- Use \index when appropriate.
- \commentbox\{\} may be useful. It takes as an optional argument colors.
- In proofs, you may want to use \proofenumerate\{\} instead of \enumerate\{fomment in cyan!
- Use \I for the imaginary unit and \e for e.

Comment in violet!
Comment in purple!
Comment in red!

- Use \rd to produce d in integrals:
\int_\{0\}^\{1\}f(tz+\left(1-t\right) $\left.z_{-}\{1\}\right) \backslash, \backslash r d ~ t ~ g i v e s ~$ $\int_{0}^{1} f\left(t z+(1-t) z_{1}\right) \mathrm{d} t$.
- Never ever use i as index in sums etc.
- Use punctuation in formulas.

0.2 Dictionary

	[AI89]	[Bog74]
V vector space linear subspace closed linear subspace [,] indefinite inner product \langle,$\rangle Hilbert space inner product$ x is positive, $\langle x, x\rangle>0$ x is nonnegative, $\langle x, x\rangle \geq 0$ x is negative, $\langle x, x\rangle<0$ x is nonpositive, $\langle x, x\rangle \leq 0$ $\begin{aligned} & \mathcal{P}^{++}=\{x \in V:\langle x, x\rangle>0\} \\ & \mathcal{P}^{+}=\{x \in V:\langle x, x\rangle \geq 0\} \\ & \mathcal{P}^{--}=\{x \in V:\langle x, x\rangle<0\} \\ & \mathcal{P}^{-}=\{x \in V:\langle x, x\rangle \leq 0\} \\ & \mathcal{P}^{00}=\{x \in V:\langle x, x\rangle=0\} \\ & \mathcal{P}^{0}=\{x \in V:\langle x, x\rangle \leq 0\} \end{aligned}$ \perp orthogonal in Hilbert space $[\perp] Q$-orthogonal in inner product space + algebraic sum: $U+V=\{u+v: u \in U, v \in V\}$ $\dot{+}$ direct sum \dplus: $U \dot{+} V=V+\stackrel{+}{V} \text { if } U \cap V=\varnothing$ \oplus Hilbert space orthogonal sum: $U \oplus V=U+V$ if $U \perp V$ $\dot{+}$ inner product space orthogonal sum \operp: $U \dot{+} V=U+V$ if $U[\perp] V$ inner product space orthogonal sum \backslash dperp: $U \square V=U+V$ if $U[\perp] V$ and $U \cap V=\varnothing$	\mathcal{F} lineal subspace $[$, $(,$, strictly positive positive strictly negative negative \mathcal{P}^{++} \mathcal{P}^{+} \mathcal{P}^{--} \mathcal{P}^{-} \mathcal{P}^{00} \mathcal{P}^{0}	\mathfrak{E} [,] (,) positive nonnegative nonpositive nonpositive \mathfrak{P}^{++} \mathfrak{P}^{+} \mathfrak{P}^{--} \mathfrak{P}^{-} \mathfrak{P}^{00} \mathfrak{P}^{0}

Chapter 1

Linear spaces with indefinite metric

Usually we denote vector spaces without any additional structure by V, and we assume all vector spaces to be complex vector spaces.

1.1 Bounded Hermitian forms

Definition 1.1. Let V be a complex vector space. A mapping $Q: V \times V \rightarrow \mathbb{C}$ is a hermitian sesquilinear form on V if for all $x, y, z \in V, \lambda \in \mathbb{C}$
(i) $Q(\alpha x+y, z)=\alpha Q(x, z)+Q(y, z)$ (linearity in the first component),
(ii) $Q(x, z)=\overline{Q(z, x)}$ (symmetry)

We often write $[x, y]$ instead of $Q(x, y)$ if it is clear which form Q is considered.
Clearly, a hermitian sesquilinear form satisfies

$$
Q(x, \alpha y+z)=\bar{\alpha} Q(x, y)+Q(x, z), \quad x, y, z \in V, \alpha \in \mathbb{C} .
$$

An inner product space $(V,[]$,$) is a vector space V$ with a sesquilinear form [,]. Clearly, if V is vector space with inner product [,] and U is a subspace of V, then $\left(U,\left.[]\right|_{,U \times U}\right)$ is again an inner product space, usually denoted by $(U,[]$, or simply U.
enumex 11 basaid Example 1.2. (i) Let $V=\mathbb{C}^{2}$ and define the inner product

$$
V \times V \rightarrow \mathbb{C}, \quad\left[\binom{x_{1}}{x_{2}},\binom{x_{1}}{x_{2}}\right]=x_{1} \overline{y_{1}}-x_{2} \overline{y_{2}} .
$$

enumi:1:basic2
(ii) Let $V=\mathbb{C}^{2}$ and define the inner product

$$
V \times V \rightarrow \mathbb{C}, \quad\left[\binom{x_{1}}{x_{2}},\binom{x_{1}}{x_{2}}\right]=x_{1} \overline{y_{2}}+x_{2} \overline{y_{1}} .
$$

Example 1.3. Examples 1.1 and 1.2. from [AI89].
Definition 1.4. Let [,] be a sesquilinear form on a vector space V and let $x \in V$.

- x is called positive if $[x, x]>0$,
- x is called non-negative if $[x, x] \geq 0$,
- x is called negative if $[x, x]<0$,
- x is called non-positive if $[x, x] \leq 0$,
- x is called neutral if $[x, x]=0$.

Observe that $[x, x]=0$ if $x=0$, but the reverse is in general not true.
Definition 1.5. Let $(V,[]$,$) be an inner product space. Then (V,-[]$,$) is called$ its antispace.

Definition 1.6. Let V be a vector space with hermitian sesquilinear form [,]. We define the following sets:

$$
\begin{aligned}
\mathcal{P}^{++}(V) & :=\{x \in V:[x, x]>0\}, \\
\mathcal{P}^{+}(V) & :=\{x \in V:[x, x] \geq 0\}, \\
\mathcal{P}^{--}(V) & :=\{x \in V:[x, x]<0\}, \\
\mathcal{P}^{-}(V) & :=\{x \in V:[x, x] \leq 0\}, \\
\mathcal{P}^{00}(V) & :=\{x \in V: x \neq 0,[x, x]=0\}, \\
\mathcal{P}^{0}(V) & :=\{x \in V:[x, x]=0\} .
\end{aligned}
$$

If the underlying space V is clear, we sometimes write $\mathcal{P}^{++}, \mathcal{P}^{+}, \mathcal{P}^{--}, \mathcal{P}^{-}, \mathcal{P}^{00}$ and \mathcal{P}^{0} instead of $\mathcal{P}^{++}(V), \mathcal{P}^{+}(V), \mathcal{P}^{--}(V), \mathcal{P}^{-}(V), \mathcal{P}^{00}(V)$ and $\mathcal{P}^{0}(V)$.

Clearly $\mathcal{P}^{+}=\mathcal{P}^{++} \cup \mathcal{P}^{0}, \mathcal{P}^{-}=\mathcal{P}^{--} \cup \mathcal{P}^{0}$ and $\mathcal{P}^{0}=\mathcal{P}^{+} \cap \mathcal{P}^{-}$. Moreover, if $x \in \mathcal{P}^{++}$, then $\alpha x \in \mathcal{P}^{++}$for all $\alpha \in \mathbb{C} \backslash\{0\}$. The same is true for the other sets defined above.

Example 1.7. • Example 1.2(i) :

$$
\begin{array}{rlrl}
\mathcal{P}^{++} & =\left\{\left(x_{1}, x_{2}\right)^{t}:\left|x_{1}\right|>\left|x_{2}\right|\right\}, & \mathcal{P}^{+}=\left\{\left(x_{1}, x_{2}\right)^{t}:\left|x_{1}\right| \geq\left|x_{2}\right|\right\} \\
\mathcal{P}^{--} & =\left\{\left(x_{1}, x_{2}\right)^{t}:\left|x_{1}\right|<\left|x_{2}\right|\right\}, & \mathcal{P}^{-}=\left\{\left(x_{1}, x_{2}\right)^{t}:\left|x_{1}\right| \leq\left|x_{2}\right|\right\} \\
\mathcal{P}^{0} & =\left\{\left(x_{1}, x_{2}\right)^{t}:\left|x_{1}\right|=\left|x_{2}\right|\right\}
\end{array}
$$

- Example 1.2(ii) :

$$
\begin{array}{rll}
\mathcal{P}^{++} & =\left\{\left(x_{1}, x_{2}\right)^{t}: \operatorname{Re}\left(x_{1} \overline{x_{2}}\right)>0\right\}, & \mathcal{P}^{+}=\left\{\left(x_{1}, x_{2}\right)^{t}: \operatorname{Re}\left(x_{1} \overline{x_{2}}\right) \geq 0\right\} \\
\mathcal{P}^{--} & =\left\{\left(x_{1}, x_{2}\right)^{t}: \operatorname{Re}\left(x_{1} \overline{x_{2}}\right)<0\right\}, & \mathcal{P}^{-}=\left\{\left(x_{1}, x_{2}\right)^{t}: \operatorname{Re}\left(x_{1} \overline{x_{2}}\right) \leq 0\right\} \\
\mathcal{P}^{0} & =\left\{\left(x_{1}, x_{2}\right)^{t}: \operatorname{Re}\left(x_{1} \overline{x_{2}}\right)=0\right\} . &
\end{array}
$$

def:mP Definition 1.8. . Let V be a vector space with hermitian sesquilinear form [,] and let $U \subseteq V$ be a subspace.

- U is positive if $U \subseteq \mathcal{P}^{++} \cup\{0\}$,
- U is non-negative if $U \subseteq \mathcal{P}^{+}$,
- U is negative if $U \subseteq \mathcal{P}^{--} \cup\{0\}$,
- U is non-positive if $U \subseteq \mathcal{P}^{-}$,
- U is semidefinite if $U \subseteq \mathcal{P}^{+}$or $U \subseteq \mathcal{P}^{-}$,
- U is definite if $U \subseteq \mathcal{P}^{++} \cup\{0\}$ or $U \subseteq \mathcal{P}^{--} \cup\{0\}$,
- U is neutral if $U \subseteq \mathcal{P}^{0}$,

The sesquilinear form [,] is positive, non-negative, etc. if V is positive, nonnegative, etc.. The sesquilinear form [,] is called indefinite it is not semidefinite.

Clearly, a neutral subspace is semidefinite. It is both non-negative and nonpositive.
Note that \mathcal{P}^{++}and \mathcal{P}^{--}are not vector spaces (they do not contain 0). Next we show that if $\mathcal{P}^{++} \neq \varnothing$, then the span of $\mathcal{P}^{++} \cup\{0\}$ is all of V, in particular, in general the sets \mathcal{P}^{+}and \mathcal{P}^{-}are not vector spaces too. Note however that \mathcal{P}^{0} is a vector space, see Corollary 1.12.

Proposition 1.9. Let $(V,[]$,$) be an inner product space and let x \in V$ with $[x, x]>0$. Then every element of V is the sum of two positive vectors.

Clearly a similar statement is true if there exists $x \in V$ with $[x, x]<0$.
Proof. Let $x \in V$ such that $[x, x]>0$ and fix $z \in V$. Then we can choose $\alpha \in \mathbb{R}$ large enough such that

$$
[z+\alpha x, z+\alpha x]=[z, z]+2 \alpha \operatorname{Re}[z, x]+\alpha^{2}[x, x]>0 .
$$

Then $z=(z+\alpha x)+(-\alpha x)$ with $z+\alpha x,-\alpha x \in \mathcal{P}^{++}$.
Proposition 1.10. Let $(V,[]$,$) be an inner product space. If [$,$] is indefinite,$ then there exists $x \neq 0$ such that $[x, x]=0$.

Proof. Let $y, z \in H$ such that $[y, y]>0$ and $[z, z]<0$. Clearly, y and z are linearly independent. Consider the continuous map $f:[0,1] \rightarrow \mathbb{R}, f(t)=$ $[(1-t) y+t z,(1-t) y+t z]$. Since $f(0)>0$ and $f(1)<1$, there exists $t_{0} \in(0,1)$ such that $f\left(t_{0}\right)=0$ and $x=\left(1-t_{0}\right) y+t_{0} z \neq 0$ does the job.

Proposition 1.11 (Cauchy-Schwarz-Bunyakovski inequality). Let $(V,\langle\rangle$, be a semidefinite inner product space. Then for all $x, y \in V$

$$
\begin{equation*}
|[x, y]|^{2} \leq|[x, x]||[y, y]| \tag{1.1}
\end{equation*}
$$

eq:CSB

Proof. Without restriction we may assume that [,] is non-negative. Observe that for all $\alpha \in \mathbb{C}$

$$
0 \leq[x-\alpha y, x-\alpha y]=[x, x]-2 \operatorname{Re}(\alpha[x, y])+\alpha^{2}[y, y]
$$

If $[x, x]=[y, y]=0$, then clearly $[x, y]=0$, otherwise the choice $\alpha=2[x, y]^{-1}$ would lead to a contradiction. Now assume that at least one of the vectors x, y is not neutral, without restriction let $[y, y]>0$. Choose $\alpha=\frac{[x, y]}{[y, y]}$. Then the above inequality gives

$$
0 \leq[x, x]-2 \frac{|[x, y]|^{2}}{[y, y]}+\frac{|[x, y]|^{2}}{[y, y]}=[x, x]-\frac{|[x, y]|^{2}}{[y, y]}
$$

Multiplication by $[y, y]$ completes the proof.
cor:1:P0 Corollary 1.12. $\mathcal{P}^{0}(V)$ is a subspace of V.

1.2 Orthogonality and isotropic subspaces

Definition 1.13. Let $(V,[]$,$) be an inner product space. We write x[\perp] y$ if and only if $[x, y]=0$. In this case x an y are called Q-orthogonal.
Let $M \subset V$ be a set. Then $x[\perp] M$ if and only if $x[\perp] y$ for all $y \in M$ and

$$
M^{[\perp]}:=\{x \in V: x[\perp] y \text { for all } y \in M\}
$$

is called the orthogonal complement of M. We set $M \subset M^{[\perp][\perp]}:=(M \subset$ $\left.M^{[\perp]}\right)^{[\perp]}$.

Remark 1.14. Let $x, y \in V$ and let $M, N \subset V$.
(i) $x[\perp] y \Longleftrightarrow y[\perp] x$.
(ii) Then $M^{[\perp]}$ is a linear subspace of V.
(iii) $M \subset M^{[\perp][\perp]}$.
(iv) If $N \subset M$, then $M^{[\perp]} \subset N^{[\perp]}$.
(v) $M^{[\perp]} \cap N^{[\perp]} \subset(M \cup N)^{[\perp]}$.
(vi) $M^{[\perp]}+N^{[\perp]} \subset(M \cap N)^{[\perp]}$.
(vii) If U, W are linear subspaces of V, then $U^{[\perp]}+N W[\perp]=(U \cap W)^{[\perp]}$.

Remark 1.15. Let $U \subset V$ be a subspace of V. In general $V+V^{[\perp]} \neq V$, even if V is closed, and $U \cap U^{[\perp]}$ may occur. For instance, let V as in example 1.2 i and let $U=\left\{(1,1)^{t}\right\} \subset V$. Then $U^{[\perp]}=U$.

Definition 1.16. Let $(V,[]$,$) be an inner product space. A vector x \in V, x \neq 0$, is called isotropic if $x[\perp] V$. If $U \subset V$, then a vector $x \in U, x \neq 0$, is called isotropic for U if $x[\perp] U$.

Clearly, linear combinations of isotropic vectors are again isotropic and a vector x is isotropic for a subspace U if and only if $x \in U \cap U^{[\perp]} \backslash\{0\}$.

Definition 1.17. Let $(V,[]$,$) be an inner product space and U \subset V$ a linear subspace. Then $U^{0}:=U \cap U^{[\perp]}$ is called the isotropic part of U. The subspace U is called degenerate if $U^{0}=\{0\}$, otherwise it is called non-degenerate.

Observe that by the Cauchy-Schwarz-Bunyakovski inequality $V^{0}=\mathcal{P}^{0}(V)$ if the inner product is semidefinite.

Definition 1.18. Let $(V,[]$,$) be an indefinite inner product space. A subspace$ U is called maximal positive if it is a positive subspace of V and for every positive subspace $W \subset V$ with $U W$ it follows that $U=W$. The definition of maximal non-negative, maximal negative, maximal non-positive, maximal neutral, maximal non-degenerate subspace is analogous.

Theorem 1.19. Let $(V,[]$,$) be an indefinite inner product space and U \subset V a$ positive subspace. Then U is contained in a maximal positive subspace.
Analogous statements are true for non-negative, negative, non-positive, neutral, non-degenerate subspace subspaces.

Proof. Zorn. See [AI89, Theorem 1.19].

1.3 Decomposition of subspaces

Definition 1.20. Let $(V,[]$,$) be an inner product space. We write x[\perp] y$ if and only if $[x, y]=0$. In this case x an y are called Q-orthogonal. Let $M \subset V$ be a set. Then $x[\perp] M$ if and only if $x[\perp] y$ for all $y \in M$ and

$$
M^{[\perp]}:=\{x \in V: x[\perp] y \text { for all } y \in M\}
$$

is called the orthogonal complement of M. We set $M \subset M^{[\perp][\perp]}:=(M \subset$ $\left.M^{[\perp]}\right)^{[\perp]}$.

Remark 1.21. Let $x, y \in V$ and let $M, N \subset V$.
(i) $x[\perp] y \Longleftrightarrow y[\perp] x$.
(ii) Then $M^{[\perp]}$ is a linear subspace of V.
(iii) $M \subset M^{[\perp][\perp]}$.
(iv) If $N \subset M$, then $M^{[\perp]} \subset N^{[\perp]}$.
(v) $M^{[\perp]} \cap N^{[\perp]} \subset(M \cup N)^{[\perp]}$.
(vi) $M^{[\perp]}+N^{[\perp]} \subset(M \cap N)^{[\perp]}$.
(vii) If U, W are linear subspaces of V, then $U^{[\perp]}+W^{[\perp]}=(U \cap W)^{[\perp]}$.

Remark 1.22. Let $U \subset V$ be a subspace of V. In general $V+V^{[\perp]} \neq V$, even if V is closed, and $U \cap U^{[\perp]}$ may occur. For instance, let V as in example 1.2 i and let $U=\left\{(1,1)^{t}\right\} \subset V$. Then $U^{[\perp]}=U$.

Definition 1.23. Let $(V,[]$,$) be an inner product space. A vector x \in V, x \neq 0$, is called isotropic if $x[\perp] V$. If $U \subset V$, then a vector $x \in U, x \neq 0$, is called isotropic for U if $x[\perp] U$.

Clearly, linear combinations of isotropic vectors are again isotropic and a vector x is isotropic for a subspace U if and only if $x \in U \cap U^{[\perp]} \backslash\{0\}$.

Definition 1.24. Let $(V,[]$,$) be an inner product space and U \subset V$ a linear subspace. Then $U^{0}:=U \cap U^{[\perp]}$ is called the isotropic part of U. The subspace U is called degenerate if $U^{0}=\{0\}$, otherwise it is called non-degenerate.

Observe that by the Cauchy-Schwarz-Bunyakovski inequality $V^{0}=\mathcal{P}^{0}(V)$ if the inner product is semidefinite.

Definition 1.25. Let ($V,[$,$]) be an indefinite inner product space. A subspace$ U is called maximal positive if it is a positive subspace of V and for every positive subspace $W \subset V$ with $U W$ it follows that $U=W$. The definition of maximal non-negative, maximal negative, maximal non-positive, maximal neutral, maximal non-degenerate subspace is analogous.

Theorem 1.26. Let $(V,[]$,$) be an indefinite inner product space and U \subset V a$ positive subspace. Then U is contained in a maximal positive subspace. Analogous statements are true for non-negative, negative, non-positive, neutral, non-degenerate subspace subspaces.

Proof. Zorn. See [AI89, Theorem 1.19].

1.4 Quotient spaces

Bibliography

[AI89] T. Ya. Azizov and I. S. Iokhvidov. Linear operators in spaces with an indefinite metric. Pure and Applied Mathematics (New York). John Wiley \& Sons, Ltd., Chichester, 1989. Translated from the Russian by E. R. Dawson, A Wiley-Interscience Publication.
[Bog74] János Bognár. Indefinite inner product spaces. Springer-Verlag, New York-Heidelberg, 1974. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 78.
[GLR05] Israel Gohberg, Peter Lancaster, and Leiba Rodman. Indefinite linear algebra and applications. Birkhäuser Verlag, Basel, 2005.

