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Chapter 0

Sample Chapter
chapter:00

0.1 Some recomendations
sec:1:recomendaciones

• Please use the environments theorem, corollary, proposition etc. and
proof.

• In definitions, use define{} for what you want to define.

• For labels, please use the following conventions:

– \label{chapter:1} for chapters

– \label{sec:1} for sections

– \label{thm:number-of-chapter:something} for theorems,

– \label{lem:number-of-chapter:something} for lemmas,

– \label{prop:number-of-chapter:something} for propositions

– \label{cor:number-of-chapter:something} for corollaries

– \label{eq:number-of-chapter:something} for equations

• If you refer to a formula, use eqref{}. If you refer to something in an
enumerated list, use enumiref{}.

• Do not use eqnarray. Use equation, align gather, etc. (see, e.g.,
amsldoc.pdf).

• Use \index when appropriate.

• \commentbox{} may be useful. It takes as an optional argument colors.
Important comment!

Comment in teal!
Comment in cyan!

Comment in violet!
Comment in purple!

Comment in red!

• In proofs, you may want to use \proofenumerate{} instead of \enumerate{}.

• Use \I for the imaginary unit and \e for e.
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4 0.2. Dictionary

• Use \rd to produce d in integrals:
\int_{0}^{1}f(tz+\left(1-t\right)z_{1})\,\rd t gives∫ 1

0
f(tz + (1− t) z1) dt.

• Never ever use i as index in sums etc.

• Use punctuation in formulas.

0.2 Dictionary
sec:dictionary

[AI89] [Bog74]

V vector space F E
linear subspace lineal
closed linear subspace subspace

[ , ] indefinite inner product [ , ] [ , ]
〈 , 〉 Hilbert space inner product ( , ) ( , )

x is positive, 〈x , x〉 > 0 strictly positive positive
x is nonnegative, 〈x , x〉 ≥ 0 positive nonnegative
x is negative, 〈x , x〉 < 0 strictly negative nonpositive
x is nonpositive, 〈x , x〉 ≤ 0 negative nonpositive

P++ = {x ∈ V : 〈x , x〉 > 0} P++ P++

P+ = {x ∈ V : 〈x , x〉 ≥ 0} P+ P+

P−− = {x ∈ V : 〈x , x〉 < 0} P−− P−−

P− = {x ∈ V : 〈x , x〉 ≤ 0} P− P−

P00 = {x ∈ V : 〈x , x〉 = 0} P00 P00

P0 = {x ∈ V : 〈x , x〉 ≤ 0} P0 P0

⊥ orthogonal in Hilbert space
[⊥] Q-orthogonal in inner product space
+ algebraic sum:
U + V = {u+ v : u ∈ U, v ∈ V }

+̇ direct sum \dplus:
U+̇V = V + V if U ∩ V = ∅

⊕ Hilbert space orthogonal sum:
U ⊕ V = U + V if U ⊥ V

+̇ inner product space orthogonal sum \operp:
U+̇V = U + V if U [⊥]V
⊥ inner product space orthogonal sum \dperp:
U⊥V = U + V if U [⊥]V and U ∩ V = ∅
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Chapter 1. Linear spaces with indefinite metric 5

Chapter 1

Linear spaces with
indefinite metricchapter:01

Usually we denote vector spaces without any additional structure by V , and we
assume all vector spaces to be complex vector spaces.

1.1 Bounded Hermitian forms

Definition 1.1. Let V be a complex vector space. A mapping Q : V × V → C
is a hermitian sesquilinear form on V if for all x, y, z ∈ V , λ ∈ C

(i) Q(αx+ y, z) = αQ(x, z) +Q(y, z) (linearity in the first component),

(ii) Q(x, z) = Q(z, x) (symmetry)

We often write [x , y] instead of Q(x, y) if it is clear which form Q is considered.

Clearly, a hermitian sesquilinear form satisfies

Q(x, αy + z) = αQ(x, y) +Q(x, z), x, y, z ∈ V, α ∈ C.

An inner product space (V, [ , ]) is a vector space V with a sesquilinear form [ , ].
Clearly, if V is vector space with inner product [ , ] and U is a subspace of V ,
then (U, [ , ]|U×U ) is again an inner product space, usually denoted by (U, [ , ])
or simply U .

enumi:1:basic1ex:1:basic Example 1.2. (i) Let V = C2 and define the inner product

V × V → C,
[(
x1
x2

)
,

(
x1
x2

)]
= x1y1 − x2y2.

enumi:1:basic2 (ii) Let V = C2 and define the inner product

V × V → C,
[(
x1
x2

)
,

(
x1
x2

)]
= x1y2 + x2y1.
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6 1.1. Bounded Hermitian forms

Example 1.3. Examples 1.1 and 1.2. from [AI89].

Definition 1.4. Let [ , ] be a sesquilinear form on a vector space V and let
x ∈ V .

• x is called positive if [x , x] > 0,

• x is called non-negative if [x , x] ≥ 0,

• x is called negative if [x , x] < 0,

• x is called non-positive if [x , x] ≤ 0,

• x is called neutral if [x , x] = 0.

Observe that [x , x] = 0 if x = 0, but the reverse is in general not true.

Definition 1.5. Let (V, [ , ]) be an inner product space. Then (V,−[ , ]) is called
its antispace.

Definition 1.6. Let V be a vector space with hermitian sesquilinear form [ , ].
We define the following sets:

P++(V ) := {x ∈ V : [x , x] > 0},
P+(V ) := {x ∈ V : [x , x] ≥ 0},
P−−(V ) := {x ∈ V : [x , x] < 0},
P−(V ) := {x ∈ V : [x , x] ≤ 0},
P00(V ) := {x ∈ V : x 6= 0, [x , x] = 0},
P0(V ) := {x ∈ V : [x , x] = 0}.

If the underlying space V is clear, we sometimes write P++,P+,P−−,P−,P00

and P0 instead of P++(V ),P+(V ),P−−(V ),P−(V ),P00(V ) and P0(V ).

Clearly P+ = P++ ∪ P0, P− = P−− ∪ P0 and P0 = P+ ∩ P−. Moreover, if
x ∈ P++, then αx ∈ P++ for all α ∈ C \ {0}. The same is true for the other
sets defined above.

Example 1.7. • Example 1.2(i) :

P++ = {(x1, x2)t : |x1| > |x2|}, P+ = {(x1, x2)t : |x1| ≥ |x2|},
P−− = {(x1, x2)t : |x1| < |x2|}, P− = {(x1, x2)t : |x1| ≤ |x2|},
P0 = {(x1, x2)t : |x1| = |x2|}.

• Example 1.2(ii) :

P++ = {(x1, x2)t : Re(x1x2) > 0}, P+ = {(x1, x2)t : Re(x1x2) ≥ 0},
P−− = {(x1, x2)t : Re(x1x2) < 0}, P− = {(x1, x2)t : Re(x1x2) ≤ 0},
P0 = {(x1, x2)t : Re(x1x2) = 0}.
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Chapter 1. Linear spaces with indefinite metric 7

def:mP Definition 1.8. . Let V be a vector space with hermitian sesquilinear form [ , ]
and let U ⊆ V be a subspace.

• U is positive if U ⊆ P++ ∪ {0},
• U is non-negative if U ⊆ P+,

• U is negative if U ⊆ P−− ∪ {0},
• U is non-positive if U ⊆ P−,

• U is semidefinite if U ⊆ P+ or U ⊆ P−,

• U is definite if U ⊆ P++ ∪ {0} or U ⊆ P−− ∪ {0},
• U is neutral if U ⊆ P0,

The sesquilinear form [ , ] is positive, non-negative, etc. if V is positive, non-
negative, etc.. The sesquilinear form [ , ] is called indefinite it is not semidefinite.

Clearly, a neutral subspace is semidefinite. It is both non-negative and non-
positive.

Note that P++ and P−− are not vector spaces (they do not contain 0). Next
we show that if P++ 6= ∅, then the span of P++ ∪{0} is all of V , in particular,
in general the sets P+ and P− are not vector spaces too. Note however that P0

is a vector space, see Corollary 1.12.

Proposition 1.9. Let (V, [ , ]) be an inner product space and let x ∈ V with
[x , x] > 0. Then every element of V is the sum of two positive vectors.

Clearly a similar statement is true if there exists x ∈ V with [x , x] < 0.

Proof. Let x ∈ V such that [x , x] > 0 and fix z ∈ V . Then we can choose α ∈ R
large enough such that

[z + αx , z + αx] = [z , z] + 2αRe[z , x] + α2[x , x] > 0.

Then z = (z + αx) + (−αx) with z + αx,−αx ∈ P++.

Proposition 1.10. Let (V, [ , ]) be an inner product space. If [ , ] is indefinite,
then there exists x 6= 0 such that [x , x] = 0.

Proof. Let y, z ∈ H such that [y , y] > 0 and [z , z] < 0. Clearly, y and z
are linearly independent. Consider the continuous map f : [0, 1] → R, f(t) =
[(1− t)y+ tz , (1− t)y+ tz]. Since f(0) > 0 and f(1) < 1, there exists t0 ∈ (0, 1)
such that f(t0) = 0 and x = (1− t0)y + t0z 6= 0 does the job.

Proposition 1.11 (Cauchy-Schwarz-Bunyakovski inequality). Let (V, 〈 , 〉)
be a semidefinite inner product space. Then for all x, y ∈ V

|[x , y]|2 ≤ |[x , x]| |[y , y]|. (1.1) eq:CSB
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8 1.2. Orthogonality and isotropic subspaces

Proof. Without restriction we may assume that [ , ] is non-negative. Observe
that for all α ∈ C

0 ≤ [x− αy , x− αy] = [x , x]− 2 Re
(
α[x , y]

)
+ α2[y , y].

If [x , x] = [y , y] = 0, then clearly [x , y] = 0, otherwise the choice α = 2[x , y]−1

would lead to a contradiction. Now assume that at least one of the vectors x, y

is not neutral, without restriction let [y , y] > 0. Choose α = [x ,y]
[y ,y] . Then the

above inequality gives

0 ≤ [x , x]− 2
|[x , y]|2

[y , y]
+
|[x , y]|2

[y , y]
= [x , x]− |[x , y]|2

[y , y]
.

Multiplication by [y , y] completes the proof.

cor:1:P0 Corollary 1.12. P0(V ) is a subspace of V .

1.2 Orthogonality and isotropic subspaces

Definition 1.13. Let (V, [ , ]) be an inner product space. We write x[⊥]y if and
only if [x , y] = 0. In this case x an y are called Q-orthogonal.
Let M ⊂ V be a set. Then x[⊥]M if and only if x[⊥]y for all y ∈M and

M [⊥] := {x ∈ V : x[⊥]y for all y ∈M}

is called the orthogonal complement of M . We set M ⊂ M [⊥][⊥] :=
(
M ⊂

M [⊥])[⊥].
Remark 1.14. Let x, y ∈ V and let M,N ⊂ V .

(i) x[⊥]y ⇐⇒ y[⊥]x.

(ii) Then M [⊥] is a linear subspace of V .

(iii) M ⊂M [⊥][⊥].

(iv) If N ⊂M , then M [⊥] ⊂ N [⊥].

(v) M [⊥] ∩N [⊥] ⊂ (M ∪N)[⊥].

(vi) M [⊥] +N [⊥] ⊂ (M ∩N)[⊥].

(vii) If U,W are linear subspaces of V , then U [⊥] +NW [⊥] = (U ∩W )[⊥].

Remark 1.15. Let U ⊂ V be a subspace of V . In general V + V [⊥] 6= V , even
if V is closed, and U ∩ U [⊥] may occur. For instance, let V as in example 1.2 i
and let U = {(1, 1)t} ⊂ V . Then U [⊥] = U .
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Chapter 1. Linear spaces with indefinite metric 9

Definition 1.16. Let (V, [ , ]) be an inner product space. A vector x ∈ V, x 6= 0,
is called isotropic if x[⊥]V . If U ⊂ V , then a vector x ∈ U, x 6= 0, is called
isotropic for U if x[⊥]U .

Clearly, linear combinations of isotropic vectors are again isotropic and a vector
x is isotropic for a subspace U if and only if x ∈ U ∩ U [⊥] \ {0}.

Definition 1.17. Let (V, [ , ]) be an inner product space and U ⊂ V a linear
subspace. Then U0 := U ∩ U [⊥] is called the isotropic part of U . The subspace
U is called degenerate if U0 = {0}, otherwise it is called non-degenerate.

Observe that by the Cauchy-Schwarz-Bunyakovski inequality V 0 = P0(V ) if the
inner product is semidefinite.

Definition 1.18. Let (V, [ , ]) be an indefinite inner product space. A subspace
U is called maximal positive if it is a positive subspace of V and for every pos-
itive subspace W ⊂ V with UW it follows that U = W . The definition of
maximal non-negative, maximal negative, maximal non-positive, maximal neu-
tral, maximal non-degenerate subspace is analogous.

Theorem 1.19. Let (V, [ , ]) be an indefinite inner product space and U ⊂ V a
positive subspace. Then U is contained in a maximal positive subspace.
Analogous statements are true for non-negative, negative, non-positive, neutral,
non-degenerate subspace subspaces.

Proof. Zorn. See [AI89, Theorem 1.19].

1.3 Decomposition of subspaces

Definition 1.20. Let (V, [ , ]) be an inner product space. We write x[⊥]y if and
only if [x , y] = 0. In this case x an y are called Q-orthogonal.
Let M ⊂ V be a set. Then x[⊥]M if and only if x[⊥]y for all y ∈M and

M [⊥] := {x ∈ V : x[⊥]y for all y ∈M}

is called the orthogonal complement of M . We set M ⊂ M [⊥][⊥] :=
(
M ⊂

M [⊥])[⊥].
Remark 1.21. Let x, y ∈ V and let M,N ⊂ V .

(i) x[⊥]y ⇐⇒ y[⊥]x.

(ii) Then M [⊥] is a linear subspace of V .

(iii) M ⊂M [⊥][⊥].

(iv) If N ⊂M , then M [⊥] ⊂ N [⊥].
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10 1.4. Quotient spaces

(v) M [⊥] ∩N [⊥] ⊂ (M ∪N)[⊥].

(vi) M [⊥] +N [⊥] ⊂ (M ∩N)[⊥].

(vii) If U,W are linear subspaces of V , then U [⊥] +W [⊥] = (U ∩W )[⊥].

Remark 1.22. Let U ⊂ V be a subspace of V . In general V + V [⊥] 6= V , even
if V is closed, and U ∩ U [⊥] may occur. For instance, let V as in example 1.2 i
and let U = {(1, 1)t} ⊂ V . Then U [⊥] = U .

Definition 1.23. Let (V, [ , ]) be an inner product space. A vector x ∈ V, x 6= 0,
is called isotropic if x[⊥]V . If U ⊂ V , then a vector x ∈ U, x 6= 0, is called
isotropic for U if x[⊥]U .

Clearly, linear combinations of isotropic vectors are again isotropic and a vector
x is isotropic for a subspace U if and only if x ∈ U ∩ U [⊥] \ {0}.

Definition 1.24. Let (V, [ , ]) be an inner product space and U ⊂ V a linear
subspace. Then U0 := U ∩ U [⊥] is called the isotropic part of U . The subspace
U is called degenerate if U0 = {0}, otherwise it is called non-degenerate.

Observe that by the Cauchy-Schwarz-Bunyakovski inequality V 0 = P0(V ) if the
inner product is semidefinite.

Definition 1.25. Let (V, [ , ]) be an indefinite inner product space. A subspace
U is called maximal positive if it is a positive subspace of V and for every pos-
itive subspace W ⊂ V with UW it follows that U = W . The definition of
maximal non-negative, maximal negative, maximal non-positive, maximal neu-
tral, maximal non-degenerate subspace is analogous.

Theorem 1.26. Let (V, [ , ]) be an indefinite inner product space and U ⊂ V a
positive subspace. Then U is contained in a maximal positive subspace.
Analogous statements are true for non-negative, negative, non-positive, neutral,
non-degenerate subspace subspaces.

Proof. Zorn. See [AI89, Theorem 1.19].

1.4 Quotient spaces
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