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Chapter 1

Preliminaries

2 Aug 2010
In this chapter we collect some well-known facts from functional analysis.

Definition 1.1. Let X be a vector space over K. (X, ‖ · ‖) is called a normed
space with norm ‖ · ‖ if

‖ · ‖ : X → R

is a map such that for all x, y ∈ X, α ∈ K

(i) ‖x‖ = 0 ⇐⇒ x = 0,

(ii) ‖αx‖ = |α| ‖x‖,
(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

If ‖ · ‖ satisfies only (ii) and (iii), it is called a seminorm.

Note that ‖x‖ ≥ 0 for all x ∈ X because 0 = ‖x−x‖ ≤ 2‖x‖. The last inequality
follows from the triangle inequality (iii) and (ii) with α = −1.

Definition 1.2. A normed space (X, ‖ · ‖) is a Banach space if it is complete
with respect to the topology induced by ‖ · ‖.

Definition 1.3. Let X be a K-vector space. A map

〈· , ·〉 : X ×X → K

is a sesquilinear form on X if for all x, y, z ∈ X, λ ∈ K

(i) 〈λx+ y , z〉 = λ〈x , z〉+ 〈y , z〉,
(ii) 〈x , λy + z〉 = λ〈x , y〉+ 〈x , z〉.

The inner product is called

• hermitian ⇐⇒ 〈x , y〉 = 〈y , x〉, x, z ∈ X,
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• positive semidefinite ⇐⇒ 〈x , x〉 ≥ 0, x ∈ X,

• positive (definite) ⇐⇒ 〈x , x〉 > 0, x ∈ X \ {0}.

Definition 1.4. A positive definite hermitian sesquilinear form on a K-vector
X is called an inner product on X and (X, 〈· , ·〉) is called an inner product space
(or pre-Hilbert space).

Note that for a hermitian sesquilinear form 〈x , x〉 ∈ R for every x ∈ X because
〈x , x〉 = 〈x , x〉.

Lemma 1.5 (Cauchy-Schwarz inequality). Let X be a K-vector space with
inner product 〈· , ·〉. Then for all x, y ∈ X

|〈x , y〉|2 ≤ |〈x , x〉| |〈y , y〉|, (1.1)

with equality if and only if x and y are linearly dependent.

Proof. For x = 0 or y = 0 there is nothing to show. Now assume that y 6= 0.
For all λ ∈ K

0 ≤ 〈x+ λy , x+ λy〉 = 〈x , x〉+ λ〈y , x〉+ λ〈x , y〉+ |λ|2〈y , y〉.

In particular, when we choose λ = − 〈x ,y〉〈y ,y〉 we obtain

0 ≤ 〈x+ λy , x+ λy〉 = 〈x , x〉 − |〈y , x〉|
2

〈y , y〉
− |〈x , y〉|

2

〈y , y〉
+
|〈x , y〉|2

〈y , y〉

= 〈x , x〉 − |〈x , y〉|
2

〈y , y〉

which proves (1.1). If there exist α, β ∈ K such that αx+βy = 0, then obviously
equality holds in (1.1). On the other hand, if equality holds, then 〈x+ λy , x+
λy〉 = 0 with λ chosen as above, so x and y are linearly dependent.

Note that (1.1) is true also in a space X with a semidefinite hermitian sesquilin-
ear form but equality in (1.1) does not imply that x and y are linearly dependent.

Lemma 1.6. An inner product space (X, 〈· , ·〉) becomes a normed space by

setting ‖x‖ := 〈x , x〉 12 , x ∈ X.

Definition 1.7. A complete inner product space is called a Hilbert space.

Definition 1.8. Let X,Y be normed spaces. A map T : X → Y is called a
linear operator from X to Y if

T (αx+ y) = αTx+ Ty, α ∈ K, x, y ∈ X.

Last Change: Mon 07 Sep 2015 04:23:55 PM -05
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CHAPTER 1. Preliminaries 9

A linear operator T from X to Y is called bounded with norm ‖T‖ if

‖T‖ := sup{‖Tx]‖ : x ∈ X, ‖x‖ = 1} <∞.

If T is not bounded it is called unbounded. The set of all bounded linear oper-
ators from X to Y is denoted by L(X,Y ).

It is easy to check that

‖T‖ = sup{‖Tx‖ : x ∈ X, ‖x‖ = 1}
= sup{‖Tx‖ : x ∈ X, ‖x‖ ≤ 1}

= sup
{‖Tx‖
‖x‖

: x ∈ X, x 6= 0
}

= inf{M ∈ R : ∀x ∈ X ‖Tx‖ ≤M‖x‖}.

and that the following is equivalent:

(i) T is continuous.

(ii) T is continuous in 0.

(iii) T is bounded.

(iv) T is uniformly continuous.

Theorem 1.9. Let X,Y be normed spaces. Then (L(X,Y ), ‖ · ‖) is a normed
space. If Y is a Banach space, then L(X,Y ) is a Banach space.

Remark. Sometimes T is defined only on a (not necessarily closed) subspace
D ⊂ X. Then we write

T : X ⊇ D(T )→ Y

if T |D : D → Y is a linear operator in the sense above. When the domain is not
mentioned explicitely, we sometimes write T (X,Y ) or T (X → Y ).

In general, linear operators which are not defined on all of X will be unbounded.

Example 1.10. Let X = (C[0, 1], ‖ · ‖∞) be the space of the continuous func-
tions on [0, 1] together with the supremum norm ‖f‖∞ = sup{|f(t)| : t ∈ [0, 1]}
and let D := C1[0, 1] the space of the once continuously differentiable functions.
Then the differential operator

T : X ⊇ D → X, Tf = f ′

is an unbounded linear operator.

Proof. Well-definedness and linearity is clear. For n ∈ N0 define fn ∈ C[0, 1] by
fn(t) = tn. Obviously ‖fn‖∞ = 1 and ‖Tfn‖∞ = n‖fn−1‖∞ = n for all n ∈ N.
Hence T is unbounded.

Last Change: Mon 07 Sep 2015 04:23:55 PM -05
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The bounded linear maps from a normed space to K play a very important role.

Definition 1.11. Let X be a normed space over K. A bounded linear map
X → K is called a definebounded linear functional on X. The dual space X ′ of
X is the set all bounded bounded linear functionals on X, i. e., X ′ = L(X,K).

Note that by Theorem 1.9 the dual space is Banach space.
That the dual space of a Hilbert space is isomorphic to itself and that every
Hilbert space is reflexive follows from the following theorem.

Theorem 1.12 (Fréchet-Riesz representation theorem). Let H be a Hilbert
space. Then the map

Φ : H → H ′, y 7→ 〈· , y〉

is an isometric antilinear bijection.

We have the natural injection X → X ′′, x 7→ x̂ where x̂(x′) = x′(x) for all x ∈
X. This map is an isometry. If it is even a bijection, then X is called reflexive.
Note that there are normed spaces which are not reflexive but nevertheless
isomorphic to their bidual.

Theorem 1.13 (Hahn-Banach). Let X be a normed space and p : X → R a
seminorm (a sublinear functional). Let Y be a subspace of X and ϕ0 ∈ Y ′ such
that |ϕ0(y)| ≤ p(y) for all y ∈ Y . Then there exists an extension ϕ ∈ X ′ of ϕ0

with ‖ϕ‖ = ‖ϕ0‖ and |ϕ(x)| ≤ p(x) for all x ∈ X.

Example 1.14. Examples for dual spaces: Let 1 ≤ p < ∞ and 1
p + 1

q = 1.
Then

(`p(N))′ = `q(N)), (Lp(Ω))′ = Lq(Ω)

where (Ω,Σ, µ) is a σ-finite measure space. Note that (`∞(N))′ 6= `1(N) and
(L∞(Omega))′ = L1(Ω).
Denote by c0(N) the space of all sequences (xn)n∈N which converge to 0. Then
(c0(N))′ = `1(N).
The analogon for function spaces is given by the following theorem.

Theorem 1.15 (Riesz representation theorem). Let K be a compact met-
ric space and M(K) the set of regular Borel measures of finite variation on K.
Then (C(K))′ = M(K).

An important role plays the uniform boundedness principle.

Theorem 1.16 (Uniform boundedness principle). Let X be a complete
metric space, Y a normed space and F ⊆ C(X,Y ) a family of continuous func-

Last Change: Mon 07 Sep 2015 04:23:55 PM -05
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CHAPTER 1. Preliminaries 11

tions which is pointwise bounded, i. e.,

∀x ∈ X ∃Cx ≥ 0 ∀ f ∈ F ‖f(x)‖ < Cx.

Then there exists an M ∈ R, x0 ∈ X and r > 0 such that

∀x ∈ Br(x0) ∀ f ∈ F ‖f(x)‖ < M. (1.2)

The following is an immediate corollary of the uniform boundedness principle.

Theorem 1.17 (Banach-Steinhaus theorem). Let X be a Banach space, Y
a normed space and F ⊆ L(X,Y ) a family of continuous linear functions which
is pointwise bounded, i. e.,

∀x ∈ X ∃Cx ≥ 0 ∀ f ∈ F ‖f(x)‖ < Cx.

Then there exists an M ∈ R such that

‖f‖ < M, f ∈ F .

Linear operators

Definition 1.18. Let X,Y be Banach spaces. A linear map T ∈ L(X,Y ) is
called open if T (U) is open in Y for every open subset U of X.

Theorem 1.19 (Open mapping theorem). Let X,Y be Banach spaces and
T ∈ L(X,Y ). Then T is open if and only if it is surjective.

The open mapping theorem has the following important corollary.

Corollary 1.20 (Inverse mapping theorem). Let X,Y be Banach spaces
and T ∈ L(X,Y ) a bijection. Then T−1 exists and is continuous.

For the definition of a closed operator we introduce the graph of a linear oper-
ator.
Let X,Y be Banach spaces. Then we can introduce a norm on X × Y by
‖(x, y)‖X×Y = ‖x‖ + ‖y‖ or ‖(x, y)‖X×Y =

√
‖x‖2 + ‖y‖2. The topolopies

generated by either of these norms coincide.

Definition 1.21. Let X,Y be Banach spaces, D ⊆ X a subspace of X and
T : X ⊇ X → Y a linear operator. The graph G(T ) is

G(T ) :=
{

(x, Tx) : x ∈ D
}
⊆ X × Y.

The linear operator T is called closed if its graph is closed. It is called closable
if the closure of its graph is the graph of a linear operator. If G(T ) = G(T )
then T is called the closure of T .

Last Change: Mon 07 Sep 2015 04:23:55 PM -05
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Obviously, the closure of a closable linear operator T is unique and the smallest
closed extension if T . The following characterisation of closed and closable
operators is often useful.

Lemma 1.22. Let X,Y normed space, D ⊆ X a subspace and T : X ⊇ D → Y .

(i) T is closed if and only if for every sequence (xn)n∈N ⊆ D the following is
true:

(xn)n∈N and (Txn)n∈N converge

=⇒ x0 := lim
n→∞

xn ∈ D and lim
n→∞

Txn = Tx0.
(1.3)

(ii) T is closable if and only if for every sequence (xn)n∈N ⊆ D the following
is true:

lim
n→∞

xn = 0 and (Txn)n∈N converges =⇒ lim
n→∞

Txn = 0. (1.4)

The closure T of T is given by

D(T ) = {x ∈ X : ∃ (xn)n∈N ⊆ D with lim
n→∞

xn = x and (Txn)n∈N converges },

Tx = lim
n→∞

(Txn) for (xn)n∈N ⊆ D with lim
n→∞

xn = x.

(1.5)

Theorem 1.23 (Closed graph theorem). Let X,Y be Banach spaces and
T : X → Y be a closed linear operator. Then T is bounded.

The following corollary shows how closedness and continuity are related.

Lemma 1.24. Let X,Y be Banach spaces, D ⊆ X a subspace and T : D → Y
linear. Then the following are equivalent:

(i) T is closed and D(T ) is closed.

(ii) T is closed and T is continuous.

(iii) D(T ) is closed and T is continuous.

Definition 1.25. Let X,Y be Banach spaces, D ⊆ X a subspace and T : X ⊇
D → Y a linear operator. Then

‖ · ‖T : D → R, ‖x‖T =
√
‖x‖2 + ‖Tx‖2

is called the graph norm of T .

It is easy to see that ‖ · ‖T is a norm on D. Moreover, the norm defined above
is equivalent to the norm ‖x‖′T =

√
‖x‖2 + ‖Tx‖2 on D.

Note that the operator

T̃ : (D(T ), ‖ · ‖∞)→ Y, T̃x = Tx

is continuous. In general we write T instead of T̃ .

Last Change: Mon 07 Sep 2015 04:23:55 PM -05
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CHAPTER 1. Preliminaries 13

Linear operators
3 Aug 2010

Definition 1.26. Let X,Y be Banach spaces and D(T ) ⊆ X a dense subspace.
For a linear map T : X ⊇ D(T )→ Y we define

D(T ′) := {ϕ ∈ Y ′ : x 7→ ϕ(Tx) is a bounded linear functional on D(T )},

Since D(T ) is dense in X, the map D(T ) → K, x 7→ ϕ(Tx) has a unique
continuous extension T ′ϕ ∈ X ′ for ϕ ∈ D(T ′). Hence the Banach space adjoint
T ′

T ′ : Y ′ ⊇ D(T ′)→ X ′, (T ′ϕ)(x) = ϕ(Tx), x ∈ D(T ), ϕ ∈ D(T ′).

is well-defined.

If a linear operator acts between Hilbert spaces then its adjoint can be defined
as above. However, we can also use the canonical identification of a Hilbert
space with its dual to define its adjoint.

Definition 1.27. Let H1, H2 be Hilbert spaces and D(T ) ⊆ H1 a dense sub-
space. For a linear map T : H1 ⊇ D(T ) → H2 its Hilbert space adjoint T ∗ is
defined by

D(T ∗) := {y ∈ H2 : x 7→ 〈Tx , y〉 is a bounded on D(T )},
T ∗ : H2 ⊇ D(T ∗)→ H1, T ∗y = y∗,

where y∗ ∈ H1 such that 〈Tx , y〉 = 〈x , y∗〉 for all x ∈ D(T ).
Note that for y ∈ D(T ∗) the map x 7→ 〈Tx , y〉 is continuous and densely defined
and can therefore be extended uniquely to an element ϕy ∈ H ′1. By the Fréchet-
Riesz representation theorem (Theorem 1.12) there exists exactly one y∗ ∈ H1

as desired.

Remark 1.28. Note that the application T 7→ T ′ is linear wheras T 7→ T ∗ is
antilinear (that is, (αT )∗ = αT ∗ for α ∈ K).
If Φ1 and Φ2 are the maps of the Fréchet-Riesz representation theorem (Theo-
rem1.12) corresponding to H1 and H2 respectively, then T ∗ = Φ−1

1 T ′Φ2.

Note that T is bounded if and only if its adjoint is bounded. In this case
‖T‖ = ‖T ∗‖.
The following two theorems are true for Banach or Hilbert spaces.

Theorem 1.29. Let X,Y, Z be Banach spaces and R(X → Y ), S(X → Y ),
T (Y → Z) densely defined linear operators. Then

(i) (R+ S)′ ⊆ R′ + S′ if D(R+ S) = D(R) ∩ D(S) is dense in X.

(ii) (TS)′ ⊆ S′T ′ if D(TS) = {x ∈ D(S) : Sx ∈ D(TS)} is dense in
X.

Last Change: Mon 07 Sep 2015 04:23:55 PM -05
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Theorem 1.30. Let X,Y be Banach spaces and T (X → Y ) a densely defined
linear operator. Then T ′ is closed.

Now we consider linear operators between Hilbert spaces.

Theorem 1.31. Let H1, H2 be Hilbert spaces and T (H1 → H2) a densely de-
fined linear operator. Then the following is true.

(i) T ∗ is closed.

(ii) If T ∗ is densely defined, then T ⊆ T ∗∗.

(iii) If T ∗ is densely defined and S is a closed extension of T , then T ∗∗ ⊆ S,
in particular T is closable and T = T ∗∗.

(iv) If T is closable then T ∗ is densely defined and T = T ∗∗.

Definition 1.32. Let H be a Hilbert space and T (H → H) a densely defined
linear operator.

(i) T is symmetric ⇐⇒ T ⊆ T ∗.

(ii) T is selfadjoint ⇐⇒ T = T ∗.

(iii) T is essentially selfadjoint ⇐⇒ T is selfadjoint.

Proposition 1.33. (i) T symmetric =⇒ T ⊆ T ∗∗ ⊆ T ∗ = T ∗∗∗.

(ii) T closed and symmetric ⇐⇒ T = T ∗∗ ⊆ T ∗.

(iii) T selfadjoint ⇐⇒ T = T ∗∗ = T ∗.

(iv) T essentially selfadjoint ⇐⇒ T ⊆ T ∗∗ = T ∗.

Theorem 1.34. Let H1, H2 be Hilbert spaces and T (H1 → H2) a densely de-
fined linear operator.

(i) rg(T )⊥ = ker(T ∗).

(ii) rg(T ) = ker(T ∗)⊥.

(iii) rg(T ∗)⊥ = ker(T∗).

(iv) rg(T ∗) = ker(T∗)⊥.

Theorem 1.35 (Hellinger-Toeplitz). Let H be a Hilbert space, T : H → H
a linear operator such that 〈Tx , y〉 = 〈x , Ty〉 for all x, y ∈ H (that is, T is
formally symmetric). Then T is bounded.

Last Change: Mon 07 Sep 2015 04:23:55 PM -05
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Spectrum of linear operapors

Definition 1.36. Let X be a Banach space and T (X → X) a densely defined
linear operator.

ρ(T ) := {λ ∈ C : λ id−T is bijective} resolvent set of T,

σ(T ) := C \ ρ(T ) spectrum of T.

The spectrum of T is further divided in point spectrum σp(T ), continuous spec-
trum σc(T ) and residual spectrum σr(T ):

σp(T ) := {λ ∈ C : λ id−T is not injective},

σc(T ) := {λ ∈ C : λ id−T is injective, rg(T − λ id) 6= X, rg(T − λ id) = X},

σr(T ) := {λ ∈ C : λ id−T is injective, rg(T − λ id) 6= X}.

It follows immediately from the definition that

σ(T ) = σp(T ) ∪̇σc(T ) ∪̇σr(T ).

In the following, we often write λ− T instead of λ id−T .

Remark 1.37. If T is closed, then (T − λ)−1 is closed if it exists. Therefore,
by the closed graph theorem,

ρ(T ) = {λ ∈ C : T − λ is injective and (T − λ)−1 ∈ L(X)}.

Often the resolvent set of a linear operator is defined slightly different: Let
T (X → X) is a densely defined linear operator. Then λ ∈ ρ(T ) if and only
if λ − T is bijective and (λ − T ) ∈ L(X). With this definition it follows that
ρ(T ) = ∅ for every non-closed T (X → X) because one of the following cases
holds:

(i) λ− T is not bijective =⇒ λ /∈ ρ(T );

(ii) λ− T is bijective, then (λ− T )−1 is defined everywhere and closed, so by
the closed graph theorem it cannot be bounded, which implies λ /∈ ρ(T ).

Remark 1.38. (i) If T is bounded, then σ(T ) 6= ∅ and σ(T ) ⊆ {λ ∈ C :
|λ| ≤ ‖T‖}.

(ii) If T is unbounded, then σ(T ) = ∅ is possible.

Lemma 1.39. Let X be a Banach space and T (X → X) a closed linear opera-
tor. Then the resolvent set ρ(T ) is open and the resolvent map

ρ(T )→ L(H), λ 7→ R(λ, T ) := (λ− T )−1

is analytic. Moreover

Last Change: Mon 07 Sep 2015 04:23:55 PM -05
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(i) ‖R(λ0, T )‖ ≥ 1

dist(λ0, σ(T ))
for all λ0 ∈ ρ(T ).

(ii) For λ0 ∈ ρ(T ) and λ ∈ C with |λ− λ0| < ‖R(λ0, T )‖−1

R(λ, T ) =

∞∑
n=0

(λ0 − λ)n(R(λ0, T ))n+1.

Let X be a Banach space and T ∈ L(X). Then the spectral radius of T is
defined by r(T ) := lim supn→∞ ‖Tn‖1/n. The spectral radius gives an estimate
for the spectrum of T .

Theorem 1.40. For a Banach space X and T ∈ L(X) the following holds:

(i) r(T ) = limn→∞ ‖Tn‖1/n, in particular r(T ) ≤ ‖T‖.

(ii) σ(T ) ⊆ {λ ∈ C : |λ| ≤ r(T )}.

(iii) If X is a complex Banach space, then r(T ) = max{|λ| : λ ∈ σ(T )}.

(iv) If X is a Hilbert space, then r(T ) = ‖T‖.

It can be shown that a linear operator T on a complex Hilbert space H is
symmetric if and only if 〈Tx , x〉 ∈ R for all x ∈ D(T ) and that σ(T ) ⊆ R. The
next theorems show how the spectrum of a symmetric operator T is related to
selfadjointness of

Projections

Definition 1.41. Let X be Banach space. An operator P : X → X is called
projection if and only of P 2 = P .

Remark 1.42. (i) If P is an projection then also id−P is an projection.

(ii) If P ∈ L(X) is an projection then either ‖P‖ = 0 or ‖P‖ ≥ 1.

Definition 1.43. Let H be Hilbert space. A projection P ∈ L(H) is called
orthogonal projection if there exists a closed subspace U ⊆ H such that rgP = U
and kerU = (rgP )⊥.
In this case, ‖P‖ = 0 or ‖P‖ = 1.

Note that every x ∈ H can be written as x = Px + (1 − P )x. If P is an
orthogonal projection on U , then Px is the unique element in U such that
‖x− Px‖ = dist(x, U).
In the following, we collect some useful results on orthogonal projections.

Theorem 1.44. Let H be a Hilbert space, P ∈ L(H) a projection with P 6= 0.
The the following are equivalent.

Last Change: Mon 07 Sep 2015 04:23:55 PM -05
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(i) P is an orthogonal projection.

(ii) ‖P‖ = 1.

(iii) ‖P‖ is selfadjoint.

(iv) ‖P‖ is normal (i. e. PP ∗ = P ∗P ).

(v) 〈Px , x〉 ≥ 0 for all x ∈ H.

Theorem 1.45. Let H be a Hilbert space, P, Q ∈ L(H) orthogonal projections.

(i) The the following are equivalent:

(a) PQ is an orthogonal projection.

(b) QP is an orthogonal projection.

(c) PQ = QP is an orthogonal projection.

In this case rg(PQ) = rg(QP ) = rg(P ) ∩ rg(Q).

(ii) The the following are equivalent:

(a) P +Q is an orthogonal projection.

(b) PQ = QP = 0.

(c) rg(P ) ⊥ rg(Q).

(iii) The the following are equivalent:

(a) P −Q is an orthogonal projection.

(b) PQ = QP = Q.

(c) rg(Q) ⊆ rg(P ).

(d) ‖Qx‖ ≤ ‖Px‖ for all x ∈ H.

(e) 〈Qx , x〉 ≤ 〈Px , x〉 for all x ∈ H.

Theorem 1.46. Every monotonic sequence of orthogonal projections (Pn)n∈N
converges strongly to an orthogonal projection.
If the sequence is increasing, then the strong limit is the orthotgonal projection
on
⋃
n∈N rgPn.

If the sequence is decreasing, then the strong limit is the orthotgonal projection
on
⋂
n∈N rgPn.

Compact linear operators

Definition 1.47. Let X,Y be normed spaces. An operator T ∈ L(X,Y ) is
called compact if for every bounded set A ⊆ X the set T (A) is relatively com-
pact. The set of all compact operators from X to Y is denoted by K(X,Y ).
Sometimes compact operators are called completely continuous.

Remarks 1.48. (i) Every compact linear operator is bounded.
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(ii) T ∈ L(X,Y ) is compact if and only if for every bounded sequence (xn)n∈N
the sequence (Txn)n∈N contains a convergent subsequence.

(iii) T ∈ L(X,Y ) is compact if and only if T (BX(0, 1)) is relatively compact.

(iv) Let T ∈ L(X,Y ) with finite dimensional rg(T ). The T is compact.

(v) The identity map id ∈ L(X) is compact if and only ifX is finite-dimensional.

(vi) K(X) is a two-sided closed ideal in L(X).

Theorem 1.49 (Schauder). Let X,Y be Banach space and T ∈ L(X,Y ).
Then T is compact if and only if T ′ is compact.

Let X be a vector space and T : X → X a linear operator. Note that for
λ ∈ C \ {0} the ascent α(λ − T ) and the descent δ(λ − T ) are finite and equal
where

α(λ− T ) :=

{
min{k ∈ N0 : ker(λ− T )k = ker(λ− T )k+1}, if the minimum exists,

∞ else

δ(λ− T ) :=

{
min{k ∈ N0 : rg(λ− T )k = rg(λ− T )k+1}, if the minimum exists,

∞ else.

The number p := α(λ− T ) = δ(λ− T ) is called the Riesz index of λ− T .

Theorem 1.50 (Spectrum of a compact operator). Let X be a Banach
space. For a compact operator T ∈ L(X) the following holds.

(i) If λ ∈ C \ {0}, then λ either belongs to ρ(T ) or it is an eigenvalue of T ,
that is C \ {0} ⊆ ρ(T ) ∪ σp(T ).

(ii) The spectrum of T is at most countable and 0 is the only possible accu-
mulation point.

(iii) If λ ∈ σ(T ) \ {0}, then the dimension of the algebraic eigenspace Aλ(T )
is finite and Aλ(T ) = ker(λ− T )p where p is the Riesz index of λ− T .

(iv) X = ker(λ − T )p ⊕ rg(λ − T )p for λ ∈ σ(T ) \ {0} where p is the Riesz
index of λ− T and ker(λ− T )p and rg(λ− T )p are T -invariant.

(v) σp(T ) \ {0} = σp(T ′) \ {0} and σ(T ) = σ(T ′). If H is a Hilbert space then

σp(T ) \ {0} = {λ ∈ C : λ ∈ σp(T ∗)} \ {0} = σp(T ∗) \ {0}, where the bar

denotes complex conjugation, and σ(T ) = {λ ∈ C : λ ∈ σ(T ∗)} = σ(T ∗).

Theorem 1.51 (Spectral theorem for compact selfadjoint operators).
Let H be a Hilbert space and T ∈ L(H) a compact selfadjoint operator.
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(i) There exists an orthonormal system (en)Nn=1 of eigenvectors of T with
eigenvalues (λn)Nn=1 where N ∈ N ∪ {∞} such that

Tx =

N∑
n=1

λn〈x , en〉 en, x ∈ H. (1.6)

The λn can be chosen such that |λ1| ≥ |λ2| ≥ · · · > 0. The only possible
accumulation point of the sequence (λn)n∈N is 0.

(ii) If P0 is the orthogonal projection on kerT , then

x = P0x+

N∑
n=1

〈x , en〉 en, x ∈ H. (1.7)

(iii) If λ ∈ ρ(T ), λ 6= 0

(λ− T )−1x = λ−1P0x+

N∑
n=1

〈x , en〉
λn − λ

en, x ∈ H.

Note that the representation in (1.6) is not unique. A unique represention is
obtained if we define orthogonal projections Pj on the eigenspaces corrsponding
to µj where the µj are the pairwise distinct non-zero eigenvalues of T . Then
for all x ∈ H

Tx =

N∑
n=1

µnPnx, x = P0x+

N∑
n=1

Pnx. (1.8)

Note also that T =
∑N
n=1 µnPn in the operator norm.

Interpretation/Application of the spectral theorem
5 Aug 2010

Diagonalisation of T .

From finite dimensional linear algebra it is known that for every hermitian linear
operator T there exists an orthoganal basis with respect to which the matrix
representation of T has diagonal form. Writing T as an infinite matrix with
respect to the orthogonal system introduced in Theorem 1.51 (i) we obtain

Tx =


λ1

λ2

λ3

. . .



x1

x2

x3

...


where x =

∑N
n=1 xn en = (x1, x2, x3, . . . )

t. Note that xn = 〈x , en〉.
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T is unitarily equivalent to a multiplication operator on an L2-space.

Assume that kerT = {0}. Then from the above representation it is clear that

T = UMTU
−1

where

U : H = rg(T )→ `(N), U
( ∞∑
n=1

αn en

)
= (αn)n∈N

and

MT : `(N)→ `(N), MTx = (λxn)n∈N for x = (xn)n∈N.

If T has only finitely many eigenvalues then the space `(N) has to be replaced
by `({1, 2, . . . , N}) and the operator U has to be modified accordingly.

T as an integral.

Assume that all eigenvalues of T are positive: µ1 < µ2 < · · · < 0 and let Pj
be the orthogonal projection on the eigenspace corresponding to µj . Define
Eλ =

∑
µj<λ

Pj . Then Pn = Eλn − Eλn−1
=: ∆En and therefore

T =

N∑
n=1

µnPn =

N∑
n=1

µn
(
Eλn − Eλn−1

)
=

N∑
n=1

µn∆Eλn .

Functional calculus for T .

If f is a bounded function defined on σ(T ) then we can define f(T ) by

f(T ) =

N∑
n=1

f(µn)Pn.

When f is polynomial, this definition coincides with the usual definition of the
polynomial of a bounded linear operator. Also for f(x) = (λ0 − x)−1 where
λ ∈ ρ(T ) the definition above and the usual definition coincide. Note that for
an eigenvector x of T with eigenvalue µ we have that f(T )x = f(µ)x.

In the next chapter we will see how the above can be extended to selfadjoint
linear operators that are not necessarily compact.

Last Change: Mon 07 Sep 2015 04:23:55 PM -05



D
R
A
F
T

CHAPTER 2. The spectral theorem 21

Chapter 2

The spectral theorem

2.1 The Riemann-Stieltjes integral
9 Aug 2010

Definition 2.1. The total variation of a function α : [a, b]→ K is defined by

var α := sup
{ n∑
j=1

|α(tj)− α(tj−1)| : a = t0 < t1 < · · · < tn = b
}
.

α is said to be of bounded variation (or finite variation) if var α <∞.
The set of all functions of bounded variation on [a, b] is denoted by BV[a, b].

Remark 2.2. • BV[a, b] with ‖α‖ = α(a) + var α, α ∈ BV[a, b] is a non-
separable normed space.

• Every α ∈ BV[a, b] can be written as difference of two monotonic functions
(Jordan decomposition).

Definition 2.3. Let a ≤ t0 < t1 < . . . < tn ≤ b. We say f =
(
t0,t1,...,tn
c1,...,cn

)
is a

step function if f : [a, b]→ K and f(t) = cj if and only if t ∈ [tj−1, tj ].
The set of all step functions on [a, b] is denoted by T [a, b].

Remark 2.4. (T [a, b], ‖ · ‖) is a normed space. It is a subspace of (B[a, b], ‖ · ‖)
where B[a, b] is the set of all bounded functions on [a, b] and

‖f‖∞ := sup
{
|f(t)| : t ∈ [a, b]

}
, f ∈ B[a, b].

Definition 2.5. The closure of T [a, b] in B[a, b] is denoted by I[a, b].

Remark 2.6. The following can be shown:

• C[a, b] ⊆ I[a, b].

• If f ∈ I[a, b], then f(x + 0) exists for x ∈ [a, b) and f(x − 0) exists for
x ∈ (a, b], where as usual f(x± 0) := f(x±) := limε↘0 f(x± ε).
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Integration with respect to α ∈ BV[a, b]

Definition 2.7. Fix α ∈ BV[a, b]. For f =
(
t0,t1,...,tn
c1,...,cn

)
∈ T [a, b] define

iα(f) :=

∫
f dα :=

n∑
j=1

cj(α(tj)− α(tj−1)).

Observe that iα(f) is independent of the representation of f , hence it is well
defined. Obviously, iα is linear in f and

|iα(f)| ≤
n∑
j=1

|cj ||α(tj)− α(tj−1)| ≤ ‖f‖∞ var α, f ∈ T [a, b].

Proposition 2.8. The function iα : (T [a, b], ‖ ‖infty)→ K is a bounded linear
operator with ‖iα‖ ≤ var α. It can be extended to a continuous linear operator
îα : I[a, b]→ K. The extension is unique and ‖̂iα‖ = ‖iα‖.

For f ∈ I[a, b], we write ∫
f dα := îα(f).

Note that for f ∈ I[a, b]∥∥∥∫ fdα
∥∥∥ = ‖̂iα(f)‖ ≤ ‖̂iα‖‖f‖∞ = ‖iα‖‖f‖∞ = var α‖f‖∞.

If α ∈ BV[a, b] and [a′, b′] ⊆ [a, b], then it is easy to see that α|[a′,b′] ∈ BV[a′, b′].

Proposition 2.9. For α ∈ BV[a, b], f ∈ I[a, b] and x ∈ [a, b] let

K : [a, b]→ K, K(x) :=

∫ x

a

f dα, if x ∈ (a, b] and K(a) = 0.

Then we have:

(i) K ∈ BV[a, b] and K(a) = 0.

(ii) If f is right-continuous then K is right continuous.

(iii) For all g ∈ I[a, b] we have

∫
g dK =

∫
gf dω.

Proof. Exercise ??.

Proposition 2.9 shows that BV[a, b] ⊆ (C[a, b])′. The reverse inclusion is shown
in the following theorem.

Theorem 2.10 (F. Riesz). ω is right-continuous in (a, b); For ϕ ∈ (C[a, b],R)′

there exists a unique real valued ω ∈ BV[a, b] satisfying
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(i) ω is right-continuous in (a, b);

(ii) ω(a) = 0;

(iii) ϕ(f) =

∫
f dω for all f ∈ C[a, b];

(iv) var ω = ‖ϕ‖.

Proof. A proof can be found for instance in [Tay58, §4.32] (A. Taylor, Introduc-
tion to Functional Analysis).

Remark 2.11. Without conditions (i) and (ii) the representation of ϕ as a
function ω ∈ BV[a, b] is not unique.

2.2 Spectral families

Definition 2.12. Let H be a Hilbert space. (Eλ)λ∈R ⊆ L(H) is called a spectral
family (or spectral resolution of the identity) if and only in for all x ∈ H we
have:

(i) Eλ is an orthogonal projection for all λ ∈ R.

(ii) EλEµ = EµEλ = Eµ for µ ≤ λ.

(iii) Eµx→ Eλx if µ↘ λ (strong-right continuity).

(iv) Eµx→ x for µ→∞.

(v) Eµx→ 0 for µ→ −∞.

Remark 2.13. Let (Eλ)λ∈R be a spectral family.

(i) If µ < λ, then Eµ < Eλ by (i) and (ii) and Theorem 1.45 (iii).

(ii) Since (Eλ)λ is increasing, then, by Theorem 1.46, the strong left limit
exists and is an orthogonal projection (that is, for all µ ∈ R and x ∈ H the
limit lim

λ↗µ
Eλx exists). Note, however, that in general E(λ) 6= s- lim

λ↗µ
Eλ.

Notation 2.14. Let (Eλ)λ∈R be a spectral family.

• Instead of Eλ we also write E(λ).

• Let −∞ ≤ a < b ≤ ∞. Then

E((a, b]) := E(b)− E(a), E([a, b)) := E(b−)− E(a),

E((a, b)) := E(b−)− E(a−), E([a, b]) := E(b)− E(a−),

E({b}) := E(b)− E(b−)

where E(−∞) := 0 and E(∞) := id.
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Example 2.15. Let T ∈ L(H) be a compact self-adjoint operator with eigen-
values |λ1| ≥ |λ2| ≥ . . . > 0, λj 6= λh for j 6= h, and let Pj be the projection on
the eigenspace corresponding to λj .
For λ ∈ R and x ∈ H define

Eλx :=


∑
λj≤λ

Pjx, if λ < 0

x−
∑
λj>λ

Pjx if λ ≥ 0.

Then (Eλ)λ is a spectral family (the spectral resolution of T).

Proof. Exercise ??.

Remark 2.16. Let B(R) be the set of all Borel sets on R. A map

P : (R)→ L(H)

is called a projection valued measure if it is additive, that is, if for pairwise
disjoint Uj ∈ B(R) and all x ∈ H

P (
⋃̇∞

j=1
Uj)x =

∞∑
j=1

P (Uj)x.

Observe that the sum on the right hand side does not converge in the operator
in general.

Lemma 2.17 (Properties of spectral families). Every spectral family (Eλ)λ∈R
satisfies the following:

(i) Eλ − Eµ is an orthogonal projection if µ ≤ λ.

(ii) If λ1 ≤ λ2 ≤ λ3 ≤ λ4,

(Eλ2
− Eλ1

)(Eλ4
− Eλ3

) = (Eλ4
− Eλ3

)(Eλ2
− Eλ1

) = 0.

(iii) If λ1 < λ2 < λ3 and x ∈ H,

‖(Eλ3
−Eλ1)x‖2 = ‖(Eλ3

−Eλ2
)x‖2+‖(Eλ2

−Eλ1
)x‖2 = 〈(Eλ3

−Eλ1
)x , x〉.

(iv) For fixed x ∈ H the function λ 7−→ 〈Eλx , x〉 is monotonically increasing
and bounded by ‖x‖2.

(v) The function λ 7−→ Eλ is strongly right-continuous. For every λ ∈ R
the strong left limit exists and is an orthogonal projection but in general
Eλ− 6= Eλ = Eλ+.

(vi) For all x, y ∈ H the function ωxy : λ 7−→ 〈Eλx , y〉 belongs to BV[a, b] for
every [a, b] ⊆ R and var ωxy|[a,b] ≤ ‖x‖‖y‖.
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Proof. (i) follows from properties of orthogonal projections (Theorem 1.45).

(ii) is verified by straightforward calculation.

(iii) Since (Eλ3 − Eλ1) is a projection we obtain

‖(Eλ3
− Eλ1)x‖2 = 〈(Eλ3

− Eλ1
)2x , x〉

= 〈(Eλ3
− Eλ1

)x , x〉
= 〈(Eλ3

− Eλ2
)x , x〉+ 〈(Eλ2

− Eλ1
)x , x〉

= ‖(Eλ3 − Eλ2)x‖2 + ‖(Eλ2 − Eλ1)x‖2.

(iv) follows from properties of orthogonal projections (Theorem 1.45) and the
fact that 〈Eλx , x〉 ≤ ‖Eλ‖‖x‖2 ≤ ‖x‖2.

(v) follows from Theorem 1.46.

(vi) Fix x, y ∈ H and [a, b] ⊆ R. For every partition a = t0 < t1 < . . . < tn = b
of [a, b]

n∑
j=1

|ωxy(tj)−ωxy(tj−1)| =
n∑
j=1

|〈(Etj − Etj−1)x , y〉|

=

n∑
j=1

|〈(Etj − Etj−1)x , (Etj − Etj−1)y〉|

≤
n∑
j=1

‖(Etj − Etj−1
)x‖‖(Etj − Etj−1

)y‖

≤
( n∑
j=1

‖(Etj − Etj−1
)x‖2

) 1
2
( n∑
j=1

‖(Etj − Etj−1
)y‖2

) 1
2

(2.1)

= ‖(Eb − Ea)x‖‖(Eb − Ea)y‖ (2.2)

≤ ‖x‖‖y‖

where in (2.1) we used the Cauchy-Schwarz inequality and in (2.2) we used
(iii).

10 Aug 2010

12 Aug 2010Definition 2.18 (Integration with respect to a spectral family). Let
H be a Hilbert space and (Eλ)λ∈R a spectral family. For a step function f =(
t0,t1,...,tn
c1,...,cn

)
∈ T [a, b] we define in analogy to definition 2.7 the integral with

respect to (Eλ)λ∈R by ∫ b

a

f dEλ =

n∑
j=1

cj(Etj − Etj−1
).

Observe that the integral does not depend on the representation of f .
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Theorem 2.19. (T [a, b], ‖ · ‖∞) → L(H), f 7→
∫ b

a

f dEλ is a bounded linear

map with bound ≤ 1.

Proof. The linearity of the map is clear. To prove that is bounded by one, we cal-
culate for f =

(
t0,t1,...,tn
c1,...,cn

)
∈ T [a, b] and x ∈ H we obtain, using Lemma 2.17 (iii)

∥∥∥∥∥
∫ b

a

f dEλ x

∥∥∥∥∥
2

=

∥∥∥∥∥∥
n∑
j=1

cj(Etj − Etj )x

∥∥∥∥∥∥
2

=

n∑
j=1

|cj |
∥∥(Etj − Etj )x

∥∥2

≤ max{|cj |2 : j = 1, . . . , n}
n∑
j=1

∥∥(Etj − Etj )x
∥∥2

= ‖f‖∞ ‖(Etn − Et0)x ‖2 ≤ ‖f‖∞‖x‖2.

Definition 2.20. By the theorem above there exists exactly one continuous

extension of
∫ b
a
· dEλ from the space T [a, b] to I[a, b] = T [a, b]. This extension

will again be denoted by∫ b

a

f dEλ for f ∈ I[a, b].

is a bounded linear map with bound ≤ 1.

Note that the extension has norm ≤ 1.

Lemma 2.21 (Properties of the integral). Let (Eλ)λ∈R be a spectral reso-
lution on a Hilbert space H and f, g ∈ I[a, b]. Then the following holds:

(i)

〈(∫ b

a

f(λ) dEλ

)
x , y

〉
=

∫ b

a

f(λ) d〈Eλx , y〉, x, y ∈ H.

(ii) Eµ

∫ b

a

f(λ) dEλ =

∫ µ

a

f(λ) dEλ, a ≤ µ ≤ b.

(iii)

(∫ b

a

f(λ) dEλ

)(∫ b

a

g(λ) dEλ

)
=

(∫ b

a

(fg)(λ) dEλ

)
.

(iv)

(∫ b

a

f(λ) dEλ

)∗
=

∫ b

a

f(λ) dEλ.

(v)

∥∥∥∥∥
∫ b

a

f(λ) dEλx

∥∥∥∥∥
2

=

∫ b

a

|f(λ)|2 d〈Eλx , x〉.

Proof. Exercise 2.5.
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Corollary 2.22. Let (Eλ)λ∈R be a spectral resolution on a Hilbert space H and
[a, b] ⊆ R. Then

A :=

∫ b

a

λ dEλ

is a bounded selfadjoint linear operator with bound ‖A‖ = max{|a|, |b|}.

2.3 The spectral theorem for bounded selfad-
joint operators

17 Aug 2010

19 Aug 2010
For the proof of the spectral theorem we will construct certain sesquilinear
forms. The following theorem shows to associate a bounded linear operator to
a bounded sesquilinear form. Recall that a sesquilinear form t : H ×H → C is
called bounded if there exists a M > 0 such that

|t[x, y]| ≤M‖x‖ ‖y‖, x, y ∈ H. (2.3)

The form is called symmetric if t(x, y) = t[y, x] for all x, y ∈ H.

Theorem 2.23 (Lax-Milgram). Let H be a Hilbert space and t : H×H → K
a bounded sesquilinear form. Then there exists exactly one bounded operator
T ∈ L(H) such that

〈Tx , y〉 = t[x, y], x, y ∈ H.

If t is symmetric, then T is selfadjoint.

An extension of the theorem to symmetric unbounded sesquilinear forms will
be proved in ??.

Proof of Theorem 2.23. Let M as in (2.3). For every y ∈ H we define the map

ϕy : H → K, ϕy(x) := t[x, y].

Obviously, ϕy is linear and bounded by M‖y‖. Hence, by the Riesz-Frechét
theorem, there exists a Sy ∈ H such that t[x, y] = 〈x , Sy〉 for every x ∈ H. In
order to prove that y 7→ Sy is linear, we fix y1, y1, x ∈ H and c ∈ K. It follows
that

〈x , S(cy1 + y2)− cSy1 − Sy2〉 = t[x, S(cy1 + y2)− cSy1 − Sy2]

= t[x, S(cy1 + y2)]− c t[x, Sy1 − Sy2]− t[x, Sy2]

= 〈x , S(cy1 + y2)〉 − c 〈x , Sy1 − Sy2〉 − 〈x , Sy2〉 = 0.

Since this is true for every x ∈ H, it follows that S(cy1 + y2) = cSy1 + Sy2.
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Next we show that S is bounded by M . This is clear from

‖Sy‖ = ‖t[ · , y]‖ ≤M‖y‖, y ∈ H.

Now T := S∗ has all the desired properties.

Now if t is symmetric, T is symmetric because

〈Tx , y〉 = t[x, y] = t[y, x] = 〈Ty , x〉 = 〈x , Ty〉 = 〈T ∗x , y〉, x, y ∈ H.

Theorem 2.24 (Spectral mapping theorem for polynomials). Let H be
a complex Hilbert space, T ∈ L(H) and P a polynomial. Then

σ(P (T )) = P (σ(T )) := {P (λ) : λ ∈ σ(T )}.

Proof. The assertion is clear if degP = 0. Now assume degP ≥ 1.
For µ ∈ σ(P (T )) consider the factorisation P (X) − µ = a

∏n
j=1(X − λj). By

assumption, P (T )−µ is not invertible, so at least one of the factors in P (T )−µ =
a
∏n
j=1(T − λj) cannot be invertible. This implies that there is at least one

k ∈ {1, . . . , n} such that λk ∈ σ(T ) man it follows that µ = P (λk) ∈ P (σ(T )).

Now let µ ∈ P (σ(T )) and λ ∈ σ(T ) such that µ = P (λ). Then there exists a
polynomial Q such that P (X) − µ = (X − λ)Q(X), hence P (T ) − µ = (T −
λ)Q(T ) = Q(T )(T − λ). Since by assumption T − λ is not bijective, P (T )− µ
cannot be bijective, so µ ∈ σ(P (T )).

Theorem 2.24 will be extended to continuous functions in Exercise 2.11.

Corollary 2.25. Let H be a complex Hilbert space, A ∈ L(H) a selfadjoint
operator and [a, b] ⊆ R such that σ(A) ⊆ [a, b]. Then for every polynomial
p : [a, b]→ C

(i) (p(A))∗ = p(A),

(ii) ‖p(A)‖ ≤ ‖p‖∞.

Proof. The first assertion is clear because A is selfadjoint. In particular, pp(A) =
|p|2(A) is a nonnegative selfadjoint operator.
Recall that for every selfadjoint operator T on H (see Theorem 1.40)

‖T‖ = sup{|〈Tx , x〉| : x ∈ H, ‖x‖ = 1} = r(T ) = max{|λ| : λ ∈ σ(T )}.

Thus we obtain

‖p(a)‖2 = sup{‖p(A)x‖2 : x ∈ H, ‖x‖ = 1}
= sup{

〈
p(A)x , p(A)x

〉
: x ∈ H, ‖x‖ = 1}

= sup{
〈
pp(A)x , x

〉
: x ∈ H, ‖x‖ = 1}

= ‖pp(A)‖ = max{λ : λ ∈ σ(pp(A))}
= max{pp(λ) : λ ∈ σ(A)},
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where we used σ(pp(A)) ≥ 0 and, in the last step, the spectral mapping theorem
for polynomials.

Theorem 2.26 (Spectral theorem for bounded selfadjoint linear oper-
ators). Let H be a complex Hilbert space and T ∈ L(H) a bounded selfadjoint
linear operator. We set

m := m(T ) := inf{〈Tx , x〉 : x ∈ H, ‖x‖ = 1},
M := M(T ) := sup{〈Tx , x〉 : x ∈ H, ‖x‖ = 1}.

Then there exists exactly one spectral resolution (Eλ)λ∈R such that

(i) Eλ = 0, λ < m,
Eλ = id, λ ≥M ,

(ii) TEλ = EλT , λ ∈]R,

(iii) P (T ) =

∫ M

m−
P (λ) dEλ for every polynomial P . In particular

A =

∫ M

m−
λ dEλ.

Note that the convergence of the integral in the last point as limit of linear
operators is convergence in norm, see Theorem 2.19.

Definition 2.27. The resolution of the identity in the spectral theorem is called
the spectral resolution of A.

Proof of Theorem 2.26. Let us denote the set of all polynomials [m,M ] → R
with real coefficients by Pr and define the polynomials

fn : [m,M ]→ R, fn(t) := tn.

In the proof, we will use several times the following consequence of the Weier-
strass approximation theorem (which says that {fn : n ∈ N} is a total subset of
C([m,M ],R)) and the uniqueness assertion in the Riesz representation theorem
(Theorem 2.10)

α, β ∈ BV[a, b] real valued, right-continuous in (a, b),

α(a) = β(a) = 0,∫ b

a

fn dα =

∫ b

a

fn dβ for all n ∈ N

 =⇒ α = β. (∗)

We divide the proof in several steps.
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Step 1. Definition of αxy ∈ BV[m,M ].

Let x, y ∈ H and define

ϕxy : Pr → C, ϕxy(p) := 〈p(A)x , y〉.
This map is obviously linear and it is bounded by ‖x‖ ‖y‖ by Corollary 2.25
because

|ϕxy(p)| = |〈p(A)x , y〉| ≤ ‖p(A)‖ ‖x‖ ‖y‖ ≤ ‖p‖∞‖x‖ ‖y‖.

Now we define the real and imaginary part of ϕxy by ϕrxy(p) := Re(ϕxy(p)) and

ϕixy(p) := Im(ϕxy(p)). Then ϕ
r/i
xy : Pr → R are obviously R-linear and bounded

by ‖x‖ ‖y‖. By the Weierstraß theorem, Pr is dense in C([m,M ],R), the set of
all continuous functions on [m,M ] with values in R. Hence there exist unique

continuous extensions of ϕ
r/i
xy to C([m,M ],R). We denote these extensions

again by ϕ
r/i
xy . By the Riesz representation theorem (Theorem 2.10) there exist

uniquely determined functions α
r/i
xy ∈ BV[m,M ] which are right-continuous in

(m,M) and satisfy αxy(m) = 0 and∫ M

m

f(t) dαr/ixy (t) = ϕr/ixy (f), f ∈ C([m,M ],R).

Moreover, var α
r/i
xy = ‖ϕr/ixy ‖ ≤ ‖x‖ ‖y‖. Hence the function αxy := αxy + iαxy

belongs to BV[m,M ], is right-continuous in (m,M) and satisfies∫ M

m

f(t) dαxy(t) =

∫ M

m

f(t) dαrxy(t) + i

∫ M

m

f(t) dαixy(t)

= ϕrxy(f) + iϕixy(f) = ϕxy(f), f ∈ C([m,M ],R).

and var αxy ≤ var αrxy + var αixy ≤ 2‖x‖ ‖y‖.
For later use, observe:

•
∫ M

m

p(t) dαxy(t) = ϕxy(p) = 〈p(A)x , y〉 for polynomials p : [m,M ]→ R.

• αxy(m) = 0 for all x, y ∈ H.

• αxy(M) = 〈x , y〉 for all x, y ∈ H because

αxy(M) = αxy(M)− αxy(m) =

∫ M

m

1 dαxy(t) = 〈A0x , y〉 = 〈x , y〉.

Step 2. Definition of (Fλ)λ∈[m,M ].

We will show that for every fixed λ ∈ [m,M ], the map

H ×H → C, (x, y) 7→ αxy(λ) (2.4)
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is a bounded symmetric sesquilinear form. Then, by the Lax-Milgram theorem
(Theorem 2.23), there exists a unique bounded selfadjoint Fλ ∈ L(H) such that
〈Fλx , y〉 = αxy(λ) for all x, y ∈ H.
First we prove the linearity in the first variable of (2.4), that is, αcx1+x2,y =
cαx1,y + αx2,y for all x1, x2, y ∈ H, c ∈ C. Note that αcx1+x2,y and cαx1,y +
αx2,y belong to BV[m,M ], are right-continuous in (m,M) and are 0 in m.
Hence, by (∗) applied to their real and imaginary parts, they are equal if∫ M

m

p dαcx1+x2,y =

∫ M

m

p d
[
cαx1,y + αx2,y

]
for all polynomials p ∈ Pr. This

equality follow from∫ M

m

p dαcx1+x2,y = ϕcx1+x2,y(p) = 〈p(A)(cx1 + x2) , y〉

= c〈p(A)x1 , y〉+ 〈p(A)x2 , y〉 = cϕx1y(p) + ϕx2y(p)

= c

∫ M

m

p dαx1,y +

∫ M

m

p dαx2,y =

∫ M

m

p d[cαx1,y + αx2,y].

For the symmetry of the form in (2.4) we have to show αxy(λ) = αyx(λ) for all
x, y ∈ H. As before, this follows from (∗) (after separation in real and imaginary
part) and∫ M

m

p dαxy = ϕxy(p) = 〈p(A)x , y〉 = 〈y , p(A)x〉 = 〈p(A)y , x〉 = ϕyx(p)

=

∫ M

m

p dαyx =

∫ M

m

p dαyx.

“Antilinearity” in the second argument is now a consequence of symmetry and
linearity in the first argument in (2.4). It remains to show boundedness of the
sesquilinear form (x, y) 7→ αxy(λ). This follows from

|αxy(λ)| = |αxy(λ)− αxy(m)| ≤ var αxy ≤ 2‖x‖ ‖y‖, x, y ∈ H.

Step 3. For all λ ∈ [m,M ], Fλ is an orthogonal projection and FµFλ = FλFµ =
Fµ for m ≤ µ ≤ λ ≤M .

Observe that

FµFλ = FλFµ = Fµ for µ ∈ [m,λ] (2.5)

is equivalent to 〈FµFλx , y〉 = 〈FλFµx , y〉 = 〈Fµx , y〉 for all x, y ∈ H by the
Riesz-Frechét theorem. By (∗), the latter is equivalent to∫ λ

m

fn(µ) d〈FµFλx , y〉 =

∫ λ

m

fn(µ) d〈FλFµx , y〉 =

∫ λ

m

fn(µ) d〈Fµx , y〉,

x, y ∈ H,n ∈ N0.

(2.6)
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because for every x, y ∈ H the functions

µ 7→ 〈FµFλx , y〉 = αFλx,y(µ),

µ 7→ 〈FλFµx , y〉 = 〈Fµx , Fλy〉 = αx,Fλy(µ),

µ 7→ 〈Fµx , y〉 = αx,y(µ)

belong to BV[m,λ], are right-continuous in (m,λ) and take the value 0 in m.
For the proof of (2.6) we will use

kn(λ) :=

∫ λ

m

fn(µ) d〈Fµx , y〉 = 〈Fλx ,Any〉, n ∈ N0, λ ∈ [m,M ]. (2.7)

Note that kn ∈ BV[m,M ], it is right-continuous in (m,M) and kn(m) = 0
(see Exercise 2.1) and that λ 7→ 〈Fλx ,Any〉 = αx,Any(µ) has the same proper-
ties. So, again by (∗), (2.7) is true because for all ` ∈ N0∫ M

m

f`(t) dkn(t) =

∫ M

m

f`(t)fn(t) d〈Ftx , y〉 =

∫ M

m

f`+n(t) d〈Ftx , y〉

= 〈A`+nx , y〉 = 〈A`x ,Any〉 =

∫ M

m

f`(t) d〈Ftx ,Any〉.

In the first step we used Exercise 2.1.

Now we are ready to prove (2.6). Fix λ ∈ [m,M ]. Then∫ M

m

fn(µ) d〈FµFλx , y〉 = 〈AnFλx , y〉 = 〈Fλx ,Any〉
(2.7)
=

∫ λ

m

fn(µ) d〈Fµx , y〉

=

∫ M

m

fn(µ) dα̃xy(µ),

where

α̃xy : [m,M ]→ C, α̃xy(µ) =

{
αxy(µ) = 〈Fµx , y〉, m ≤ µ ≤ λ ≤M,

αxy(λ) = 〈Fλx , y〉, m ≤ λ ≤ µ ≤M.

By construction, α̃xy belongs to BV[m,M ], is right-continuous in (m,M) and
α̃xy(m) = 0. Hence, again by (∗), it follows that

〈FµFλx , y〉 = α̃xy(µ) =

{
〈Fµx , y〉, m ≤ µ ≤ λ ≤M,

〈Fλx , y〉, m ≤ λ ≤ µ ≤M.

This shows that FλFµ = Fmin{µ,λ} = FµFλ, so (2.6) is proved. If we choose
µ = λ, we obtain F 2

λ = Fλ, so Fλ is an orthogonal projection.

Step 4. λ 7→ Fλ is strongly right continuous in (m,M) (but not necessarily in
m).
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Let x ∈ H. Since Fλ is increasing in λ, the strong limit limt↘λ Fλx exists
(Theorem 1.46) and must be equal to its weak limit. For all y ∈ H and t > λ

〈Ftx , y〉 − 〈Fλx , y〉 = αxy(t)− αxy(λ) −→ 0, t↘ λ,

by right-continuity of αxy in (m,M). Therefore limt↘λ Ftx = w- limt↘λ Ftx =
Fλx.

Step 5. Redefine Fm and extend (Fλ)λ∈[m,M ] to a resolution of identity (Eλ)λ∈R.

For all x, y ∈ H define

βxy : R→ R, βxy(t) =


0, t < m,

αxy(m+ 0), t = m,

αxy(t), t ∈ (m,M ],

αxy(M), t > M.

Note that by construction β is right-continuous and belongs to BV[a, b] for every
compact interval [a, b] ⊆ R. For every λ ∈ R, H × H → C, (x, y) 7→ βxy(λ) is
a bounded symmetric bilinear. This is immediately clear for λ ∈ R \ {m}. For
λ = m this follows from

βcx1+x2,y(m) = lim
t↘m

αcx1+x2,y(t) = lim
t↘m

(
cαx1,y(t) + αx2,y(t)

)
= cβx1,y(m) + βx2,y(m),

βxy(m) = lim
t↘m

αxy(t) = lim
t↘m

αyx(t) = βyx(m),

|βxy(m)| = | lim
t↘m

αxy(t)| = lim
t↘m
|αxy(t)| ≤ 2‖x‖ ‖y‖.

Now for every λ ∈ R let Eλ ∈ L(H) be the unique selfadjoint linear operator
such that 〈Eλx , y〉 = βxy(λ) for all x, y ∈ H. Observe that by construction

Et = 0, t < m,

Et = s- lim
λ↘m

Ft, t = m,

Et = Ft, t ∈ (m,M ],

Et = FM = id, t > M


because for

all x, y ∈ H


〈Etx , y〉 = βxy(t) = 0,

〈Etx , y〉 = βxy(t) = αxy(t) = 〈Ftx , y〉,
〈Etx , y〉 = βxy(t) = αxy(t) = 〈Ftx , y〉,
〈Etx , y〉 = βxy(M) = αxy(M) = 〈FMx , y〉 = 〈x , y〉.

Now it is easy to verify that (Eλ)λ∈R is a resolution of the identity and that by
construction ∫ M

m−0

f d〈Eλx , y〉 =

∫ M

m−0

f d〈Fλx , y〉

for all continuous functions f .

Step 6. (Eλ)λ∈R commutes with A.
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EλA = AEλ is clear for λ < m or λ ≥ M . Now let λ ∈ [m,M ] and x, y ∈ H.
Then

〈AEλx , y〉 = ϕxy(f1) =

∫ M

m−0

f1(t) d〈EtEλx , y〉 =

∫ M

m−0

f1(t) d〈EλEtx , y〉

=

∫ M

m−0

f1(t) d〈Etx ,Eλy〉 = ϕx,Eλy(f1) = 〈Ax ,Eλy〉 = 〈EλAx , y〉

Since this is true for all x, y ∈ H, we obtain AEλ = EλA.

Step 7. Representation of p(A) as an integral.

Recall that for all x, y ∈ H and n ∈ N0

〈Anx , y〉 = ϕxy(fn) =

∫ M

m−0

fn dαxy(t) =

∫ M

m−0

fn dβxy(t),

hence by linearity of the integral and Lemma 2.21 (i)

〈p(A)x , y〉 =

∫ M

m−0

p(t) dβxy(t) =

∫ M

m−0

p(t) d〈Etx , y〉 =

〈∫ M

m−0

p(t) dEtx , y

〉

for all x, y ∈ H, so again, by Riesz-Frechét, p(A) =

∫ M

m−0

p(t) dEt.

Step 8. Uniqueness of (Eλ)λ∈R.

Suppose that (Ẽλ)λ∈R is a resolution of the identity such that (i), (ii) and (iii)
of the theorem hold. Then, for all x, y ∈ H∫ M

m−0

fn(t) d〈Etx , y〉 = 〈Anx , y〉 =

∫ M

m−0

fn(t) d〈Ẽtx , y〉,

hence, by the Riesz representation theorem, 〈Etx , y〉 = 〈Ẽtx , y〉 for all x, y ∈ H,

which implies Et = Ẽt for all t ∈ [m,M ]. Since Et = Ẽt = 0 for t < m and

Et = Ẽt = id for t ≥M , uniqueness is proved.

Next we use the spectral resolution of a bounded selfadjoint operator to define
f(T ) where f is a continuous function on σ(T ), that is, f ∈ C(σ(T )).

Theorem 2.28 (Continuous functional calculus). Let H be a complex
Hilbert space and T ∈ L(H) a bounded selfadjoint linear operator with spec-
tral resolution (Eλ)λ∈R. As before let

m := m(T ) := inf{〈Tx , x〉 : x ∈ H, ‖x‖ = 1},
M := M(T ) := sup{〈Tx , x〉 : x ∈ H, ‖x‖ = 1}.

For f ∈ C(σ(T )) we define

f(T ) :=

∫ M

m−
f(λ) dEλ.
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The map

C([m,M ])→ L(H), f 7→ f(T ) (2.8)

is a continuous homomorphism of Banach algebras and has norm 1.

More precisely:

(i) Let fn(t) := tn. Then fn(T ) = Tn, n ∈ N0.
In particular: f0(T ) = id, f1(T ) = T, 0(T ) = 0.

(ii) f 7→ f(T ) is continuous, linear and multiplicative with norm 1 (as linear
map). For all f, g ∈ C(σ(T )):

fg(T ) = f(T )g(T ), f(T ) = f(T ∗).

(iii) For every B ∈ L(H) the following is equivalent:

(a) TB = BT ,

(b) EλB = BEλ, λ ∈ R,

(c) f(T )B = Bf(T ), f ∈ C[m,M ].

(iv) Let f ∈ C(σ(T )). Then f(T ) is normal. In addition:

(a) |f(λ)| = 1 for all λ ∈ σ(T ) =⇒ f(T ) is unitary;

(b) f(λ) ∈ R for all λ ∈ σ(T ) =⇒ f(T ) is selfadjoint;

(c) f(λ) ≥ 0 for all λ ∈ σ(T ) =⇒ f(T ) ≥ 0.

(v) For x ∈ H and f ∈ C(σ(T ))

‖f(T )x‖2 =

∫ M

m−
|f(λ)|2 d‖Eλx‖2.

Proof. Observe that

∫ M

m−
f(λ) dEλ ∈ L(H) and with norm ≤ ‖f‖∞ for f ∈

C[m,M ] by Theorem 2.19, so the map in (2.8) has norm≤ 1. On the other hand,
using (i), we see that its norm is ≥ 1 because ‖f0(A)‖ = ‖ id ‖ = 1 = ‖f0‖∞.
(i) follows immediately from the spectral theorem (Theorem 2.26) and (ii) is
proved in Lemma 2.21 (iii) and (iv).
Now we prove (iii). The implication (iiic) =⇒ (iiia) is clear.
(iiia) =⇒ (iiib): Note that the functions λ 7→ 〈EλBx , y〉 and λ 7→ 〈BEλx , y〉 =
〈Eλx ,B∗y〉 are continuous in (m,M), take the value 0 in m and belong to
BV[m,M ]. Note that for all n ∈ N0 and all x, y ∈ H∫ M

m−0

λn d〈EλBx , y〉 = 〈AnBx , y〉 = 〈BAnx , y〉 = 〈Anx ,B∗y〉

=

∫ M

m−0

λn d〈Eλx ,B∗y〉.
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Hence, by the uniqueness claim in the Riesz representation theorem, 〈EλBx , y〉 =
λ 7→ 〈BEλx , y〉 = 〈Eλx ,B∗y〉 for all x, y ∈ H and all λ ∈ [m,M ], so (iiib) holds.
(iiib) =⇒ (iiic): The claim is true for step functions f . Now let f ∈ C[m,M ]

and (fn)n∈N such that limn→∞ ‖fn− f‖∞ = 0. Since
∫M
m−0

fn dEλ converges to∫M
m−0

f dEλ in the operator norm, we obtain

f(A)B =

∫ M

m−0

f(λ) dEλ B = lim
n→∞

∫ M

m−0

fn(λ) dEλ B

= lim
n→∞

B

∫ M

m−0

fn(λ) dEλ = B lim
n→∞

∫ M

m−0

fn(λ) dEλ = B

∫ M

m−0

fn(λ) dEλ.

Now we prove (iv). By (ii)

f(A)f(A)∗ = ff(A) = ff(A) = f(A)∗f(A).

If f is such that |f(t)| = 1 for all t ∈ [m,M ], then

f(A)f(A)∗ = f(A)∗f(A) = ff(A) = |f |2(A) = id .

If f is real valued, then f(A)∗ = f(A) = f(A).
If f(λ) ≥ 0 for all λ ∈ [m,M ], then

〈f(A)x , x〉 =

∫ M

m−0

f(t) d〈Etx , x〉 ≥ 0, x ∈ H.

is real valued, then f(A)∗ = f(A) = f(A).
Finally we show (v):

‖f(T )x‖2 = 〈f(T )x , f(T )x〉 = 〈f(T )∗f(T )x , x〉 = 〈(ff)(T )x , x〉

=

∫ M

m−
|f(λ)|2 d〈Eλx , x〉 =

∫ M

m−
|f(λ)|2 d‖Eλx‖2.

Remark 2.29. Let A be a bounded selfadjoint linear operator. Note that
the map f 7→ f(A) gives representation of the Banach algebra of continuous
functions in [m,M ] in the Banach algebra L(H). We will show in Theorem 2.52
that Eλ is constant in ρ(A). Hence, if f and g are continuous functions which
are equal on σ(A), then f(A) = g(A). Therefore we obtain a representation of
the Banach algebra C(σ(A)) by

C(σ(A))→ L(H), f 7→ f(A).

Remark 2.30 (Measurable functional calculus). Recall that in the proof
of the spectral theorem, we assigned to every pair (x, y) ∈ H × H a non-
decreasing function αxy ∈ BV[m,M ]. This function defines a finite regular Borel
measure on [m,M ], denoted again by αxy, as follows: αxy((a, b]) := αxy(b) −
αxy(a). Hence

∫M
m
f(t) dαxy makes sense for every bounded measurable function
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f . In particular, we can calculate P (Ω) =
∫M
m
χΩ(t) dαxy where Ω ∈ [m,M ] is

measurable and χΩ is its corresponding characteristic function. It can be shown
that (Ω) is an orthogonal projection and that P ((−∞, λ]) = Eλ.
A formula for Eλ in terms of the resolvent of A will be proved in Theorem 2.49.

As an application of the spectral theorem we prove that every nonnegative
bounded selfadjoint linear operator has a unique nonnegative square root (the
case of unbounded nonnegative linear operators will be discussed in ??). More-
over, we will show that the composition of positive commuting linear operators
is again positive.

Corollary 2.31. Let H be a Hilbert space and A,B ∈ L(H) selfadjoint linear
operators.

(i) There exists a unique R ≥ 0 such that R2 = A.

(ii) If AB = BA and A ≥ 0, B ≥ 0, then AB ≥ 0.

Proof. (i) Existence: Let g : R → R, g(t) =
√
|t| and R := g(A) defined as in

Theorem 2.28. Then R ≥ 0 and R2 =

∫ ∞
0−0

|g(t)|2 dEt =

∫ ∞
0−0

t dEt = A.

Uniqueness: Let C ∈ L(H) such that C ≥ 0 and C2 = A. Let M :=
sup{〈Ax , x〉 : x ∈ H, ‖x‖ = 1} ≥ 0 and α ≥ max{M, ‖C‖2}. Let g : [0, α] →
R, g(t) :=

√
t. Choose polynomials pn : [0, α] → R such that ‖pn − g‖∞ → 0

for n→∞. Now we define

qn : [0,
√
α]→ R, qn(t) := pn(t2),

g̃ : [0,
√
α]→ R, g̃ := g(t2) = t.

Observe that ‖qn − g̃‖∞ → 0 for n → ∞, and that qn(C) = pn(C2) = pn(A)
(this is true as equality of polynomials; there is no functional calculus involved).
It follows that

‖R− C‖ ≤ ‖R− pn(A)‖+ ‖C − pn(A)‖ = ‖R− pn(A)‖+ ‖g̃(C)− qn(C)‖
≤ ‖g − pn‖∞ + ‖g̃ − qn‖∞ −→ 0, n→∞.

(ii) Let
√
A be defined as in (i). Since B commutes with A, it commutes with√

A too (Theorem 2.28 (ii)), and we obtain

〈ABx , x〉 = 〈
√
A
√
ABx , x〉 = 〈

√
ABx ,

√
Ax〉 = 〈B

√
Ax ,
√
Ax〉 ≥ 0, x ∈ H.

2.4 The spectral theorem for unitary operators

As before, we always assume that H is a complex Hilbert space.
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Definition 2.32. A ∈ L(H) is unitary if AA∗ = A∗A = idH .

Proposition 2.33. Let A ∈ L(H). Then the following is equivalent:

(i) A is unitary.

(ii) R(A) = H and 〈Ax ,Ay〉 = 〈x , y〉, x, y ∈ H.

(iii) R(A) = H and ‖Ax‖ = ‖x‖, x ∈ H.

Proof. (i) =⇒ (ii) =⇒ (iii) is clear.
(iii) =⇒ (ii) Using the polarisation formula:

〈Ax ,Ay〉 =
1

4
(‖Ax+Ay‖2 − ‖Ax−Ay‖2 + i‖Ax+ iAy‖2 − i‖Ax− iAy‖2)

=
1

4
(‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2)

= 〈x , y〉

(ii) =⇒ (i) ∀x, y ∈ H〈x , id−AA∗〉 = 〈x , y〉 − 〈Ax ,Ay〉 = 0
=⇒ A∗A = idH , in particular A is injective. Hence A bijective because it is
surjective by assumption. It follows that A∗ = A∗A−1 = A−1, thus is unitary.

Lemma 2.34. Let A,B ∈ L(H), A selfadjoint, and P be the orthogonal pro-
jection on ker(A). If AB = BA, then BP = PB.

Proof. Let x ∈ kerA. Then Bx ∈ kerA because ABx = BAx = 0. Since P is
the projection on kerA, we obtain BPx = Bx = PBx.

If x ∈ rg(A) then there exists a y ∈ H such that x = Ay. It follows that
PBx = PBAy = PABy = 0 = BPx.

By linearity and continuity PBx = BPx = 0 for all x ∈ rg(A). The lemma is
now proved because H = ker(A)

⊕
rg(A) = ker(A)

⊕
rg(A).

Lemma 2.35. Let S, T ∈ L(H) selfadjoint operators and assume that ST = TS
and S2 = T 2. Let P be the orthogonal projection on ker(S − T ). Then:

(i) kerS ⊆ rg(P ).

(ii) S = (2P − id)T .

Proof. (i) ∀x ∈ H‖Sx‖2 = 〈Sx , Sx〉 = 〈S2x , x〉 = 〈T 2x , x〉 = ‖Tx‖2.
Then if Sx = 0, Tx = 0 and (S−T )x = 0, so x ∈ R(P ), and this means Px = x.

(ii) Observe S(S−T ) = (S−T )S, hence PS = SP by Lemma 2.34. Analogously
PT = TP is proved. Since (S − T )(S + T ) = S2 − T 2 = 0, it follows that
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rg(S + T ) ⊆ ker(S − T ) = rg(P ), consequently P (S + T ) = S + T and

S + T = P (S + T ) = [(S − T ) + 2T ]P = (S − T )P + 2TP

=⇒ S = 2TP − id = (2P − id)T.

For every bounded selfadjoint linear operator A the linear operator eıA as defined
by the functional calculus is unitary. Now we will prove that every unitary linear
operator is of this form.

Theorem 2.36. Let U be a unitary operator on a Hilbert space H. Then there
exists a selfadjoint operator A ∈ L(H) with ‖A‖ ≤ ı such that U = eıA.

Proof. Let R := Re(U) :=
1

2
(U + U∗), S := Im(U) :=

1

2i
(U − U∗). R,S have

the following properties:

(i) RS = SR, S∗ = S, T ∗ = T,U = R+ iS.

(ii) R2 + S2 =
1

4
(U2 + (U∗)2 + 2 id−U2 − (U∗)2 + 2 id) = id.

(iii) ‖R‖, ‖S‖ ≤ 1

2
(‖U‖+ ‖U∗‖|) = 1.

Define f : [−1, 1]→ R, λ 7→ sin(arccosλ) =
√

1− λ2, and

T := f(R) = sin(arccosR).

T satisfies:

(T1) T ∗ = f(R)∗ = f(R) = f(R) = T .

(T2) RT = TR, ST = TS because S and T commute.

(T3) T 2 = S2 because T 2 +R2 = id−R2 +R2 = id = S2 +R2.

Let P be the orthogonal projection on ker(S − T ), then S = (2P − id)T and
ker(S) ⊆ R(P ) by Lemma 2.35.
Observe that PR = RP by Lemma 2.34 because R(S − T ) = (S − T )R. Then
P (arccosR) = (arccosR)P .
Now define A := (2P − id) arccosR. A has the following properties:

(A1) A = A∗, ‖A‖ ≤ ‖ arccosR‖ ≤ π.

(A2) A2 = (2P − id)2(arccosR)2 = (4P 2 − 4P + id)(arccosR)2 = (arccosR)2.

Now we will show: cosA = R, sinA = S.

The power series arccos(λ) =
∞∑
n=0

gnλ
n converges for λ ∈ [−1, 1]. Define h(λ2) :=

∞∑
n=0

hnλ
2n and let gN (R) :=

N∑
n=0

gnR
n. We have ‖gN (R) − arccos(R)‖ → 0 as
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N →∞, so arccos(R) =
∞∑
n=0

gnR
n.

Observe that λ = cos(arccosλ) = h((arccosλ)2) for λ ∈ [−1, 1]. If we replace λ
by R we obtain R = h((arccosR)2) = h(A2) = cosA.

Similarly sin(λ) = λ
∞∑
n=0

hnλ
2n, then

sinA = A

∞∑
n=0

hnλ
2n = (2P − id) arccosR

∞∑
n=0

hn(arccosR)2n

= (2P − id) sin(arccosR) = (2P − id)T = S.

So we proved that U = cosA+ i sinA = eiA.

Theorem 2.37 (Spectral theorem for unitary operators). Let U be a
unitary operator on a Hilbert space H. Then there exists a spectral resolution
(Eλ) lambda∈R such that Let S, T ∈ L(H) selfadjoint operators and assume that

(i) Eλ = 0, λ ≤ −π,
Eλ = id, λ ≥ π.

(ii) For polynomials P

P (U) =

∫ π

−π−
p(eiλ) dEλ,

in particular

U =

∫ π

−π−
eiλ dEλ.

(iii) For every f ∈ C([−π, π]) the operator

f(U) :=

∫ π

−π−
f(eiλ) dEλ

is well defined, belongs to L(H) and the convergence of the integral is in
operator norm.

Proof. Choose a selfadjoint operator A ∈ L(H) as in Theorem 2.36 and let
(Eλ)λ∈R be its spectral resolution. Then U = eiA and Eλ = 0 for λ < −π
and Eλ = id for λ ≥ π. The claim follows now from the spectral theorem for
bounded selfadjoint operators.
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2.5 The Cayley transformation

The Cayley transform gives a bijection between selfadjoint linear operators and
unitary linear operators. It will be used to prove the spectral theorem for (un-
bounded) selfadjoint linear operators in the next section, and later, in Section 3.1
to find selfadjoint extensions of symmetric linear operators.

In complex analysis the so-called Möbius transform

z 7→ z − i

z + i
, z 6= i,

maps the real line bijectively to the unit circle without 1. Its inverse is

w 7→ i
1 + w

1− w
, w 6= 1.

The idea is to apply these formulas to selfadjoint linear operators instead of z
and to unitary operators instead of w.

Remark 2.38. Let S be a symmetric operator on a complex Hilbert space H.
Then for a, b ∈ R and λ := a+ ib the following holds:

‖(S − λ)x‖2 = ‖(S − a)x‖2 + b2‖x‖2.

In particular, if b 6= 0, then:

(i) S − λ is injective and (S − λ)−1 : rg(S − λ)→ H is bounded by |b|−1;

(ii) S is closed, if and only if (S − λ)−1 is closed, hence, by the closed graph
theorem, if and only if rg(S − λ) is closed.

Definition 2.39. Let H be a complex Hilbert space and A a densely defined
symmetric linear operator on H. Then the Cayley transform of A is defined by

UA : rg(A+ i)→ H, UA := (A− i)(A+ i)−1.

Note that A + i is boundedly invertible in rg(A + i) by the remark above and
that rg((A+ i)−1) = D(A+ i) = D(A− i). Therefore UA is well-defined.

Proposition 2.40 (Properties of the Cayley transformation). Let A be a
symmetric operator on a complex Hilbert space H and UA its Cayley transform.

(i) UA is isometric and rg(UA) = R(A− i). If A is closed, so is UA.

(ii) 1 6= σp(UA) and rg(id−UA) = D(A) is dense in H. The map

(id−UA)−1 : D(A)→ D(UA) (2.9)

exists and is surjective.

(iii) A = i(id +U)(id−U)−1.
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Proof. (i) Since (A+i)−1
(

rg(A+i)
)

= D(A) it follows that rg(UA) = rg(A−i).
To show that UA is an isometry we note that ‖(A − i)x‖ = ‖(A + i)x‖ for all
x ∈ D(A) by the symmetry of A. Therefore we obtain

‖UAx‖ = ‖(A− i)(A+ i)−1x‖ = ‖(A+ i)(A+ i)−1x‖ = ‖x‖, x ∈ D(UA).

Now we assume additionally that A is closed. Then, by Remark 2.38, D(UA) =
rg(A− i) is closed. Since UA is isometric, it is bounded, so by the closed graph
theorem, UA is closed.

(ii) Let x ∈ D(UA) with UAx = x. It follows that

(A− i)(A+ i)−1x = (A+ i)(A− i)−1x,

hence 2i(A+i)−1x = 0. Since A+i is invertible, x must be 0, which proves that
1 is not an eigenvalue of UA and the map (2.9) is well-defined.

To prove that rg(id−UA) ⊆ D(A), fix x ∈ rg(A+ i) = D(UA). Then

(id−UA)x = (A+ i− (A− i))(A+ i)−1x = 2i(A+ i)−1x ∈ D(A).

On the other hand, for y ∈ D(A) there exists let x = 1
2i (A+ i)y ∈ rg(A+ i). It

follows that y = 2i(A+ i)−1x = (A+ i− (A− i))(A+ i)−1x = (id−U)x.

Note that id−UA is injective and rg(id−UA) = D(A), hence rg(id−UA) =
D(A).
(iii) For every x ∈ D(A) = D((id−UA)−1)

i(id +UA) (id−UA)−1x︸ ︷︷ ︸
= 1

2i (A+i)x

=
1

2

[
id +A(A− i)(A+ i)−1

]
(A+ i)x

=
1

2

[
A+ i +A− i

]
x = Ax.

Lemma 2.41. Let U : H ⊇ D(U) → H be a closed isometric linear operator
such that rg(U − id) is dense in H. Then there exists exactly one closed sym-
metric operator A : H ⊇ D(A)→ H with D(A) = rg(id−U) such that U is the
Cayley transform of A.

Proof. Uniqueness. Assume that B is a symmetric linear operator on H whose
Cayley transform is U . By Proposition 2.40 (iii) it follows that

B = i(id +U)(id−U)−1 = A.

Existence. First we show that 1 /∈ σp(U). Let x ∈ D(U) with Ux = x. For all
y ∈ H is follows that 〈x , (id−U)y〉 = 〈(id−U)x , y〉 = 0. Since by assumption
rg(U − id) = H, this implies x = 0, hence 1 is not an eigenvalue of U . Therefore
we can define

A : H ⊇ rg(id−U)→ H, Ax = i(id +U)(id−U)−1x.
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It is easy to see that rg(A) = rg(U + id). Now we show that A is symmetric.
Note that A is densely defined by assumption on U . For x, y ∈ D(A) there are
w, v ∈ D(U) such that x = (id−U)w and y = (id−U)v. Hence

〈Ax , y〉 = i〈(id +U)(id−U)−1x , y〉 = i〈(id +U)w , (id−U)v〉 = i(〈Uw , v〉 − 〈w ,Uv〉)

〈x ,Ay〉 = 〈Ay , x〉 = i(〈Uv ,w〉 − 〈v , Uw〉) = −i(〈w ,Uv〉 − 〈Uw , v〉) = 〈Ax , y〉.

Next we show that A is closed. Fix a sequence (xn)n∈N ⊆ D(A) such that
xn → x and Axn → y for n→∞. With zn := (id−U)−1 we find

xn = (id−U)zn

−iAxn = (id +U)zn

}
=⇒


zn =

1

2
(xn − iAxn) −→ 1

2
(x− iy)

Uzn =
1

2
(−xn − iAxn) −→ 1

2
(−x− iy).

Since U is closed, we obtain z := limn→∞ zn ∈ D(U) and Uz = 1
2 (−x − iy).

Again, by the closedness of U , we find x = (id−U)z ∈ D(A) and

y = lim
n→∞

Axn = lim
n→∞

i(id +U)zn = i(id +U)z = i(id +U)(id−U)−1x = Ax.

Finally, we find that U is the Cayley transform of A. Let x ∈ D(A) and choose
y ∈ D(U) such that x = (id−U)y. Then Ax = i(id +U)y.
On the other hand, if y ∈ D(U), then A((id−U)y) = i(id +U)y.
It follows that

(A+ i)x = 2iy, (A− i)x = 2iUy.

It follows that D(U) = rg(A+i), rg(U) = rg(A−i) and U = (A−i)(A+i)−1.

Corollary 2.42. Let A be a symmetric and closed linear operator on a complex
Hilbert space H with Cayley transform U . Then the following is equivalent:

(i) A is selfadjoint.

(ii) U is unitary.

Proof. A is selfadjoint if and only if rg(A± i) = H. This is the case if and only
if D(U) = rg(U) = H, that is, if and only if U is unitary.

2.6 The spectral theorem for unbounded selfad-
joint linear operators

Let H be a complex Hilbert space and (Eλ)λ∈R a spectral family on H. We use
the notation

αx,y(λ) = 〈Eλx , y〉, x, y ∈ H, λ ∈ R.

as in Section 2.3. In addition we set

αx(λ) = αx,x(λ), x ∈ H, λ ∈ R.
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Theorem 2.43. Let H be a complex Hilbert space and (Eλ)λ∈R a spectral family
on H. For x ∈ H and f ∈ C(R,C) the following is equivalent:

(i)

∫ ∞
−∞

f(λ) dEλ x := lim
a→−∞

lim
b→∞

∫ b

a

f(λ) dEλ x exists.

(ii) f ∈ L2(R, dαx), that is,

∫ ∞
−∞
|f(λ)|2 d〈Eλx , x〉 exists.

(iii) The map ϕx : H → C, ϕx(y) =

∫ ∞
−∞

f(λ) d〈Eλy , x〉 is a bounded linear

functional.

Proof. (i) =⇒ (iii) Let y ∈ H. Note that for −∞ < a < b <∞∫ b

a

f(λ) d〈Eλy , x〉 =
〈∫ b

a

f(λ) dEλ y , x
〉

=
〈
y ,

∫ b

a

f(λ) dEλ x
〉
.

In particular,

ϕx(y) = lim
a→−∞
b→∞

∫ b

a

f(λ) d〈Eλy , x〉 =
〈
y , lim

a→−∞
b→∞

∫ b

a

f(λ) dEλ x
〉

=
〈
y ,

∫ ∞
−∞

f(λ) dEλ x
〉

exists. It is cleary linear in y and bounded by
∥∥∥∫ ∞
−∞

f(λ) dEλ x
∥∥∥.

(iii) =⇒ (ii) For α < β ∈ R define yα,β :=

∫ β

α

f(λ) dEλx. Note that ‖yα,β‖2 =∫ β

α

|f(λ)|2 d〈Eλx , x〉 and

‖ϕx‖ ‖yα,β‖ ≥ |ϕx(yα,β)| =
∫ ∞
−∞

f(λ) d〈Eλyα,β , x〉 =

∫ β

α

f(λ) d〈Eλyα,β , x〉

=
〈
yα,β ,

∫ β

α

f(λ) dEλ x
〉

= 〈yα,β , yα,β〉 = ‖yα,β‖2.

Hence for all α < β∫ β

α

|f(λ)|2 d〈Eλx , x〉 = ‖yα,β‖2 ≤ ‖ϕx‖2 <∞.

Therefore also

∫ ∞
−∞
|f(λ)|2 d〈Eλx , x〉 <∞ and the integral in (i) exists.
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(ii) =⇒ (i) For −∞ < α′ < α < β < β′ <∞.∥∥∥∥∥
∫ β′

α′
f(λ) dEλx−

∫ β

α

f(λ) dEλx

∥∥∥∥∥
2

=

∥∥∥∥∥
∫ α

α′
f(λ) dEλx+

∫ β′

β

f(λ) dEλx

∥∥∥∥∥
2

=

∥∥∥∥∫ α

α′
f(λ) dEλx

∥∥∥∥2

+

∥∥∥∥∥
∫ β′

β

f(λ) dEλx

∥∥∥∥∥
2

=

∫ α

α′
|f(λ)|2 dEλx+

∫ β′

β

|f(λ)|2 dEλx −→ 0, (α, α′, β, β′ → 0).

Hence the limit in (i) exists.

For f ∈ C(R,C), we define (possibly unbounded) linear operators

fE : D(fE) ⊆ H → H, fEx :=

∫ ∞
−∞

f(λ) dEλx,

for

D(fE) :=
{
x ∈ H :

∫ ∞
−∞
|f(λ)|2 d〈Eλx , x〉 <∞

}
.

Properties of such operators are collected in the following theorem.

Theorem 2.44. Let H be a complex Hilbert space, (Eλ)λ∈R a spectral family
on H and f, g ∈ C(R,C) (it is sufficient to assume that f is measurable for
every αx).

(i) D(fE) is dense in H and rg(Eλ − Eµ) ⊆ D(fE) for µ < λ.

(ii) EλfE ⊆ fEEλ for all λ ∈ R.

(iii) If f is real valued, then fE is selfadjoint.

(iv) If f(t) = 0 for all t ∈ R, then fE = 0. If f(t) = 1 for all t ∈ R, then
fE = id.

(v) If x ∈ D(fE) and y ∈ H, then 〈fEx , y〉 =

∫ ∞
−∞

f(t) d〈Etx , y〉, in particu-

lar, the integral exists.

(vi) fE + gE ⊂ (f + g)E and D(fE + gE) = D((|f |+ |g|)E).

(vii) fEgE ⊂ (fg)E and D(fEgE) = D(gE) ∩ D((fg)E).

Proof. (i), (ii) and (iii) are shown in Exercise 2.12. (iv) is clear.

(v). Let x ∈ D(fE). Observe that f ∈  L2(R, dαx) if and only if Re(f) ∈
 L2(R, dαx) and Im(f) ∈  L2(R, dαx). Since∫ β

α

f(t) dEtx =

∫ β

α

Re(f(t)) dEtx+ i

∫ β

α

Im(f(t)) dEtx
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if −∞ < α < β <∞, so for all x ∈ D(fE) it follows that∫ ∞
−∞

f(t) dEtx =

∫ ∞
−∞

Re(f(t)) dEtx+ i

∫ ∞
−∞

Im(f(t)) dEtx,

and we can assume that f is real valued.
Observe that for a selfadjoint operator T and vectors ξ, η ∈ D(T ) we have

〈Tξ , η〉 =
1

2

[
〈T (ξ + η) , ξ + η〉 − 〈Tξ , ξ〉 − 〈Tη , η〉

]
+

1

2i

[
〈T (ξ + iη) , ξ + iη〉 − 〈Tξ , ξ〉 − 〈Tη , η〉

]
.

(2.10)

Applying this to x = ξ, y = η, T = fE and T = Et, respectively, we obtain

〈fEx , y〉 =
1

2

[
〈fE(x+ y) , x+ y〉 − 〈fEx , x〉 − 〈fEy , y〉

]
+

i

2

[
. . .
]

=
1

2

∫ ∞
−∞

f(t) d
[
〈Et(x+ y) , x+ y〉 − 〈Etx , x〉 − 〈Ety , y〉+ i

(
. . .
)]

=

∫ ∞
−∞

f(t) d〈Etx , y〉.

Now if y ∈ H, we define yα,β = (Eβ −Eα)y. By (i), yα,β ∈ D(fE) and yα,β → y
for α → −∞ and β → ∞. Moreover, Etyα,β = Ety for t ∈ (α, β], Etyα,β = 0
for t ≤ α and Etyα,β = yα,β for t ≥ β. It follows that

〈fEx , yα,β〉 =

∫ ∞
−∞

f(t) d〈Etx , yα,β〉 =

∫ β

α

f(t) d〈Etx , yα,β〉 =

∫ β

α

f(t) d〈Etx , y〉.

Since the left hand side converges for α → −∞ and β → ∞, so does the right
hand side and the limits coincide:

〈fEx , y〉 =

∫ ∞
−∞

f(t) d〈Etx , y〉, x ∈ D(fE), y ∈ H.

(vi) If x ∈ D(fE + gE) = D(fE) ∩ D(gE), then f ∈ L2(R, dαx) and g ∈
L2(R, dαx) and∫ β

α

f(t) dEtx+

∫ β

α

g(t) dEtx =

∫ β

α

(f + g)(t) dEtx

by linearity of the integral. Taking the limits α → −∞ and β → ∞ on both
sides, we obtain fEx+ gEx = (f + g)Ex. Clearly, f, g ∈ L2(R, dαx) if and only
if |f |+ |g| ∈ L2(R, dαx), hence D((f + g)E) = D((|f |+ |g|)E .

(vii). . .

Corollary 2.45. In the special case f : R→ C, f(λ) := λ,

Ax =

∫ ∞
−∞

λ dEλx for x ∈ D(A) :=
{
x ∈ H :

∫ ∞
−∞

λ2 d〈Eλx , x〉 <∞
}

(2.11)

is a selfadjoint linear operator.
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Next we will prove the reverse of Corollary 2.45, that is, we will show that every
selfadjoint linear operator has a representation as in (2.11). Note that in the
case of a bounded selfadjoint operator, the integral representation converges in
operator norm. If the operator is unbounded, then the integral converges only
strongly since the spectral family will not have compact support.

Theorem 2.46 (Spectral theorem for unbounded selfadjoint opera-
tors).
Let H be a complex Hilbert space and A(H → H) a selfadjoint linear operator.
Then there exists a spectral resolution (Eλ)λ∈R such that∫ ∞

−∞
λ d〈Eλx , x〉 = 〈Ax , x〉, x ∈ D(A). (2.12)

Uniqueness of the spectral resolution will follow from Stone’s formula (see The-
orem 2.49).

Proof. Since A is selfadjoint, its Cayley transform U is unitary by Corollary 2.42
and A = i(U + id)(U − id)−1. Let (Ẽλ)λ∈Λ be the spectral resolution of −U as
in Theorem 2.37 such that

−U =

∫ π

−π−0

eiλ dẼλ.

Since the spectral family is right continuous, it follows that Ẽπ = id. Now we
will show that Ẽ−π = 0.

To this end assume that Ẽ−π 6= 0. Then there exists an x 6= 0 in rg(Ẽ−π).
Hence

−Ux =

∫ π

−π−0

eiλ dẼλx = lim
ε↘0

∫ π

−π−ε
eiλ dẼλx = lim

ε↘0

∫ −π
−π−ε

eiλ dẼλx

= lim
ε↘0

∫ −π
−π−ε

(
eiλ− e−iπ

)
dẼλx+ lim

ε↘0

∫ −π
−π−ε

e−iπ dẼλx.

The first term vanishes because∥∥∥∥∫ −π
−π−ε

(
eiλ− e−iπ

)
dẼλx

∥∥∥∥2

=

∫ −π
−π−ε

∣∣ eiλ− e−iπ
∣∣2 d〈Ẽλx , x〉

≤ sup{| eiλ− e−iπ | : λ ∈ [−π − ε, −π]}‖x‖2 −→ 0, ε↘ 0.

The second term gives

lim
ε↘0

∫ −π
−π−ε

e−iπ dẼλx = lim
ε↘0

e−iπ(Ẽ−π − Ẽ−π−ε)x = e−iπ Ẽ−πx = e−iπ x = −x.

So in total we obtain Ux = x, which contradicts 1 /∈ σp(U) (see Proposi-
tion 2.40 (ii)). Similarly, one can show that rgE({π}) = {0}. It follows that

−U =

∫
(−π,π)

eiλ dẼλ.

Last Change: Tue 06 Oct 2015 05:32:04 PM -05



D
R
A
F
T

48 2.6. The spectral theorem for unbounded selfadjoint linear operators

Now let x ∈ D(A) = rg(id−U) and choose y ∈ H such that x = (id−U)y.
Then Ax = i(id +U)y and consequently, using U−1 = U∗,

〈Ax , x〉 = i
〈
(id +U)y , (id−U)y

〉
= i
〈
Uy , y

〉
− i
〈
y , Uy

〉
= i
〈
(U − U−1)y , y

〉
= −i

∫
(−π,π)

(eiλ− e−iλ) d
〈
Ẽλy , y

〉
.

On the other hand, using that Ẽλ and U commute, we have〈
Ẽλx , x

〉
=
〈
Ẽλ(id−U)y , (id−U)y

〉
=
〈
Ẽλ(id−U∗)(id−U)y , y

〉
=

∫ λ

−π+0

(1 + e−it)(1 + eit) d〈Ẽty , y〉.

Applying the substitution rule, we obtain

〈Ax , x〉 = −i

∫
(−π,π)

(eiλ− e−iλ) d
〈
Ẽλy , y

〉
= −i

∫
(−π,π)

(eiλ− e−iλ)

(1 + e−iλ)(1 + eiλ)
(1 + e−iλ)(1 + eiλ) d

〈
Ẽλy , y

〉
= −i

∫
(−π,π)

(eiλ/2 + e−iλ/2)(eiλ/2− e−iλ/2)

(eiλ/2 + e−iλ/2)(e−iλ/2 + eiλ/2)
d
〈
Ẽλx , x

〉
=

∫
(−π,π)

tan(λ/2) d
〈
Ẽλx , x

〉
Set Eλ := Ẽ2 arctanλ. Then Exercise 2.4 shows

〈Ax , x〉 =

∫
R
λ d〈Eλx , x〉

Theorem 2.47. Let H be a complex Hilbert space and A(H → H) a selfadjoint
linear operator and (Eλ)λ∈R its spectral resolution from Theorem 2.46. Then
Etx ∈ D(A) for every t ∈ R and x ∈ D(A)

D(A) =
{
x ∈ H :

∫ ∞
−∞

λ2 d〈Eλx , x〉 <∞
}

and Ax =

∫ ∞
−∞

λ dEλx

for x ∈ D(A).

Proof. Let x ∈ D(A) = rg(id−UA) where UA is the Cayley transform of A. Let
y ∈ H such that x = (id−UA)y. By construction, all Eλ commute with U ,
hence Eλx = Eλ(id−UA)y = (id−UA)Eλy ∈ rg(id−UA) = D(A).

Now let D :=
{
x ∈ H :

∫∞
−∞ λ2 d〈Eλx , x〉 < ∞

}
and define B : D ⊆ H → H

by

Bx :=

∫ ∞
−∞

λ dEλx, x ∈ D(B).
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Observe that B is selfadjoint by Corollary 2.45. We have to show A = B. It
suffices to show that A ⊆ B because then B = B∗ ⊆ A∗ = A. Let x, y ∈ D(A).
Then, by (2.12) and (2.10) we find

〈Ax , y〉 =

∫ ∞
−∞

λ d〈Eλx , y〉.

For arbitrary y ∈ H we define yα,β := (Eβ − Eα)y. As in the proof of Theo-
rem 2.44 (v) we obtain

〈Ax , yα,β〉 =

∫ ∞
−∞

λ d〈Eλx , yα,β〉 =

∫ β

α

λ d〈Eλx , yα,β〉 =

∫ β

α

λ d〈Eλx , y〉.

Since the left hand side converges for α → −∞ and β → ∞, so does the right
hand side and we get

〈Ax , y〉 =

∫ ∞
−∞

λ d〈Eλx , y〉. (2.13)

This shows that for every x ∈ D(A) the linear functional ϕx defined in Theo-
rem 2.43 (iii) is bounded by ‖Ax‖, in particular x ∈ D. Hence (2.13) implies for
all y ∈ H

〈Ax , y〉 = lim
α→−∞

lim
β→∞

∫ β

α

f(t) d〈Etx , y〉 = lim
α→−∞

lim
β→∞

〈∫ β

α

f(t) dEtx , y
〉

=
〈

lim
α→−∞

lim
β→∞

∫ β

α

f(t) dEtx , y
〉

= 〈Bx , y〉.

Since this is true for all x ∈ D(A) and y ∈ H, we proved that A ⊆ B.

In the rest of this section we want to prove a formula for the spectral family
in terms of the selfadjoint operator. To this end, recall the Stieltjes inversion
formula.

Theorem 2.48 (Stieltjes inversion formula). Let ω : R → C be a right
continuous function of bounded variation with ω(t) → 0 for |t| → ∞. The
Stieltjes transform of ω is given by

f : C \ R→ C, z 7→
∫
R

1

t− z
dω(t).

ω can be recovered from its Stieltjes transform by

ω(t) = lim
δ↘0

lim
ε↘0

1

2πi

∫ t+δ

−∞
f(s+ iε)− f(s− iε) ds.

Proof. See [Wei80, Theorem B1].
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Theorem 2.49 (Stone’s formula). Let H be a complex Hilbert space and
A(H → H) a selfadjoint linear operator on H. For all x, y ∈ H and t ∈ R the
following formula holds:

〈E(t)x , y〉 = lim
δ↘0

lim
ε↘0

1

2πi

∫ t+δ

−∞

〈(
(A− s− iε)−1 − (A− s+ iε)−1

)
x , y

〉
ds.

Proof. We apply the Stieltjes inversion formula to ω(t) = 〈Etx , y〉 and use that∫
R

1
t−z dω(t) =

∫
R

1
t−z d〈Etx , y〉 = 〈(A− z)−1x , y〉 for z ∈ ρ(A). Therefore we

obtain〈
E(t)x , y

〉
= ω(t) = lim

δ↘0
lim
ε↘0

1

2πi

∫ t+δ

−∞

(
(τ − s− iε)−1 − (τ − s+ iε)−1

)
dω(τ) ds

= lim
δ↘0

lim
ε↘0

1

2πi

∫ t+δ

−∞

〈[
(A− s− iε)−1 − (A− s+ iε)−1

]
x , y

〉
ds.

2.7 Spectrum and spectral resolution

Theorem 2.50. Let H be a complex Hilbert space and A(H → H) a closed
operator on H. The discrete spectrum of A is defined by

σd(T ) :=
{
λ ∈ σp(T ) : λ is an isolated point in σ(T ) and λ has finite multiplicity

}
and the essential spectrum1 of A is

σess(T ) :=
{
λ ∈ C :

λ is either an accumulation point of σ(T )

or λ is an eigenvalue of infinite multiplicity

}
.

Observations 2.51. (i) σd ∪ σess(T ) ⊆ σ(T ) and σd(T ) ∩ σess(T ) = ∅.

(ii) σess(T ) is closed.

(iii) σd(T ) is not necessarily closed.

(iv) If dimH <∞, then σd(T ) = σ(T ) and σess(T ) = ∅.

(v) If dimH =∞ and T is compact, then σd(T ) = σ(T ) \ {0}, σd(T ) = σ(T )
and σess(T ) = {0}.

Next we will show the relation between the spectral resolution of a selfad-
joint linear operator and its spectrum. As a corollary we will obtain that
σd ∪ σess(T ) = σ(T ) if T is selfadjoint.

As in Section 2.1 we use the notation

αx,y(t) = 〈E(t)x , y〉, αx(t) = αx,x(t), x, y ∈ H, t ∈ R.
1Note that there are many different definitions of the essential spectrum in the literature

which do not necessarily coincide, see [?]
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Recall that for a selfadjoint operator the spectrum and the approximative spec-
trum coincide, that is, λσ(A) if and only if there exists a sequence (xn)n∈N such
that xn 6→ 0 and (A− λ)xn → 0.

Theorem 2.52. Let H be a complex Hilbert space and A(H → H) be a selfad-
joint linear operator on H with spectral resolution (E(t))t∈R. Then each of the
following is equivalent:

• Spectrum:

(i) λ ∈ σ(T ).

(ii) There exists a sequence (xn)n∈N ⊆ D(A) such that xn 6→ 0 and
(T − λ)xn → 0 for n→∞.

(iii) E(λ− ε) 6= E(λ+ ε) for all ε > 0.

(iv) (λ− z)−1 ∈ σ(T − z)−1 for one/all z ∈ ρ(T ).

• Point spectrum:

(i) λ ∈ σp(T ).

(ii) There exists a Cauchy sequence (xn)n∈N ⊆ D(A) such that xn 6→ 0
and (T − λ)xn → 0 for n→∞.

(iii) E(λ−) 6= E(λ) (that is, E is not strongly continuous in λ).

(iv) (λ − z)−1 ∈ σp(T − z)−1 for one/all z ∈ ρ(T ) and ker(T − λ) =
ker
(
(T − z)−1 − (λ− z)−1

)
.

• Discrete spectrum:

(i) λ ∈ σd(T ).

(ii) There exists a sequence (xn)n∈N ⊆ D(A) such that xn 6→ 0 and
(T −λ)xn → 0 for n→∞ and every bounded such sequence contains
a convergent subsequence.

(iii) There exists an ε > 0 such that 0 6= dim(rgE((λ− ε, λ+ ε))) 6=∞.

• Essential spectrum:

(i) λ ∈ σess(T ).

(ii) There exists a so-called singular sequence for A in λ, that is, a se-

quence (xn)n∈N ⊆ D(A) such that xn 6→ 0, xn
w−→ 0 and (T −λ)xn →

0 for n→∞.

(iii) dim(rgE((λ− ε, λ+ ε))) =∞ for all ε > 0.

(ii) is the so-called Weyl criterion.

Another characterisation of the essential spectrum in terms of the sequences is
given in Exercise 2.21.
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Proof. • Spectrum:
(i) =⇒ (iii): Assume that there exists an ε > 0 such that E(λ− ε) = E(λ+ ε).
Then (t− λ)2 ≥ ε2 αx-a.e. for all x ∈ H. In particular,

‖(A− λ)x‖2 =

∫
R

(t− λ)2 dαx(t) ≥ ε2

∫
R

dαx(t) = ε2‖x‖2.

Hence λ /∈ σp(A) and, by the closed graph theorem, rg(A−λ) is closed. Observe
that σc(A) = ∅ since A is selfadjoint. Hence λ ∈ ρ(T ) in contradiction to the
hypothesis.

(iii) =⇒ (ii): For every n ∈ N we choose an xn ∈ rg(E((λ − 1
n , λ + 1

n ))) with
‖xn‖ = 1. Then (t− λ)2 ≤ 1

n2 αxn -a.e. and therefore

‖(A− λ)x‖2 =

∫
R

(t− λ)2 dαx(t) ≤ 1

n2
−→ 0, n→∞.

(ii) =⇒ (i): The hypothesis implies immediately that (T −λ) is not boundedly
invertible, hence λ ∈ σ(T ). hence λ 6∈ σp(A).
(i)⇐⇒ (iv): For fixed z ∈ ρ(T )

(T − z)−1 − (λ− z)−1 = (λ− z)−1(λ− T )(T − z)−1 = (λ− z)−1(T − z)−1(λ− T ).

λ ∈ ρ(T ) if and only if λ− T is bijective, if and only if (T − z)−1 − (λ− z)−1 is
bijective.

• Point spectrum:

(i) =⇒ (ii): Let x be a non-zero eigenvector of A with eigenvalue λ and choose
xn = s for all n ∈ N.

(ii) =⇒ (i): Let (xn)n∈N as in the assumption and let x ∈ H be its limit point.
Then, by assumption, also (Txn)n∈N converges with limit point λx. Since T is
closed, it follows that x ∈ D(T ) and Tx = λx.

(i) =⇒ (iii): Assume that E is continuous in λ. Then (t− λ)2 6= 0 αx-a.e. for
all x ∈ D(A) and consequently

‖(A− λ)x‖2 =

∫
R
(t− λ)2 dαx(t) > 0,

hence λ 6∈ σp(A).
(iii) =⇒ (i): Let x ∈ E({λ}) with ‖x‖ = 1. Then

‖(A− λ)x‖2 =

∫
R
(t− λ)2 dαx(t) =

∫
R\{λ}

(t− λ)2 dαx(t) +

∫
{λ}

(t− λ)2 dαx(t) = 0.

Note that the proof also shows that

E({λ}) = ker(A− λ).

• Discrete spectrum:
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• Essential spectrum:

(i) =⇒ (iii): Assume that there exists an ε > 0 such that E(λ− ε) = E(λ+ ε).
Then (t− λ)2 ≥ ε2 αx-a.e. for all x ∈ H. In particular,

‖(A− λ)x‖2 =

∫
R
(t− λ)2 dαx(t) ≥ ε2

∫
R

dαx(t) = ε2‖x‖2.

Hence λ /∈ σp(A) and, by the closed graph theorem, rg(A−λ) is closed. Observe
that σc(A) = ∅ since A is selfadjoint. Hence λ ∈ ρ(T ) in contradiction to the
hypothesis.

(iii) =⇒ (ii): For every n ∈ N we choose an xn ∈ rg(E((λ − 1
n , λ + 1

n ))) with
‖xn‖ = 1. Then (t− λ)2 ≤ 1

n2 αxn -a.e. and therefore

‖(A− λ)x‖2 =

∫
R
(t− λ)2 dαx(t) ≤ 1

n2
−→ 0, n→∞.

(ii) =⇒ (i): The hypothesis implies immediately that (T −λ) is not boundedly
invertible, hence λ ∈ σ(T ). hence λ 6∈ σp(A).

2.8 Appendix: Integration in Banach spaces

In the following we always assume that (Ω,Σ, µ) is a σ-finite measure space and
X a Banach space. In most of our applications Ω will be the real line or a curve
in C. Good references for the Bochner integral are [HP74], [Yos95], [DU77],
[AE09].

Definition 2.53. A function f : Ω→ X is called

(i) simple function ⇐⇒ f =

n∑
k=

xk idBk where xj ∈ X and Bj ∈ Σ with

µ(Bj) <∞ for all j = 1, . . . , n.

(ii) strongly measurable ⇐⇒ there exists a sequence of simple functions
(fn)n∈N such that fn → f µ-a.e. (that is, fn(x)→ f(x) for µ-a.a. x ∈ X).

(iii) separably valued ⇐⇒ {f(s) : s ∈ Ω} is separable.

(iv) countably valued ⇐⇒ {f(s) : s ∈ Ω} is a countable.

(v) weakly measurable ⇐⇒ s 7→ ϕ(f(s)) is measurable for every ϕ ∈ X ′.

Theorem 2.54 (Pettis). A function f : Ω→ X is strongly measurable if and
only if f is weakly measurable and µ-a.e. separably valued.

Proof. See, e.g., [HP74, Theorem 3.5.3].
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Corollary 2.55. (i) f : Ω → X is strongly measurable ⇐⇒ f is the
uniform limit µ-a.e. of a sequence of countably valued functions.

(ii) If X is separable, then strong measurability and weak measurability are
equivalent.

Now we will define integrals.

Definition 2.56. (i) For a simple function f =
∑n
k=1 xk idBk we define the

integral ∫
Ω

f dµ :=

n∑
k=1

xkµ(Bk).

Obviously, the sum on the right hand side does not depend on the repre-
sentation of f .

(ii) A countably valued function f =
∑∞
k=1 xk idBk is called integrable if and

only if ‖f‖ is Lebesgue-integrable. In this case we define∫
Ω

f dµ :=

∞∑
k=1

xkµ(Bk).

(iii) A function f =
∑∞
k=1 xk idBk is called Bochner integrable if and only if

there exists a sequence of countably valued integrable functions (fn) such

that fn → f µ-a.e. and

∫
Ω

‖fn − f‖ dµ → 0 for n → ∞. For a Bochner

integrable function f we define∫
Ω

f dµ = lim
n→∞

fn dµ, (2.14)

where (fn)n∈N is a sequence of countably valued integrable functions as
above.

Observation 2.57. (i) If f is strongly measurable, then ‖f −fn‖ is measur-

able because it is limit of simple functions. Therefore

∫
Ω

‖fn − f‖ dµ is

well-defined.

(ii) Existence of the limit in (2.14): It suffices to show that the sequence of
the integrals is a Cauchy sequence. Let n, k ∈ N. Since fn and fk are
countably valued functions, we obtain∥∥∥∥∫

Ω

fn dµ−
∫

Ω

fk dµ

∥∥∥∥ =

∥∥∥∥∫
Ω

(fn − fk) dµ

∥∥∥∥ ≤ ∫
Ω

‖fn − fk‖ dµ

≤
∫

Ω

‖fn − f‖ dµ+

∫
Ω

‖fk − f‖ dµ −→ 0, n, k →∞.
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(iii) Uniqueness of the limit in (2.14): The limit does not depend on the se-
quence (fn)n∈N, because given two such sequences (fn)n∈N and (gn)n∈N,
we can form the sequence (hn)n∈N := (f1, g1, f2, g2, . . . ), and it follows
that

lim
n→∞

fn dµ = lim
n→∞

hn dµ = lim
n→∞

gn dµ.

Theorem 2.58 (Bochner). A function f : Ω → X is Bochner integrable if

and only if f is strongly measurable and

∫
Ω

‖f‖ dµ <∞.

Proof. See [HP74, Theorem 3.7.4] or [Yos95, Theorem 1 in V.5.].

Next, we list some important properties of the Bochner integral.

Theorem 2.59 (Bochner). Let X,Y be Banach spaces, T (X,Y ) a closed lin-
ear operator and f : Ω → X such that f(s) ∈ D(T ) for all s ∈ Ω. If f and
Tf : Ω→ Y are Bochner integrable, then

T

∫
Ω

f dµ =

∫
Ω

Tf dµ.

Proof. See [HP74, Theorem 3.7.12].

Theorem 2.60. Let X,Y be Banach spaces and T ∈ L(X,Y ). If f : Ω → X
is Bochner integrable, then so is Tf and

T

∫
Ω

f dµ =

∫
Ω

Tf dµ.

Proof. See [Yos95, Corollary 2 in V.5.].

Theorem 2.61 ([HP74, Theorem 3.7.6]). If f : Ω → X is Bochner inte-
grable, then ∥∥∥∥∫

Ω

f dµ

∥∥∥∥ ≤ ∫
Ω

‖f‖ dµ.

Theorem 2.62 ([HP74, Theorem 3.7.5, Theorem 3.7.7, Theorem 3.7.8]).

(i) Let fn : Ω → X be a sequence of Bochner integrable functions such that∫
Ω
‖fn − fm‖ dµ → 0 for n,m → ∞. Then there exists a non-unique

Bochner integrable function f such that
∫

Ω
‖fn − f‖ dµ → 0 for n → ∞.

Two such functions are equal µ-a.e.
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(ii) The Bochner integral is linear. The set of all Bochner integral functions
Ω→ X is a normed space with norm ‖f‖ :=

∫
Ω
‖f‖ dµ. If functions that

coincide µ-a.e. are identified, then it becomes a Banach space.

Theorem 2.63 (Dominated convergence theorem). Let fn : Ω → X be
a sequence of Bochner integrable functions that converges µ-a.e. to f . Assume
that there exists a integrable function g : Ω → R such that ‖fn(s)‖ ≤ g(s) for
all n ∈ N and µ-a.e. s ∈ Ω. Then f is Bochner integrable and

lim
n∈N

∫
Ω

fn dµ =

∫
Ω

f dµ.

Proof. See [HP74, Theorem 3.7.9]

Theorem 2.64 (Fubini). Let (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be σ-finite measure
spaces and X a Banach space. Then f : Ω1 × Ω2 → X is µ1 ⊗ µ2-measurable,
then the functions

f1 : Ω1 → X, f1(s) =

∫
Ω2

f(s, t) dµ2(t),

f2 : Ω2 → X, f2(s) =

∫
Ω1

f(s, t) dµ1(t)

are defined almost everywhere in Ω1 and Ω2, respectively and∫
Ω1×Ω2

f(s, t) d
(
µ1(s)⊗ µ2(t)

)
=

∫
Ω1

f1(s) dµ1(s) =

∫
Ω2

f2(t) dµ2(t).

Proof. See [HP74, Theorem 3.7.13]

Last Change: Tue 06 Oct 2015 05:32:04 PM -05



D
R
A
F
T

CHAPTER 3. Selfadjoint extensions 57

Chapter 3

Selfadjoint extensions

3.1 Selfadjoint extensions of symmetric opera-
tors

Example 3.1. Let H = L2(0, 1). We define T by

D(T ) := {f ∈ L2(0, 1) : f abs. cont, f ′ ∈ L2(0, 1), f(0) = f(1) = 0},
T f := if ′.

T is a closed symmetric operator and D(T ∗) = H1(0, 1) with T ∗f = if ′, hence
T ( T ∗.

Does T admit selfadjoint extensions? If so, how many and can we find formulas
for them?

In general, if T is a symmetric operator and S is a selfadjoint extension, then
we must have

T ⊆ S = S∗ ⊆ T ∗.

Let H be a complex Hilbert space, T (H → H) a symmetric operator and
λ ∈ C \R. By Remark 2.38 T −λ is injective and rg(T −λ) is closed if and only
if T is closed.

Recall that the Cayley transform gives a bijection

symetric operators
Cayley←−−−−−−−−−−−−−→

transformation

{
isometric operators U

with rg(U − 1) = H

The relation between a symmetric operator T and its Cayley transform U is

U = (T − i)(T + i)−1, D(UT ) = rg(T + i), rg(UT ) = rg(T − i),

T = −i(U + 1)(U − 1)−1 D(T ) = rg(U − 1), rg(UT ) = rg(U + 1).
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In particular, T is closed if and only if both rg(U + 1) and rg(U − 1) are closed
(in fact, rg(U + 1) is closed ⇐⇒ T is closed ⇐⇒ rg(U − 1) is closed), and

T closed ⇐⇒ U closed,

S symmetric extension of T ⇐⇒ US isometric extension of U.

T selfadjoint ⇐⇒ U unitary.

So instead of looking for symmetric or selfadjoint extensions of a closed sym-
metric opertor T we try to find isometric or unitary extensions of its Cayley
transform. The advantage is that the domain and the range of the Cayley
transform are closed subspaces.

Theorem 3.2 (1st von Neumann formula). Let H be a complex Hilbert
space and S a closed symmetric linear operator on H with Cayley transform U .
We define the subspaces

N+ := rg(S + i)⊥ = ker(S∗ − i) = D(U)⊥,

N− := rg(S − i)⊥ = ker(S∗ + i) = rg(U)⊥.

Then D(S∗) = D(S)+̇N++̇N−, where +̇ denotes the direct sum.

Proof. Let x ∈ D(S∗). We have to show that there exist unique elements
x0 ∈ D(S) and x± ∈ N± such that x = x0 + x+x−.

Existence: Choose x0 ∈ D(S) and y ∈ rg(S + i)⊥ = ker(S∗ + i) ⊆ D(S∗) such
that

(S∗ + i)x = (S + i)x0 + y = (S + i)x0 +
1

2i
(S∗ + i)y +

1

2i
(S∗ − i)y

= (S + i)x0 +
1

2i
(S∗ + i)y.

Define x+ = 1
2iy ∈ rg(S+ ı)⊥ and x− = x−x0− 1

2iy ∈ ker(S∗+ ı) = rg(S− ı)⊥.

Uniqueness: It suffices to show that x0 − x+ − x− = 0 with x0 ∈ D(S) and
x± ∈ N± only if x0 = x± = 0. By assumption

0 = S∗(x0 − x+ − x−) = Sx0 − S∗x+ − S∗x− = Sx0 − ix+ + ix−.

Hence

x0 = x− + x+

Sx0 = ix+ − ix−

}
=⇒ (S + i)x0 = ix+ − ix− + ix− + ix+ = 2ix+.

Hence x+ ∈ rg(S+i)∩ rg(S+i)⊥ = {0}. Similarly it follows that x− = 0. Then
also x0 = x+ + x− = 0.

Definition 3.3. Let S be a linear operator on a Banach space X. For z ∈ C
we define the deficiency number n(S, z) := dim

(
rg(S − z)⊥

)
. For symmetric

operators S we set

n+(S) := n(S,−i) = dim rg(S + i)⊥, n−(S) := n(S, i) = dim rg(S − i)⊥.
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Corollary 3.4. Let S be symmetric. Then

S is essentially selfadjoint ⇐⇒ n+(S) = n=(S) = 0,

S is selfadjoint ⇐⇒ n+(S) = n=(S) = 0 and S is closed.

Definition 3.5. Let S be a symmetric linear operator on a Banach space X
and T a symmetric extension of S. T is called an

m-dimensional extension of S ⇐⇒ dim
(
D(T )/D(S)

)
= m,

m-dimensional restriction of S∗ ⇐⇒ dim
(
D(S∗)/D(T )

)
= m,

where dim(U/V ) = m for subspaces U, V ⊆ H if and only if there exists an
m-dimensional subspace D such that U = V +̇D.

Theorem 3.6 (2nd von Neumann formula). Let H be a complex Hilbert
space and S a closed symmetric linear operator on H with Cayley transform U .

(i) S has symmetric extensions if n+(S) > 0 and n−(S) > 0.

(ii) Every m-dimensional symmetric extension T of S is of the form

D(T ) = D(S)+̇{y + Ṽ y : y ∈ Ñ+},

T (x+ y + Ṽ y) = Sx+ iy − iṼ y for x ∈ D(S), y ∈ Ñ+,
(3.1)

where Ñ+ is an m-dimensional subspace of N+ and Ṽ : Ñ+ → N− is an
isometry. If m <∞, then T has deficiency indices n±(T ) = n±(S)−m.

Every operator of the form (3.1) is a selfadjoint extension of S.

(iii) If n±(S) < ∞, then S has selfadjoint extensions if and only if n+(S) =
n−(S).

Proof. Let US be the Cayley transform of S and T a symmetric operator with
Cayley transform UT . Observe that

T symmetric extension of S ⇐⇒ UT isometric extension of US ,

T selfadjoint extension of S ⇐⇒ UT unitary extension of US .

Existence of a symmetric extension as in (3.1): Suppose that n+(S) > 0 and
n−(S) > 0 and chose p ∈ N with m ≤ min{n+(S), n−(S)}. By assumption, we

can choose p-dimensional subspaces Ñ+ of N+ = rg(S+ i)⊥ = D(US)⊥ and Ñ−
of N− = rg(S − i)⊥ = rg(US)⊥ and a unitary operator Ṽ : Ñ+ → N−. Now we
define an extension UT of US by

UT : D(US)⊕ Ñ+ → rg(US)⊕ Ñ−,

UT (x+ y) = US(x)− Ṽ y for x ∈ D(US) and y ∈ Ñ+.
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Then UT is a closed isometry and rg(UT − id) ⊇ rg(US − id) = H, so, by
Lemma 2.41 and Proposition 2.40, it is the Cayley transform of the closed
symmetric operator T = i(id +UT )(id−UT )−1. Its domain is given by

D(T ) = rg(id−UT ) = (id−UT )
(

rg(S + i)⊕ Ñ+

)
= (id−UT )

(
rg(S + i)

)
+̇ (id−UT )Ñ+ = D(S) +̇ (id +Ṽ )Ñ+

= D(S) +̇ {y + Ṽ y : y ∈ Ñ+}.

Observe that, as a consequence of Theorem 3.2, this is a direct sum because the
second space is a subspace of N++̇N−. Moreover, dim{y + Ṽ y : y ∈ Ñ+} =

dim Ñ+ = p, hence D(T )/D(S) = p and, if p <∞,

n+(S) = dim
(

rg(S + i)⊥
)

= dim
(
D(US)⊥

)
= dim

(
D(UT )⊥ ⊕ Ñ+

)
= n+(T ) + p,

n−(S) = dim
(

rg(S − i)⊥
)

= dim
(

rg(US)⊥
)

= dim
(

rg(UT )⊥ ⊕ Ñ−
)

= n−(T )− p,

and for x ∈ D(S) and y ∈ Ñ+

T (x0 + y + Ṽ y) = S(x0) + T (y + Ṽ y)

= S(x0) + i(UT + id)(id−UT )−1

=(id−UT )y︷ ︸︸ ︷
(id +Ṽ )y

= S(x0) + i(UT + id)y = S(x0) + iy − iṼ y.

Since the isometry Ṽ was arbitrary, we proved that every operator of the form
(3.1) is a selfadjoint extension of S and that (i) is true.

Now assume that T is a symmetric extension of S. Then UT is a isometric
extension of US . Note that D(US), D(UT ), rg(US) and D(UT ) are closed, hence

there exist closed subspaces Ñ± such that D(UT ) = D(US) ⊕ Ñ+, rg(UT ) =

rg(US)⊕ Ñ−. Thereforer, setting Ṽ = −UT |Ñ+
, we obain

UT : D(US)⊕ Ñ+ → rg(US)⊕ Ñ−
UT (x+ y) = USx− Ṽ y for x ∈ D(S) and y ∈ Ñ+.

As before, it follows that T is of the form (3.1).

If T is a selfadjoint extension of S, then UT is a unitary extension of US . Hence
UT maps D(UT ) 	 D(US) = D(US)⊥ unitarily to rg(UT ) 	 rg(US) = rg(US)⊥.
Consequently, n+(S) = dimD(US)⊥ = dim rg(US)⊥ = n−(S).

Recall that n±(T ) = 0 if T is selfadjoint.

Theorem 3.7. Let H be a complex Hilbert space and S a closed symmetric
linear operator on H with n+(S) = n−(S) = m < ∞. Let T a linear operator
on H. Then
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(i) T is a selfadjoint
extension of S

⇐⇒ T is an m-dimensional symmetric
extension of S.

(ii) T is a selfadjoint
restriction of S∗

⇐⇒ T is an m-dimensional symmetric
restriction of S∗.

Proof. (i) If T is a selfadjoint extension of S. Then 0 = n±(T ) = n±(S) −
dim(D(T )/D(S)), hence m = n±(S) = dim(D(T )/D(S)).
On the other hand, if T is an m-dimensional extension of S, then its deficiency
indices are zero, that is, dim(rg(T ± i)⊥) = 0. Hence T is essentially selfadjoint.
Since a finite dimensional extension of a closed operator is closed, it follows that
T is selfadjoint.
(ii) Observe that dimS/S∗ = 2m. By assumption S ⊆ T ⊆ S∗, so T is an
m-dimensional restriction of S∗ if and only if it is an m-dimensional extension
of S.

Definition 3.8. A symmetric operator T is a maximal symmetric operator if
it has no proper symmetric extensions. Clearly, a closed symmetric operator is
maximal symmetric if and only if at least one of its deficiency numbers is zero.

It can be shown that for every closed symmetric operator S(H → H) with

deficieny indices n+(S) = m and n−(S) = n there exists a Hilbert space H̃ ⊇
H and a closed symmetric linear operator S̃(H̃ → H̃) with deficiency indices

n+(S̃) = n−(S̃) = n+(S) + n+(S) such that S = PS̃P where P ∈ L(H̃) is the
orthogonal projection on H.
Since S̃ has equal deficiency indices, it has a selfadjoint extension T . Let
(Eλ)λ∈R be the spectral resolution of T . Then

Sx =

∫ ∞
−∞

λ dEλx, x ∈ D(S).

(Eλ)λ∈R is called a generalized spectral resolution of S. If S is maximal sym-

metric, then x ∈ D(S) if and only if

∫ ∞
−∞

λ2 d‖Eλx‖2 < ∞. For details, see

[Yos95, XI.15] and [AG93].

Let us review the example at the beginning of the section.

Example. Let H = L2(0, 1). We define T by

D(T ) := {f ∈ L2(0, 1) : f abs. cont, f ′ ∈ L2(0, 1), f(0) = f(1) = 0},
T f := if ′.

T is a closed symmetric operator and D(T ∗) = H1(0, 1) with T ∗f = if ′.

In order to determine if T has selfadjoint extensions, it suffices to calculate
n±(T ) = dim ker(T ∗ ± i). It is easy to see that

ker(T ∗ + i) = span{ϕ+}, ker(T ∗ − i) = span{ϕ−},
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where ϕ±(t) = e±t. Hence n+(T ) = n−(T ) = 1, so T admits selfadjoint exten-
sions.

To find all selfadjoint extensions of T , we have to find all unitary maps ker(T ∗+
i)→ ker(T ∗ − i). Obviously they are given by

Uϑ : ker(T ∗ + i)→ ker(T ∗ − i), Uϑϕ+ =
( e2−1

1− e−2

)
eiϑ ϕ−

for arbitrary ϑ ∈ R. Therefore every selfadjoint extension of T is of the form

D(T̃ϑ) = D(T ) + span

{
ϕ+ +

( e2−1

1− e−2

) 1
2

eiϑ ϕ−

}
,

T̃ϑ

(
f0 + α

(
ϕ+ +

( e2−1

1− e−2

) 1
2

eiϑ ϕ−

))
= f ′0 + iαϕ+ − iα

( e2−1

1− e−2

) 1
2

eiϑ ϕ−.

Remark. All selfadjoint extensions of T can also be found as all selfadjoint
restrictions of T ∗. The procedure is as follows: . . . . . . . . .

An example of a symmetric operator T with n+(T ) 6= n−(T ) is given in Exer-
cise 3.1.

3.2 Deficiency indices and points of regular type

Recall that for a closed linear operator S and z ∈ C we defined the deficiency
indices n(S, z) := dim rg(S − z)⊥.

Definition 3.9. Let H be a Hilbert space and S a linear operator on H. A
point z ∈ C is called a point of regular type of S if

∃ cz > 0 such that ‖(z − S)x‖ ≥ cz‖x‖ for all x ∈ D(S).

The set

Γ(S) := {z is of regular type of S}

is the regularity domain on S.

In the case when S is closed, the following is easy to see:

• ρ(S) ⊆ Γ(S),

• z ∈ Γ(S) ⇐⇒ S − z is injective and rg(z − S) is closed.

Proposition 3.10. Let S be a linear operator on a Hilbert space H. Then

(i) Γ(S) is open.
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(ii) S is symmetric =⇒ C \ R ⊆ Γ(S).

(iii) S is isometric =⇒ C \ {|z| = 1} ⊆ Γ(S).

Proof. (i) Fix z0 ∈ Γ(S). Then also the open ball with radius cz0 centred in z0

lies in Γ(S) because for z ∈ C with |z − z0| < cz0

‖(S − z)x‖ ≥ ‖(S − z0)x‖ − |z − z0| ‖x‖ ≥ (cz0 − |z − z0|︸ ︷︷ ︸
>0

)‖x‖.

(ii) For every z ∈ C \ R the map (z − S)−1 : rg(z − S) → D(S) exists and
is bounded by | Im z|−1. By the closed graph theorem rg(z − S) is closed, so
z ∈ Γ(S).

(iii) Let z ∈ C with |z| 6= 1. Then, for all x ∈ D(S),

‖(S − z)x‖ ≥ | ‖Sx‖ − |z| ‖x‖ | = |1− |z||︸ ︷︷ ︸
>0

‖x‖.

Theorem 3.11. Let S be a closable linear operator on a complex Hilbert space
H. The following holds.

(i) The deficiency numbers n(S, z) are locally constant in Γ(S). In particular
they are constant in connected components of Γ(S).

(ii) If S is symmetric, then n(S, z) is constant in the upper and in the lower
half plane (but in general n(S, i) 6= n(S,−i)).

(iii) If S is isometric, then n(S, z) is constant inside and outside of the unit
circle (but in general n(S, 0) 6= n(S, 2)).

Proof. (ii) and (iii) follow immediately form (i) and Proposition 3.10. So we
only have to show (i).

Case 1. S is closed. Let z0 ∈ Γ(S). Since S is closed, rg(z0 − S) is closed. We
will show that n(S, z0) = n(S, z) for all z with |z − z0| <

cz0
2 .

Recall that for closed subspaces U, V of H with U ∩V ⊥ = {0}, dimU ≤ dimV .
In particular, if V ∩ U⊥ + U ∩ V ⊥ = {0}, then dimU = dimV . We will apply
this to U = rg(z0 − S)⊥ and V = rg(z − S)⊥. So we only have to show

rg(z0 − S)⊥ ∩ rg(z − S) = rg(z − S)⊥ ∩ rg(z0 − S) = {0}

for all z with |z − z0| <
cz0
2 . Recall that by the proof of Proposition 3.10,

z ∈ Γ(S) and cz ≥ | cz0 − |z − z0| | =
cz0
2 .

Assume rg(z − S)⊥ ∩ rg(z0 − S) 6= {0}. Then there exists an x ∈ D(S) \ {0}
such that (z0−S)x ⊥ rg(z−S). Using that (z−S)x ⊥ (z0−S)x we obtain the
contradiction

‖(z − S)x‖ ≤
(
‖(S − z)x‖2 + ‖S − z0)x‖2

) 1
2

= ‖(S − z)x‖+ ‖(S − z0)x‖

= ‖(z0 − z)x‖ ≤
|z0 − z|
cz

‖(S − z)x‖ < cz0
2

1

cz0
‖(S − z)x‖ = ‖(S − z)x‖.
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Now assume rg(z0−S)⊥∩ rg(z−S) 6= {0}. Then there exists an x ∈ D(S)\{0}
such that (z−S)x ⊥ rg(z0−S). Using that (z−S)x ⊥ (z0−S)x we obtain the
contradiction

‖(z0 − S)x‖ ≤
(
‖(S − z)x‖2 + ‖S − z0)x‖2

) 1
2

= ‖(S − z)x− (S − z0)x‖

= ‖(z0 − z)x‖ ≤
|z0 − z|
cz0

‖(S − z)x‖

<
cz0
2

1

cz
‖(S − z)x‖ =

1

2
‖(S − z)x‖.

Case 2. S is closable. Let S be the closure of S. By case 1, it suffices to show
that Γ(S) = Γ(S) and that n(S, z) = n(S, z) for all z ∈ Γ(S). The inclusion
Γ(S) ⊆ Γ(S) is obvious. If z ∈ Γ(S) and x ∈ D(S), then there exists a sequence
(xn)n∈N such that xn → x and Sxn → Sx. Hence

‖(z − S)x‖ = lim
n→∞

‖(z − S)xn‖ ≥ cz lim
n→∞

‖xn‖ = cz‖x‖,

showing that Γ(S) = Γ(S). Moreover, rg(z−S)⊥ = rg(z−S)⊥ because rg(z−S)
is dense in rg(z − S). Hence n(S, z) = n(S, z) for all z ∈ Γ(S) = Γ(S).

Corollary 3.12. Let S be a symmetric operator on a complex Hilbert space H.
The following holds.

(i) S is essentially selfadjoint ⇐⇒ n+(S) = n−(S) = 0.

(ii) S is selfadjoint ⇐⇒ S is closed and n+(S) = n−(S) = 0.

Proof. This follows immediately from the fact that a symmetric operator S is
essentially selfadjoint if and only if rg(S ± i) is dense in H.

Corollary 3.13. For a S closed symmetric operator on a complex Hilbert space
H the following holds.

(i) S has real points of regular type =⇒ S has a selfadjoint extension.

(ii) S is semibounded =⇒ S has a selfadjoint extension.

Proof. (i) By assumption and Proposition 3.10 (i), Γ(S) is connected, hence
n(S, i) = n(S,−i) by Theorem 3.11. Therefore S has selfadjoint extensions by
Theorem 3.6.

(ii) Without restriction we assume that S is semibounded from below. Then
there exists a γ ∈ R such that 〈Sx , x〉 ≥ γ for all x ∈ D(S). For all λ < γ we
obtain

‖(λ− S)x‖ ‖x‖ ≥ 〈(λ− S)x , x〉 ≥ (λ− γ)‖x‖2.

Hence (∞, γ) ⊆ Γ(S) and the assertion follows from (i).

Last Change: Sun 25 Oct 2015 05:28:26 PM -05



D
R
A
F
T

CHAPTER 3. Selfadjoint extensions 65

Theorem 3.14. Let S be a symmetric operator on a complex Hilbert space H
with defect indices n+(S) = n−(S) = m < ∞. Let T1 and T2 be selfadjoint
extensions of S with spectral resolutions E1 and E2. Let I ⊆ R be an open or
closed interval and kj := dim rg(Ej(I)) for j = 1, 2.

If k1 <∞, then k2 <∞ and |k1 − k2| <∞.

Proof. Assume that I = (α, β) with −∞ < β < α <∞. Note that rg(Ej(I)) ⊆
D(Tj) for j = 1, 2 and that dim

(
D(T )/D(S)

)
= m. Let us assume that k2 >

k1 +m. Then

dim
(

rg(E2(I)) ∩ D(S)
)
≥ k2 −m > k1 (3.2)

and for every x ∈
(

rg(E2(I)) ∩ D(S)
)
\ {0}∥∥∥(T1 −

α+ β

2

)
x
∥∥∥2

=
∥∥∥(T2 −

α+ β

2

)
x
∥∥∥2

=

∫
(α, β)

(
t− α+ β

2

)2

d〈E(t)x , x〉 <
(β − α

2

)2

‖x‖2.

So, for all x ∈
(

rg(E2(I)) ∩ D(S)
)
\ {0}∥∥∥(T1 −

α+ β

2

)
x
∥∥∥ < β − α

2
‖x‖. (3.3)

By (3.2) there exists an x ∈ rg(E2(I)) ∩ D(S) with ‖x‖ − 1 and x ⊥ rg(E1(I).
For this x∥∥∥(T1 −

α+ β

2

)
x
∥∥∥2

=

∫
R\(α, β)

(
t− α+ β

2

)2

d〈E(t)x , x〉 ≥ β − α
2
‖x‖ (3.4)

in contradiction to (3.3). This proves k2 ≤ k1 +m <∞. Applying the same to
reasoning to k2, we find k1 ≤ k2 +m, so |k1 − k2| ≤ m.

If I is a closed interval of the form [α, β] with −∞ < β ≤ α <∞, then we have
to change “<” to “≤” in (3.3) and “≥” to “>” in (3.4).

Corollary 3.15. With the assumptions and notation as in Theorem 3.18, it
follows that if σ(T1)∩ (a, b) consists only of discrete eigenvalues with total mul-
tiplicity k1, then σ(T2) ∩ (a, b) consists only of discrete eigenvalues with total
multiplicity k2 ≤ k1 +m.

Theorem 3.16. Let S be a symmetric operator on a complex Hilbert space H
with defect indices n+(S) = n−(S) = m <∞. Let λ ∈ C and assume that there
exists a c > 0 such that

‖(S − λ)x‖ ≥ c‖x‖, x ∈ D(S).

Then for every selfadjoint extension T of S the set σ(T )∩(λ−c, λ+c) is empty
or consists of isolated eigenvalues with total multiplicity ≤ m.
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Proof. Let E be the spectral resolution of T . We have to show that

dim
(
E(λ− c, λ+ c)

)
= dim

(
E(λ− c− 0, λ+ c)

)
≤ m.

If this was not true, then there exists an x0 ∈ rg
(
E(λ−c−0, λ+c)

)
∩D(S) with

x0 6= 0 because dim
(
D(T )/D(S)

)
= m and rg

(
E(λ − c − 0, λ + c)

)
⊆ D(T ),

leading to the contradiction

c‖x0‖ ≤ ‖(S − λ0)x0‖ = ‖(T − λ0)x0‖

=

(∫
|t−λ|<c

|t− λ0|2 d〈Etx0 , x0〉
) 1

2

< c‖x0‖.

Remark. If λ ∈ Γ(S) ∩ R, then Exercise 3.3 shows that S has a selfadjoint
extension T with λ ∈ σp(T ) and dim ker(T − λ) ≤ m.

Corollary 3.17. Let S be a semibounded symmetric operator on a complex
Hilbert space H with defect indices n+(S) = n−(S) = m <∞. Without restric-
tion we assume that S ≥ γ for some γ ∈ R. Let T be a selfadjoint extension T
of S. Then

(i) σ(T ) ∩ (∞, γ) consists of isolated eigenvalues of total multiplicity ≤ m.

(ii) T is semibounded from below.

Proof. (i): Let λ < γ and c := γ − λ. For all x ∈ D(S) we obtain

‖(S − λ)x‖ ≥ 〈(S − λ)x , x〉 = 〈(S − γ)x , x〉+ (γ − λ)‖x‖2

> (γ − λ)‖x‖2 = c‖x‖2.

Hence, by Theorem 3.16, the set σ(T ) ∩ (λ − c, λ + c) = σ(T ) ∩ (2λ − γ, γ)
consists only of isolated eigenvalues of total multiplicity ≤ m. Since this is true
for all λ < γ, the claim is proved.

(ii) is an immediate consequence of (i).

Theorem 3.18. Let S be a symmetric operator on a complex Hilbert space H
with defect indices n+(S) = n−(S) = m < ∞. Let T1 and T2 be selfadjoint
extensions of S with spectral resolutions E1 and E2.

(i) For every z ∈ ρ(T1)∩ρ(T2) the range of the operator (T1−z)−1−(T2−z)−1

is at most m-dimensional.

(ii) σess(T1) = σess(T2).

Let I ⊆ R be an open or closed interval and kj := dim rg(Ej(I)) for j = 1, 2.

If k1 <∞, then k2 <∞ and |k1 − k2| <∞.
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Proof. (i) Observe that every z ∈ ρ(Tj) belongs to Γ(S), hence dim(rg(S −
z))⊥ = m <∞. Let P be the orthogonal projection on (rg(S − z))⊥. Then for
all x ∈ H and all z ∈ ρ(T1) ∩ ρ(T2)

(T1 − z)−1x− (T2 − z)−1x

=
(

(T1 − z)−1 − (T2 − z)−1
)

(1− P )x+
(

(T1 − z)−1 − (T2 − z)−1Px

=
(

(S − z)−1 − (S − z)−1
)

(1− P )x+
(

(T1 − z)−1 − (T2 − z)−1
)
Px

=
(

(T1 − z)−1 − (T2 − z)−1
)
Px.

So we showed that (T1− z)−1− (T2− z)−1 =
(
(T1− z)−1− (T2− z)−1

)
P which

implies that the dimension of its range is less or equal than dim rgP .
(ii) Let λ ∈ C\σess(T1). Then there exists ε > 0 such that dim rg(E1(λ− ε, λ+
ε)) < ∞. Using theorem 3.14 it follows that dim rg(E2(λ − ε, λ + ε)) < ∞,
implying that λ /∈ σess(T2).

Alternative proof : Since T1 and T2 are selfadjoint, i ∈ ρ(T1) ∩ ρ(T2). The
operator (T1 − i)−1 − (T2 − i)−1 is bounded and is compact because its range is
finite-dimensional by (i). Hence, by Exercise ??, σess(T1) = σess(T2).
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Chapter 4

Perturbation Theory

4.1 Closed operators
11 Oct 2010

Definition 4.1. Let X,Y, Z be normed spaces and T (X → Y ), S(X → Z) be
linear operators. The operator S is called T -bounded (or relatively bounded with
respect to T ) if and only if D(S) ⊇ D(T ) and there exist a, b ≥ 0 such that

‖Sx‖ ≤ a‖x‖+ b‖Tx‖ for all x ∈ D(T ). (4.1)

The infimum of all b ≥ 0 such that (4.1) holds for some a ≥ 0, is called the
T -bound of S.

For example, if S is bounded, it is T -bound with relative bound 0.

Remark 4.2. Note that (4.1) is equivalent to the existence of α, β ≥ 0 such
that

‖Sx‖2 ≤ α2‖x‖2 + β2‖Tx2‖ for all x ∈ D(T ). (4.2)

The infimum of all β ≥ 0 such that (4.2) holds, is equal to the T -bound of T .

Next we will give a criterion for relative boundedness.

Theorem 4.3. Let X,Y, Z be Banach spaces and T (X → Y ), S(X → Z) be
linear operators with D(S) ⊇ D(T ). Assume that T is closed and S is closable.
Then S is T -bounded.

Proof.

Theorem 4.4. Let X,Y be Banach spaces and T (X → Y ), S(X → Y ) be
linear operators. If S is T -bounded with relative bound < 1, then the following
holds:
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(i) T + S is closable if and only if T is closable.
In this case D(T + S) = D(T ).

(ii) T + S is closed if and only if T is closed.

Proof.

We call a sequence (xn)n∈N ⊆ D(T ) T -bounded if both (xn)n∈N and (Txn)n∈N
are bounded. The notion T -convergent is defined analogously.

Definition 4.5. Let X,Y, Z be normed spaces, and T (X → Y ), S(X → Z)
be linear operators. The operator S is called T -compact (or relatively compact
with respect to T ) if and only if D(S) ⊇ D(T ) and every T -bounded sequence
(xn)n∈N contains a subsequence (xnk)k∈N such that (Sxnk)k∈N converges.

Proposition 4.6. If S is T -compact, then S is T -bounded.

Proof.

At the end of this section we will show that, under additional conditions, the
T -bound of S is 0.12 Oct 2010

Theorem 4.7. Let X,Y be Banach spaces and T (X → Y ), S(X → Y ) be
linear operators. Assume that T is closable and that S is T -compact. Then the
following holds:

(i) S is T + S-compact.

(ii) T + S is closable.

(iii) D(T + S) = D(T ).

(iv) If T is closed, then T + S is closed.

Proof.

Now we will prove a stronger version of Proposition 4.6.

Theorem 4.8. Let X,Y, Z be Banach spaces and T (X → Y ), S(X → Y ) be
linear operators. Assume that S is T -compact and assume that in addition at
least one of the following conditions hold:

(i) S is closable.

(ii) X and Y are Hilbert spaces and T is closable.

Then S is T -bounded with relative bound 0.

Proof.
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4.2 Selfadjoint operators

Theorem 4.9. Let H be a complex Hilbert space, T (H → H) a selfadjoint
linear operator and S(H → H) with D(T ) ⊆ D(S). Then the following is
equivalent:

(i) S is T -bounded.

(ii) c := lim sup
η→∞

‖S(T − iη)−1‖ <∞.

In this case, the lim inf is a limit and the limit is equal to the T -bound of S.

Proof.

Theorem 4.10 (Kato-Rellich). Let H be a complex Hilbert space, T (H → H)
a linear operator and S(H → H) a symmetric linear operator with D(T ) ⊆
D(S). Assume that S has T -bound < 1. Then the following holds:

(i) If T is selfadjoint, then so is T + S.

(ii) If T is essentially selfadjoint, then so is T + S and D(T + S) = D(T ).

Proof.

4.3 Stability of the essential spectrum

Theorem 4.11 (Weyl). Let S, T be selfadjoint operators on a complex Hilbert
space H and assume that

(S − z)−1 − (T − z)−1 (4.3)

is compact for some z ∈ ρ(S) ∩ ρ(T ). Then σess(S) = σess(T ).

Note that (4.3) holds for one z ∈ ρ(S) ∩ ρ(T ) if and only if it holds for all
z ∈ ρ(S) ∩ ρ(T ).

Proof.

As an immediate corollary we obtain

Corollary 4.12. Let T be selfadjoint and K compact and selfadjoint. Then
σess(T ) = σess(T +K).

Proof. Note that by Theorem 4.7, T +K is selfadjoint. Let λ ∈ ρ(T )∩ρ(T +K).
For example, we can choose λ = i. Then

(T − λ)−1 − (T +K − λ)−1 = (T − λ)−1K(T +K − λ)−1

is compact. Hence the assertion follows from Weyl’s theorem (Theorem 4.11).
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We have defined the essential spectrum only for selfadjoint operators. For a
non-selfadjoint operator T it can be defined as

σess(T ) = {λ ∈ C : T − λ is not semi-Fredholm}.

A linear operator S is called semi-Fredholm if rg(λ−T ) is closed and dim(ker(λ−
T )) <∞ or codim(rg(λ− T )) <∞.
With this definition, Theorem 4.11 and Corollary 4.12 are valid also for non-
selfadjoint linear operators.

For the next theorem, however, we need selfadjointness and symmetry of the
operators involved.

Theorem 4.13. Let T be selfadjoint and S a symmetric, T -compact linear
operator. Then the following holds.

(i) T + S is selfadjoint and σess(T ) = σess(T + S).

(ii) T and T + S have the same singular sequences.

Proof. That T + S is selfadjoint follows from Theorem 4.7.

Let λ ∈ σess(T ) and (xn)n∈N a singular sequence for T and λ (see Theorem ??).
It follows that (Txn)n∈N converges weakly to 0. In particular, (xn)n∈N converges
weakly to 0 in (D(T ), ‖·‖T ). Since S is T -compact, (Sxn)n∈N converges to zero.
Consequently (T + S − λ)xn = (T − λ)xn + Sxn → 0 for n→∞.

Now let λ ∈ σess(T + S) and (xn)n∈N a singular sequence for T + S and λ.
Since S (and hence −S) is T +S-compact by Theorem 4.7, by what we already
showed we find that (xn)n∈N is also a singular sequence for T + S − S = T and
λ.

4.4 Application: Schrödinger operators

The following is taken mostly from [Kat95, V S5].

Let ∆ = ∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3
. We want to find realisations of ∆ on the space

H := L(R3).

The minimal operator T0 is Laplace operator with the compactly supported
infinitely differentiable functions, that is

T0f = ∆f for all f ∈ D(T0) := C∞c (R3). (4.4)

Recall that the Fourier transformation is a unitary operator on L(R3) and its
restriction to the space S of the test functions (Schwartz functions). Recall that
f ∈ S if and only if it is infinitely differentiable and for every α ∈ N3

0 and p ∈ N0

there exists a constant Cα,p,f such that

(1 + |x|2p) 1
2 |Dαf(x)| ≤ Cα,p,f , x ∈ R3.

The restriction of the Fourier transformation maps S bijectively on itself.
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Theorem 4.14 (The free Schrödinger operator). T0 is essentially selfad-
joint. Its closure H0 is

H0 = F−1Mk2F , D(H0) = F−1D(Mk2),

where F is the Fourier transformation and Mk2 is the maximal operator of
multiplication by |k|2 = k2

1 + k2
2 + k2

3 in L(R3, dk3).

Proof. Since the Fourier transformation is unitary and Mk2 is selfadjoint, so is
H0.

Note that T0 is symmetric, hence it is closable. We have to show that T0 = H0.
We define two auxiliary operators:

T1 = −∆|S , M0
k2 = Mk2 |C∞c (R3).

Step 1. T1 = T0.

It suffices to show T1 ⊆ T1. Let w ∈ Cc(R3) such that 0 ≤ w ≤ 1 and w(x) = 1
for all |x| ≤ 1. For n ∈ N we define wn(s) := w( xn ). Fix f ∈ D(T1) = S. We
define fn := wnf ∈ C∞c (R3) = D(T0). Note that f(x) = fn(x) for |x| ≤ n.
Hence fn → f because

‖f − fn‖2 =

∫
R3

|f(x)− fn(x)|2 dx ≤
∫
|x|≥n

|f(x)− fn(x)|2 dx

≤ 2

∫
|x|≥n

|f(x)|2 dx −→∞, n→∞.

To show that also T0fn → T1f follows because

∆(wnf)(x) = wn(x)∆f(x) +
2

n
∇w(x/n) · ∇f(x) +

1

n2
f(x)∆w(x/n).

Note that |∇w(x/n)| and |∆w(x/n)| are bounded with bound independent of n
and that |∇f |, ∆f ∈ L2(R3) because f ∈ S. Hence we obtain

‖Tf − Tfn‖ ≤

(∫
|x|≥n

|1− w(x/n)||∆f(x)| dx

+
2

n

∫
R3

|∇f(x)||∇w(x/n)| dx+
1

n2

∫
R3

|f(x)||∆w(x/n)| dx

)
and all terms tend to 0 for n→∞. We have shown that f ∈ D(T0).

Step 2. Mk2 = Mk2 |S .

It suffices to show that Mk2 ⊆ M0
k2 . Let f ∈ D(Mk2). Then the function

g := (1 + (Mk2)2)
1
2 f belongs to L2(R3). Therefore there exists a sequence

(ϕn)n∈N ⊆ C∞c (R3) such that ϕn → g and let fn = (1 + (Mk2)2)−
1
2ϕn. Then

fn ∈ C∞c (R3) for all n ∈ N. Moreover fn → f and Mk2fn → Mk2f . Hence we

have shown that f ∈ D(M0
k2).

In summary it follows that

H0 = F−1Mk2F = F−1Mk2 |SF = F−1Mk2 |SF = T1 = T0.
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Since the Fourier transformation is unitary, the spectra of Mk2 and H0 are equal.
So we have the following corollary.

Corollary 4.15. σ(H0) = σess(H0) = [0,∞).

In the next proposition we collect some properties of functions belonging to
D(H0).

Proposition 4.16 (Properties of u ∈ D(H0)). Let u ∈ D(H0).

(i) ‖Fu‖ ≤ π√
α
‖(H0 + α2)−1‖2 <∞ for all α > 0.

(ii) There exists a constant c > 0, such that for all α > 0 and all u ∈ H

|u(x)| ≤ c(α− 1
2 ‖H0x‖+ α

3
2 ‖u‖).

(iii) For α > 0 and γ ∈ (0, 1
2 ) there exists a constant c > 0, such that for all

u ∈ H and all x, y ∈ R3

|u(x)− u(y)| ≤ c|x− y|γ(α−( 1
2−γ)‖H0x‖+ α

3
2 +γ‖u‖),

that is, u is Hölder continuous.

Proof. (i) Let u ∈ D(H0). Then the function k 7→ (1 + k2)(Ff)(k) belongs to
L2(R3). Therefore, using Hölder’s inequality, we obtain(∫

R3

|Fu(k)|2 dk

)2

=

(∫
R3

1

k2 + 1
(1 + k2)|Fu(k) dk

)2

≤
(∫

R3

1

(1 + k2)2
dk

)∫
R3

(
(1 + k2)2|Fu(k)|2 dk

)2
=
π2

α
‖(Mk2 + α)F(u)‖ =

π2

α
‖(H0 + α)(u)‖.

(ii) Using the estimate from (i) we find for u ∈ D(H0)

|u(x)| = |F−1Fu(x)| = (2π)−
3
2

∣∣∣∣∫
R3

eikx Fu(k) dk

∣∣∣∣
≤ (2π)−

3
2

∫
R3

eikx |Fu(k)|2 dk ≤ α− 1
2π2(2π)−

3
2 ‖(H0 + α2u‖

≤ c(α− 1
2 ‖H0u‖+ α

3
2 ‖u‖).

(iii) We note that

| eikx− eiky | = |1− eik(x−y) | ≤ min{2, |k| |x− y|} ≤ 21−γ(|k| |x− y|)γ .
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For γ ∈ (0, 1
2 ) we have that

∫
R3 |k|γ |Fu(k)| dk =

∫
R3

|k|γ
1+k2 (1+ |k|2)|Fu(k)| dk <

∞.

|u(x)− u(y)| = (2π)−
3
2

∣∣∣∣∫
R3

(
eikx− eiky

)
Fu(k) dk

∣∣∣∣
≤ (2π)−

3
2

∫
R3

| eikx− eiky | |Fu(k)| dk

≤ (2π)−
3
2 21−γ |x− y|

∫
R3

|k|γ |Fu(k)| dk

≤ (2π)−
3
2 21−γ |x− y|

(∫
R3

|k|γ

1 + |k|2
dk

)(∫
R3

(1 + |k|2)|Fu(k)| dk

)
≤ (2π)−

3
2 21−γ |x− y|C(γ)

π2

α
‖(H0 + α2)u‖2.

21 Oct 2010

Schrödinger operators with potential

In the following we will always assume

q = q0 + q1

where q0 ∈ L∞(R3) and q1 ∈ L2(R3). The maximal multiplication operators on
L2(R3) associated to these functions will be denoted by Q,Q0, Q1 respectively.
Let T0 be defined as before in (4.4). Then the operator

S0 := T0 +Q

is well-defined because D(T0) = C∞c (R3) ⊆ D(A).

Theorem 4.17. S0 is essentially selfadjoint and H := S0 = H0 +Q.

Proof. We will show that Q is T -bounded with relative bound 0. By the Kato-
Rellich theorem (Theorem 4.10) the assertion is then proved. Let u ∈ D(H0).
By Proposition 4.16, u is bounded, hence u ∈ D(Q1) and

‖Q1u‖ = ‖q1u‖ ≤ ‖u‖∞‖q1‖2 ≤ c‖q1‖
(
α

3
2 ‖u‖+ α−

1
2 ‖H0u‖

)
.

Moreover, ‖Q0u‖ = ‖‖q0u‖ ≤ ‖u‖2‖q0‖∞. It follows that D(H0) ⊆ D(Q) and

‖Qu‖ ≤ ‖Q1u‖+ ‖Q0u‖ ≤
(
c‖q1‖α

3
2 + ‖q0‖∞

)
‖u‖+ c‖q1‖α−

1
2 ‖H0u‖.

Since α can be taken arbitrarily large, the theorem is proved.

Theorem 4.18. Assume that the conditions of Theorem 4.17 hold. Addi-
tionally, assume that q0(x) → 0 for |x| → ∞. Then Q is H0-compact and
σess(H) = [0,∞).
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Proof. By Theorem 4.13 and Corollary 4.15 it suffices to show that Q is T0-
compact. First assume that Q0 = 0. Let (xn)n∈N ⊆ D(T0) ⊆ D(H0) such
that (xn)n∈N and (Txn)n∈N are bounded. We have to show that (Qxnk)k∈N
converges for some subsequence. By Proposition 4.16 it follows that (xn)n∈N
is Hölder continuous and therefore equicontinuous. By assumption it is also
uniformely bounded. Hence, by the Arzelá-Ascoli theorem, for every compact
ball BN (0) there exists a subsequence that converges uniformly in BN (0). Using
a diagonal sequence argument, we obtain a subsequence (xnk)k∈N that converges
on R3 uniformly to some bounded continuous function v. Note that v belongs to
L2(R3). Therefore, because Q1 is a multiplication operator with an L2-function,
Q1unk → Q1v.

If Q0 6= 0 then we can choose a sequence q̃n of compactly supported bounded
functions which converge uniformly to q0. Let Q̃n be the corresponding multi-
plication operators. Note that ‖Q̃n −Q0‖ → 0 for n→∞. By what is already

shown it follows that Q̃n + Q1 is T0-compact. Hence (Q̃n + Q1)(H0 − 1)−1 is

compact. Then also (Q̃0 + Q1)(H0 − 1)−1 is compact since it is the limit of
compact operators as can be seen from

‖(Q̃n +Q1)(H0 − 1)−1 − (Q0 +Q1)(H0 − 1)−1‖

= ‖(Q̃n +Q0)(H0 − 1)−1‖ ≤ ‖Q̃n +Q0‖ ‖(H0 − 1)−1‖.

Note that for example the Coulomb potential q(x) = e
|x| satisfies the conditions

of Theorem 4.18.
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Chapter 5

Operator semigroups

5.1 Motivation

This chapter follows very closely [EN00].

Definition 5.1. A semigroup is a set M with an associative operation on M . A
semigroup with a neutral element is called monoid (or semigroup with a neutral
element).

Example. • (R+, +) with the usual addition on R+ := [0,∞)

• (R+, ∗) with s ∗ t := es+t, s, t ≥ 0; associativity of ∗ follows from asso-
ciativity of (R+, +).

In this chapter we will deal with semigroups of linear operators with some
additional properties.

There are two ways to access semigroups: Using the functional equation (FE)
or the initial value problem ACP.

Semigroups for autonomous systems

A physical system is described by a point in a phase space X. Which space is
appropriate as phase space, depends on the given system. Points in phase space
are called states of the given system.

Let z0 be a point in the phase space X describing the given system at time t0,
then the system after time t > 0 will be in some state (z0)t. We assume that
the new state does not depend on the initial time t0 or the history of the state,
but only on the initial state z0 and the elapsed time t. In this case the system
is called autonomous.

Consequently, in an autonomous system we find for every initial value z0 ∈ X
at time t0 and for all s, t > 0:
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z0 := state with initial value z0 at time t0
(z0)t := state with initial value z0 after time t

((z0)t)s := state with initial value (z0)t after time s
= with initial value z0 after time t+ s
= (z0)t+s

Let us write U(t)z0 instead of (z0)t, t > 0. We obtain

U(s+ t)z0 = U(s)U(t)z0, s, t > 0

U(0)z0 = z0.
(5.1)

If this is true for every possible z0 ∈ X, this yields the functional equation

U(s+ t) = U(s)U(t), s, t > 0,

U(0) = id .
(FE)

Hence the set of all {U(t) : t > 0} with the operation given in (FE) is a
semigroup with neutral element (associativity follows from the associativity of
the addition in R+).

Examples 5.2.

1. Mass on a spring.

We consider a particle with mass m > 0 hanging on an ideal spring with Hook’s
constant k > 0 (that is, we neglect friction and assume that Hook’s law holds for
arbitrarily large amplitudes and momenta). The system is described completely
by the position x and the momentum p of the particle at a given time t0. For
the phase space we can therefore choose X = R× R = position×momentum.
Without restriction we assume t0 = 0. The equation of motion is

mẍ = −kx, p = mẋ, t ≥ 0, x(0) = x0, p(0) = p0,

or, written as first order system,

d

dt

(
x
p

)
=

(
0 m−1

−k 0

)(
x
p

)
,

(
x
p

)
(0) =

(
x0

p0

)
. (5.2)

By the theorem of Picard-Lindelöf the system has a unique solution. It is given
by the Picard-Lindelöf iteration as(

x
p

)
(t) =

∞∑
n=0

tn

n!

(
0 m−1

−k 0

)n(
x0

p0

)
,

In this case the time evolution is given by

U(t) =

∞∑
n=0

tn

n!

(
0 m−1

−k 0

)n
=: exp

(
t

(
0 m−1

−k 0

))
In this simple one-dimensional example we observe:
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• All initial values (x0, p0)
t

are allowed.

• The solutions exist and are unique for all t ≥ 0 and they are continuous
for t↘ 0.

• The solutions depend continuously on the initial value (x0, p0)
t
.

• Also t < 0 is allowed.

• The asymptotic behaviour of the solutions depend on the eigenvalues of

the matrix
(

0 m−1

−k 0

)
.

• It is easy to check the the functional equation (FE) holds.

2. Heat conducting rod.

Let f(x, t) be the temperature in an ideal heat conducting rod of length L at
position x ∈ [0, L] and time t ≥ 0. As phase space we choose X = C([0, L]) or
X = Lp(0, L). If we disregard boundary conditions, we are led to the following
initial value problem

∂f

∂t
= κ

∂2f

∂x2
, t ≥ 0, x ∈ [0, L],

f( · , 0) = ϕ0 ∈ X.

Instead of treating this initial value problem as a partial differential equation in
(0, L)× R+, we can consider it as a first order problem in the space X:

d

dt
ϕ = Aϕ, t ≥ 0,

ϕ(0) = ϕ0,
(ACP)

where A is the unbounded operator A = κ ∂2

∂x2 in the space X (in order to define
A, we have to specify its domain D(A); here the boundary conditions enter) and
ϕ is a map R+ → X (here ϕ(t) = f( · , t), t ≥ 0).

If X is a Banach space and A a linear operator in X, then a problem of the
form (ACP) is called an abstract Cauchy problem.
Formally, the solution of (ACP) is again “ϕ(t) = etA ϕ0”. In contrast to the

first example, however, where the linear operator
(

0 m−1

−k 0

)
is bounded, here

we have the following problems and questions:

• If A is unbounded, then only initial values ϕ0 ∈ D(A) are allowed in
(ACP).

• If ϕ0 ∈ D(A), does (ACP) then have a solution ϕ(·)?

• How does the time asymptotic of solutions depend on the spectrum of A?

• What is a solution of (ACP)?
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3. More examples.

Many partial differential equations can be treated as above, for instance the
Schrödinger equation

∂

∂t
Ψ = i ∆Ψ + iVΨ

or the Navier-Stokes equation

∂

∂t
Ψ−∆Ψ + (Ψ · ∇)Ψ +∇p = 0,

÷Ψ = 0

Ψ|t=0 = Ψ0.

We are going to deal with existence and uniqueness of solutions of problems of
the form (ACP). This will depend on properties of the operator A. The main
theorems are the generation theorems by Hille and Yosida (Theorem 5.31), by
Lumer and Phillips (Theorem 5.44) and by Stone (Theorem 5.47).

5.2 Basic definitions and properties

Definition 5.3. Let X be a Banach space.

(i) A family T = (T (t))t≥0 ⊆ L(X) is called a semigroup (more precisely a
1-parameter operator semigroup) if

T (t+ s) = T (t)T (s), t, s ≥ 0

T (0) = id .
(5.3)

(ii) A family S = (S(t))t∈R ⊆ L(X) is called a group (more precisely a 1-
parameter group) if

S(t+ s) = S(t)S(s), t, s ∈ R
S(0) = id .

(5.4)

Definition 5.4. Let X be a Banach space and T = (T (t))t≥0 a semigroup on
X. Let us consider the map

T : R+ → L(X), t 7→ T (t).

(i) T is called a uniformly continuous semigroup if T is continuous with re-
spect to the operator norm;
that is, for every t0 ≥ 0 and every ε > 0 exists a δ > 0 such that
‖T (t0)− T (t)‖ < ε for all t ≥ 0 with |t− t0| < δ.
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(ii) T is called strongly continuous or a C0-semigroup1, if T is strongly con-
tinuous;
that is, for every x ∈ X the map R+ → X, t 7→ T (t)x is continuous,
that is, for every x ∈ X, t0 ≥ 0 and ε > 0 exists a δ > 0 such that
‖T (t)x− T (t0)x‖ < ε for all t ≥ 0 with |t− t0| < δ.

Examples. (i) Let X = C and a ∈ C. Then T (t) = eat defines a strongly
continuous semigroup.

(ii) Let X = Cn and A ∈Mn(C). Then T (t) = eAt defines a strongly contin-
uous semigroup on X.

Example 5.5 (Multiplication semigroup). Let X = C(K) where K is com-
pact subset of C and fix q ∈ C(K). Then (T (t)f)(ξ) = etq(ξ) f(ξ) defines a
uniformly continuous semigroup on C(K).

Example 5.6 (Translation semigroup). Consider the function spaces

(i) X = L∞(R)

(ii) X = BUC(R) := {f : R→ C : f bounded and uniformly continuous}

(iii) X = Lp(R).

In each case, the translation operators are defined by

T (t)f(ξ) = f(ξ + t), t ≥ 0, ξ ∈ R.

In all three cases T (t) ∈ L(X), t ≥ 0, and T = (T (t))t≥0 satisfies (5.3), hence
it is a semigroup on X.
In case (i), is T not strongly continuous, hence it cannot be continuous in norm.
For instance, let

f : R→ R, f(ξ) =

{
1, ξ ≥ 0,

−1, ξ < 0,

then f ∈ L∞(R) and ‖T (t)f − T (0)f‖∞ = 2, t > 0, consequently T (·)f is not
continuous in 0 (T is not strongly continuous in 0).
In the cases (ii) and (iii) T is a strongly continuous by not norm continuous
semigroup on X. It can be shown that ‖T (t)− id ‖ = 2 for t > 0.

Proposition 5.7. Let X be a Banach space and T = (T (t))t≥0 a semigroup on
X. Then the following is equivalent:

(i) T is strongly continuous.

(ii) T is strongly continuous in 0.

1C0 stands for Cesàro-summable.
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(iii) There exist δ > 0, M ≥ 1 and a dense subset D ⊆ X such that

(a) ‖T (t)‖ ≤M , t ∈ [0, δ],

(b) limt↘0 T (t)x = x, x ∈ D.

If (iii) (a) holds, then, with ω = logM
δ ,

‖T (t)‖ ≤M etω, t ≥ 0. (5.5)

Proof. First we show the estimate (5.5): For every t ∈ R+ there exists an n ∈ N0

and τ ∈ [0, δ) such that t = τ +nδ. Using the semigroup property of T and the
estimate (iii)(a) and 0 < n logM ≤ t

δ logM = tω, we find

‖T (t)‖ = ‖T (τ + nδ)‖ = ‖T (τ)T (δ) · · ·T (δ)︸ ︷︷ ︸
n-times

‖ ≤ ‖T (τ)‖ ‖T (δ)‖n ≤ MMn

= M en logM ≤ M etω

(ii)⇒ (iii) We only have to show (iii)(a). Assume there exist no δ > 0 and M ≥
1 such that (iii)(a) holds. Then there is a sequence (tn)n∈N ⊆ R+ with tn ↘ 0
and ‖T (tn)‖ → ∞ for n → ∞. By the uniform boundedness principle, there
exists an x ∈ X such that ‖T (tn)x‖ → ∞, n → ∞. Consequently T (tn)x 6→
x = T (0)x, in contradiction to the strong continuity of T in 0.

(iii) ⇒ (ii) Let (tn)n∈N with tn ↘ 0, n → ∞; without restriction we can
assume tn ≤ δ, n ∈ N. By assumption ‖T (tn)‖ ≤ M , n ∈ N, and T (·)x|K is
continuous for every x ∈ D. For arbitrary x ∈ X and ε > 0 choose y ∈ D such
that ‖x − y‖ < min{ε/3, ε/(3M)} and choose N ∈ N large enough such that
‖T (tn)y − y‖ < ε/3 for n ≥ N . This implies

‖T (tn)x− x‖ ≤ ‖T (tn)(x− y)‖+ ‖T (tn)y − y‖+ ‖y − x‖
≤ ‖T (tn)‖ ‖x− y‖+ ‖T (tn)y − y‖+ ‖y − x‖ < ε.

Since (tn)n∈N and ε > 0 can be chosen arbitrary, the claim limt↘0 ‖T (t)x−x‖ =
0 is proved.

(ii) ⇒ (i) Let t0, h > 0 and x ∈ X be given.
Right continuity of T in t0: Since T is strongly continuous in 0, it follows that

‖T (t0 + h)x− T (t0)x‖ ≤ ‖T (t0)‖ ‖T (h)x− x‖ −→ 0. h↘ 0,

Right continuity of T in t0: We already showed “(ii) ⇒ (iii)”, hence ‖T (t)‖ ≤
M etω, t ≥ 0, for appropriate M ≥ 1 and ω ∈ R. This implies

‖T (t0)x− T (t0 − h)x‖ ≤ ‖T (t0 − h)‖︸ ︷︷ ︸
bounded

‖T (h)x− x‖︸ ︷︷ ︸
→0, h→0

−→ 0, h↘ 0.

(i) ⇒ (ii) is clear.

Definition 5.8. A strongly continuous semigroup T = (T (t))t≥0 on a Banach
space X is called
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(i) bounded , if we can choose ω = 0 in (5.5);

(ii) contractive or a contraction semigroup if we can choose ω = 0 and M = 1
in (5.5);

(iii) isometric if ‖T (t)x‖ = ‖x‖, t ≥ 0, x ∈ X.

Definition 5.9. Let T = (T (t))t≥0 be a strongly continuous semigroup on a
Banach space X. Then

ω0 = ω0(T ) := inf{ω ∈ R : ∃ M ≥ 1 such that ‖T (t)‖ ≤M etω, t ≥ 0} (5.6)

is the growth bound or the type of T .

Remarks 5.10. • It is possible that ω0 = −∞: Every nilpotent semigroup
has growth bound −∞. (A semigroup is nilpotent, if there exists a t0 ≥ 0
such that T (t) = 0 for all t ≥ t0.)

For instance, let X = Lp(0, a) for some a ∈ (0,∞) and

(T (t)f)(ξ) :=

{
f(t− ξ), t ≤ ξ ≤ a,
0, else,

f ∈ X.

Obviously, T = (T (t))t≥0 is a semigroup on X and ω0(T ) = −∞.

• In general, the infimum in (5.6) is not a minimum.

• In general M has to be chosen > 1, independently how large ω is chosen.

5.3 Uniformly continuous semigroups

Definition 5.11. Let X be a Banach space and A ∈ L(X). Let

exp(tA) := etA :=

∞∑
n=0

tn

n!
An, t ∈ R. (5.7)

Then the family (exp(tA))t≥0 is the semigroup generated by A, and (exp(tA))t∈R
the group generated by A.

The following proposition shows that Definition 5.11 makes sense.

Proposition 5.12. Let X be a Banach space and A ∈ L(X).

(i) exp(tA) converges absolutely and exp(tA) ∈ L(X) for all t ∈ R.

(ii) exp(0 ·A) = id.

(iii) exp((t+ s)A) = exp(tA) exp(sA), s, t ≥ 0.
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(iv) R→ L(X), t 7→ exp(tA) is continuous.

(v) If S ∈ L(X), such that S−1 exists and S−1 ∈ L(X), then

exp(S−1AS) = S−1 exp(A)S. (5.8)

(vi) If B ∈ L(X) with AB = BA, then

exp(A+B) = exp(A) exp(B) = exp(B) exp(A). (5.9)

(i)–(iv) show that (exp(tA))t≥0 is a uniformly continuous semigroup.

Proof. (i) For k < m ∈ N we have∥∥∥∥∥
m∑
n=0

tn

n!
An −

k∑
n=0

tn

n!
An

∥∥∥∥∥ =

∥∥∥∥∥
m∑

n=k+1

tn

n!
An

∥∥∥∥∥ ≤
m∑

n=k+1

tn

n!
‖An‖ −→ 0, k, m→∞,

because
∑∞
n=0

tn

n! ‖A‖
n = et‖A‖. Consequently, the sequence

(∑k
n=0

tn

n! A
n
)
k∈N

is a Cauchy sequence in L(X), hence it converges in L(X) (because L(X) is a
Banach space).
(ii) is clear.
(iii) follows from (vi).
(iv) For t, h ∈ R we have that

‖exp((t+ h)A)− exp(tA)‖ ≤ ‖ exp(tA) ‖ ‖ exp((hA)− id ‖

= ‖ exp(tA) ‖

∥∥∥∥∥
∞∑
n=1

hn

n!
An

∥∥∥∥∥ ≤ ‖ exp(tA) ‖ |h| ‖A‖
∞∑
n=0

hn

(n+ 1)!
‖An ‖

≤ |h| ‖A‖ ‖ exp(tA) ‖ ‖ exp(h ‖A‖) ‖ .

Therefore exp((t+ h)A) −→ exp(tA) for h→ 0.
(v) Since the series are absolutely convergent, we obtain

exp(S−1AS) =

∞∑
n=0

1

n!
(S−1AS)n = S−1

( ∞∑
n=0

1

n!
An

)
S = S−1 exp(A)S.

(vi) Since the series are absolutely convergent, we obtain with Cauchy’s product
formula

exp(A) exp(B) =

( ∞∑
n=0

1

n!
An

)( ∞∑
n=0

1

n!
Bn

)
=

∞∑
n=0

(
n∑
k=0

1

k!
Ak

1

(n− k)!
Bn−k

)

=

∞∑
n=0

1

n!

(
n∑
k=0

n!

k!(n− k)!
Ak Bn−k

)
=

∞∑
n=0

1

n!
(A+B)n

= exp(A+B).
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Example 5.13 (Matrix semigroups). Let X = Cn and A ∈ L(X) = Mn(C).
Then Proposition 5.12 yields a technique how to calculate exponentials of ma-
trices. There exists a S ∈ Gl(n,C) such that SAS−1 has Jordan normal form ,
that is, A = S−1(D+N)S with a diagonal matrix D and a nilpotent matrix N
such that ND = DN . Then

exp(tA) = exp(S−1(tD + tN)S) = S−1 exp(tD + tN)S = S−1 exp(tD) exp(tN)S

= S−1 exp(tD)

( ∞∑
n=0

tn

n!
Nn

︸ ︷︷ ︸
only finitely
many terms!

)
S.

For calculations we use: If A is of block diagonal form

A =


A1 · · · · · · 0
... A2

...
...

. . .
...

0 · · · · · · Aj

 =: diag(A1, . . . , An)

where Ak ∈M(nk,C), nk ∈ N, with
∑j
k=1 nk = n, then

exp(tA) = diag
(

exp(tA1), . . . , exp(tAn)
)
, t ∈ R.

In particular, for a Jordan block of length m

J =


λ 1
0 λ 1
...

. . .
. . .

0 · · · · · · λ 1
0 · · · · · · · · · λ


we obtain

exp(tJ) = etλ


1 t · · · · · · tm−1

(m−1)!

0 1 t
...

...
. . .

. . .
...

0 · · · · · · 1 t
0 · · · · · · · · · 1

 .

The asymptotic behaviour of exp(tA)x depends on the Jordan structure of A.

Example. Let m > 0, k ∈ R and A :=
(

0 m−1

−k 0

)
(see Example 5.2.1). Choose

κ ∈ C such that κ2 = −k and let S := 1√
2

(
κ
√
m−1

−
√
m κ−1

)
. Then

SAS−1 =
1

2

(
κ

√
m
−1

−
√
m κ−1

)(
0 m−1

−k 0

)(
κ−1 −

√
m
−1

√
m κ

)
=

(
κ
m 0
0 − κ

m

)
.
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Recall that k ≥ 0, whence κ ∈ iR. The solutions exp(tA) ( x0
p0 ) are periodic with

period ω = 2πm
|κ| because

exp ((t+ ω)A) = S−1 exp

(
(t+ ω)

(
κ
m 0
0 − κ

m

))
S

= S−1

(
exp

(
(t+ ω) κm

)
0

0 exp
(
−(t+ ω) κm

))S
= S−1

(
exp(t κm ) 0

0 exp(−t κm )

)
S = exp(tA).

So far, we only considered the functional equation (FE). From Proposition 5.12
we know that for A ∈ L(X) the group (exp(tA))t∈R is continuous. The following
proposition shows that it is even differentiable.

Proposition 5.14. Let X be a Banach space, A ∈ L(X) and T = (T (t))t≥0

the semigroup generated by A (i. e., T (t) = exp(tA), t ≥ 0). Then the following
holds:

(i) The map R→ L(X), t 7→ T (t), is differentiable and with derivative

d

dt
T (t) = AT (t) = T (t)A, t ∈ R.

(ii) If S : R→ L(X) is a solution of

U(0) = id,
d

dt
U(t) = AU(t), t ∈ R, (5.10)

then S = T .

Proof. (i) Because of

T (t+ h)− T (t)

h
= T (t)

T (h)− id

h
=

T (h)− id

h
T (t), t ∈ R, h ∈ R \ {0},

is suffices to show the differentiability in t = 0 with d
dtT (0) = A. This follows

from∥∥∥∥ 1

h
(T (h)− T (0))−A

∥∥∥∥ =

∥∥∥∥∥ 1

h

∞∑
n=1

hn

n!
An −A

∥∥∥∥∥ =

∥∥∥∥∥ 1

h

∞∑
n=2

hn

n!
An

∥∥∥∥∥
≤ |h| ‖A‖2

∞∑
n=0

hn‖A‖n

(n+ 2)!
≤ |h| ‖A‖2 exp(h ‖A‖) −→ 0,

for |h| → 0.
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(ii) Observe that T (0) = S(0) by assumption. For arbitrary t0 ∈ R it follows
that

d

dt

(
T (t)S(t0 − t)

)
=

(
d

dt
T (t)

)
S(t0 − t) + T (t)

(
d

dt
S(t0 − t)

)
= AT (t)S(t0 − t)− T (t)A︸ ︷︷ ︸

=AT (t)

S(t0 − t) = 0.

Suppose that T (t)S(t0− t) are not constant with respect to t. Then there exists
τ ∈ R, x ∈ X and ϕ ∈ X ′ such that ϕ

(
(T (τ)S(t0−τ)x

)
6= ϕ

(
(T (0)S(t0)x

)
. But

for arbitrary x ∈ X and ϕ ∈ X ′ the calculation above gives d
dtϕ
(
(T (t)S(t0 −

t))x
)

= 0, t ∈ R, hence ϕ
(
(T (t)S(t0 − t))x

)
is constant in t. Consequently,

T (t)S(t0 − t) is constant with respect to t and therefore

T (t0) = T (t0)S(t0 − t0) = T (0)S(t0 − 0) = S(t0).

Since t0 ∈ R was arbitrary, the assertion is proved.

Corollary 5.15. If X is a Banach space, x0 ∈ X, A ∈ L(X) and (T (t))t≥0

the group generated by A, then T (·)x0 is the unique solution of the initial value
problem

x(0) = x0,
d

dt
x = Ax, t ∈ R.

Theorem 5.16 (Characterisation of uniformly continuous semigroups).

Let X be a Banach space and T = (T (t))t≥0 a semigroup on X. Then T is a
uniformly continuous semigroup on X if and only if there exists an A ∈ L(X)
such that T (t) = exp(tA), t ≥ 0. The operator A is uniquely determined by T ;
T is differentiable and

d

dt
T (t) = AT (t) = T (t)A, t ≥ 0. (5.11)

Proof. If A ∈ L(X), then (exp(tA))t≥0 is a uniformly continuous semigroup and
satisfies (5.11) by Proposition 5.12.

Now assume that T = (T (t))t≥0 is a uniformly continuous semigroup on X.
Define

V (t) :=

∫ t

0

T (s) ds, t ≥ 0. (5.12)

Since T is continuous, we obtain

1

t
V (t) =

1

t

∫ t

0

T (s) ds −→ T (0) = id, t↘ 0.
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Hence there exists an t0 such that V (t) is boundedly invertible for all t ∈ (0, t0]
(use that V (t) has bounded inverse if and only if t−1V (t) has bounded inverse
and that t−1V (t) = id−(id−t−1V (T ))).
Moreover, (5.12) shows that V is continuously differentiable because for h > 0
we have that, for h↘ 0,

1

h
(V (t+ h)− V (t)) =

1

h

∫ t+h

t

T (s) ds = T (t)
1

h

∫ h

0

T (s) ds −→ T (t),

1

h
(V (t− h)− V (t)) =

1

h

∫ t

t−h
T (s) ds = T (t− h)

1

h

∫ h

0

T (s) ds −→ T (t).

Differentiability of T follows from

T (t) = V (t0)−1V (t0)T (t) = V (t0)−1

∫ t0

0

T (s+ t) ds = V (t0)−1

∫ t+t0

t

T (s) ds

= V (t0)−1 (V (t+ t0)− V (t)) , t ≥ 0,

because V is differentiable. In particular, it follows that

d

dt
T (t) = V (t0)−1 d

dt
(V (t+ t0)− V (t)) = V (t0)−1 (T (t+ t0)− T (t))

= V (t0)−1 (T (t0)− id)T (t)

Obviously, the operator A := V (t0)−1 (T (t0)− id) is linear and bounded. By
Proposition 5.14 we obtain that T (t) = exp(tA), t ≥ 0.

Definition 5.17. Let A and T be as in Theorem 5.16. Then A is called the
(infinitesimal) generator of T .

For a semigroup T = (T (t))t≥0 and its generator A we have

Ax = lim
t↘0

1

t
(T (t)− id)x, x ∈ X, (5.13)

T (t)x =

∞∑
n=0

tn

n!
Anx, x ∈ X, t ≥ 0. (5.14)

Example (Multiplication semigroups on C0(Ω)).

Definition 5.18. Let Ω ⊆ Cn be a domain and q ∈ C(Ω). Then the operator
Mq, defined by

Mqf := qf, f ∈ D(Mq) := {f ∈ C0(Ω) : qf ∈ C0(Ω)},

is the multiplication operator induced by q on

C0(Ω) := {f ∈ C(Ω) : ∀ ε > 0 ∃ Kε ⊆ Ω compact such that |f(ξ)| < ε, ξ ∈ Ω \Kε},

with the norm ‖f‖ = sup{|f(ξ)| : ξ ∈ Ω}.

Last Change: Wed 27 Feb 2013 06:16:39 PM -05



D
R
A
F
T

CHAPTER 5. Operator semigroups 89

Proposition 5.19. Let Ω ⊆ Cn be a domain and q ∈ C(Ω). Then the following
holds:

(i) Mq : D(Mq) ⊆ C0(Ω)→ C0(Ω) is densely defined and closed.

(ii) Mq is bounded ⇐⇒ q is bounded.

(iii) Mq is boundedly invertible ⇐⇒ q is boundedly invertible,
in this case (Mq)

−1 = Mq−1 .

(iv) σ(Mq) = q(Ω).

Proof. See, e.g., [EN00, Proposition I.4.2].

Definition 5.20. Let q ∈ C(Ω) with ω := sup Re(q(ξ)) <∞ and define q̃t(ξ) :=
etq(ξ), t ≥ 0, ξ ∈ Ω. We denote the corresponding multiplication operator by

Tq(t) := Mq̃t , t ≥ 0.

Obviously q̃t ∈ C(Ω), t ≥ 0, and therefore for every t ≥ 0 the operator Tq(t) is a
multiplication operator on C0(Ω). It is clear that Tq = (Tq(t))t≥0 is a semigroup
on C0(Ω), because for all f ∈ C0(Ω), s, t ≥ 0 and ξ ∈ Ω(

Tq(s)Tq(t)f
)
(ξ) = etq(ξ)

(
Tq(s)f

)
(ξ) = esq(ξ) etq(ξ) f(ξ) = e(s+t)q(ξ) f(ξ)

=
(
Tq(s+ t)f

)
(ξ),

and

‖Tq(t)‖ ≤ etω, t ≥ 0.

What are necessary and sufficient conditions on q such that Tq is a uniformly
continuous or a strongly continuous semigroup? If Tq is uniformly continuous,
what is its generator?

Proposition 5.21. With the definitions from Definition 5.20 the following is
true:

(i) Tq is uniformly continuous if and only if q is bounded. In this case Mq is
the generator of Tq.

(ii) If q is unbounded (but still sup{Re(q(ξ)) : ξ ∈ Ω} < ∞), then Tq is a
strongly continuous semigroup on C0(Ω).

Proof. (i) Assume that q is bounded. Then Mq is bounded and for all t ≥ 0,
f ∈ C0(Ω) and ξ ∈ Ω(
Tq(t)f

)
(ξ) = etq(ξ) f(ξ) =

∞∑
n=0

tnq(ξ)n

n!
f(ξ) =

∞∑
n=0

tn

n!
(Mqnf)(ξ)

=

∞∑
n=0

tn

n!

(
(Mq)

nf
)
(ξ) =

(( ∞∑
n=0

tn

n!
(Mq)

n
)
f
)

(ξ) =
(
exp(tMq)f

)
(ξ).
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Hence Tq(t) = exp(tMq), t ≥ 0, and therefore Tq is a uniformly continuous
semigroup by Theorem 5.16.

Assume that q is unbounded. Then there exists a sequence (ξn) ⊆ Ω such that
|q(ξn)| → ∞. Let tn := 1

|q(ξn)| , n ∈ N. If Tq was uniformly continuous, then,

for every ε > 0 there exists an N ∈ N such that ‖T (tn)f − f‖ < ε, n ≥ N ,
f ∈ C0(Ω). For every n ∈ N we choose a function fn ∈ C0(Ω) such that
fn(ξn) = 1 and ‖fn‖ = 1. Define δ := min{| ez −1| z ∈ C, |z| = 1} > 0. Then,
for all n ∈ N

‖T (tn)fn − fn‖ = sup{| etnq(ξ) fn(ξ)− fn(ξ)| : ξ ∈ Ω} ≥ | etnq(ξn) fn(ξn)− fn(ξn)|
= | etnq(ξn)−1| |fn(ξn)| = | etnq(ξn)−1| ≥ δ,

hence Tq is not uniformly continuous.

(ii) Let f ∈ C0(Ω). We have to show that R+ → X, t 7→ Tq(t)f is continuous.
By Proposition 5.7 is suffices to show the continuity in 0. Fix ε > 0. By
assumption there is a compact set Kε ⊂ Ω such that

|f(ξ)| < ε ‖f‖
e|ω|+1

, ξ ∈ Ω \Kε,

where ω = sup{Re(q(ξ)) : ξ ∈ Ω}. Since Kε is compact and q is continuous,
there exists a t0 ∈ (0, 1) such that∣∣ 1− exp(tq(ξ))

∣∣ < ε, t ∈ [0, t0], ξ ∈ Kε.

Hence, for all t ∈ [0, t0],

‖T (t)f − f‖ = sup{| etq(ξ) f(ξ)− f(ξ)| : ξ ∈ Ω}
= sup{|(etq(ξ)−1)f(ξ)| : ξ ∈ Kε}+ sup{|(etq(ξ)−1)f(ξ)| : ξ ∈ Ω \Kε}

≤ ‖f‖ sup{| etq(ξ)−1| : ξ ∈ Kε}+
ε ‖f‖

e|ω|+1
sup{| etq(ξ)−1| : ξ ∈ Ω \Kε}

< ε ‖f‖+ ε ‖f‖ = 2ε ‖f‖.

5.4 Strongly continuous semigroups

In chapter 5.2 we already saw: If T = (T (t))t≥0 is a semigroup on a Banach
space X, then

T uniformly continuous ⇐⇒ T (t) = exp(tA) for some A ∈ L(X) and all
t ≥ 0.

Moreover, T is differentiable and d
dtT (0) = A.

Now we use the latter property to assign a uniquely defined generator to strongly
continuous semigroups.
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Definition 5.22. Let X be a Banach space and T = (T (t))t≥0 a strongly
continuous semigroup on X. The operator A, defined by

D(A) :=
{
x ∈ X : lim

h↘0

1
h (T (h)x− x) exists

}
,

Ax := lim
h↘0

1

h
(T (h)x− x), x ∈ D(A),

is called the (infinitesimal) generator or T .

Remark. If T is a uniformly continuous semigroup, then this definition coin-
cides with the definition of the generator in Definition 5.20.

Lemma 5.23. Let X be a Banach space and T = (T (t))t≥0 strongly continuous
semigroup on X. For x ∈ X we define the map τx : R+ → X, t 7→ τx(t) =
T (t)x. Then the following is equivalent:

(i) τx is differentiable.

(ii) τx is differentiable in 0.

In this case τ̇x(t) = T (t0)τ̇x(0).

Proof. (i) ⇒ (ii) is clear.

(ii) ⇒ (i) Let t0 > 0, h ∈ (0, t0) and x ∈ X such τx is differentiable in 0. The
differentiability from the right of τx in t0 follows from

1

h

(
τx(t0 + h)− τx(t0)

)
= T (t0)

1

h

(
τx(h)− τx(0)

)
−→ T (t0)

d

dt
τx(0), h→ 0.

Differentiability from the left of τx in t0 follows from

1

h

(
τx(t0)−τx(t0 − h)

)
= T (t0 − h)

(
1

h

(
τx(h)− τx(0)

)
− d

dt
τx(0)

)
+ T (t0 − h)

d

dt
τx(0)

−→ T (t0)
d

dt
τx(0), h→ 0,

because the first term converges to 0 (since T (t0 − h) is bounded uniformly
bounded for h ∈ (0, t0) and the term in brackets tends to 0 by hypothesis).

Corollary 5.24. If T = (T (t))t≥0 is a strongly continuous semigroup on a
Banach space X with generator A, then

D(A) = {x ∈ X : t 7→ T (t)x is differentiable }.

Proposition 5.25. Let X be a Banach space and T = (T (t))t≥0 strongly con-
tinuous semigroup on X with generator A. Then the following holds:
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(i) A is a linear operator.

(ii) If x ∈ D(A), then T (t)x ∈ D(A) for all t ≥ 0 and the map τx : R+ →
X, t 7→ T (t)x is differentiable with derivative

d

dt
T (t)x = AT (t)x = T (t)Ax, t ≥ 0.

(iii) If t ≥ 0 and x ∈ X, then
∫ t

0
T (s)x ds ∈ D(A).

(iv) If t ≥ 0, then

T (t)x− x = A

∫ t

0

T (s)x ds, x ∈ X, (5.15)

T (t)x− x =

∫ t

0

T (s)Ax ds, x ∈ D(A). (5.16)

Proof. (i) is clear.

(ii) If x ∈ D(A), then τx is differentiable with d
dtτx(0) = Ax and d

dtT (t)x =
d
dtτx(t) = T (t) ddtτ(0) = T (t)Ax. Hence also

lim
h↘0

1

h

(
T (h)T (t)x− T (t)x

)
= lim
h↘0

1

h

(
T (t+ h)x− T (t)x

)
= T (t)Ax

exists and consequently T (t)x ∈ D(A) and AT (t)x = T (t)Ax.

(iii) and (5.15): Let t ≥ 0, h > 0 and x ∈ X. The assertions follow from

1

h

(
T (h)

∫ t

0

T (s)x ds−
∫ t

0

T (s)x ds

)
=

1

h

(∫ t+h

h

T (s)x ds−
∫ t

0

T (s)x ds

)
=

1

h

(∫ t+h

t

T (s)x ds−
∫ h

0

T (s)x ds

)
−→ T (t)x− T (0)x, h→ 0.

(iv) and (5.16): Let x ∈ D(A), t ≥ 0 and h > 0. Define

ϕh : [0, t]→ X, ϕh(s) = T (s)
T (h)x− x

h

Then ϕh converges uniformly to T (·)Ax on [0, t] for h→ 0. Hence we obtain

A

∫ t

0

T (s)x ds = lim
h↘0

1

h

(
T (h)− id

) ∫ t

0

T (s)x ds = lim
h↘0

∫ t

0

1

h

(
T (h)− id

)
T (s)x ds

= lim
h↘0

∫ t

0

ϕh(s) ds =

∫ t

0

lim
h↘0

ϕh(s) ds =

∫ t

0

T (s)Ax ds.

Recall that the semigroup T determines uniquely its generator A by Defini-
tion 5.22. Now we will show that the generator A determines uniquely the
corresponding semigroup T .
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Proposition 5.26. Let X be a Banach space, T = (T (t))t≥0 a strongly contin-
uous semigroup and A its generator. Then D(A) ⊆ X is dense, A is closed and
A determines the semigroup T uniquely.

Proof. Since for every x ∈ X the map R+ → X, t 7→ T (t)x is continuous, 5.25
shows

D(A) 3 1

t

∫ t

0

T (s)x ds −→ x, t↘ 0.

Hence we proved that D(A) = X.

Given a sequence (xn)n ⊆ D(A) and x, y ∈ X such that xn → x and Axn → y
for n→∞, we have to show that x ∈ D(A) and Ax = y. Note that

1

t

(
T (t)x− x

)
= lim

n→∞

1

t

(
T (t)xn − xn

) (5.16)
= lim

n→∞

∫ t

0

T (s)Axn ds

(∗)
=

∫ t

0

lim
n→∞

T (s)Axn ds
(+)
=

∫ t

0

T (s)y ds,

where (∗) holds because the map [0, t]→ X, s 7→ T (s)Axn converges uniformly
to s 7→ T (s)y, and (+) follows because T (s) is closed. Hence, by definition of
A, x ∈ D(A) and

Ax = lim
t↘0

1

t
(T (t)x− x) = lim

t↘0

1

t

∫ t

0

T (s)y ds = y.

Let S = (S(t))t≥0 be a strongly continuous semigroup with generator A. We
have to show that S(t) = T (t), t ≥ 0. For x ∈ D(A) and t > 0 we define
η : [0, t] → X, η(s) := T (t − s)S(s)x (cf. the proof of Proposition 5.14). The
function η is differentiable because for s ∈ (0, t) and small enough |h|

1

h
(η(s+ h)− η(s)) =

1

h

(
T (t− s− h)S(s+ h)x− T (t− s)S(s)x

)
= T (t− s− h)︸ ︷︷ ︸
unif. bdd. w.r.t. h

1

h

(
S(s+ h)x− S(s)x

)
+

1

h

(
T (t− s− h)− T (t− s)

)
S(s)x︸ ︷︷ ︸
∈D(A)

−→ T (t− s)AS(s)x− T (t− s)AS(s)x = 0.

Therefore η is constant on [0, t] and it follows that

T (t)x = η(0) = η(t) = S(t)x.

Since T (t) and S(t) are bounded and D(A) is dense in X, we obtain T (t) =
S(t).
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Remark. Let X be a Banach space and T = (T (t))t≥0 a strongly continuous
semigroup on X with generator A. A classical solution of

d

dt
x = Ax(t), t ≥ 0, x(0) = x0, (5.17)

is a map u : R+ → X which is continuously differentiable, u(t) ∈ D(A) for
all t ≥ 0, and u solves the initial value problem (5.17). For an initial value
x0 ∈ D(A), the unique classical solution of (5.17) is T (·)x0. For k ∈ N and
x0 ∈ D(Ak) we have

T (·)x0 ∈ Ck([0,∞), X) ∩ Ck−1([0,∞),D(A)).

Lemma 5.27 (Scaling). Let X be a Banach space and T = (T (t))t≥0 a
strongly continuous semigroup on X with generator A. For every λ ∈ C and
α > 0, the family S = (S(t))t≥0 defined by S(t) = etλ T (αt) is a strongly con-
tinuous semigroup on X with generator B = αA+ λ id.

Proof. Straightforward computation.

Theorem 5.28. Let X be a Banach space and T = (T (t))t≥0 a strongly con-
tinuous semigroup on X with generator A. Choose ω ∈ R and M ≥ 1 such that
‖T (t)‖ ≤M eωt, t ≥ 0 (cf. Proposition 5.7). Then the following holds:

(i) Fix λ ∈ C. If for all x ∈ X the improper integral

R(λ)x :=

∫ ∞
0

e−sλ T (s)x ds (5.18)

exists, then λ ∈ ρ(A) and R(λ) = R(λ,A).

(ii) If λ ∈ C with Re(λ) > ω, then λ ∈ ρ(A) and R(λ) = R(λ,A) and we have
the estimates

‖(λ−A)−1‖ ≤ M

Re(λ)− ω
, (5.19)

‖(λ−A)−n‖ ≤ M

(Re(λ)− ω)n
, n ∈ N. (5.20)

Proof. (i) Without restriction we can assume that λ = 0 (otherwise we rescale
according to Lemma 5.27).
First we show that rg(R(0)) ⊆ D(A) and AR(0)x = −x for all x ∈ X. This
follows from the definition of A and

1

h
(T (h)− id)R(0)x =

1

h
(T (h)− id)

∫ ∞
0

T (s)x ds

=
1

h

∫ ∞
0

T (s+ h)x ds− 1

h

∫ ∞
0

T (s)x ds

= − 1

h

∫ h

0

T (s)x ds −→ −x, for h↘ 0.
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Now we show that R(0)Ax = −x for all x ∈ D(A). We compute for x ∈ D(A)

R(0)Ax = lim
t→∞

∫ t

0

T (s)Ax ds
(1)
= lim

t→∞
A

∫ t

0

T (s)x ds
(2)
= A lim

t→∞

∫ t

0

T (s)x ds

= AR(0)x = −x.

Note that (1) follows from Proposition 5.25 (iv) and (2) holds because A is
closed.

(ii) Let λ ∈ C with Re(λ) > ω. By (i) it suffices to show that R(λ)x exists for
all x ∈ X. This and the estimate (5.19) hold because for all t ≥ 0∥∥∥∥ ∫ t

0

e−sλ T (s)x ds

∥∥∥∥ ≤ ∫ t

0

∥∥ e−sλ T (s)x
∥∥ ds ≤ M ‖x‖

∫ t

0

∣∣e−sλ∣∣ esω ds

≤ M ‖x‖
∫ t

0

es(ω−Re(λ) ds = M ‖x‖ 1− et(ω−Re(λ))

Re(λ)− ω

≤ M ‖x‖
Re(λ)− ω

.

Now let n ≥ 2. Using the von Neumann series, we have

(R(λ,A))
n

= (λ−A)−n =
(−)n

(n− 1)!

dn−1

dλn−1
(λ−A)−1,

hence, with (5.18),

‖(R(λ,A))
n‖ =

1

(n− 1)!

∥∥∥∥ dn−1

dλn−1

∫ ∞
0

e−sλ T (s)x ds

∥∥∥∥
=

1

(n− 1)!

∥∥∥∥∫ ∞
0

sn−1 e−sλ T (s)x ds

∥∥∥∥
≤ M ‖x‖

(n− 1)!

∫ ∞
0

sn−1 es(ω−Re(λ)) ds =
M ‖x‖

(Re(λ)− ω)n
.

Theorem 5.28 shows that the spectrum of a generator always lies in a left semi-
plane of the complex plane.

Definition 5.29. • If the integral in (5.18) exists, then it is called the
Laplace transform of T (·)x.

• If A is the generator of a strongly continuous semigroup T , then

s(A) := sup{Re(λ) : λ ∈ σ(A)}.

is called the spectral bound of A.

If A is the generator of a strongly continuous semigroup T , then

−∞ ≤ s(A) ≤ ω0(T ) <∞.

Indeed, if Re(λ) > ω then λ ∈ ρ(A) by Theorem 5.28, so the spectral bound
must be less or equal to ω.
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Example 5.30 (Multiplication semigroup). Let Ω ∈ C be a domain and
q ∈ C(Ω,C) such that ω := sup{Re(q(ξ)) : ξ ∈ Ω} <∞. Then

Tq(t) := Mt eq , t ≥ 0,

defines a strongly continuous semigroup Tq = (Tq(t))t≥0 on X = C0(Ω), see
Proposition 5.21.

Now we show that the generator of Tq is the multiplication operator Mq.

Proof. Let A be the generator of Tq. Then, for all f ∈ D(A) and ξ ∈ Ω,

(Af)(ξ) = lim
h↘0

ehq(ξ) f(ξ)− f(ξ)

h
= f(ξ) lim

h↘0

ehq(ξ)−1

h
= f(ξ)q(ξ) = (Mqf)(ξ).

This proves that A ⊆ Mq. Observe that λ ∈ ρ(A) ∩ ρ(Mq) for large enough λ
by assumption. Therefore we also have Mq ⊆ A.

5.5 Generation theorems

Proposition 5.26 and Theorem 5.28 give necessary conditions for a linear op-
erator to be generator of a strongly continuous semigroup. It must be densely
defined, its spectrum must lie in a left half-plane of C and the powers of the
resolvent must satisfy certain estimates. Now we show that this is sufficient.

Theorem 5.31 (Hille-Yosida-Phillips). For a Banach space X, A(X → X)
a densely defined linear operator and constants M ≥ 1, ω ∈ R the following is
equivalent:

(i) A generates a strongly continuous semigroup T = (T (t))t≥0 on X with

‖T (t)‖ ≤ M etω, t ≥ 0.

(ii) A is densely defined and closed, {λ ∈ R : λ > ω} ⊆ ρ(A) and

‖R(λ,A)n‖ ≤ M

(λ− ω)n
, n ∈ N, λ > ω. (5.21)

(iii) A is densely defined and closed, {λ ∈ C : Reλ > ω} ⊆ ρ(A) and

‖R(λ,A)n‖ ≤ M

(Reλ− ω)n
, n ∈ N, Reλ > ω. (5.22)

The idea of the proof is to approximate the operator A by bounded operators.
For n ∈ N, n > ω define the so-called Yosida approximants

An := nAR(n,A) = n2R(n,A)− n. (5.23)
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Lemma 5.32. Let X be a Banach space and A(X → X) a densely defined
linear operator. Assume that there are ω ∈ R and M ≥ 1 such that (ii) from
Theorem 5.31 is satisfied. For λ > ω let Aλ := λAR(λ,A) as in (5.23). Then
Aλ ∈ L(X) for all λ > ω and

lim
λ→∞

λR(λ,A)x = x, x ∈ X, (5.24)

lim
λ→∞

Aλx = Ax, x ∈ D(A). (5.25)

Proof. Aλ is bounded because

Aλ = λ(A− λ+ λ)(λ−A)−1 = λ2(λ−A)−1 − λ

Observe that ‖λR(λ,A)‖ ≤ |λ|M
λ−ω , so λR(λ,A) is uniformly bounded in the

interval (ω + 1,∞) (i. e., there is a c ∈ R such that ‖λR(λ,A)‖ ≤ c for all
λ > ω + 1). Since D(A) is dense in X, is suffices to prove (5.24) x ∈ D. For
such x we find

‖λR(λ,A)x− x‖ = ‖R(λ,A)Ax‖ ≤ M

λ− ω
‖Ax‖ −→ 0, λ→∞.

From (5.24) we obtain for x ∈ D(A)

lim
λ→∞

Aλx = lim
λ→∞

λAR(λ,A)x = lim
λ→∞

λR(λ,A)Ax = Ax.

Proof of 5.31. (i) ⇒ (iii) follows from Proposition 5.26 and Theorem 5.28.

(iii) ⇒ (ii) is obvious.

(ii) ⇒ (i) Let N>ω := {n ∈ N : n > ω}. For n ∈ N>ω let Tn = (Tn(t))t≥0 be
the uniformly continuous semigroup generated by An. We will show that Tn(t)
converges strongly to some T (t) ∈ L(X) for n → ∞ and that T = (T (t))t≥0 is
a strongly continuous semigroup with generator A.

Step 1 : Estimate for ‖Tn(t)‖.

For t ≥ 0, n ∈ N>ω and ω1 := sup

{
n|ω|

(n− ω)
: n ∈ N>ω

}
<∞ we obtain

‖Tn(t)‖ = e−tn ‖ etn
2R(n,A) ‖ ≤ e−tn

∞∑
j=0

tjn2j

j!
‖R(n,A)j‖

≤ M e−tn
∞∑
j=0

tjn2j

(n− ω)jj!
= M e−tn etn

2/(n−ω) = M entω/(n−ω) ≤ M etω1 .
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Step 2 : Using the series representations we easily see that Tn(t)Am = AmTn(t)
for all m, n ∈ N>ω and t ≥ 0. Proposition 5.25 (ii) yields

Tn(t)x− Tm(t)x =

∫ t

0

d

ds
(Tn(s)Tm(t− s)x) ds

=

∫ t

0

Tn(s)Tm(t− s) (Anx−Amx) ds.

For x ∈ D(A) we use the estimate from Step 1 and formula 5.25 to obtain for
t ≥ 0

‖Tn(t)x− Tm(t)x‖ ≤M2 ‖Anx−Amx‖
∫ t

0

e2sω1 ds −→ 0, n, m→∞.

(5.26)

Step 3 : For all y ∈ X there exists T (t)y := limn→∞ Tn(t)y where the con-
vergence is uniform on intervals [0, t0] with t0 > 0. In addition, T (·)y ∈
C([0, t0], X). (To keep notation simple, we write T (·) instead T (·)|[0,t0], etc.)
Fix y ∈ X and ε > 0. Since D(A) is dense in ⊆ X, there exists an x ∈ D(A)
such that ‖x−y‖ < ε. On finite intervals [0, t0], convergence in (5.26) is uniform
with respect to t, hence there exists an N ∈ N>ω with ‖Tn(t)x − Tm(t)x‖ < ε
for all n, m ≥ N and t ∈ [0, t0]. Consequently, for n, m ≥ N and t ∈ [0, t0],

‖Tn(t)y − Tm(t)y‖ ≤ ‖Tn(t)x− Tm(t)x‖+ ‖Tm(t)(y − x)‖+ ‖Tn(t)(y − x)‖
≤ ε+ (‖Tm(t)‖+ ‖Tn(t)‖) ‖x− y‖ ≤

(
1 + 2M et0ω1

)
ε.

Hence, for arbitrary y ∈ X, (Tn(·)y)n is a Cauchy sequence in C([0, t0], X), and
therefore it has a limit T (·)y ∈ C([0, t0], X). Obviously, T (t)y is independent of
the choice of t0 > t, so we obtain a function T (·)y which is well-defined on all
of R+.

Step 4 : T = (T (t))t≥0 is a strongly continuous semigroup and ‖T (t)‖ ≤M etω,
t ≥ 0.
Strong continuity of T was proved in Step 3. The semigroup property follows
because on bounded intervals, T is the uniform strong limit of semigroups.

‖T (t)‖ = ‖ lim
n→∞

Tn(t)‖ ≤ lim
n→∞

M etnω/(n−ω) ≤M etω, t ≥ 0.

Step 5 : A is the generator of T = (T (t))t≥0.
Let B be the generator of T . For x ∈ D(A) and t0 > 0, Tn(·)x converges
to T (·)x for n → ∞, where the convergence is uniform on bounded intervals
[0, t0]. Since Anx → Ax and Tn → T uniformly on [0, t0] for n → ∞, also
d
dtTn(·)x = Tn(·)Anx converges to T (·)Ax, uniformly on [0, t0]. Hence T (·)x is

differentiable and d
dtT (t)x = T (t)Ax, t ∈ [0, t0], implying that x ∈ D(B) and

Bx = d
dtT (0)x = T (0)Ax = Ax. This shows A ⊆ B. For every λ > ω we

have λ ∈ ρ(A) ∩ ρ(B), hence also R(λ,A) ⊆ R(λ,B). From D(R(λ,A)) = X =
D(R(λ,B)) it follows that R(λ,A) = R(λ,B), so A = B.
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We immediately obtain the following corollary for contractive groups.

Corollary 5.33 (Hille-Yosida). For a Banach space X and a linear operator
A on X the following is equivalent:

(i) A generates a strongly continuous contractive semigroup T = (T (t))t≥0

on X, that is,

‖T (t)‖ ≤ 1, t ≥ 0.

(ii) A is densely defined and closed, {λ ∈ R : λ > 0} ⊆ ρ(A) and

‖R(λ,A)‖ ≤ 1

λ
, λ > 0. (5.27)

(iii) A is densely defined and closed, {λ ∈ C : Reλ > 0} ⊆ ρ(A) and

‖R(λ,A)‖ ≤ 1

Reλ
, Reλ > 0. (5.28)

Proof. The assertion follows with M = 1 and ω = 0 from theorem 5.31 because
‖R(λ,A)n‖ ≤ ‖R(λ,A)‖n ≤ 1

Re(λ)n .

Generator of strongly continuous groups

Definition 5.34. Let S = (S(t))t∈R strongly continuous group on a Banach
space X. The operator A, defined by

D(A) :=
{
x ∈ X : lim

h→0

1
h (S(h)x− x) exists

}
,

Ax := lim
h→0

1

h
(S(h)x− x), x ∈ D(A),

is called the (infinitesimal) generator of S.

Obviously T+ = (T+(t))t≥0 and T− = (T−(t))t≥0 with T+(t) = S(t) and T−(t) =
S(−t), t ≥ 0 are strongly continuous semigroups on X with generator ±A.

Theorem 5.35 (Generator theorem for strongly continuous groups).
Let X be a Banach space, A a linear operator on X, M ≥ 1 and ω ∈ R. Then
the following is equivalent:

(i) A generates a strongly continuous group S = (S(t))t∈R on X with

‖S(t)‖ ≤ M e|t|ω, t ∈ R.

(ii) A is densely defined and closed, {λ ∈ R : |λ| > ω} ⊆ ρ(A) and

‖R(λ,A)n‖ ≤ M

(|λ| − ω)n
, n ∈ N, |λ| > ω. (5.29)
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(iii) A is densely defined and closed, {λ ∈ C : |Reλ| > ω} ⊆ ρ(A) and

‖R(λ,A)n‖ ≤ M

(|Reλ| − ω)n
, n ∈ N, |Reλ| > ω. (5.30)

(iv) A and −A generate strongly continuous semigroups T± = (T±(t))t≥0 with

‖T±(t)‖ ≤ M etω, t ≥ 0.

Proof. Exercise ??.

We saw in Theorem 5.31 that the generator A of a strongly continuous semigroup
necessarily is densely defined. If this is not the case but all other assumptions
of the Hille-Yosida-Phillips theorem (Theorem 5.31 (ii) and (iii) respectively)
are satisfied, then the restriction of A to an appropriate subspace is generator
of a strongly continuous semigroup. This semigroup is then defined only on a
subspace of the original Banach space X.

Definition 5.36. Let X be a Banach space and X0 ⊆ X a subspace. For a
linear operator A with domain D(A) ⊆ X (not necessarily dense in X) we define
the part of A in X0 by

D(A|) = {x ∈ D(A) ∩X0 : Ax ∈ X0}, A|x = Ax, x ∈ D(A|).

Lemma 5.37. Let X be a Banach space, A : D(A) ⊆ X → X a closed linear
operator on X (not necessarily densely defined). Let X0 := D(A) and A| be the
part of A in X0. If there exist M ≥ 1 and ω ∈ R such that

{λ ∈ R : λ > ω} ⊆ ρ(A) and ‖R(λ,A)n‖ ≤ M

(λ− ω)n
, n ∈ N, λ > ω,

then A| is the generator of a strongly continuous semigroup T = (T (t))t≥0 on
X0 with ‖T (t)‖ ≤M etω, t ≥ 0.

Proof. By assumption, X0 is a Banach space. Note that R(λ,A)(X0) ⊆ D(A|)
for λ ∈ ρ(A) because D(A|) = {x ∈ D(A) : Ax ∈ X0}. Consequently, ρ(A) ⊆
ρ(A|) and R(λ,A|) ⊆ R(λ,A) for all λ ∈ ρ(A). Hence, for n ∈ N and λ > ω
we obtain ‖R(λ,A|)

n‖ ≤ ‖R(λ,A)n‖. Therefore, by the Hille-Yosida-Phillips
theorem (Theorem 5.31), it suffices to prove that D(A|) is dense in X0. To
show this, fix x ∈ X0 and define xn = nR(n,A)x for n ∈ N and n > ω. Observe
that, because x ∈ X0,

Axn = nAR(n,A)x = n(nR(n,A)− x) ∈ X0,

hence xn ∈ D(A|). Lemma 5.32 shows that xn → x, n → ∞, so the lemma is
proved.
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Examples 5.38.
1. Translation semigroup on BUC(R).

Let X = BUC(R) and A be the linear operator on X be defined by

D(A) = {f ∈ X : f ∈ C1(R), f ′ ∈ X}, Af = f ′.

Then A generates the translation semigroup T = (T (t))t≥0 with (T (t)f)(ξ) =
f(t+ ξ) for all t ≥ 0, f ∈ X and ξ ∈ R.

Proof. (i) A is densely defined: Fix f ∈ X and define (cf. proof of Theo-
rem 5.16)

ft(ξ) =
1

t

∫ t

0

f(ξ + s) ds, t > 0, ξ ∈ R.

Obviously, ft is continuous and ‖ft‖ ≤ 1
t

∫ t
0
‖f‖ ds = ‖f‖ < ∞. Moreover, ft

is uniformly continuous. To see this, fix ε > 0. Since f is uniformly continuous,
there exits δ > 0 such that |f(ξ)− f(η)| < ε if |ξ − η| < δ. Hence, for ξ, η ∈ R
with |ξ − η| < δ, it follows that

| ft(ξ)− ft(η) | ≤ 1

t

∫ t

0

∣∣f(ξ + s)− f(η + s)
∣∣ ds ≤ ε.

Clearly ft ∈ X, t > 0 and every ft is continuously differentiable with derivative
f ′t(ξ) = 1

t

(
f(t+ ξ)− f(ξ)

)
, hence we obtain ft ∈ D(A), t > 0. Finally we show

that ft → f for t ↘ 0. Fix ε > 0 we choose δ > 0 as above. Then, for all
t ∈ (0, δ), we find

‖ft − f‖ ≤ sup
ξ∈R

{
1

t

∫ t

0

| f(ξ + s)− f(ξ) |︸ ︷︷ ︸
<ε, because s∈(0,δ)

ds

}
< ε,

that is, ft → f, t→ 0.

(ii) A is closed and σ(A) ⊂ iR: For λ ∈ C \ iR define

gλ(ξ) =

{∫∞
ξ

e(ξ−s)λ f(s) ds, Re(λ) > 0,

−
∫ ξ
−∞ e(ξ−s)λ f(s) ds, Re(λ) < 0,

ξ ∈ R.

Obviously gλ is continuous and we have ‖gλ‖ ≤ ‖f‖
|Re(λ)| . For instance, for

Re(λ) > 0 we have

‖gλ‖ = sup
ξ∈R

{ ∣∣∣∣ ∫ ∞
ξ

e(ξ−s)λ f(s) ds

∣∣∣∣ } ≤ ‖f‖ sup
ξ∈R

{∫ ∞
ξ

e(ξ−s) Re(λ) ds

}
=
‖f‖

Re(λ)
.

(5.31)
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The uniform continuity of gλ follows for Re(λ) > 0 from

|gλ(ξ)− gλ(η)| =
∣∣∣∣∫ ∞
ξ

e(ξ−s)λ f(s) ds−
∫ ∞
η

e(η−s)λ f(s) ds

∣∣∣∣
=

∣∣∣∣∫ η

ξ

e(ξ−s)λ f(s) ds+

∫ ∞
η

e(ξ−s)λ f(s)− e(η−s)λ f(s) ds

∣∣∣∣
=

∣∣∣∣∣
∫ η−ξ

0

esλ f(s) ds+

∫ ∞
η

e(η−s)λ f(s)
[
e(ξ−η)λ−1

]
ds

∣∣∣∣∣
≤ ‖f‖

∣∣∣∣∣
∫ η−ξ

0

e−sλ ds

∣∣∣∣∣+

∣∣∣∣ [e(ξ−η)λ−1
] ∫ ∞

0

e−sλ f(s) ds

∣∣∣∣ ,
since the right side depends only of ξ − η and converges to 0 if ξ − η → 0. In
summary, we showed gλ ∈ X. Since obviously gλ is continuously differentiable,
it also follows that gλ ∈ D(A) and an easy calculation shows (A− λ)gλ = f . In
particular, λ−A is surjective. Injectivity of λ−A follows because for f ∈ C1(R)
we have

λf − f ′ = 0 ⇐⇒ f(ξ) = c eξλ, ξ ∈ R,

thus f ∈ X if and only if c = 0. Because of (5.31), ‖(λ − A)−1f‖ = ‖gλ‖ ≤
‖f‖
|Re(λ)| for all f ∈ X, i. e.,

λ ∈ ρ(A) and ‖(A− λ)−1‖ ≤ 1

|Reλ|
, λ ∈ C \ iR.

Hence A − λ is closed by virtue of the closed graph theorem, hence also A is
closed.

(iii) A is generator of a strongly continuous group T : This follows from the Hille-
Yosida theorem for contractive semigroups (Theorem 5.33) and the generator
theorem for strongly continuous groups (Theorem 5.35).

(iv) Identify T : For f ∈ D(A) define u(t, ξ) = T (t)f(ξ) for t, ξ ∈ R. Then

u ∈ C1(R× R) and is a solution of

∂

∂t
u(t, ξ) =

∂

∂ξ
u(t, ξ), ξ ∈ R, t > 0,

u(0, ξ) = f(ξ), ξ ∈ R.

Let v(t, ξ) = u(ξ − t, ξ + t) for t, ξ ∈ R. Then ∂
∂tv(t, ξ) = 0, hence v(t, ξ) =

v(ξ, ξ) = u(0, 2ξ) and therefore

T (t)f(ξ) = u(t, ξ) = v
(ξ + t

2
,
ξ − t

2

)
= u(0, ξ + t) = f(ξ + t), t, ξ ∈ R.

2. Translation semigroup on Lp(R).
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Let 1 ≤ p <∞ and X = Lp(R). Let A(X → X) be defined by

D(A) = W 1,p(R) = {f ∈ X : f absolutely continuous, f ′ ∈ X}, Af = f ′.

Then A generates the translation semigroup T = (T (t))t≥0 with

(T (t)f)(ξ) = f(t+ ξ), t ≥ 0, f ∈ X, ξ ∈ R.

Proof. See, e. g., [EN00, II.2.10, II.2.11].

3. Diffusion semigroup on Lp(Rn).

Let 1 < p < ∞ and X = Lp(Rn). Then T = (T (t))t≥0, defined by T (0) = id
and

(T (t)f)(ξ) = (4πt)−
n
2

∫
Rn

e−
|ξ−s|2

4t f(s) ds, ξ ∈ Rn, f ∈ X, t > 0, (5.32)

is the so-called diffusion semigroup (or heat semigroup).

T is a strongly continuous semigroup on X. Its generator A is

(Af)(ξ) = (∆f)(ξ) =

n∑
j=1

∂2

∂ξ2
j

f(ξ), f ∈ D(A), ξ = (ξ1, . . . , ξn) ∈ Rn

D(A) = W 2,p(Rn) = {f ∈ Lp(Rn) : f twice weakly diff’able and ∆f ∈ Lp(Rn)} .

Proof. See, e. g., [EN00, II.2.12, II.2.13]or [Wer00, ]

(i) T is a strongly continuous semigroup:

Let γt(s) := (4πt)−1 e
−|s|2

4t , t > 0, s ∈ Rn. It can be shown that

γt ∈ S(Rn) = {f ∈ C∞(Rn) : lim
|ξ|→∞

|x|kDαf(x)→ 0, k ∈ N, α ∈ Nn}

S(Rn) is called the Schwartz space. It can be shown that S(Rn) ⊆ Lp(Rn) is
dense for p ≥ 1 and that S(Rn) is invariant under Fourier transformation (see
Section 4.4).

Observe that

T (t)f = γt ∗ f, t > 0, f ∈ X,

hence Young’s inequalities yields

‖T (t)f‖p ≤ ‖γt‖1 ‖f‖p = ‖f‖p.

Hence we showed that ‖T (t)‖ ≤ 1, t ≥ 0.

The semigroup properties of T follow from γt+s = γs ∗ γt (easy to verify) and
the associativity of the convolution. Strong continuity of T can be shown using
measure theory.

(ii) Generator of T : We show the assertion only for p = 2.

Let A be the generator of T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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5.6 Dissipative operators, contractive semigroups

Definition 5.39. Let X be a Banach space and A a (not necessarily densely
defined) linear operator on X. A is called dissipative if

‖(λ−A)x‖ ≥ λ‖x‖, λ > 0, x ∈ D(A).

Proposition 5.40. If A is a dissipative operator on a Banach space X, then

(i) λ−A is injective for λ > 0 and

‖(λ−A)−1y‖ ≤ 1

λ
‖y‖, λ > 0, y ∈ rg(λ−A).

(ii) λ−A is surjective for some λ > 0 ⇐⇒ λ−A is surjective for all
λ > 0.

In this case, (0,∞) ⊆ ρ(A).

(iii) A is closed ⇐⇒ rg(λ−A) is closed for some λ > 0,
⇐⇒ rg(λ−A) is closed for all λ > 0.

(iv) If rg(λ − A) ⊆ D(A), then A is closable. In this case, also its closure A
is dissipative and rg(λ−A) = rg(λ−A), λ > 0.

Proof. (i) is clear. (ii) Assume that λ0 − A is surjective for a λ0 > 0. Then

λ0 ∈ ρ(A) and ‖R(λ0, A)‖ ≤ 1
λ0

by (i). For µ ∈ (0, 2λ0) the operator

µ−A = µ− λ0 + λ0 −A =
(

(µ− λ0)R(λ0, A) + id
)

(λ0 −A)

is bijective by the theorem of von Neumann because ‖(µ − λ0)R(λ0, A)‖ < 1,
hence (0, 2λ0) ⊆ ρ(A). By induction, (0,∞) ⊆ ρ(A).

(iii) To show that A is closed, it suffices to show that λ−A is closed for some
(and then for all) λ > 0. This is equivalent to

(λ−A)−1 : rg(λ−A)→ X

being closed for some (all) λ > 0. By the closed graph theorem, this is the case
if and only if rg(λ−A) is close for some (all) λ > 0.

(iv) Assume that rg(λ−A) ⊆ D(A). Let y ∈ X and (xn)n∈N with xn → 0 and
Axn → y for n→∞. We have to show that y = 0. For all w ∈ D(A) and λ > 0
the following holds

‖λ(λ−A)xn − (λ−A)w‖ ≥ λ ‖λxn − w‖.

Taking the limit n→∞ we obtain

‖λy − (λ−A)w‖ ≥ λ ‖w‖,
=⇒ ‖y − w − λ−1Aw‖ ≥ ‖w‖,
λ→∞
=⇒ ‖y − w‖ ≥ ‖w‖.
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Since y ∈ rg(A) ⊆ D(A), there exists a sequence (wn)n∈N ⊆ D(A) which con-
verges to y. The inequality above yields ‖y‖ = limn→∞ ‖wn‖ ≤ limn→∞ ‖y −
wn‖ = 0.
For the proof of the dissipativity of A fix x ∈ D(A). By assumption there exists
a sequence (xn)n∈N such that xn → x and Axn → Ax for n→∞. Since ‖ · ‖ is
continuous, it follows that

‖(λ−A)x‖ = lim
n→∞

‖(λ−A)xn‖ ≥ λ lim
n→∞

‖xn‖ = λ‖x‖.

Using that rg(λ − A) is dense in rg(λ − A), we find rg(λ−A) = rg(λ−A) =
rg(λ−A). The last equality follows from (iii) because A is closed.

In the special case of Hilbert spaces we have the following lemma.

Lemma 5.41. Let H be a Hilbert space and A a linear operator on H. Then

A dissipative ⇐⇒ Re〈Ax , x〉 ≤ 0, x ∈ D(A).

Proof. “⇐=” Fix x ∈ D(A), without restriction we assume ‖x‖ = 1. Then, for
λ > 0,

‖(λ−A)x‖ = ‖(λ−A)x‖ ‖x‖ ≥ |〈(λ−A)x , x〉| ≥ Re
(
λ− 〈Ax , x〉

)
= λ− Re

(
〈Ax , x〉

)
≥ λ.

“=⇒” Fix x ∈ D(A), without restriction we assume ‖x‖ = 1. For λ > 0 define
xλ = ‖(λ−A)x‖−1(λ−A)x. Then limλ→∞ xλ = limλ→∞ ‖x− λ−1Ax‖−1 (x−
λ−1A)x = x and, by hypothesis,

λ ≤ ‖(λ−A)x‖ = 〈(λ−A)x , xλ〉 = Re〈λx , xλ〉 − Re〈Ax , xλ〉
≤ λ‖x‖ ‖xλ ‖ − Re〈Ax , xλ〉 = λ− Re〈Ax , xλ〉.

Hence it follows that Re〈Ax , xλ〉 ≤ 0.

Lemma 5.42. Let H be a Hilbert space and A a dissipative operator on H. If
λ−A is surjective for some λ > 0, then A is densely defined.

Proof. By Proposition 5.40 (ii) we know that λ ∈ ρ(A). We have to show that
rg(λ−A)−1 is dense in H. Choose v ∈ rg(λ−A)⊥. Hence 〈v , (λ−A)−1u〉 = 0,
u ∈ H. In particular, taking u = v yields

0 = 〈v , (λ−A)−1v〉 = 〈(λ−A)(λ−A)−1v , (λ−A)−1v〉
= λ‖(λ−A)−1v‖2 − Re〈A(λ−A)−1v , (λ−A)−1v〉 ≥ λ‖(λ−A)−1v‖2 ≥ 0,

hence ‖(λ− A)−1v‖ = 0. Since (λ− A)−1 is injective, it follows that v = 0, as
we wanted to show.

Lemma 5.41 and Lemma 5.42 are special cases of the following lemmas:
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Dissipative operators in Banach spaces

Definition 5.43. Let X be a Banach space with dual space X ′. For every
x ∈ X we call

J (x) :=
{
x′ ∈ X ′ : 〈x , x′〉 = ‖x‖2 = ‖x′‖2

}
. (5.33)

the duality set of x.

By the Hahn-Banach theorem J (x) 6= {0}. The elements x′ ∈ J (x) are called
normalised tangent functionals to x. If X is a Hilbert space, then J (x) consists
of exactly one element.

In analogy to Lemma 5.41 we have:

Lemma. Let X be a Banach space and A a linear operator on X. Then

A dissipative ⇐⇒ ∀ x ∈ D(A) ∃ j(x) ∈ J (x) : Re〈Ax , j(x)〉 ≤ 0.

If X is a reflexive Banach space, then in analogy to Lemma 5.42 we have:

Lemma. Let X be a reflexive Banach space and A a dissipative operator on X.
If λ−A is surjective for some λ > 0, then A is densely defined.

Theorem 5.44 (Lumer-Phillips). Let X be a Banach space and A a densely
defined dissipative linear operator on X. Then the following is equivalent:

(i) A generates a contractive semigroup.

(ii) There exists some λ > 0 such that rg(λ−A) is dense in X.

Proof. (i) ⇒ (ii) By the Hille-Yosida theorem (Corollary 5.33) we know that
rg(λ− A) = X, consequently by Proposition 5.40 rg(λ−A) = rg(λ− A) = X.
(ii) ⇒ (i) Since D(A) is dense in X, Proposition 5.40 (iv) shows that A is

closable and that A− λ is surjective for every λ > 0. Proposition 5.40 (i) yields
that λ ∈ ρ(A) and ‖R(λ,A)‖ ≤ 1

λ . Therefore, by the Hille-Yosida theorem

(Corollary 5.33) A the generator of a contractive semigroup.

Remark. Let H be a Hilbert space and A a linear operator on H. If

(i) 〈Ax , x〉 ≤ 0, x ∈ D(A)

(ii) rg(λ−A) = H for some λ > 0,

then A generates a contractive semigroup on H. The hypothesis (i) shows that
A is dissipative, together with condition (ii) it follows that A is densely defined
(Proposition 5.42). The Lumer-Phillips theorem implies then that A generates
a strongly continuous semigroup.

In particular for spaces of functions, the conditions (i) and (ii) are often easier
to check the hypothesis in the Hille-Yosida theorem.
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Example 5.45. Let X = C([0, 1]) and the linear operator A on X be defined
by

Af = f ′, f ∈ D(A) =
{
f ∈ C1([0, 1]) : f(0) = 0, f ′ ∈ C([0, 1])

}
.

Then A is closed, λ−A is bijective for every λ ∈ C and

R(λ,A)f(ξ) =

∫ ξ

0

e−(ξ−s)λ f(s) ds, ξ ∈ [0, 1], λ ∈ C, f ∈ X.

For λ 6= 0, the estimate

‖R(λ,A)f‖ ≤ ‖f‖ sup
ξ∈[0,1]

∫ ξ

0

e−(ξ−s) Reλ ds =
1

λ
‖f‖ (1− e−Reλ) ≤ 1

λ
‖f‖,

shows that A is dissipative.

However, A is not densely defined and therefore does not generate a strongly
continuous semigroup on X. By Lemma 5.37, A induces a strongly continuous
semigroup on the subspace

X0 = D(A) = {f ∈ X : f(0) = 0} .

Let A| be the part of A in X, that is,

A|f = f ′, f ∈ D(A|) =
{
f ∈ X : f ∈ C1([0, 1]), f(0) = f ′(0) = 0

}
.

ThenA| is densely defined inX0 (Lemma 5.37), dissipative and λ−A| : X0 → X0

is surjective, hence A| generates a strongly continuous semigroup by the Lumer-
Phillips theorem (Theorem 5.44).

Definition 5.46. A (strongly continuous) semigroup T = (T (t))t≥0 on a Ba-
nach space X is called a (strongly continuous) unitary semigroup, if every T (t),
t ≥ 0, is unitary. Analogously, (strongly continuous) unitary groups are defined.

Theorem 5.47 (Stone). Let H be a Hilbert space and A a densely defined
linear operator on H. Then the following is equivalent:

(i) A generates a unitary group T = (T (t))t∈R on H.

(ii) A is skew-selfadjoint, that is, A∗ = −A.

Proof. (i) ⇒ (ii) Observe that T (t)∗ = T (t)−1 = T (−t) for all t ∈ R by as-
sumption. Hence T ∗ = (T (t)∗)t∈R is a strongly continuous group with generator
−A.
If x ∈ D(A), then

〈x ,Ay〉 = lim
t↘0

〈
x ,

1

t
(T (t)− id) y

〉
= lim
t↘0

〈1

t
(T (t)∗ − id)x , y

〉
= 〈−Ax , y〉,
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so D(A) ⊆ D(A∗) and A∗x = −Ax for x ∈ D(A).

It remains to show that A∗ ⊆ −A. Note that this is equivalent to show that
(iA)∗ ⊆ iA. By what we already showed, we know that iA is symmetric. It is
closed because it is the generator of a strongly continuous semigroup. Hence it
suffices to show that ±i belong to the resolvent set of iA (see Corollary 3.12).
Note that A generates a contractive semigroups, so R \ {0} ⊆ ρ(A) (Theo-
rem 5.35). Hence iR \ {0} ⊆ ρ(iA) which completes the proof.

Alternative proof of “A∗ ⊆ −A”:

Let x ∈ D(A∗). Since −A is the generator of T ∗ ist, Proposition 5.25 (iv) shows
that

1

t
(T (t)∗x− x) =

1

t
(−A)

∫ t

0

T (s)∗x ds.

Using that −A ⊆ A∗ and T (s)∗x ∈ D(−A) ⊆ D(A∗) for all s ∈ [0, t], we
conclude

1

t
(T (t)∗x− x) =

1

t
A∗
∫ t

0

T (s)∗x ds =
1

t

∫ t

0

A∗ T (s)∗x ds.

Note that 〈T (s)∗x ,Ay〉 = 〈x , T (s)Ay〉 = 〈x ,AT (s)y〉 = 〈A∗x , T (s)y〉, y ∈
D(A), so that T (s)∗x ∈ D(A∗). Since T (s) is bounded, it follows that A∗T (s)∗ =
(T (s)A)∗. Note that A and T (s) commute and, because of (AT (s))∗ ⊇ T (s)∗A∗,
it follows that

1

t
(T (t)∗x− x) =

1

t

∫ t

0

T (s)∗A∗x ds
t→0−−−→ T (0)∗A∗x = A∗x.

The last equality holds because s→ T (s)∗A∗x in continuous in 0. Consequently,
x ∈ D(−A) (because −A is the generator or T ∗) and we have −Ax = A∗x.

(ii) ⇒ (i) By assumption, A and −A are densely defined and closed and

〈Ax , x〉 = 〈x ,A∗x〉 = −〈x ,Ax〉 = −〈Ax , x〉, x ∈ D(A),

henceA and−A are dissipative. By the Lumer-Phillips theorem (Theorem 5.44),
both A and −A generate contractive semigroups, hence A generates a contrac-
tive group T = (T (t))t∈R on H (see Theorem 5.35). It remains to be proved
that T (t)∗ = T (t)−1, t ∈ R.
For every s ∈ R, T (s) is surjective (because it is even invertible) and isometric
because

‖x‖ = ‖T (s)−1T (s)x‖ ≤ ‖T (s)−1‖ ‖T (s)x‖ ≤ ‖T (−s)‖ ‖T (s)‖ ‖x‖, x ∈ H.

Since ‖T (s)‖ ≤ 1, s ∈ R, (recall that T is a contractive semigroup) the above
inequality shows that ‖x‖ = ‖T (s)x‖, x ∈ H. Therefore T (s) is unitary (see,
e. g., [Kat95, V § 2.2]).
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Remark 5.48. By scaling we can always convert a strongly continuous semi-
group on a Banach space X in a bounded strongly continuous semigroup. The
spectrum of the generator is then shifted to the left (Lemma 5.27). But we do
not necessarily obtain a contractive semigroup.

The next lemma shows that there exists a norm on X, equivalent to the original
norm, such that the semigroup is a contractive semigroup. Therefore the Lumer-
Phillips theorem is true for arbitrary strongly continuous semigroups.

Lemma 5.49. Let (X, ‖ · ‖) be a Banach space and T = (T (t))t≥0 a bounded
strongly continuous semigroup on X. Then

‖x‖T := sup{ ‖T (s)x‖ : s ≥ 0 }, x ∈ X,

defines a norm which is equivalent to ‖ · ‖, and T is a contractive semigroup on
(X, ‖ · ‖T ).

Proof. Since T is a bounded semigroup, there exists M ≥ 1 such that ‖T (s)‖ ≤
M for all s ≥ 0. It is easy to check that ‖ · ‖T has all properties of a norm.
Moreover,

‖x‖ = ‖T (0)x‖ ≤ ‖x‖T = sup{ ‖T (s)x‖ : s ≥ 0 } ≤M‖x‖, x ∈ X,

therefore ‖ · ‖ and ‖ · ‖T are equivalent. If x ∈ X and t ≥ 0, then

‖T (t)x‖T = sup{ ‖T (t)T (s)x‖ : s ≥ 0 } = sup{ ‖T (t+ s)x‖ : s ≥ 0 }
≤ sup{ ‖T (s)x‖ : s ≥ 0 } = ‖x‖T ,

hence ‖T (t)‖ ≤ 1, t ≥ 0.
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Chapter 6

Analytic semigroups

In Proposition 5.40 it was shown that the spectrum of a dissipative operator A
lies in a left semiplane in C and that the resolvent on the right semiaxis satisfies
the estimate ‖R(λ,A)‖ ≤ λ−1 if λ−A is surjective for λ > 0.

In this chapter we deal with linear operators whose spectrum lies in a sector
and whose resolvent satisfies a certain estimate outside of the sector.

Let us recall:

Cauchy’s integral formula. Let Ω ⊂ C be a domain, z0 ∈ Ω, r > 0 such that
the closed disk Kr(z0) = {z ∈ C : |z − z0| ≤ r} belongs to Ω. If f : Ω → C is
holomorphic, then

f(z0) =
1

2πi

∫
∂Kr(z0)

f(ζ)

ζ − z0
dζ,

where ∂Kr(z0) is the positively oriented boundary of Kr(z0).
More generally, if γ is a closed path in Ω \ {z0} and ν(z0, γ) is the winding
number of γ around z0, then

f (n)(z0)ν(z0, γ) =
n!

2πi

∫
∂Kr(z0)

f(ζ)

(ζ − z0)n+1
dζ.

Dunford functional calculus. Let X be a Banach space and A a densely
defined linear operator on X. Then the map ρ(A) → L(X), λ → R(λ,A),
is holomorphic. If A is a everywhere defined bounded operator, then σ(A)
bounded. Let Ω ⊆ C be a domain with σ(A) ⊆ Ω and γ a closed path which
lies in Ω and goes around every point in σ(A) exactly once positively oriented.
Then we define for holomorphic f : Ω→ C

f(A) =
1

2πi

∫
γ

f(ζ)R(ζ,A) dζ. (6.1)

This definition does not depend on the choice of γ.
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If A is selfadjoint, then f(A) defined in the definition (6.1) coincides with the
definition with the help of the spectral family (Definition ??).
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Figure 6.1: Spectrum of a sectorial operator.

Examples:

(i) f : C→ C, f(z) = 1, then f(A) = id.

Proof. For arbitrary y ∈ X ′ the map z 7→ 〈(z −A)−1x , y〉 is holomorphic
in ρ(A). Without restriction, we can assume that γ = Kr(0) for large
enough r. Then

f(A)x =
1

2πi

∫
γ

R(ζ,A)x dζ =
1

2πi

∫
γ

1

ζ

(
1− 1

ζ
R(ζ,A)

)−1

x dζ

=
1

2πi

∫
γ

1

ζ

∞∑
n=0

ζ−nAnx︸ ︷︷ ︸
converges unif. for ζ ∈ γ

dζ =
1

2πi

∞∑
n=0

∫
γ

ζ−n−1Anx dζ︸ ︷︷ ︸
=0, falls n≥1

=2πi, falls n=0

= x.

(ii) f : C→ C, f(z) = z, then f(A) = A.

(iii) For the exponential function exp(tA) as in Definition ??

exp(tA) =
1

2πi

∫
γ

etζ R(ζ,A) dζ.

For unbounded operators, the spectrum is in general unbounded. Therefore, the
functional calculus described above cannot be applied to unbounded operators
without additional assumptions. For sectorial operators there is an integral
representation of the generated semigroup.

For ϕ ∈ (0, π] we define the (open) sector

Σϕ := {z ∈ C : | arg z| < ϕ} \ {0}.

Definition 6.1. Let X be a Banach space. A densely defined linear operator
A(X → X) is called sectorial with angle δ if there exists a δ ∈ (0, π/2] such that

Σπ/2+δ ⊆ ρ(A),

and if for every ε ∈ (0, δ) there exists an Cε ≥ 0 such that

‖R(λ,A)‖ ≤ Cε
|λ|
, λ ∈ Σπ/2+δ−ε \ {0}. (6.2)
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Definition 6.2. Let X be a Banach space and A a sectorial operator on X
with angle δ ∈ (0, π/2]. We define T (0) := id and for z ∈ Σδ we define T (z) as
follows. Choose an arbitrary δ′ ∈ (| arg(z)|, δ) and define

T (z) :=
1

2πi

∫
γ

eµz R(µ,A) dµ, (6.3)

where γ is an arbitrary piecewise smooth contour in Σπ/2+δ from ∞ e−i(δ′+π/2)

to ∞ ei(δ′+π/2), see Figure 6.2.

Figure 6.2: Path of integration γr,δ′ .

The condition z ∈ Σδ guarantees that arg(µz) ∈ (π/2 + ε, 3π/2 − ε) for suffi-
ciently small ε > 0, so that Re(µz) ∼ −C|µ| for a positive constant C for |µ|
large enough. Consequently, the norm of the integrand decays exponentially
and the integral is well-defined. More precisely:

Proposition 6.3. Let X be a Banach space and A a sectorial operator on X
with angle δ ∈ (0, π/2]. Then (6.2) defines a bounded linear operator and

(i) ‖T (z)‖ is uniformly bounded for z ∈ Σδ′ for every δ′ ∈ (0, δ).

(ii) The map z 7→ T (z) is analytic.

(iii) T (z1 + z2) = T (z1)T (z2), z1, z2 ∈ Σδ.

(iv) The map z 7→ T (z) is strongly continuous in Σδ′∪{0} for every δ′ ∈ (0, δ).

(v) (T (t))t≥0 is a strongly continuous semigroup with generator A.

Definition 6.4. Let δ ∈ (0, π/2]. A family T = (T (z))z∈Σδ ⊆ L(X) is called a
bounded analytic semigroup with angle δ if

(i) T (0) = id and T (z1 + z2) = T (z1)T (z2), z1, z2 ∈ Σδ;

(ii) z 7→ T (z) is analytic in Σδ;

(iii) lim
z→0
z∈Σδ′

T (z)x = x, δ′ ∈ (0, δ), x ∈ X (strong continuity in sectors Σδ′).

If in addition the following holds,

(iv) for every δ′ ∈ (0, δ) there exits an Mδ′ such that ‖T (z)‖ ≤ Mδ′ for all
z ∈ Σδ′ ,

then T is called an analytic semigroup.
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Remark. For a strongly continuous semigroup T = (T (t))t≥0 with generator
A the maps [0,∞)→ X, t 7→ T (t)x are differentiable for every x ∈ D(A). If T
is an analytic semigroup with angle δ, then T (·) is norm differentiable in every
sector Σδ′ with 0 < δ′ < δ.

Remark. If T is an analytic semigroup and its restriction to real t is a bounded
strongly continuous semigroup, then T is not necessarily a bounded analytic
semigroup. For instance, the multiplication semigroup (eiz)z∈C on X = C is a
non-bounded analytic semigroup whose restriction (eit)t≥0 to R+ is a bounded
semigroup.

Proof of Proposition 6.3. Proof that T (z) is well-defined and of (i): Fix δ′ ∈ (0, δ)
and z ∈ Σδ′ . Since the integrand in (6.2) is analytic, the integral does not de-
pend on the path γ if the integral exists. Let r = |z|−1, ε = (δ − δ′)/2 and
choose a contour γ = γr, δ−ε = γ1

r, δ−ε ∪ γ2
r, δ−ε ∪ γ3

r, δ−ε (see Figure 6.2) with

γ1
r, δ−ε =

{
s e−i(π/2+δ−ε) : s ∈ (∞, r)

}
,

γ3
r, δ−ε =

{
s ei(π/2+δ−ε) : s ∈ (r, ∞)

}
,

γ2
r, δ−ε =

{
r eis : s ∈ (−(π/2 + δ − ε), (π/2 + δ − ε))

}
.

For µ ∈ γ3
r, δ−ε we have arg(µz) = arg(µ) + arg(z) ∈ (π/2 + ε, 3π/2− ε). Since

cos(ϕ) ≤ cos(π/2 + ε) = − sin ε < 0, ϕ ∈ (π/2 + ε, 3π/2− ε), it follows that

Re(µz) = |µz| cos(arg(µz)) ≤ −|µz| sin ε. (6.4)

It is easy to check that (6.4) holds also for µ ∈ γ1
r, δ−ε. For µ ∈ γ2

r, δ−ε we obtain

Re(µz) ≤ |µz| = 1.

Since A is sectorial, we obtain, using estimate (6.2),

‖ eµz R(µ,A)‖ ≤ eRe(µz) ‖R(µ,A)‖ ≤ Cε
|µ|

e−|µz| sin ε, µ ∈ γ1
r, δ−ε ∪ γ3

r δ−ε,

‖ eµz R(µ,A)‖ ≤ e
Cε
|µ|
≤ e |z|C, µ ∈ γ2

r δ−ε.

For the integral this yields∥∥∥∥∫
γ

eµz R(µ,A) dµ

∥∥∥∥ ≤ ∫
γ

‖ eµz R(µ,A) ‖ dµ

≤ 2

∫ ∞
r

∥∥∥∥ e−s|z| sin ε
Cε
s

∥∥∥∥ ds+

∫ π/2+δ−ε

−(π/2+δ−ε)
e |z|Cε|ir eis | ds

= 2

∫ ∞
1

∥∥∥∥ e−s sin ε Cε
s

∥∥∥∥ ds+ 2(π/2 + δ − ε) eCε <∞.

Hence T (z) is well-defined and uniformly bounded in the sector Σδ′ because the
right-hand-side does not depend on z ∈ Σδ′ .
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(ii) The integrand in (6.2) is analytic and, as in (i), it can be shown that the
integrals of the derivatives exist.

(iii) Let z1, z2 ∈ Σδ and choose δ′ ∈ (0, δ) such that z1, z2 ∈ Σδ′ . Choose
γ = γ1,δ−ε with ε = (δ − δ′)/2 as before and let γ′ = γ + c with c > 0 large
enough such that γ∩γ′ = ∅. Then, using the resolvent identityR(µ,A)R(λ,A) =
(λ− µ)−1[R(µ,A)−R(λ,A)]:

T (z1)T (z2) =
1

(2πi)2

∫
γ

∫
γ′

eµz1 eλz2 R(µ,A)R(λ,A) dµ dλ

=
1

(2πi)2

∫
γ

∫
γ′

eµz1 eλz2(λ− µ)−1[R(µ,A)−R(λ,A)] dλ dµ

=
1

(2πi)2

∫
γ

eµz1 R(µ,A)

∫
γ′

(λ− µ)−1 eλz2 dλ dµ

− 1

(2πi)2

∫
γ′

eλz2 R(λ,A)

∫
γ

(λ− µ)−1 eµz1 dµ dλ

=
1

2πi

∫
γ

eµz2 R(µ,A) eµz1 dµ = T (z1 + z2),

because
∫
γ′

(µ − λ)−1 eλz2 dλ = 2πi eµz2 and
∫
γ
(µ − λ)−1 eµz1 dµ = 0 by

Cauchy’s integral formula (if the contours are closed “to the left at infinity”
with a piece of circle).

(iv) Again, let δ′ ∈ (0, δ) and ε = (δ− δ′)/2. Because of (i), (ii) and because A
is densely defined, it suffices to show

lim
z→0
z∈Σδ′

T (z)x− x = 0, x ∈ D(A).

Choose again γ = γ1,δ−ε as before. Cauchy’s integral formula yields∫
γ

eµz

µ
dµ = e0 = 1,

hence

T (z)x− x =

∫
γ

eµz
(
R(µ,A)− 1

µ

)
x dµ =

∫
γ

eµz µ−1R(µ,A)Ax dµ.

The norm of the integrand can be estimated as follows:

‖µ−1 eµz R(A,µ)Ax‖ ≤

{
‖Ax‖ |µ|−2Cε e−|µz| sin ε for µ ∈ γ1

1, δ−ε ∪ γ3
1, δ−ε,

‖Ax‖ |µ|−2 eCε, for µ ∈ γ2
1, δ−ε.

Hence the integrand can be bounded by an integrable function, hence, by
Lebesgue’s theorem of dominated convergence,

lim
z→0
z∈Σδ′

T (z)x− x =

∫
γ

lim
z→0
z∈Σδ′

eµz µ−1R(µ,A)Ax dµ =

∫
γ

µ−1R(µ,A)Ax dµ = 0.
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The last equality, again, is a consequence of Cauchy’s integral theorem if the
contour γ is closed on the right side.

(v) From (iv) we obtain that (T (t))t≥0 is a strongly continuous semigroup. Let
B be the generator of (T (t))t≥0. If λ is large enough, then λ ∈ ρ(A)∩ ρ(B) (for
instance choose λ = |ω0| + 1 where ω0 is the growth bound of (T (t))t≥0). For
the proof of A = B we show R(λ,A) = R(λ,B). By Theorem 5.28

R(B, λ)x = lim
t0→∞

∫ t0

0

e−λs T (s)x ds.

For t0 > 0 and the contour γ = γ1 as above, Fubini’s theorem shows that∫ t0

0

e−λs T (s)x ds =
1

2πi

∫ t0

0

∫
γ

e−λs eµsR(µ,A)x dµ ds

=

∫
γ

1

2πi

∫ t0

0

e−λs eµsR(µ,A)x ds dµ

=
1

2πi

∫
γ

(µ− λ)−1(e(µ−λ)t0 −1)R(µ,A)x dµ
t0→∞−−−−→ R(λ,A)x,

because (again by Cauchy’s integral theorem, close right)∫
γ

(µ− λ)−1R(µ,A)x dµ = R(λ,A),

and because for Re(µ− λ) < 0∥∥∥∥∫
γ

(µ− λ)−1 e(µ−λ)t0 R(µ,A)x dµ

∥∥∥∥ ≤ e−t0 ‖x‖
∫
γ

|µ− λ|−1Cε
|µ|
|dµ| −→ 0

for t0 →∞.

Note that the proposition shows that the generator of an analytic continuous
semigroup is unique because it is the unique generator of the strongly continuous
semigroup (T (t))t≥0.

Example 6.5. If H is a Hilbert space and A is selfadjoint and dissipative
linear operator on H, then A is sectorial with arbitrary angle δ ∈ (0, π/2). In
particular, A generates an analytic semigroup with angle δ ∈ (0, π/2).

Proof. By assumption, W (A) ⊂ (−∞, 0] (because A is sectorial and selfadjoint),
hence C \ (−∞, 0] ⊂ ρ(A) (because A is selfadjoint and the defect index of A is
constant in connected components of C \W (A)). Fix δ ∈ (0, π/2) arbitrary. It
remains to prove the resolvent estimate (6.2) for λ ∈ Σπ/2+δ. Since λ ∈ Σπ/2+δ,

there exist ρ > 0 and ϑ ∈ (−π/2 − δ, π/2 + δ) such that λ = ρ eiϑ. For x ∈ H
let u = R(λ,A)x, hence ρ eiϑ u − Au = x. Multiplication by e−iϑ/2 and scalar
multiplication by u yields

ρ eiϑ/2 ‖u‖2 − e−iϑ/2〈Au , u〉 = e−iϑ/2〈x , u〉.
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Taking the real part on both sides, leads to

ρ‖u‖2 cos(ϑ/2)︸ ︷︷ ︸
∈(cos(δ/2),1)

−〈Au , u〉 cos(ϑ/2)︸ ︷︷ ︸
≤0

= Re(e−iϑ/2〈x , u〉) ≤ ‖x‖ ‖u‖

=⇒ ‖R(λ,A)x‖ = ‖u‖ ≤ ‖x‖
ρ cos(δ/2)

=
‖x‖

|λ| cos(δ/2)
.

Example 6.6. • Consider the differential operator A defined by Af =
f ′′, f ∈ D(A) = W 2,2(R) on X = L2(R). Then A generates an ana-
lytic semigroup on L2(R).

• Translation semigroup: X = Lp(R), T = (T (t))t≥0 with T (t)f = f(t+·) is
not an analytic semigroup because its generator A is Af = f ′, f ∈ D(A) =
W 1,p(R). Since σ(A) = iR, A is not sectorial (see Proposition ??).

Lemma 6.7. If X is a Banach space and T = (T (z))z∈Σδ is an analytic semi-
group on X with generator A, then

(i) t > 0, k ∈ N, x ∈ X =⇒ T (t)x ∈ D(Ak) and

AkT (t)x = (AT (t/k))kx,

t > 0, k ∈ N, x ∈ D(Ak) =⇒ AkT (t)x = T (t)Ak.

(ii) For every x ∈ X the map (0,∞) → X, t 7→ T (t)x is infinitely differen-
tiable with derivatives

dk

dtk
T (t)x = AkT (t)x, k ∈ N.

Note that the assertions are true in the case of a strongly continuous semigroup
only for x ∈ D(A).

Proof. (i) Let t > 0 and δ′ ∈ (0, δ). By assumption, T is norm-differentiable in
the sector Σδ′ , so the limit for h→ 0 of

1

h
(T (t+ h)− T (t))x =

1

h
(T (h)− id)T (t)x.

Hence T (t)x ∈ D(A). We already saw in Proposition 5.25 that AT (t)x = T (t)Ax
for x ∈ D(A). Because of

AT (t)x = AT (t/2)T (t/2)x = T (t/2)AT (t/2)x ∈ D(A)

it follows that T (t)x ∈ D(A2) and A2T (t)x = (AT (t/2))2x, x ∈ X, t > 0. Now
the assertion follows by induction.
(ii) Let ε ∈ (0, t/(2k)). Then, by (i),

dk

dtk
T (t)x =

dk−1

dtk−1
AT (t)x =

dk−1

dtk−1
T (t− ε)AT (ε)x︸ ︷︷ ︸

D(A)

= . . . = T (t− kε)
(
AT (ε)

)k
x = T (t− kε)AkT (kε)x = AkT (t)x.
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Proposition 6.8 (Characterisation of analytic semigroups). Let X be a
Banach space and A a linear operator on X. Then the following is equivalent:

(i) A is sectorial.

(ii) A generates a bounded analytic semigroup T = (T (z))z∈Σδ∪{0} on X.

(iii) A generates a bounded strongly continuous semigroup T = (T (t))t≥0 on
X, rg(T (t)) ⊆ D(A) for all t > 0, and

C := sup{ ‖tAT (t)‖ : t > 0 } <∞.

Proof. (i) ⇒ (ii) Proposition 6.3.

(ii) ⇒ (i) Let δ ∈ (0, π/2] be the angle of T . By assumption, (T (t))t≥0 is a
strongly continuous semigroup with generator A. We have to show that A is
sectorial with angle δ.
Choose α ∈ (−δ, δ) and define

Tα(t) := T (eiα t), t ≥ 0.

Clearly, Tα = (Tα(t))t≥0 is a strongly continuous semigroup on X. Let Aα be
the generator of Tα. We show that Aα = eiαA. Let γα = eiα γ. For x ∈ X,
Theorem ?? and Cauchy’s integral theorem show that

R(1, A)x =

∫ ∞
0

e−t T (t)x dt =

∫
γα

e−µ T (µ)x dµ =

∫ ∞
0

e−t eiα T (eiα t)x dt

= eiα

∫ ∞
0

e−t eiα Tα(t)x dt = eiαR(eiα, A)x,

hence x ∈ D(Aα) if and only if x ∈ D(A), and in this caseAαx = eiαAx.
Since Aα is the generator of a strongly continuous semigroup, it follows that
{λ ∈ C : Re(λ) > 0} ⊆ ρ(Aα) = ρ(eiαA) = eiα ρ(A). Hence also

ρ(A) ⊃
⋃

α∈(−δ, δ)

eiα {λ ∈ C : Re(λ) > 0 } = {λ ∈ C : | arg(λ)| < π/2 + δ } = Σπ/2+δ.

It remains to show the resolvent estimate (6.2). Choose δ′ ∈ (0, δ) and ε > 0
such that δ − δ′ > ε. Since T is a bounded semigroup, there exists an M ≥ 1
such that ‖T (z)‖ ≤ M for all z ∈ Σδ′+ε. Now fix λ ∈ Σπ/2+δ′ and choose
α ∈ (−δ′ − ε, δ′ + ε) such that eiα λ ∈ Σπ/2−ε. It follows that

‖R(λ,A)‖ = ‖R(eiα λ, eiαA)‖ = ‖R(eiα λ,Aα)‖ ≤ M

Re(eiα λ)
≤ M

|λ| cos(π − ε)
.

In the second to last inequality we applied the Hille-Phillips-Yosida theorem to
Aα (note that ‖Tα(t)‖ ≤M for all t ≥ 0 and that Re(eiα)λ > 0).
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(ii) ⇒ (iii) By assumption, (T (t))t≥0 is a strongly continuous semigroup on
X with generator A. Since T is norm-differentiable in every sector Σδ′ with
δ′ ∈ (0, δ), for every t > 0 the limit

lim
h→0

h−1
(
T (t+ h)x− T (t)x

)
= lim

h→0
h−1

(
T (h)− id

)
T (t)x

exists, therefore T (t)x ∈ D(A). Define the contour γr, δ′ as in the proof of
Proposition 6.3. Since A is closed and, as we will show,

∫
γr,δ′

A etµR(µ,A) dµ

exists, we obtain as in Proposition 6.3:

‖AT (t)‖ =

∥∥∥∥∥
∫
γt−1,δ′

A etµR(µ,A) dµ

∥∥∥∥∥ =
1

2π

∥∥∥∥∥
∫
γt−1,δ′

etµ
(
µR(µ,A)− 1

)
dµ

∥∥∥∥∥
=

1

2π

∥∥∥∥∫ ∞
t−1

ets eiδ
′ (

eiδ′ sR(eiδ′ s, A)− 1
)

eiδ′ ds

+

∫ t−1

∞
ets e−iδ′

(
e−iδ′ sR(e−iδ′ s, A)− 1

)
e−iδ′ ds

+

∫ δ′

−δ′
eeis

(
t−1 eisR(t−1 eis, A)− 1

) i

t
eis ds

∥∥∥∥∥
≤ 1

π

∥∥∥∥∥
∫ ∞
t−1

ets cos δ′
(
s
M

s
+ 1
)

ds+
1

2π

∫ δ′

−δ′
e
(
t−1 M

t−1
+ 1
)
t−1 ds

∥∥∥∥∥
=

1

t

1

π

∫ ∞
1

es cos δ′
(
M + 1

)
ds+

1

t

1

2π

∫ δ′

−δ′
e
(
M + 1

)
ds =

C

t
,

with a constant C <∞ that does not depend on t.

(iii) ⇒ (ii) Let x ∈ X. By Lemma 6.7, the map (0,∞) → X, s 7→ T (s)x is
arbitarily differentiable and rg(T (s)) ⊆ D(A∞) = ∩∞k=1D(Ak) for all s > 0.
Moreover, Lemma 6.7 and the inequality kk ≤ ek k! show that

1

k!

∥∥∥∥ dk

dsk
T (s)

∥∥∥∥ =
1

k!

∥∥AkT (s)
∥∥ =

1

k!

∥∥(AT (s/k))k
∥∥ ≤ kk

skk!
‖s/k(AT (s/k))‖k ≤ Ck ek

sk
.

For t > 0 and |h| ∈ (0, t) the Taylor expansion shows that

T (t+ h)x =

n∑
k=0

hk

k!
T (k)(t)x+

1

n!

∫ t+h

t

(t+ h− s)nT (n+1)(s)x ds. =:

n∑
k=0

hk

k!
T (k)(t)x+Rn+1(h)

The integral term Rn+1(h) can be estimated as follows:

‖Rn+1(h)‖ ≤ ‖x‖
n!

∫ t+h

t

|t+ h− s|n(n+ 1)!

(
C e

s

)k
ds ≤ (n+ 1)

(
|h|C e

t− |h|

)n+1

.

For q ∈ (0, 1) and |h| < qt
Ce+1 , we have that

|h| C e

t− |h|
≤ qtC e

(C e +1)(t− qt
C e +1 )

=
qC e

Ce+ 1− q
≤ q,
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so

‖Rn+1(h)‖ ≤ (n+ 1)qn+1 −→ 0, n→∞.

This leads to the Taylor expansion for T (·)

T (t+ h)x =

∞∑
k=0

hk

k!
T (k)(t)x, |h| < qt

C e +1
.

The series converges also for h ∈ C with |h| < qt
C e +1 , hence T has an analytic

extension to Σδ with δ = arctan 1
C e +1 .

It remains to be shown that the extension to every sector Σδ′ with δ′ ∈ (0, δ) is
bounded. If z ∈ Σδ′ , then | Im z| ≤ t tan δ′ ≤ tq

C e +1 , and consequently

‖T (z)‖ = ‖T (Re z + i Im z)‖ ≤
∞∑
k=0

1

k!
‖T (k)(Re z)‖ | Im z|k

≤
∞∑
k=0

(
C e

t

)k (
qt

C e +1

)k
≤
∞∑
k=0

qk = (1− q)−1.

Not densely defined operators

In Proposition 6.3, we used that A is densely defined only to prove that the
generated semigroup T is strongly continuous. If we do not assume that A is
densely defined, then in Proposition 6.3, instead of (iv), the following:

(iv’) For all x ∈ D(A) the map z 7→ T (z)x is continuous in Σδ′ ∪ {0} for every
δ′ ∈ (0, δ).

More precisely:

Proposition 6.9. Let X be a Banach space, A a linear operator on X and
δ ∈ (0, π/2] with Σπ/2+δ ⊆ ρ(A) and assume that for every ε ∈ (0, δ) there
exists a constant Cε such that

‖R(λ,A)‖ ≤ Cε
|λ|
, λ ∈ Σπ/2+δ−ε \ {0}.

Then the claims (i)–(iii) from Proposition 6.3 hold. In addition:

(i) (a) x ∈ D(A) =⇒ limt→0 T (t)x = x,

(b) If the limit y = limt→0 T (t)x exists, then x ∈ D(A) and y = x.

(ii) (a) x ∈ X, t ≥ 0 =⇒
∫ t

0
T (s)x ds ∈ D(A) and A

∫ t
0
T (s)x ds =

T (t)x− x.

(b) If the fuction s 7→ AT (s)x in (0, ε) is integrable for some ε > 0, then

A

∫ t

0

T (s)x ds =

∫ t

0

AT (s)x ds.

Last Change: Mon 03 Sep 2012 10:28:28 PM -05



D
R
A
F
T

CHAPTER 6. Analytic semigroups 123

(iii) (a) x ∈ D(A), Ax ∈ D(A) =⇒ limt→0 t
−1
(
T (t)x− x

)
= Ax,

(b) If the limit y = limt→0 t
−1
(
T (t)x− x

)
exists, then x ∈ D(A), Ax ∈

D(A) and y = Ax.

(iv) x ∈ D(A), Ax ∈ D(A) =⇒ limt→0AT (t)x = Ax.

Proof. (i) (a) was shown in Proposition 6.3 (iv). Assume that x, y satisfy (b).
Since T (t)x ∈ D(A) for all t > 0 and y = limt↘0 T (t)x, it follows that y ∈ D(A).
Now let λ ∈ ρ(A). By (a), we obtain

R(λ,A)y = lim
t↘0

R(λ,A)T (t)x = lim
t↘0

T (t)R(λ,A)x︸ ︷︷ ︸
∈D(A)

= R(λ,A)x.

(ii) (a) Let λ ∈ ρ(A), x ∈ X and t > 0. For ε ∈ (0, t) it follows that∫ t

ε

T (s)x ds =

∫ t

ε

(λ−A)R(λ,A)T (s)x ds = λ

∫ t

ε

R(λ,A)T (s)x ds−
∫ t

ε

AR(λ,A)T (s)x ds

= λ

∫ t

ε

R(λ,A)T (s)x ds−
∫ t

ε

d

ds
T (s)R(λ,A)x ds

= λ

∫ t

ε

T (s)R(λ,A)x ds− T (t)R(λ,A)x+ T (ε)R(λ,A)x.

Hence the limit for ε→ 0 exists and∫ t

0

T (s)x ds = λ

∫ t

0

T (s)R(λ,A)x ds−R(λ,A)T (t)x+R(λ,A)T (0)x

= λR(λ,A)

∫ t

0

T (s)x ds−R(λ,A)
(
T (t)x− x

)
∈ D(A).

The claim follows from

R(λ,A)A

∫ t

0

T (s)x ds =
(
λR(λ,A)− 1

) ∫ t

0

T (s)x ds = R(λ,A)
(
T (t)x− x

)
(b) Let x ∈ X and ε > 0. Suppose that s 7→ T (s)x is integrable in (0, ε). Then
also s 7→ ‖T (s)x‖ is integrable in (0, ε) and therefore the improper integral of
s 7→ T (s)x in (0, t) exists. So the claim follows from Theorem ??.

(iii) (a) Shows that (ii) that

t−1
(
T (t)x− x

)
= t−1A

∫ t

0

T (s)x ds = t−1

∫ t

0

AT (s)x ds

= t−1

∫ t

0

T (s)Ax ds
t→0−−−−→ T (0)Ax = Ax,

because the integrand T (·)x is continuous in [0, t] by (i) because Ax ∈ D(A).
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(b) Let x ∈ X such that the limit y = limt→0 t
−1
(
T (t)x− x

)
exists. Then, for

λ ∈ ρ(A):

R(λ,A)y = lim
t→0

t−1R(λ,A)
(
T (t)x− x

)
= lim
t→0

t−1R(λ,A)A

∫ t

0

T (s)x ds

= lim
t→0

t−1
(
λR(λ,A)− 1

) ∫ t

0

T (s)x ds =
(
λR(λ,A)− 1

)
lim
t→0

t−1

∫ t

0

T (s)x ds

(∗)
=
(
λR(λ,A)− 1

)
x

so x ∈ D(A) and R(λ,A)y = R(λ,A)Ax. In (∗) we used

lim
t↘0

t−1
(
T (t)x− x

)
exists =⇒ lim

t↘
T (t)x = x =⇒ x ∈ D(A)

=⇒ s 7→ T (s)x continuous in [0, t].

Connection with the Cauchy problem.

Let A as in the proposition above, T = (T (z))z∈Σδ se analytic semigroup gen-
erated by A and x0 ∈ X. Consider the initial value problem

x′(t) = Ax(t), t > 0, x(0) = x0. (6.5)

• x0 ∈ X arbitrary Then z 7→ T (z)x0 is an analytic solution of x′ = Ax in
the open sector Σδ and T (z)x0 ∈ D(A) for all z ∈ Σδ.

• x0 ∈ D(A): The solution T (·)x0 is continuous in 0, hence it solves the
initial value problem (6.5) for t > 0.

• x0 ∈ D(A): The solution T (·)x0 is differentiable in 0, hence it solves the
initial value problem (6.5) for t > 0.

Remark. If x0 ∈ X, then by definition T (0)x0 = x0, but limt↘0 T (t)x0 = x0

holds only if x0 ∈ D(A). But it is always true that

lim
t↘0

R(λ,A)T (t)x0 = R(λ,A)x0, λ ∈ ρ(A).
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Chapter 7

Exercises

Exercises for Chapter 1

1. Sea H un espacio de Hilbert. Si (xn)n∈N es una sucesión de vectores ortog-
onales dos a dos en H, entonces lo siguiente es equivalente:

(a)

∞∑
n=1

xn converge en norma en H.

(b)

∞∑
n=1

||xn||2 <∞.

(c)

∞∑
n=1

〈xn, y〉 converge para cada y ∈ H.

2. Sean P1 y P2 proyecciones ortogonales en el espacio de Hilbert H. Entonces
tenemos que

‖P1 − P2‖ = max{ρ12, ρ21}

donde

ρjk := sup
{
‖Pjx‖ : x ∈ rg(Pk)⊥, ‖x‖ ≤ 1

}
.

3. Si P y Q son proyecciones ortogonales en el espacio de Hilbert H tales que
‖P −Q‖ < 1, entonces

dim (rgP ) = dim (rgQ), dim (rg(I − P )) = dim (rg(I −Q)).

4. Sea S el right shift en `2(Z) definido por

(Sx)k = xk−1, k ∈ Z,

donde x = (xk)∞k=−∞ pertenece a `2(Z). Determine σp(S), σc(S), σr(S).
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5. (a) Muestre que el espectro de un operador acotado en un espacio de Ba-
nach nunca es vaćıo.

(b) También se tiene para operadores no acotados? (Prueba o contraejem-
plo!)

6. Sean H1, H2 y H3 espacios de Hilbert y S(H1 → H2) y T (H2 → H3)
operadores lineales densamente definidos.

(a) Si T ∈ L(H2, H3) entonces TS es densamente definido y (TS)∗ = S∗T ∗.

(b) Si S es inyectivo y S−1 ∈ L(H2, H1) entonces TS es densamente
definido y (TS)∗ = S∗T ∗.

(c) Si S es inyectivo y S−1 ∈ L(H2, H1) entonces S∗ es inyectivo y (S∗)−1 =
(S−1)∗

Sea X un espacio de Banach, A ⊆ X, B ⊆ X ′. Se definen los conjuntos

A◦ := {ϕ ∈ X ′ : ϕ(a) = 0 for all a ∈ A} =: annihilator of A,
◦B := {x ∈ X : b(x) = 0 for all b ∈ B} =: annihilator of B.

7. Sea X un espacio de Banach, A ⊆ X, B ⊆ X ′.

(a) Muestre que A◦ y ◦B son subespacios cerrados y que

A◦ =
(

spanA
)◦

y ◦B = ◦
(

spanB
)
.

(b) Muestre ◦
(
A◦
)

= spanA y
(◦B)◦ ⊇ spanB

8. (a) Sean X,Y espacios de Banach, Y 6= {0} y T (X → Y ) un operador
lineal cerrado con dominio denso. Muestre que D(T ′) 6= {0}.
Hint. Muestre que para todo y ∈ D(T ′), y 6= 0, existe un ϕ ∈ D(T ′)
tal que ϕ(y) 6= 0.

(b) Muestre por lo menos dos puntos de lo siguiente:

(i)
(

rg T
)◦

=
(
rg T

)◦
= kerT ′,

(ii) rg T = ◦
(

kerT ′
)
,

(iii) rg T = Y ⇐⇒ T ′ es inyectivo,

(iv) ◦rg T ′ ∩ D(T ) = kerT ,

(v) rg T ′ ⊆
(

kerT
)◦

.
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Exercises for Chapter 2

1. Sea α ∈ BV[a, b], f ∈ I[a, b] y definaK : [a, b]→ K porK(x) :=

∫ x

a

f(t) dα(t)

para x ∈ (a, b] y K(a) := 0. Muestre:

(a) K ∈ BV[a, b].

(b) Si α es continua por la derecha en s ∈ [a, b), entonces K también lo es.

(c)

∫ b

a

g(t) dK(t) =

∫ b

a

(fg)(t) dα(t) para todo g ∈ I[a, b].

2. Sea H un espacio de Hilbert y T ∈ L(H) un operador compacto autoadjunto
con autovalores distintos µj . Sea Pj la proyección ortogonal sobre el espacio
propio de T respecto a λj . Muestre que (Eλ)λ∈R es una resoluión de la
identidad donde

Eλx :=


∑
λj≤λ Pjx, λ < 0,

x−
∑
λj>λ

Pjx, λ ≥ 0,
λ ∈ R, x ∈ H.

3. Sea H un espacio de Hilbert, (Eλ)λ∈R una resoluión de la identidad en H y
ϕ : R → (a, b) una biyección continua no decreciente. Suponga que Ea = 0
y Eb−0 = Eb = I. Muestre que (F (λ))λ∈R es una resoluión de la identidad
en H donde

Fλ := Eϕ(λ), λ ∈ R.

4. (a) Sea H un espacio de Hilbert, sean ϕ : R → (a, b), (Eλ)λ∈R y (Fλ)λ∈R
como en Exercise 2.4. Sea f : (a, b) → R tal que f |[a0,b0] ⊆ I[a0, b0]
para cada subintervalo compacto [a0, b0] de (a, b). Muestre:

(i)

∫ ϕ(β)

ϕ(α)

f(λ) dEλ =

∫ β

α

(f ◦ ϕ)(λ) dFλ para todo [α, β] ⊆ R.

(ii) Sea x ∈ H. Entonces

∫ b−0

a+0

f(λ) dEλx existe si y solo si

∫ ∞
−∞

(f ◦

ϕ)(λ) dFλx existe.1

(b) Sea H un espacio de Hilbert y ϕ : R → R creciente y continua y f :
R→ R una función continua. Sea A ∈ L(H) un operador autoadjunto
y B := ϕ(A). Muestre (f ◦ ϕ)(A) = f(B).

5. Muestre Lemma ??: Sea H un espacio de Hilbert, (Eλ)λ∈R una resoluión de
la identidad en H y f, g ∈ I[a, b]. Muestre:

1

∫ b−0

a+0
f(λ) dEλx := lim

λ1↘a
λ2↗b

∫ λ2

λ1

f(λ) dEλ,

∫ ∞
−∞

(f ◦ϕ)(λ) dFλx := lim
λ1↘−∞
λ2↗∞

∫ λ2

λ1

(f ◦

ϕ)(λ) dFλ x
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(a)
〈(∫ b

a

f(λ) dEλ

)
x , y

〉
=

∫ b

a

f(λ) 〈Eλx , y〉, x, y ∈ H;

(b)

∫ b

a

f(λ) dEλ = 0 para f ≡ 0,

∫ b

a

f(λ) dEλ =

∫ b

a

dEλ = Eb−Ea
para f ≡ 1;

(c) Eµ

∫ b

a

f(λ) dEλ =

∫ µ

a

f(λ) dEλ, a ≤ µ ≤ b;

(d)
(∫ b

a

f(λ) dEλ

)(∫ b

a

g(λ) dEλ

)
=

∫ b

a

f(λ)g(λ) dEλ;

(e)
(∫ b

a

f(λ) dEλ

)∗
=

∫ b

a

f(λ) dEλ;

(f)
∥∥∥∫ b

a

f(λ) dEλx
∥∥∥2

=

∫ b

a

|f(λ)|2 d‖Eλx‖2 , x ∈ H.

6. Sea a : [0, 1]→ R continua y sea A : L2(0, 1)→ L2(0, 1) definido por

(Ax)(t) := a(t)x(t), t ∈ (0, 1), x ∈ L2(0, 1).

(a) Muestre que A es autoadjunto.

(b) Encuentre m := infx∈H,‖x‖=1〈Ax, x〉 y M := supx∈H,‖x‖=1〈Ax, x〉.
(c) Encuentre la resolución espectral de A.

7. Sean A y B operatores acotadas autoadjuntas en un espacio de Hilbert H
con resoluciones espectrales (EA(λ))λ∈R y (EB(λ))λ∈R. Si A ≥ B, entonces2

dimEA(λ) ≤ dimEB(λ) para cada λ ∈ R.

8. Sea H un espacio e Hilbert y A ∈ L(H).

(a) Muestre que Exp(A) :=

∞∑
n=0

1

n!
An converge en norma. Muestre que(

Exp(A)
)∗

= Exp(A∗). En particular, Exp(A) es autoadjunto y
(

Exp(iA)
)∗

=
Exp(−iA) si A es autoadjunto.

(b) Muestre que Exp(A) = exp(A) si A es autoadjunto y exp(A) es definido
a traves del cálculo funcional.

9. Sea H un espacio complejo de Hilbert, A un operador autoadjunto tal que
A−1 existe y es densamente definido. Sea U la transformada de Cayley de
A. Muestre:

(a) A−1 es simétrico.

(b) La transformada de Cayley de A−1 es −U−1.

2usando la notación dimP := dim(rgP ) para una proyección ortogonal P .
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(c) A−1 es autoadjunto.

10. Sea (en)n∈N una base ortonormal en un espacio complejo de Hilbert H y
(αn)n∈N ⊆ R. Define el operador A(H → H) por

D := {x ∈ H :

∞∑
n=1

|αn〈x , en〉|2 <∞}, Ax :=

∞∑
n=1

αn〈x , en〉 en for x ∈ D.

(a) Muestre que A es bien definido, cerrado y simétrico.

(b) Encuentre la transformada de Cayley de A.

11. Sea H un espacio complejo de Hilbert, A ∈ L(H) un operador autoadjunto y
f ∈ C(σ(A)). Muestre que f(σ(A)) = σ(f(A)). Muestre que f(A)x = f(λ)x
si Ax = λx.

12. Sea (Eλ)λ∈R una resolución de la identidad y f : R → R continua. Define
A(H → H) por

Ax :=

∫ ∞
∞

f(λ) dEλx para x ∈ D(A) := {x ∈ H :

∫ ∞
−∞
|f(λ)|2 d〈Eλx , x〉 <∞}.

(a) rg(Eλ − Eµ) ⊆ D(A) para todo µ < λ ∈ R.

(b) D(A) es un subespacio denso de H y A es bien definido.

(c) A es autoadjunto.

(d) EλA ⊆ AEλ.

13. (a) El left shift en `2(N) es la transformada de Cayley de un operador
simétrico A? Si es aśı, determine A y sus indices de defecto dim(rg(A±
i)⊥).

(b) El right shift en `2(N) es la transformada de Cayley de un operador
simétrico B? Si es aśı, determine B y sus indices de defecto dim(rg(B±
i)⊥).

14. Sea A un operador autoadjunto y z ∈ ρ(A). Muestre que ‖(A− z)−1‖−1 =
dist(z, σ(A)).

15. Sea P : L2(Rn) → L2(Rn), (Pf)(t) = f(−t). Muestre que P es autoad-
junto, calcule su espectro y su resolución espectral.

16. Sea A un operador autoadjunto en un espacio de Hilbert complejo H con
resolución espectral (Eλ)λ∈R. Muestre

s- lim
ε↘0

1

2πi

∫ b

a

[
(A− λ− iε)−1 − (A− λ+ iε)−1

]
dλ =

1

2

(
E([a, b]) + E((a, b))

)
.
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17. Use la fórmula de Stone para encontrar la resolución espectral de al menos
uno de los operadores siguientes:

(a) T =

(
1 0
0 2

)
on C2.

(b) Sea (X,µ) un espacio de medida y g : X → R una función µ-medible.
Define el operador maximal de multiplicación Tg en L2(X) por

D(Tg) :=
{
f ∈ L2(X) : fg ∈ L2(X)

}
, Tgf := gf for x ∈ D(Tg).

18. Sea H un espacio de Hilbert complejo y T (H → H) un operador lineal
autoadjunto. Sea a, b ∈ ρ(T )∩R y Γ una curva de Jordan simple rectificable
y positivamente orientada tal que encierra a (a, b) ∩ σ(T ) y que el resto del
espectro está fuera de Γ. Muestre

E(b)− E(a) =
1

2πi

∮
Γ

(λ− T )−1 dλ.

19. Sea X un espacio de Banach complejo y T ∈ L(X) un operador acotado.
Sea Γ una curva de Jordan simple rectificable y positivamente orientada tal
que encierra σ(T ). Muestre:

Tn =
1

2πi

∮
Γ

λn(λ− T )−1 dλ, λ ∈ N0.

20. Sea X un espacio de Banach y T (X → X) un operador lineal cerrado. Un
conjunto espectral (spectral set) es un subconjunto Σ de σ(T ) tal que Σ y
σ(T ) \ Σ con cerrados en el plano complejo extendido. Sea Σ un conjunto
espectral de T acotado y Γ una curva de Jordan rectificable en ρ(T ) tal que

encierre Σ y σ(T ) \Σ queda fuera de Γ. Muestre que 1
2πi

∮
Γ

(λ− T )−1 dλ es

una proyección que conmuta con T .

21. Sea H un espacio de Hilbert complejo y S, T (H → H) operadores autoad-
juntos.

(a) Sea z ∈ ρ(T ) y λ ∈ C \ {z}. Muestre que λ ∈ σess(T ) si y solo si existe
una sucesión (xn)n∈N ⊆ H tal que

xn 6→ 0, xn
w−→ 0 and

(
(T − z)−1 − (λ− z)−1

)
xn → 0 for n→∞.

(b) Suponga que existe z ∈ ρ(S) ∩ ρ(T ) tal que (S − z)−1 − (T − z)−1 es
compacto. Muestre que σess(S) = σess(T ).
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Exercises for Chapter 3

1. Sea R+ := (0,∞) y D(T ) := C∞c (R+) = {f ∈ C∞ : supp(f) es compacto}.
Define

T : D(T ) ⊆ L2(R+)→ L2(R+), Tx = ix′.

Se puede mostrar que

D(T ∗) =

{
x ∈ L2(R+) :

x|I es abs. continua para cada intervalo compacto I ⊆ R+

y x′ ∈ L2(R+)

}

y T ∗x = ix′ para x ∈ D(T ∗).

Calcule los indices de defecto de T . Tiene extensiones autoadjuntos? Si es
aśı, determine todas las extensiones autoadjuntas.

2. Sea H un espacio de Hilbert complejo y S(H → H) un operador lin-
eal densamente definido y clausurable. Muestre que Γ(S) = Γ(S) y que
n(S, λ) = n(S, λ) para todo λ ∈ Γ(S). Concluya que n(S, ·) es constante en
componentes conexas de Γ(S).

3. Sea H un espacio de Hilbert complejo, S(H → H) un operador simétrico
con indices de defecto n+(S) = n−(S) = m <∞.

(i)Sean T1, T2 extensiones autoadjuntas de S y λ ∈ C tal que rg(T1 − λ)
no es cerrado. Muestre que rg(T2 − λ) tampoco lo es. Concluya que
σc(T1) ⊆ σ(T2) y σc(T2) ⊆ σ(T1).

(ii)Sea λ ∈ Γ(S) ∩R. Muestre que existe una extensión autoadjunta T de
S tal que λ es un autovalor de T de dimensión finita.

Hint. dim(ker(S∗ − λ)) = ?

4. Sea H un espacio de Hilbert complejo y T (H → H) autoadjunto. Suponga
que existe λ ∈ C tal que (T − λ)−1 es compacto. Muestre:

(i)(T − µ)−1 es compacto para todo µ ∈ ρ(T ).

(ii)σ(T ) = σp(T ), los autovalores no tienen un punto de acumulación y
cada autovalor tiene multiplicidad finita.

5. Sea H un espacio de Hilbert complejo y S(H → H), T (H → H) operadores
autoadjuntos. Suponga que existe un z ∈ ρ(S) ∩ ρ(T ) tal que (S − z)−1 −
(T − z)−1 es compacto.

(a) Muestre que (S − λ)−1 − (T − λ)−1 es compacto para todo λ ∈ ρ(S)∩
ρ(T ).

(b) Muestre que σess(S) = σess(T ).
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Exercises for Chapter 4

1. Sean X,Y, Z espacios de Banach y T (X → Y ), S(X → Z) operadores lin-
eales. Muestre que S es T -acotado si y solo si D(S) ⊇ D(T ) y existe α, β ≥ 0
tal que

‖Sx‖2 ≤ α2‖x‖2 + β2‖Tx‖2, x ∈ D(T ). (∗)

Muestre que el ı́nfimo de todo los β > 0 que satisfacen (∗) para un α ≥ 0 es
igual a la T -cota de S.

Hint. Muestre que 2xy ≤ c2x2 + c−2y2 for c, x, y ∈ R, c 6= 0.

2. Sea X un espacio de Banach y T (X → X) un operador lineal cerrado. Sea
S(X → X) con D(S) ⊇ D(T ) y z ∈ ρ(T ). Muestre que S es T -compacto si
y solo si S(T − z)−1 es compacto.

3. Sea H un espacio de Hilbert complejo, T (H → H) un operador autoadjunto
y semiacotado por abajo con cota inferior γ (es decir, 〈Tx , x〉 ≥ γ‖x‖ para
todo x ∈ D(T )). Sea S(H → H) un operador simétrico y T -acotado con
T -cota < 1. Muestre que T + S es semiacotado por abajo.

4. Sean X,Y, Z espacios de Banach, T (X → Y ), S(X → Z) operadores lineales
tal que S es clausurable y T -compacto. Muestre que S es T -acotado con T -
cota 0.

5. Muestre que existen espacios de HilbertH1, H2, y un operador lineal T (H1 →
H2) y un operador S tal que S es T -compacto con T -cota 1.

Hint. Considere un funcional lineal no acotado en H1.

6. Sea X un espacio de Banach, T (X → X) un operador cerrado con ρ(T ) 6= ∅
y D0 ⊆ D(T ). Muestre que D0 es un core3 of T si y solo si (T − λ)D0 es
denso en X para un (para todo) λ ∈ ρ(T ).

7. Sea H un espacio de Hilbert complejo, T, S(H → H) operadores simétricos.
Suponga que S es T -acotado con T -cota < 1. Muestre que n+(T + S) =
n+(T ) y n−(T + S) = n−(T ).

Hints. Basta mostrar que dim(rg(T ± iλ)⊥) = dim(rg(T + S ± iλ)⊥) para
un/todo λ > 0. Para mostrar dim(rg(T ± iλ)⊥) ≥ dim(rg(T + S ± iλ)⊥), se
puede escoger, por ejemplo, λ = a/b con a, b los constantes de la acotación
relativa.

Para mostrar que dim(rg(T ± iλ)⊥) ≤ dim(rg(T + S ± iλ)⊥) muestre que
existe un n ∈ N tal que 1

nS tiene (T + µS)-cota < 1 para todo µ ∈ [0, 1].

3Un subespacion D0 ⊆ D(T ) es un core del operador cerrado T si la clausura de la re-
stricción T |D0

es igual a T .
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Concluye que

dim
(

rg
(
T +S± i

)⊥)
= dim

(
rg
(
(T + n−1

n S)+ 1
nS± i

)⊥) ≤ dim
(

rg
(
(T +

n−1
n S)± i

)⊥) ≤ . . . .
Exercises for Chapter 5

1. Muestre que cada solución continua f : R→ R de

f(s+ t) = f(s)f(t)

es diferenciable y por tanto es de la forma f(t) = c eta.

2. SeaX un espacio de Banach complejo yA ∈ L(X) un operador lineal acotado
y t ∈ R. Sea Γ una curva de Jordan rectificable y positivamente orientada
tal que encierra el espectro de A. Muestre que

∞∑
n=0

1

n!
tnAn =

1

2πi

∮
Γ

eλt(λ−A)−1 dλ. (∗)

Si X es un espacio de Hilbert y A es autoadjunto, el operador en (∗) coincide
con exp(tA) definido a través del cálculo funcional.

3.

4.

5.

6.

7.

8.

9.
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