Teoría de operadores

Taller 14

Shift semigroup; producto de semigrupos.

Fecha de entrega: 14 de noviembre 2025

1. Sea $X = \{ f \in C[0,1] : f(1) = 0 \}$ y

$$T(t): X \to X, \quad T(t)f(\xi) = \begin{cases} f(\xi+t), & \text{si } 0 \le \xi+t \le 1, \\ 0 & \text{else.} \end{cases}$$

Muestre que $(T(t))_{t\geq 0}$ es un semigrupo fuertemente continuo en X. Halle su generador y su cota de crecimiento.

2. Sea X un espacio de Banach y $\mathcal{T} = (T(t))_{t \geq 0}$ un semigrupo fuertemente continuo en X con generador infinitesimal $(A, \mathcal{D}(A))$. Suponga que $\mathcal{D}_0 \subseteq \mathcal{D}(A)$ es denso en X y que es invariante bajo el semigrupo (es decir, $T(t)x \in \mathcal{D}_0$ para todo $x \in \mathcal{D}_0$ y $t \geq 0$). Demuestre que \mathcal{D}_0 es un core de A.

Sugerencia. Sin restriccón podemos asumir que $\{\lambda \in \mathbb{C} : \text{Re}(\lambda) \geq 0\} \subseteq \varrho(A)$. Según un taller anterior es suficiente probar que $A(\mathcal{D}_0)$ es denso en X. Es más o menos claro que para todo $x \in \mathcal{D}_0$ y $t \geq 0$ el elemento

$$\frac{1}{t}A\int_0^t T(s)x\,\mathrm{d}s = \frac{1}{t}\int_0^t T(s)Ax\,\mathrm{d}s$$

pertence a la clausura de $A(\mathcal{D}_0)$ ya que la integral es límite de sumas de Riemann.

- 3. Sea X un espacio de Banach y sean $(S(t))_{t\geq 0}$ y $(T(t))_{t\geq 0}$ semigrupos fuertemente continuos y suponga que S(t)T(t) = T(t)S(t) para todo $t\geq 0$.
 - (a) Demuestre que S(s)T(t) = T(t)S(s) para todo $s, t \ge 0$.
 - (b) Para $t \ge 0$ defina U(t) := S(t)T(t). Demuestre que $(U(t))_{t \ge 0}$ es un semigrupo fuertemente continuo.
- 4. Sea X un espacio de Banach y sean $(S(t))_{t\geq 0}$ y $(T(t))_{t\geq 0}$ semigrupos fuertemente continuos que conmutan con generadores A y B y defina U(t) = S(t)T(t). Sea C el generador de $(U(t))_{t\geq 0}$.
 - (a) Demuestre que $\mathcal{D}_0 := \mathcal{D}(A) \cap \mathcal{D}(B) \subseteq \mathcal{D}(C)$ y que es un *core* para C.
 - (b) Demuestre que Cx = Ax + Bx para todo $x \in \mathcal{D}_0 = \mathcal{D}(A) \cap \mathcal{D}(B)$.
- 5. Ejercicio voluntario. Sea X un espacio de Banach y sea $I \subseteq \mathbb{R}$ un intervalo. Para $P,Q:I \to L(X)$ demuestre:
 - (a) Si $P ext{ y } Q$ son fuertemente continuas, entonces su producto $PQ: I \to L(X), (PQ)(t) := P(t)Q(t)$ también es fuertemente continuo.
 - (b) Si $P ext{ y } Q$ son fuertemente difernciables, entonces su producto $PQ: I \to L(X), \ (PQ)(t) := P(t)Q(t)$ también es fuertemente diferenciable.