Teoría de operadores

Taller 13

Yosida approximants; semigrupos de contracción.

Fecha de entrega: 07 de noviembre 2025

- 1. Sea X un espacio de Banach, $A(X \to X)$ un operador lineal $y \omega \in \mathbb{R}$ tal que $\{\lambda \in \mathbb{R} : \lambda > \omega\} \subseteq \varrho(A)$ $y \|(\lambda A)^{-1}\| \le \frac{M}{(\operatorname{Re}\lambda \omega)}$. Para $\lambda > \omega$ defina $A_{\lambda} := \lambda A(\lambda A)^{-1}$. Muestre:
 - (a) $A_{\lambda} \in L(X)$,
 - (b) $\lim_{\lambda \to \infty} \lambda(\lambda A)^{-1}x = x, x \in X,$
 - (c) $\lim_{\lambda \to \infty} A_{\lambda} x = Ax, x \in \mathcal{D}(A).$
- 2. Sea $(X, \|\cdot\|)$ un espacio de Banach y $\mathcal{T} = (T(t))_{t\geq 0}$ un semigrupo fuertemente continuo y acotado en X (es decir, existe un $R \in \mathbb{R}$ tal que $\|T(t)\| \leq R$ para todo $t \geq 0$). Entonces

$$||x||_{\mathcal{T}} := \sup\{ ||T(s)x|| : s \ge 0 \}, \quad x \in X,$$

define una norma que es equivalente a $\|\cdot\|$.

- 3. Sea $(X, \|\cdot\|)$ un espacio de Banach y $\mathcal{T} = (T(t))_{t\geq 0}$ un semigrupo fuertemente continuo y acotado en X. Muestre que existe un norma $\|\cdot\|_1$ en X que es equivalente a $\|\cdot\|$ tal que \mathcal{T} es un semigrupo de contracción con respecto a la norma $\|\cdot\|_1$.
- 4. Escoja su proyecto final.