Teoría de operadores

Taller 7

Transformada de Cayley; espectro de operadores autoadjuntos.

Fecha de entrega: 2 de ocutubre de 2020 en este enlace

- 1. Sea H un espacio de Hilbert de dimensión infinita y sea $T \in L(H)$ un operador autoadjunto. Demuestre que T es compacto si y solo si $\sigma_{\text{ess}}(T) = \{0\}$.
- 2. Sea H un espacio de Hilbert y sea $T(H \to H)$ un operador autoadjunto. Demuestre que lo siguiente es equivalente:
 - (a) $\sigma(T) = \sigma_{\rm d}(T)$.
 - (b) $(T \lambda)^{-1}$ es compacto para un $\lambda \in \varrho(T)$.
 - (c) $\varrho(T) \neq \emptyset$ y $(T \lambda)^{-1}$ es compacto para todo $\lambda \in \varrho(T)$.
- 3. Sea H un espacio de Hilbert y sea $T(H \to H)$ un operador autoadjunto con resolución espectral $(E_t)_{t \in \mathbb{R}}$.
 - (a) Suponga que existe un $\gamma \in \mathbb{R}$ tal que $\dim(\operatorname{rg}(E_{\gamma-0})) = m < \infty$. Demuestre que $\sigma(T) \cap (-\infty, \gamma)$ consiste solamente de finitos autovalores con multiplicidad total $\leq m$. Demuestre que T es semiacotado por abajo.
 - (b) Sea $U \subseteq H$ un subespacio cerrado con $\dim U^{\perp} = m < \infty$. Sea P la proyección ortogonal sobre U y suponga que $P(\mathcal{D}(T)) \subseteq \mathcal{D}(T)$. Suponga que existe un $\gamma \in \mathbb{R}$ tal que $\langle Tx, x \rangle \geq \gamma ||x||^2$ para todo $x \in P(\mathcal{D}(T))$. Demuestre que $\sigma(T) \cap (-\infty, \gamma)$ consiste solamente de finitos autovalores con multiplicidad total $\leq m$. Demuestre que T es semiacotado por abajo.
- 4. Sea H un espacio de Hilbert y $Q \in L(H)$ una proyección ortogonal.
 - (a) Use la fórmula de Stone para calcular la resolución espectral de Q.
 - (b) Calcule la transformada de Cayley de Q.

Ejercicio voluntario

5. Sea $T: \ell_2(\mathbb{N}) \to \ell_2(\mathbb{N}), \ Tx = (-\frac{1}{n}x_n)_{n \in \mathbb{N}}$. Muestre que existe un vector cíclico y calcule la representación espectral de T.