Teoría de operadores

Taller 9

Fecha de entrega: 16 de octubre 2015

Indices de defecto; extensiones autoadjuntas.

- 1. Sea H un espacio de Hilbert complejo y $S(H \to H)$ un operador lineal densamente definido y clausurable. Muestre que $\Gamma(S) = \Gamma(\overline{S})$ y que $n(S, \lambda) = n(\overline{S}, \lambda)$ para todo $\lambda \in \Gamma(S)$. Concluya que $n(S, \cdot)$ es constante en componentes conexas de $\Gamma(S)$.
- 2. Sea H un espacio de Hilbert complejo, $S(H \to H)$ un operador simétrico con indices de defecto $n_+(S) = n_-(S) = m < \infty$.
 - (i) Sean T_1 , T_2 extensiones autoadjuntas de S y $\lambda \in \mathbb{C}$ tal que $\operatorname{rg}(T_1 \lambda)$ no es cerrado. Muestre que $\operatorname{rg}(T_2 - \lambda)$ tampoco lo es. Concluya que $\sigma_c(T_1) \subseteq \sigma(T_2)$ y $\sigma_c(T_2) \subseteq \sigma(T_1)$.
 - (ii) Sea $\lambda \in \Gamma(S) \cap \mathbb{R}$. Muestre que existe una extensión autoadjunta T de S tal que λ es un autovalor de T de dimensión finita.

Hint. dim(ker($S^* - \lambda$)) = ?

- 3. Sea H un espacio de Hilbert complejo y $S(H \to H)$, $T(H \to H)$ operadores autoadjuntos. Suponga que existe un $z \in \varrho(S) \cap \varrho(T)$ tal que $(S-z)^{-1} (T-z)^{-1}$ es compacto.
 - (a) Muestre que $(S \lambda)^{-1} (T \lambda)^{-1}$ es compacto para todo $\lambda \in \varrho(S) \cap \varrho(T)$.
 - (b) Muestre que $\sigma_{ess}(S) = \sigma_{ess}(T)$.
- 4. Sean X, Y, Z espacios de Banach y $T(X \to Y), S(X \to Z)$ operadores lineales. Muestre que S es T-acotado si y solo si $\mathcal{D}(S) \supseteq \mathcal{D}(T)$ y existe $\alpha, \beta \geq 0$ tal que

$$||Sx||^2 \le \alpha^2 ||x||^2 + \beta^2 ||Tx||^2, \qquad x \in \mathcal{D}(T).$$
 (*)

Muestre que el ínfimo de todo los $\beta > 0$ que satisfacen (*) para un $\alpha \geq 0$ es igual a la T-cota de S.

Hint. Muestre que $2xy \le c^2x^2 + c^{-2}y^2$ for $c, x, y \in \mathbb{R}, c \ne 0$.