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Chapter 1

Preliminaries

2 Aug 2010
In this chapter we collect some well-known facts from functional analysis.

Definition 1.1. Let X be a vector space over K. (X, ‖ · ‖) is called a normed space
with norm ‖ · ‖ if

‖ · ‖ : X → R

is a map such that for all x, y ∈ X , α ∈ K

(i) ‖x‖ = 0 ⇐⇒ x = 0,

(ii) ‖αx‖ = |α| ‖x‖,
(iii) ‖x + y‖ ≤ ‖x‖ + ‖y‖.

If ‖ · ‖ satisfies only (ii) and (iii), it is called a seminorm.

Note that ‖x‖ ≥ 0 for all x ∈ X because 0 = ‖x − x‖ ≤ 2‖x‖. The last inequality
follows from the triangle inequality (iii) and (ii) with α = −1.

Definition 1.2. A normed space (X, ‖ · ‖) is a Banach space if it is complete with
respect to the topology induced by ‖ · ‖.

Definition 1.3. Let X be a K-vector space. A map

〈· , ·〉 : X × X → K

is a sesquilinear form on X if for all x, y, z ∈ X , λ ∈ K

(i) 〈λx + y , z〉 = λ〈x , z〉 + 〈y , z〉,
(ii) 〈x , λy + z〉 = λ〈x , y〉 + 〈x , z〉.

The inner product is called

• hermitian ⇐⇒ 〈x , y〉 = 〈y , x〉, x, z ∈ X ,

• positive semidefinite ⇐⇒ 〈x , x〉 ≥ 0, x ∈ X ,

• positive (definite) ⇐⇒ 〈x , x〉 > 0, x ∈ X \ {0}.

Definition 1.4. A positive definite hermitian sesquilinear form on a K-vector X
is called an inner product on X and (X, 〈· , ·〉) is called an inner product space (or
pre-Hilbert space).

Note that for a hermitian sesquilinear form 〈x , x〉 ∈ R for every x ∈ X because
〈x , x〉 = 〈x , x〉.
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Lemma 1.5 (Cauchy-Schwarz inequality). Let X be a K-vector space with
inner product 〈· , ·〉. Then for all x, y ∈ X

|〈x , y〉|2 ≤ |〈x , x〉| |〈y , y〉|, (1.1)

with equality if and only if x and y are linearly dependent.

Proof. For x = 0 or y = 0 there is nothing to show. Now assume that y 6= 0. For
all λ ∈ K

0 ≤ 〈x + λy , x + λy〉 = 〈x , x〉 + λ〈y , x〉 + λ〈x , y〉 + |λ|2〈y , y〉.

In particular, when we choose λ = − 〈x ,y〉
〈y ,y〉 we obtain

0 ≤ 〈x + λy , x + λy〉 = 〈x , x〉 − |〈y , x〉|2
〈y , y〉 − |〈x , y〉|2

〈y , y〉 +
|〈x , y〉|2
〈y , y〉

= 〈x , x〉 − |〈x , y〉|2
〈y , y〉

which proves (1.1). If there exist α, β ∈ K such that αx + βy = 0, then obviously
equality holds in (1.1). On the other hand, if equality holds, then 〈x+λy , x+λy〉 = 0
with λ chosen as above, so x and y are linearly dependent.

Note that (1.1) is true also in a space X with a semidefinite hermitian sesquilinear
form but equality in (1.1) does not imply that x and y are linearly dependent.

Lemma 1.6. An inner product space (X, 〈· , ·〉) becomes a normed space by setting

‖x‖ := 〈x , x〉 1
2 , x ∈ X.

Definition 1.7. A complete inner product space is called a Hilbert space.

Definition 1.8. Let X, Y be normed spaces. A map T : X → Y is called a linear
operator from X to Y if

T (αx + y) = αTx + Ty, α ∈ K, x, y ∈ X.

A linear operator T from X to Y is called bounded with norm ‖T ‖ if

‖T ‖ := sup{‖Tx]‖ : x ∈ X, ‖x‖ = 1} < ∞.

If T is not bounded it is called unbounded. The set of all bounded linear operators
from X to Y is denoted by L(X, Y ).

It is easy to check that

‖T ‖ = sup{‖Tx‖ : x ∈ X, ‖x‖ = 1}
= sup{‖Tx‖ : x ∈ X, ‖x‖ ≤ 1}

= sup
{‖Tx‖

‖x‖ : x ∈ X, x 6= 0
}

= inf{M ∈ R : ∀x ∈ X ‖Tx‖ ≤ M‖x‖}.

and that the following is equivalent:

(i) T is continuous.

(ii) T is continuous in 0.

Last Change: Sun Sep 12 11:22:58 COT 2010
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Chapter 1. Preliminaries 5

(iii) T is bounded.

(iv) T is uniformly continuous.

Theorem 1.9. Let X, Y be normed spaces. Then (L(X, Y ), ‖·‖) is a normed space.
If Y is a Banach space, then L(X, Y ) is a Banach space.

Remark. Sometimes T is defined only on a (not necessarily closed) subspace D ⊂
X . Then we write

T : X ⊇ D(T ) → Y

if T |D : D → Y is a linear operator in the sense above. When the domain is not
mentioned explicitely, we sometimes write T (X, Y ) or T (X → Y ).

In general, linear operators which are not defined on all of X will be unbounded.

Example 1.10. Let X = (C[0, 1], ‖ · ‖∞) be the space of the continuous functions
on [0, 1] together with the supremum norm ‖f‖∞ = sup{|f(t)| : t ∈ [0, 1]} and let
D := C1[0, 1] the space of the once continuously differentiable functions. Then the
differential operator

T : X ⊇ D → X, Tf = f ′

is an unbounded linear operator.

Proof. Well-definedness and linearity is clear. For n ∈ N0 define fn ∈ C[0, 1] by
fn(t) = tn. Obviously ‖fn‖∞ = 1 and ‖Tfn‖∞ = n‖fn−1‖∞ = n for all n ∈ N.
Hence T is unbounded.

The bounded linear maps from a normed space to K play a very important role.

Definition 1.11. Let X be a normed space over K. A bounded linear map X → K

is called a definebounded linear functional on X . The dual space X ′ of X is the set
all bounded bounded linear functionals on X , i. e., X ′ = L(X, K).

Note that by Theorem 1.9 the dual space is Banach space.
That the dual space of a Hilbert space is isomorphic to itself and that every Hilbert
space is reflexive follows from the following theorem.

Theorem 1.12 (Fréchet-Riesz representation theorem). Let H be a Hilbert
space. Then the map

Φ : H → H ′, y 7→ 〈· , y〉

is an isometric antilinear bijection.

We have the natural injection X → X ′′, x 7→ x̂ where x̂(x′) = x′(x) for all x ∈ X .
This map is an isometry. If it is even a bijection, then X is called reflexive. Note
that there are normed spaces which are not reflexive but nevertheless isomorphic to
their bidual.

Theorem 1.13 (Hahn-Banach). Let X be a normed space and p : X → R a
seminorm (a sublinear functional). Let Y be a subspace of X and ϕ0 ∈ Y ′ such
that |ϕ0(y)| ≤ p(y) for all y ∈ Y . Then there exists an extension ϕ ∈ X ′ of ϕ0 with
‖ϕ‖ = ‖ϕ0‖ and |ϕ(x)| ≤ p(x) for all x ∈ X.

Last Change: Sun Sep 12 11:22:58 COT 2010
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Example 1.14. Examples for dual spaces: Let 1 ≤ p < ∞ and 1
p + 1

q = 1. Then

(ℓp(N))′ = ℓq(N)), (Lp(Ω))′ = Lq(Ω)

where (Ω, Σ, µ) is a σ-finite measure space. Note that (ℓ∞(N))′ 6= ℓ1(N) and
(L∞(Omega))′ = L1(Ω).
Denote by c0(N) the space of all sequences (xn)n∈N which converge to 0. Then
(c0(N))′ = ℓ1(N).
The analogon for function spaces is given by the following theorem.

Theorem 1.15 (Riesz representation theorem). Let K be a compact metric
space and M(K) the set of regular Borel measures of finite variation on K. Then
(C(K))′ = M(K).

An important role plays the uniform boundedness principle.

Theorem 1.16 (Uniform boundedness principle). Let X be a complete metric
space, Y a normed space and F ⊆ C(X, Y ) a family of continuous functions which
is pointwise bounded, i. e.,

∀x ∈ X ∃Cx ≥ 0 ∀ f ∈ F ‖f(x)‖ < Cx.

Then there exists an M ∈ R, x0 ∈ X and r > 0 such that

∀x ∈ Br(x0) ∀ f ∈ F ‖f(x)‖ < M. (1.2)

The following is an immediate corollary of the uniform boundedness principle.

Theorem 1.17 (Banach-Steinhaus theorem). Let X be a Banach space, Y a
normed space and F ⊆ L(X, Y ) a family of continuous linear functions which is
pointwise bounded, i. e.,

∀x ∈ X ∃Cx ≥ 0 ∀ f ∈ F ‖f(x)‖ < Cx.

Then there exists an M ∈ R such that

‖f‖ < M, f ∈ F .

Linear operators

Definition 1.18. Let X, Y be Banach spaces. A linear map T ∈ L(X, Y ) is called
open if T (U) is open in Y for every open subset U of X .

Theorem 1.19 (Open mapping theorem). Let X, Y be Banach spaces and
T ∈ L(X, Y ). Then T is open if and only if it is surjective.

The open mapping theorem has the following important corollary.

Corollary 1.20 (Inverse mapping theorem). Let X, Y be Banach spaces and
T ∈ L(X, Y ) a bijection. Then T−1 exists and is continuous.

For the definition of a closed operator we introduce the graph of a linear operator.
Let X, Y be Banach spaces. Then we can introduce a norm on X×Y by ‖(x, y)‖X×Y =
‖x‖ + ‖y‖ or ‖(x, y)‖X×Y =

√
‖x‖2 + ‖y‖2. The topolopies generated by either of

these norms coincide.

Last Change: Sun Sep 12 11:22:58 COT 2010
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Chapter 1. Preliminaries 7

Definition 1.21. Let X, Y be Banach spaces, D ⊆ X a subspace of X and T :
X ⊇ X → Y a linear operator. The graph G(T ) is

G(T ) :=
{
(x, Tx) : x ∈ D

}
⊆ X × Y.

The linear operator T is called closed if its graph is closed. It is called closable if
the closure of its graph is the graph of a linear operator. If G(T ) = G(T ) then T is
called the closure of T .

Obviously, the closure of a closable linear operator T is unique and the smallest
closed extension if T . The following characterisation of closed and closable operators
is often useful.

Lemma 1.22. Let X, Y normed space, D ⊆ X a subspace and T : X ⊇ D → Y .

(i) T is closed if and only if for every sequence (xn)n∈N ⊆ D the following is true:

(xn)n∈N and (Txn)n∈N converge

=⇒ x0 := lim
n→∞

xn ∈ D and lim
n→∞

Txn = Tx0.
(1.3)

(ii) T is closable if and only if for every sequence (xn)n∈N ⊆ D the following is
true:

lim
n→∞

xn = 0 and (Txn)n∈N converges =⇒ lim
n→∞

Txn = 0. (1.4)

The closure T of T is given by

D(T ) = {x ∈ X : ∃ (xn)n∈N ⊆ D with lim
n→∞

xn = x and (Txn)n∈N converges },

Tx = lim
n→∞

(Txn) for (xn)n∈N ⊆ D with lim
n→∞

xn = x.

(1.5)

Theorem 1.23 (Closed graph theorem). Let X, Y be Banach spaces and T :
X → Y be a closed linear operator. Then T is bounded.

The following corollary shows how closedness and continuity are related.

Lemma 1.24. Let X, Y be Banach spaces, D ⊆ X a subspace and T : D → Y
linear. Then the following are equivalent:

(i) T is closed and D(T ) is closed.

(ii) T is closed and T is continuous.

(iii) D(T ) is closed and T is continuous.

Definition 1.25. Let X, Y be Banach spaces, D ⊆ X a subspace and T : X ⊇
D → Y a linear operator. Then

‖ · ‖T : D → R, ‖x‖T =
√
‖x‖2 + ‖Tx‖2

is called the graph norm of T .

It is easy to see that ‖ · ‖T is a norm on D. Moreover, the norm defined above is
equivalent to the norm ‖x‖′T =

√
‖x‖2 + ‖Tx‖2 on D.

Note that the operator

T̃ : (D(T ), ‖ · ‖∞) → Y, T̃x = Tx

is continuous. In general we write T instead of T̃ .

Last Change: Sun Sep 12 11:22:58 COT 2010
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Linear operators
3 Aug 2010

Definition 1.26. Let X, Y be Banach spaces and D(T ) ⊆ X a dense subspace.
For a linear map T : X ⊇ D(T ) → Y we define

D(T ′) := {ϕ ∈ Y ′ : x 7→ ϕ(Tx) is a bounded linear functional on D(T )},

Since D(T ) is dense in X , the map D(T ) → K, x 7→ ϕ(Tx) has a unique continuous
extension T ′ϕ ∈ X ′ for ϕ ∈ D(T ′). Hence the Banach space adjoint T ′

T ′ : Y ′ ⊇ D(T ′) → X ′, (T ′ϕ)(x) = ϕ(Tx), x ∈ D(T ), ϕ ∈ D(T ′).

is well-defined.

If a linear operator acts between Hilbert spaces then its adjoint can be defined as
above. However, we can also use the canonical identification of a Hilbert space with
its dual to define its adjoint.

Definition 1.27. Let H1, H2 be Hilbert spaces and D(T ) ⊆ H1 a dense subspace.
For a linear map T : H1 ⊇ D(T ) → H2 its Hilbert space adjoint T ∗ is defined by

D(T ∗) := {y ∈ H2 : x 7→ 〈Tx , y〉 is a bounded on D(T )},
T ∗ : H2 ⊇ D(T ∗) → H1, T ∗y = y∗,

where y∗ ∈ H1 such that 〈Tx , y〉 = 〈x , y∗〉 for all x ∈ D(T ).
Note that for y ∈ D(T ∗) the map x 7→ 〈Tx , y〉 is continuous and densely defined and
can therefore be extended uniquely to an element ϕy ∈ H ′

1. By the Fréchet-Riesz
representation theorem (Theorem 1.12) there exists exactly one y∗ ∈ H1 as desired.

Remark 1.28. Note that the application T 7→ T ′ is linear wheras T 7→ T ∗ is
antilinear (that is, (αT )∗ = αT ∗ for α ∈ K).
If Φ1 and Φ2 are the maps of the Fréchet-Riesz representation theorem (Theo-
rem1.12) corresponding to H1 and H2 respectively, then T ∗ = Φ−1

1 T ′Φ2.

Note that T is bounded if and only if its adjoint is bounded. In this case ‖T ‖ = ‖T ∗‖.
The following two theorems are true for Banach or Hilbert spaces.

Theorem 1.29. Let X, Y, Z be Banach spaces and R(X → Y ), S(X → Y ), T (Y →
Z) densely defined linear operators. Then

(i) (R + S)′ ⊆ R′ + S′ if D(R + S) = D(R) ∩ D(S) is dense in X.

(ii) (TS)′ ⊆ S′T ′ if D(TS) = {x ∈ D(S) : Sx ∈ D(TS)} is dense in X.

Theorem 1.30. Let X, Y be Banach spaces and T (X → Y ) a densely defined linear
operator. Then T ′ is closed.

Now we consider linear operators between Hilbert spaces.

Theorem 1.31. Let H1, H2 be Hilbert spaces and T (H1 → H2) a densely defined
linear operator. Then the following is true.

(i) T ∗ is closed.

(ii) If T ∗ is densely defined, then T ⊆ T ∗∗.

(iii) If T ∗ is densely defined and S is a closed extension of T , then T ∗∗ ⊆ S, in
particular T is closable and T = T ∗∗.

Last Change: Sun Sep 12 11:22:58 COT 2010
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Chapter 1. Preliminaries 9

(iv) If T is closable then T ∗ is densely defined and T = T ∗∗.

Definition 1.32. Let H1, H2 be Hilbert spaces and T (H1 → H2) a densely defined
linear operator.

(i) T is symmetric ⇐⇒ T ⊆ T ∗.

(ii) T is selfadjoint ⇐⇒ T = T ∗.

(iii) T is essentially selfadjoint ⇐⇒ T is selfadjoint.

Proposition 1.33. (i) T symmetric =⇒ T ⊆ T ∗∗ ⊆ T ∗ = T ∗∗∗.

(ii) T closed and symmetric ⇐⇒ T = T ∗∗ ⊆ T ∗.

(iii) T selfadjoint ⇐⇒ T = T ∗∗ = T ∗.

(iv) T essentially selfadjoint ⇐⇒ T ⊆ T ∗∗ = T ∗.

Theorem 1.34. Let H1, H2 be Hilbert spaces and T (H1 → H2) a densely defined
linear operator.

(i) rg(T )⊥ = ker(T ∗).

(ii) rg(T ) = ker(T ∗)⊥.

(iii) rg(T ∗)⊥ = ker(T ∗).
(iv) rg(T ∗) = ker(T ∗)⊥.

Theorem 1.35 (Hellinger-Toeplitz). Let H be a Hilbert space, T : H → H a
linear operator such that 〈Tx , y〉 = 〈x , T y〉 for all x, y ∈ H (that is, T is formally
symmetric). Then T is bounded.

Spectrum of linear operapors

Definition 1.36. Let X be a Banach space and T (X → X) a densely defined linear
operator.

ρ(T ) := {λ ∈ C : λ id−T is bijective} resolvent set of T,

σ(T ) := C \ ρ(T ) spectrum of T.

The spectrum of T is further divided in point spectrum σp(T ), continuous spectrum
σc(T ) and residual spectrum σr(T ):

σp(T ) := {λ ∈ C : λ id−T is not injective},
σc(T ) := {λ ∈ C : λ id−T is injective, rg(T − λ id) 6= X, rg(T − λ id) = X},
σr(T ) := {λ ∈ C : λ id−T is injective, rg(T − λ id) 6= X}.

It follows immediately from the definition that

σ(T ) = σp(T ) ∪̇σc(T ) ∪̇σr(T ).

In the following, we often write λ − T instead of λ id−T .

Remark 1.37. If T is closed, then (T − λ)−1 is closed if it exists. Therefore, by
the closed graph theorem,

ρ(T ) = {λ ∈ C : T − λ is injective and (T − λ)−1 ∈ L(X)}.
Often the resolvent set of a linear operator is defined slightly different: Let T (X →
X) is a densely defined linear operator. Then λ ∈ ρ(T ) if and only if λ − T is
bijective and (λ − T ) ∈ L(X). With this definition it follows that ρ(T ) = ∅ for
every non-closed T (X → X) because one of the following cases holds:

Last Change: Sun Sep 12 11:22:58 COT 2010
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(i) λ − T is not bijective =⇒ λ /∈ ρ(T );

(ii) λ− T is bijective, then (λ− T )−1 is defined everywhere and closed, so by the
closed graph theorem it cannot be bounded, which implies λ /∈ ρ(T ).

Remark 1.38. (i) If T is bounded, then σ(T ) 6= ∅ and σ(T ) ⊆ {λ ∈ C : |λ| ≤
‖T ‖}.

(ii) If T is unbounded, then σ(T ) = ∅ is possible.

Lemma 1.39. Let X be a Banach space and T (X → X) a closed linear operator.
Then the resolvent set ρ(T ) is open and the resolvent map

ρ(T ) → L(H), λ 7→ R(λ, T ) := (λ − T )−1

is analytic. Moreover

(i) ‖R(λ0, T )‖ ≥ 1

dist(λ0, σ(T ))
for all λ0 ∈ ρ(T ).

(ii) For λ0 ∈ ρ(T ) and λ ∈ C with |λ − λ0| < ‖R(λ0, T )‖−1

R(λ, T ) =

∞∑

n=0

(λ0 − λ)n(R(λ0, T ))n+1.

Let X be a Banach space and T ∈ L(X). Then the spectral radius of T is defined
by r(T ) := lim supn→∞ ‖T n‖1/n. The spectral radius gives an estimate for the
spectrum of T .

Theorem 1.40. For a Banach space X and T ∈ L(X) the following holds:

(i) r(T ) = limn→∞ ‖T n‖1/n, in particular r(T ) ≤ ‖T ‖.

(ii) σ(T ) ⊆ {λ ∈ C : |λ| ≤ r(T )}.

(iii) If X is a complex Banach space, then r(T ) = max{|λ| : λ ∈ σ(T )}.

(iv) If X is a Hilbert space, then r(T ) = ‖T ‖.

It can be shown that a linear operator T on a complex Hilbert space H is symmetric
if and only if 〈Tx , x〉 ∈ R for all x ∈ D(T ) and that σ(T ) ⊆ R. The next theorems
show how the spectrum of a symmetric operator T is related to selfadjointness of

Projections

Definition 1.41. Let X be Banach space. An operator P : X → X is called
projection if and only of P 2 = P .

Remark 1.42. (i) If P is an projection then also id−P is an projection.

(ii) If P ∈ L(X) is an projection then either ‖P‖ = 0 or ‖P‖ ≥ 1.

Definition 1.43. Let H be Hilbert space. A projection P ∈ L(H) is called orthog-
onal projection if there exists a closed subspace U ⊆ H such that rg P = U and
kerU = (rg P )⊥.
In this case, ‖P‖ = 0 or ‖P‖ = 1.

Last Change: Sun Sep 12 11:22:58 COT 2010
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Note that every x ∈ H can be written as x = Px + (1− P )x. If P is an orthogonal
projection on U , then Px is the unique element in U such that ‖x−Px‖ = dist(x, U).
In the following, we collect some useful results on orthogonal projections.

Theorem 1.44. Let H be a Hilbert space, P ∈ L(H) a projection with P 6= 0. The
the following are equivalent.

(i) P is an orthogonal projection.

(ii) ‖P‖ = 1.

(iii) ‖P‖ is selfadjoint.

(iv) ‖P‖ is normal (i. e. PP ∗ = P ∗P ).

(v) 〈Px , x〉 ≥ 0 for all x ∈ H.

Theorem 1.45. Let H be a Hilbert space, P, Q ∈ L(H) orthogonal projections.

(i) The the following are equivalent:

(a) PQ is an orthogonal projection.

(b) QP is an orthogonal projection.

(c) PQ = QP is an orthogonal projection.

In this case rg(PQ) = rg(QP ) = rg(P ) ∩ rg(Q).

(ii) The the following are equivalent:

(a) P + Q is an orthogonal projection.

(b) PQ = QP = 0.

(c) rg(P ) ⊥ rg(Q).

(iii) The the following are equivalent:

(a) P − Q is an orthogonal projection.

(b) PQ = QP = Q.

(c) rg(Q) ⊆ rg(P ).

(d) ‖Qx‖ ≤ ‖Px‖ for all x ∈ H.

(e) 〈Qx , x〉 ≤ 〈Px , x〉 for all x ∈ H.

Theorem 1.46. Every monotonic sequence of orthogonal projections (Pn)n∈N con-
verges strongly to an orthogonal projection.
If the sequence is increasing, then the strong limit is the orthotgonal projection on⋃

n∈N
rg Pn.

If the sequence is decreasing, then the strong limit is the orthotgonal projection on⋂
n∈N

rg Pn.

Compact linear operators

Definition 1.47. Let X, Y be normed spaces. An operator T ∈ L(X, Y ) is called
compact if for every bounded set A ⊆ X the set T (A) is relatively compact. The
set of all compact operators from X to Y is denoted by K(X, Y ).
Sometimes compact operators are called completely continuous.

Remarks 1.48. (i) Every compact linear operator is bounded.

(ii) T ∈ L(X, Y ) is compact if and only if for every bounded sequence (xn)n∈N

the sequence (Txn)n∈N contains a convergent subsequence.
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(iii) T ∈ L(X, Y ) is compact if and only if T (BX(0, 1)) is relatively compact.

(iv) Let T ∈ L(X, Y ) with finite dimensional rg(T ). The T is compact.

(v) The identity map id ∈ L(X) is compact if and only if X is finite-dimensional.

(vi) K(X) is a two-sided closed ideal in L(X).

Theorem 1.49 (Schauder). Let X, Y be Banach space and T ∈ L(X, Y ). Then
T is compact if and only if T ′ is compact.

Let X be a vector space and T : X → X a linear operator. Note that for λ ∈ C\{0}
the ascent α(λ − T ) and the descent δ(λ − T ) are finite and equal where

α(λ − T ) :=

{
min{k ∈ N0 : ker(λ − T )k = ker(λ − T )k+1}, if the minimum exists,

∞ else

δ(λ − T ) :=

{
min{k ∈ N0 : rg(λ − T )k = rg(λ − T )k+1}, if the minimum exists,

∞ else.

The number p := α(λ − T ) = δ(λ − T ) is called the Riesz index of λ − T .

Theorem 1.50 (Spectrum of a compact operator). Let X be a Banach space.
For a compact operator T ∈ L(X) the following holds.

(i) If λ ∈ C \ {0}, then λ either belongs to ρ(T ) or it is an eigenvalue of T , that
is C \ {0} ⊆ ρ(T ) ∪ σp(T ).

(ii) The spectrum of T is at most countable and 0 is the only possible accumulation
point.

(iii) If λ ∈ σ(T ) \ {0}, then the dimension of the algebraic eigenspace Aλ(T ) is
finite and Aλ(T ) = ker(λ − T )p where p is the Riesz index of λ − T .

(iv) X = ker(λ − T )p ⊕ rg(λ − T )p for λ ∈ σ(T ) \ {0} where p is the Riesz index
of λ − T and ker(λ − T )p and rg(λ − T )p are T -invariant.

(v) σp(T ) \ {0} = σp(T
′) \ {0} and σ(T ) = σ(T ′). If H is a Hilbert space then

σp(T ) \ {0} = {λ ∈ C : λ ∈ σp(T
∗)} \ {0} = σp(T ∗) \ {0}, where the bar

denotes complex conjugation, and σ(T ) = {λ ∈ C : λ ∈ σ(T ∗)} = σ(T ∗).

Theorem 1.51 (Spectral theorem for compact selfadjoint operators). Let
H be a Hilbert space and T ∈ L(H) a compact selfadjoint operator.

(i) There exists an orthonormal system (en)N
n=1 of eigenvectors of T with eigen-

values (λn)N
n=1 where N ∈ N ∪ {∞} such that

Tx =

N∑

n=1

λn〈x , en〉 en, x ∈ H. (1.6)

The λn can be chosen such that |λ1| ≥ |λ2| ≥ · · · > 0. The only possible
accumulation point of the sequence (λn)n∈N is 0.

(ii) If P0 is the orthogonal projection on kerT , then

x = P0x +

N∑

n=1

〈x , en〉 en, x ∈ H. (1.7)
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(iii) If λ ∈ ρ(T ), λ 6= 0

(λ − T )−1x = λ−1P0x +

N∑

n=1

〈x , en〉
λn − λ

en, x ∈ H.

Note that the representation in (1.6) is not unique. A unique represention is ob-
tained if we define orthogonal projections Pj on the eigenspaces corrsponding to µj

where the µj are the pairwise distinct non-zero eigenvalues of T . Then for all x ∈ H

Tx =
N∑

n=1

µnPnx, x = P0x +
N∑

n=1

Pnx. (1.8)

Note also that T =
∑N

n=1 µnPn in the operator norm.

Interpretation/Application of the spectral theorem
5 Aug 2010

Diagonalisation of T .

From finite dimensional linear algebra it is known that for every hermitian linear
operator T there exists an orthoganal basis with respect to which the matrix rep-
resentation of T has diagonal form. Writing T as an infinite matrix with respect to
the orthogonal system introduced in Theorem 1.51 (i) we obtain

Tx =




λ1

λ2

λ3

. . .







x1

x2

x3

...




where x =
∑N

n=1 xn en = (x1, x2, x3, . . . )t. Note that xn = 〈x , en〉.

T is unitarily equivalent to a multiplication operator on an L2-space.

Assume that kerT = {0}. Then from the above representation it is clear that

T = UMT U−1

where

U : H = rg(T ) → ℓ(N), U
( ∞∑

n=1

αn en

)
= (αn)n∈N

and

MT : ℓ(N) → ℓ(N), MT x = (λxn)n∈N for x = (xn)n∈N.

If T has only finitely many eigenvalues then the space ℓ(N) has to be replaced by
ℓ({1, 2, . . . , N}) and the operator U has to be modified accordingly.

T as an integral.

Assume that all eigenvalues of T are positive: µ1 < µ2 < · · · < 0 and let Pj be
the orthogonal projection on the eigenspace corresponding to µj . Define Eλ =∑

µj<λ Pj . Then Pn = Eλn
− Eλn−1

=: ∆En and therefore

T =
N∑

n=1

µnPn =
N∑

n=1

µn

(
Eλn

− Eλn−1

)
=

N∑

n=1

µn∆Eλn
.
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Functional calculus for T .

If f is a bounded function defined on σ(T ) then we can define f(T ) by

f(T ) =
N∑

n=1

f(µn)Pn.

When f is polynomial, this definition coincides with the usual definition of the
polynomial of a bounded linear operator. Also for f(x) = (λ0−x)−1 where λ ∈ ρ(T )
the definition above and the usual definition coincide. Note that for an eigenvector
x of T with eigenvalue µ we have that f(T )x = f(µ)x.

In the next chapter we will see how the above can be extended to selfadjoint linear
operators that are not necessarily compact.
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Chapter 2

The spectral theorem

2.1 The Riemann-Stieltjes integral

9 Aug 2010

Definition 2.1. The total variation of a function α : [a, b] → K is defined by

varα := sup
{ n∑

j=1

|α(tj) − α(tj−1)| : a = t0 < t1 < · · · < tn = b
}
.

α is said to be of bounded variation (or finite variation) if varα < ∞.
The set of all functions of bounded variation on [a, b] is denoted by BV[a, b].

Remark 2.2. • BV[a, b] with ‖α‖ = α(a) + varα, α ∈ BV[a, b] is a non-
separable normed space.

• Every α ∈ BV[a, b] can be written as difference of two monotonic functions
(Jordan decomposition).

Definition 2.3. Let a ≤ t0 < t1 < . . . < tn ≤ b. We say f =
(
t0,t1,...,tn

c1,...,cn

)
is a step

function if f : [a, b] → K and f(t) = cj if and only if t ∈ [tj−1, tj ].

The set of all step functions on [a, b] is denoted by T [a, b].

Remark 2.4. (T [a, b], ‖ · ‖) is a normed space. It is a subspace of (B[a, b], ‖ · ‖)
where B[a, b] is the set of all bounded functions on [a, b] and

‖f‖∞ := sup
{
|f(t)| : t ∈ [a, b]

}
, f ∈ B[a, b].

Definition 2.5. The closure of T [a, b] in B[a, b] is denoted by I[a, b].
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Remark 2.6. The following can be shown:

• C[a, b] ⊆ I[a, b].

• If f ∈ I[a, b], then f(x+0) exists for x ∈ [a, b) and f(x−0) exists for x ∈ (a, b],
where as usual f(x ± 0) := f(x±) := limεց0 f(x ± ε).

Integration with respect to α ∈ BV[a, b]

Definition 2.7. Fix α ∈ BV[a, b]. For f =
(

t0,t1,...,tn

c1,...,cn

)
∈ T [a, b] define

iα(f) :=

∫
f dα :=

n∑

j=1

cj(α(tj) − α(tj−1)).

Observe that iα(f) is independent of the representation of f , hence it is well defined.
Obviously, iα is linear in f and

|iα(f)| ≤
n∑

j=1

|cj ||α(tj) − α(tj−1)| ≤ ‖f‖∞ varα, f ∈ T [a, b].

Proposition 2.8. The function iα : (T [a, b], ‖ ‖infty) → K is a bounded linear
function with ‖iα‖ ≤ varα. It can be extended to a continuous linear operator
îα : I[a, b] → K. The extension is unique and ‖îα‖ = ‖iα‖.

For f ∈ I[a, b], we write ∫
f dα := îα(f).

Note that for f ∈ I[a, b]

∥∥∥
∫

fdα
∥∥∥ = ‖îα(f)‖ ≤ ‖îα‖‖f‖∞ = ‖iα‖‖f‖∞ = varα‖f‖∞.

If α ∈ BV[a, b] and [a′, b′] ⊆ [a, b], then it is easy to see that α|[a′,b′] ∈ BV[a′, b′].

Proposition 2.9. For α ∈ BV[a, b], f ∈ I[a, b] and x ∈ [a, b] let

K : [a, b] → K, K(x) :=

∫ x

a

f dα, if x ∈ (a, b] and K(a) = 0.

Then we have:

(i) K ∈ BV[a, b] and K(a) = 0.

(ii) If f is right-continuous then K is right continuous.

(iii) For all g ∈ I[a, b] we have
∫

gdK =
∫

gfdω.

Proof. Exercise 2.1.

Proposition 2.9 shows that BV[a, b] ⊆ (C[a, b])′. The reverse inclusion is shown in
the following theorem.

Theorem 2.10 (F. Riesz). ω is right-continuous in (a, b); For ϕ ∈ (C[a, b])′ there
exists a unique ω ∈ BV[a, b] satisfying

(i) ω is right-continuous in (a, b);

(ii) ω(a) = 0;
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(iii) ϕ(f) =

∫
f dω for all f ∈ C[a, b];

(iv) varω = ‖ϕ‖.

Proof. A proof can be found for instance in [Tay58, §4.32] (A. Taylor, Introduction
to Functional Analysis).

Remark 2.11. Without conditions (i) and (ii) the representation of ϕ as a function
ω ∈ BV[a, b] is not unique.

2.2 Spectral families

Definition 2.12. Let H be a Hilbert space. (Eλ)λ∈R ⊆ L(H) is called a spectral
family (or spectral resolution of the identity) if and only in for all x ∈ H we have:

(i) Eλ is an orthogonal projection for all λ ∈ R.

(ii) EλEµ = EµEλ = Eµ for µ ≤ λ.

(iii) Eµx → Eλx if µ ց λ (strong-right continuity).

(iv) Eµx → x for x → ∞.

(v) Eµx → 0 for x → −∞.

Remark 2.13. Let (Eλ)λ∈R be a spectral family.

(i) If µ < λ, then Eµ < Eλ by (i) and (ii) and Theorem 1.45 (iii).

(ii) Since (Eλ)λ is increasing, then, by Theorem 1.46, the strong left limit exists
and is an orthogonal projection (that is, for all λ ∈ R and x ∈ H the limit
lim
λրµ

Eλx exists). Note, however, that in general E(λ) 6= s- lim
λրµ

Eλ.

Notation 2.14. Let (Eλ)λ∈R be a spectral family.

• Instead of Eλ we also write E(λ).

• Let −∞ ≤ a < b ≤ ∞. Then

E((a, b]) := E(b) − E(a), E([a, b)) := E(b−) − E(a),

E((a, b)) := E(b−) − E(a−), E([a, b]) := E(b) − E(a−),

E({b}) := E(b) − E(b−)

where E(−∞) := 0 and E(∞) := id.

Example 2.15. Let T ∈ L(H) be a compact self-adjoint operator with eigenvalues
|λ1| ≥ |λ2| ≥ . . . > 0, λj 6= λh for j 6= h, and let Pj be the projection on the
eigenspace corresponding to λj .
For λ ∈ R and x ∈ H define

Eλx :=






∑
λj≤λ

Pjx, if λ < 0

x − ∑
λj>λ

Pjx if λ ≥ 0.

Then (Eλ)λ is a spectral family (the spectral resolution of T).

Proof. Exercise 2.2.
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Lemma 2.16 (Properties of spectral families). Every spectral family (Eλ)λ∈R

satisfies the following:

(i) Eλ − Eµ is an orthogonal projection if µ ≤ λ.

(ii) If λ1 ≤ λ2 ≤ λ3 ≤ λ4,

(Eλ2
− Eλ1

)(Eλ4
− Eλ3

) = (Eλ4
− Eλ3

)(Eλ2
− Eλ1

) = 0.

(iii) If λ1 < λ2 < λ3 and x ∈ H,

‖(Eλ3
−Eλ1)x‖2 = ‖(Eλ3

−Eλ2
)x‖2 + ‖(Eλ2

−Eλ1
)x‖2 = 〈(Eλ3

−Eλ1
)x , x〉.

(iv) For fixed x ∈ H the function λ 7−→ 〈Eλx , x〉 is monotonically increasing and
bounded by ‖x‖2.

(v) The function λ 7−→ Eλ is strongly right-continuous. For every λ ∈ R the
strong left limit exists and is an orthogonal projection but in general Eλ− 6=
Eλ = Eλ+.

(vi) For all x, y ∈ H the function ωxy : λ 7−→ 〈Eλx , y〉 belongs to BV[a, b] for
every [a, b] ⊆ R and varωxy|[a,b] ≤ ‖x‖‖y‖.

Proof. (i) follows from properties of orthogonal projections (Theorem 1.45).

(ii) is verified by straightforward calculation.

(iii) Since (Eλ3
− Eλ1

) is a projection we obtain

‖(Eλ3
− Eλ1)x‖2 = 〈(Eλ3

− Eλ1
)2x , x〉

= 〈(Eλ3
− Eλ1

)x , x〉
= 〈(Eλ3

− Eλ2
)x , x〉 + 〈(Eλ2

− Eλ1
)x , x〉

= ‖(Eλ3
− Eλ2)x‖2 + ‖(Eλ2

− Eλ1)x‖2.

(iv) follows from properties of orthogonal projections (Theorem 1.45) and the fact
that 〈Eλx , x〉 ≤ ‖Eλ‖‖x‖2 ≤ ‖x‖2.

(v) follows from Theorem 1.46.

(vi) Fix x, y ∈ H and [a, b] ⊆ R. For every partition a = t0 < t1 < . . . < tn = b of
[a, b]

n∑

j=1

|ωxy(tj)−ωxy(tj−1)| =

n∑

j=1

|〈(Etj
− Etj−1

)x , y〉|

=

n∑

j=1

|〈(Etj
− Etj−1

)x , (Etj
− Etj−1

)y〉|

≤
n∑

j=1

‖(Etj
− Etj−1

)x‖‖(Etj
− Etj−1

)y‖

≤
( n∑

j=1

‖(Etj
− Etj−1

)x‖2
) 1

2
( n∑

j=1

‖(Etj
− Etj−1

)y‖2
) 1

2

(2.1)

= ‖(Eb − Ea)x‖‖(Eb − Ea)y‖ (2.2)

≤ ‖x‖‖y‖

where in (2.1) we used the Cauchy-Schwarz inequality and in (2.2) we used (iii).
10 Aug 2010
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Definition 2.17 (Integration with respect to a spectral family). Let H be a
Hilbert space and (Eλ)λ∈R a spectral family. For a step function f =

(
t0,t1,...,tn

c1,...,cn

)
∈

T [a, b] we define in analogy to definition 2.7 the integral with respect to (Eλ)λ∈R

by

∫ b

a

f dEλ =

n∑

j=1

cj(Etj
− Etj−1

).

Observe that the integral does not depend on the representation of f .

Theorem 2.18. (T [a, b], ‖ · ‖∞) → L(H), f 7→
∫ b

a f dEλ is a bounded linear map
with bound ≤ 1.

Proof.

Definition 2.19. By the theorem above there exists exactly one continuous exten-

sion of
∫ b

a
· dEλ from the space T [a, b] to I[a, b] = T [a, b]. This extension will again

be denoted by

∫ b

a

f dEλ for f ∈ I[a, b].

is a bounded linear map with bound ≤ 1.

Note that the extension has norm ≤ 1.

Lemma 2.20 (Properties of the integral). Let (Eλ)λ∈R be a spectral resolution
on a Hilbert space H and f, g ∈ I[a, b]. Then the following holds:

(i)

〈(∫ b

a

f(λ) dEλ

)
x , y

〉
=

∫ b

a

f(λ) d〈Eλx , y〉, x, y ∈ H.

(ii) Eµ

∫ b

a

f(λ) dEλ =

∫ µ

a

f(λ) dEλ, a ≤ µ ≤ b.

(iii)

(∫ b

a

f(λ) dEλ

)(∫ b

a

g(λ) dEλ

)
=

(∫ b

a

(fg)(λ) dEλ

)
.

(iv)

(∫ b

a

f(λ) dEλ

)∗

=

∫ b

a

f(λ) dEλ.

(v)

∥∥∥∥∥

∫ b

a

f(λ) dEλx

∥∥∥∥∥

2

=

∫ b

a

∫ b

a

|f(λ)|2 d〈Eλx , x〉.

Proof.

Corollary 2.21. Let (Eλ)λ∈R be a spectral resolution on a Hilbert space H and
[a, b] ⊆ R. Then

T :=

∫ b

a

λ dEλ

is a bounded selfadjoint linear operator with bound ‖A‖ = max{|a|, |b|}.
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Chapter 3

Selfadjoint extensions

3.1 Selfadjoint extensions of symmetric operators

Example 3.1. Let H = L2(0, 1). We define T by

D(T ) := {f ∈ L2(0, 1) : f abs. cont, f ′ ∈ L2(0, 1), f(0) = f(1) = 0},
T f := if ′.

T is a closed symmetric operator and D(T ∗) = H1(0, 1) with T ∗f = if ′.

Does T have selfadjoint extensions?

Recall that the Cayley transform gives a relation between closed symmetric opera-
tors and closed isometric operators, more precisely

T selfadjoint ⇐⇒ UT := (T − i)(T + i)−1 unitary

T closed and symmetric ⇐⇒ UT := (T − i)(T + i)−1 closed and symmetric

U closed and isometric,

rg(U − 1) = H

}
=⇒






U is the Cayley transform of

T = −i(U + 1)(U − 1)−1

and T is closed and symmetric.

So instead of looking for symmetric or selfadjoint extensions of T we try to find
isometric or unitary extensions of its Cayley transform. The advantage is that the
domain on the range of the Cayley transform are closed subspaces.

Theorem 3.2 (1st Formula of von Neumann). Let H be a complex Hilbert
space and S a closed symmetric linear operator on H with Cayley transform U . We
define the subspaces

N+ := rg(S + i)⊥ = ker(S∗ − i) = D(U)⊥,

N− := rg(S − i)⊥ = ker(S∗ + i) = rg(U)⊥.

Then D(S∗) = D(S)+̇N++̇N−, where +̇ denotes the direct sum.

Proof. Let x ∈ D(S∗). We have to show that there exist unique elements x0 ∈ D(S)
and x± ∈ N± such that x = x0 + x+x−.
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Existence: Choose x0 ∈ D(S) and y ∈ rg(S + i)⊥ = ker(S∗ + i) ⊆ D(S∗) such that

(S∗ + i)x = (S + i)x0 + y = (S + i)x0 +
1

2i
(S∗ + i)y +

1

2i
(S∗ − i)y

= (S + i)x0 +
1

2i
(S∗ + i)y.

Define x+ = 1
2iy ∈ rg(S + ı)⊥ and x− = x − x0 − 1

2iy ∈ ker(S∗ + ı) = rg(S − ı)⊥.

Uniqueness : It suffices to show that x0−x+−x− = 0 with x0 ∈ D(S) and x± ∈ N±
only if x0 = x± = 0. By assumption

0 = S∗(x0 − x+ − x−) = Sx0 − S∗x+ − S∗x− = Sx0 − ix+ + ix−.

Hence

x0 = x− + x+

Sx0 = ix+ − ix−

}
=⇒ (S + i)x0 = ix+ − ix− + ix− + ix+ = 2ix+.

Hence x+ ∈ rg(S + i) ∩ rg(S + i)⊥ = {0}. Similarly it follows that x− = 0. Then
also x0 = x+ + x− = 0.

Definition 3.3. Let S be a linear operator on a Banach space X . For z ∈ C we
define the deficiency number n(S, z) := dim

(
rg(S−z)⊥

)
. For symmetric operators

S we set

n+(S) := n(S,−i) = dim rg(S + i)⊥, n−(S) := n(S, i) = dim rg(S − i)⊥,

Definition 3.4. Let S be a symmetric linear operator on a Banach space X and
T a symmetric extension of S. T is called an

m-dimensional extension of S ⇐⇒ dimD(T )/D(S) = m,

m-dimensional restriction of S∗ ⇐⇒ dimD(S∗)/D(T ) = m.

Theorem 3.5. Let H be a complex Hilbert space and S a closed symmetric lin-
ear operator on H with Cayley transform U . Then S has symmetric extensions if
n+(S) > 0 and n−(S) > 0. Every m-dimensional symmetric extension T of S has
deficiency indices n±(T ) = n±(S) − m. T is then of the form

D(T ) = D(S)+̇{y + Ṽ y : y ∈ Ñ+},
T (x + y + Ṽ y) = Sx + iy − iṼ y for x ∈ D(S), y ∈ Ñ+,

where Ñ+ is an m-dimensional subspace of N+ and Ṽ : Ñ+ → N− is an isometry.
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If n±(S) < ∞, then S has selfadjoint extensions if and only if n+(S) = n−(S).

Proof. Let US be the Cayley transform of S. Observe that

T symmetric extension of S ⇐⇒ UT isometric extension of US

T selfadjoint extension of S ⇐⇒ UT unitary extension of US.

First we show: if there exists a p ∈ N with p ≤ min{n+(S), n−(S)}, then S has a
p-dimensional extension of the form described above. By assumption, we can choose
p-dimensional subspaces Ñ± of N± and a unitary operator Ṽ : Ñ+ → N−. Now we
define an extension UT of US by

UT : D(US) ⊕ Ñ+ → rg(US) ⊕ Ñ−,

UT (x + y) = US(x) − Ṽ y for x ∈ D(US) and y ∈ Ñ+.

Then UT is closed isometry and rg(UT − id) ⊆ rg(US − id) = H , so it is the closure
of the symmetric closed operator T = i(id +UT )(! − UT )−1. Its domain is given by

D(T ) = rg(id−UT ) = (id−UT )
(

rg(S + i) ⊕ Ñ+

)

= (id−UT )
(
rg(S + i)

)
+̇(id−UT )Ñ+ = D(S)+̇(id +Ṽ )Ñ+

= {x ∈ H : x = x0 + y + Ṽ y with x0 =∈ D(S), y ∈ Ñ+}.

This implies that D(T )/D(S) = dim(id +Ṽ )Ñ+ = p and

T (x0 + y + Ṽ y) = S(x0) + T (y + Ṽ y) = S(x0) + i(UT + id)(id−UT )−1 (id +Ṽ )y︸ ︷︷ ︸
=(id−U)T )y

= S(x0) + i(UT + id)y = S(x0) + y − iṼ y.

Now assume that T is a symmetric extension of S. Then UT is a isometric extension
of US. Note that D(US), D(UT ), rg(US) and D(UT ) are closed, hence there exist

a closed subspace Ñ± such that D(UT ) = D(US) ⊕ Ñ+, rg(UT ) = rg(US) ⊕ Ñ−.
Moreover, the restriction

UT | eN+
: Ñ+ → Ñ−

is well-defined and isometric.

In particular, if T is a selfadjoint extension of S, then UT is a unitary extension of
US . Hence UT maps D(UT ) ⊖ D(US) = D(US)⊥ unitarily to rg(UT ) ⊖ rg(US) =
rg(US)⊥. Consequently, n+(S) = dimD(US)⊥ = dim rg(US)⊥ = n−(S).

Theorem 3.6. Let H be a complex Hilbert space and S a closed symmetric linear
operator on H with n+(S) = n−(S) = m < ∞. Let T a linear operator on H. Then

(i) T is a selfadjoint extension of S ⇐⇒ T is an m-dimensional symmet-
ric extension of S.

(ii) T is a selfadjoint restriction of S∗ ⇐⇒ T is an m-dimensional symmet-
ric restriction of S∗.

Proof. (i) If T is a selfadjoint extension of S, then UT is a unitary extension of US

and

D(T ) = rg(id−UT ) = (id−UT )
(

rg(S + i) ⊕ N+

)
= D(S)+̇(id−UT )N+.

Since id−UT is injective, it follows that dim((id−UT )N+) = dim N+ = m.
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On the other hand, if T is an m-dimensional extension of S, then D(T ) = D(S)+̇D
for some m-dimensional subspace D of H .
From dim

(
H/ rg(S ± i)

)
= dim((T ± i)D) = m we obtain

rg(T ± i) = (T ± i)
(
D(S)+̇D

)
= rg(S ± i)+̇(T ± i)D = H.

(ii) Observe that dim S/S∗ = 2m. By assumption S ⊆ T ⊆ S∗, so T is an m-dimen-
sional restriction of S∗ if and only if it is an m-dimensional extension of S.

Let us go back to the example of the beginning of the section.

Example. Let H = L2(0, 1). We define T by

D(T ) := {f ∈ L2(0, 1) : f abs. cont, f ′ ∈ L2(0, 1), f(0) = f(1) = 0},
T f := if ′.

T is a closed symmetric operator and D(T ∗) = H1(0, 1) with T ∗f = if ′.

In order to determine if T has selfadjoint extensions, it suffices to calculate n±(T ) =
dimker(T ∗ ± i). It is easy to see that

ker(T ∗ + i) = span{ϕ+}, ker(T ∗ − i) = span{ϕ−},
where ϕ±(t) = exp±t. Hence n+(T ) = n−(T ) = 1, so T admits selfadjoint exten-
sions.

To find all selfadjoint extensions of T , we have to find all unitary maps ker(T ∗+i) →
ker(T ∗ − i). Obviously they are given by

Uϑ : ker(T ∗ + i) → ker(T ∗ − i), Uϑϕ+ =
( e2 −1

1 − e−2

)
eiϑ ϕ−

for arbitrary ϑ ∈ R. We conclude that every selfadjoint extension of T is of the
form

D(T̃ϑ) = D(T ) + span

{
ϕ+ +

( e2 −1

1 − e−2

) 1
2

eiϑ ϕ−

}
,

T̃ϑ

(
f0 + α

(
ϕ+ +

( e2 −1

1 − e−2

) 1
2

eiϑ ϕ−
))

= f ′
0 + iαϕ+ − iα

( e2 −1

1 − e−2

) 1
2

eiϑ ϕ−.

3.2 Deficiency indices and points of regular type

Recall that for a closed linear operator S and z ∈ C we defined n(S, z) := dim rg(S−
z)⊥.

Definition 3.7. Let H be a Hilbert space and S a linear operator on H . A point
z ∈ C is called a point of regular type of S if

∃ cz > 0 such that ‖(z − S)‖ ≥ cz‖x‖ for all x ∈ D(S).

The set

Γ(S) := {z is of regular type of S}
is the regularity domain on S.

In the case when S is closed, the following is easy to see:

• ρ(S) ⊆ Γ(S),

• z ∈ ρ(S) ⇐⇒ S − z is injective and rg(z − S) is closed.
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Proposition 3.8. Let S be a linear operator on a Hilbert space H. Then

(i) Γ(S) is open.

(ii) S is symmetric =⇒ C \ R ⊆ Γ(S).

(iii) S is isometric =⇒ C \ {|z| = 1} ⊆ Γ(S).

Proof. (i) Fix z0 ∈ Γ(S). Then also the open ball with radius cz0
centred in z0 lies

in Γ(S) because for z ∈ C with |z − z0| < cz0

‖(S − z)x‖ ≥ ‖(S − z0)x‖ − |z − z0| ‖x‖ ≥ (cz0
− |z − z0|︸ ︷︷ ︸

>0

)‖x‖.

(ii) For every z ∈ C\R the map (z−S)−1 : rg(z−S) → D(S) exists and is bounded
by | Im z|−1. By the closed graph theorem rg(z − S) is closed, so z ∈ Γ(S).

(iii) Let z ∈ C with |z| 6= 1. Then, for all x ∈ D(S),

‖(S − z)x‖ ≥ | ‖Sx‖ − |z| ‖x‖ | = |1 − |z||︸ ︷︷ ︸
>0

‖x‖.

Theorem 3.9. Let S be a closable linear operator on a complex Hilbert space H.
The following holds.

(i) The deficiency numbers n(S, z) are locally constant in Γ(S). In particular they
are constant in connected components of Γ(S).

(ii) If S is symmetric, then n(S, z) is constant in the upper and in the lower half
plane (but in general n(S, i) 6= n(S,−i)).

(iii) If S is isometric, then n(S, z) is constant inside and outside of the unit circle
(but in general n(S, 0) 6= n(S, 2)).

Proof. (ii) and (iii) follow immediately form (i) and Proposition 3.8. So we only
have to show (i).
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Case 1. S is closed. Let z0 ∈ Γ(S). Since S is closed, rg(z0 − S) is closed. We will
show that n(S, z0) = n(S, z) for all z with |z − z0| <

cz0

2 .
Recall that for closed subspaces U, V of H with U ∩ V ⊥ = {0}, dim U ≤ dimV . In
particular, if V ∩ U⊥ + U ∩ V ⊥ = {0}, then dimU = dimV . We will apply this to
U = rg(z0 − S)⊥ and V = rg(z − S)⊥. So we only have to show

rg(z0 − S)⊥ ∩ rg(z − S) = rg(z − S)⊥ ∩ rg(z0 − S) = {0}

for all z with |z − z0| <
cz0

2 . Recall that by the proof of Proposition 3.8, z ∈ Γ(S)

and cz ≥ | cz0
− |z − z0| | =

cz0

2 .
Assume rg(z−S)⊥∩rg(z0−S) 6= {0}. Then there exists an x ∈ D(S)\{0} such that
(z0 −S)x ⊥ rg(z −S). Using that (z −S)x ⊥ (z0 −S)x we obtain the contradiction

‖(z − S)x‖ ≤
(
‖(S − z)x‖2 + ‖S − z0)x‖2

) 1
2

= ‖(S − z)x‖ + ‖(S − z0)x‖

= ‖(z0 − z)x‖ ≤ |z0 − z|
cz

‖(S − z)x‖ <
cz0

2

1

cz0

‖(S − z)x‖ = ‖(S − z)x‖.

Now assume rg(z0 − S)⊥ ∩ rg(z − S) 6= {0}. Then there exists an x ∈ D(S) \ {0}
such that (z − S)x ⊥ rg(z0 − S). Using that (z − S)x ⊥ (z0 − S)x we obtain the
contradiction

‖(z0 − S)x‖ ≤
(
‖(S − z)x‖2 + ‖S − z0)x‖2

) 1
2

= ‖(S − z)x‖ + ‖(S − z0)x‖

= ‖(z0 − z)x‖ ≤ |z0 − z|
cz0

‖(S − z)x‖ <
cz0

2

1

cz
‖(S − z)x‖ =

1

2
‖(S − z)x‖.

Case 2. S is closable. Let S be the closure of S. By case 1, it suffices to show that
Γ(S) = Γ(S) and that n(S, z) = n(S, z) for all z ∈ Γ(S). The inclusion Γ(S) ⊆ Γ(S)
is obvious. If z ∈ Γ(S) and x ∈ D(S), then there exists a sequence (xn)n∈N such
that xn → x and Sxn → Sx. Hence

‖(z − S)x‖ = lim
n→∞

‖(z − S)xn‖ ≥ cz lim
n→∞

‖xn‖ = cz‖x‖,

showing that Γ(S) = Γ(S). Moreover, rg(z − S)⊥ = rg(z − S)⊥ because rg(z − S)
is dense in rg(z0 − S). Hence n(S, z) = n(S, z) for all z ∈ Γ(S) = Γ(S).

Corollary 3.10. Let S be a symmetric operator on a complex Hilbert space H. The
following holds.

(i) S is essentially selfadjoint ⇐⇒ n+(S) = n−(S) = 0.

(ii) S is selfadjoint ⇐⇒ S is closed and n+(S) = n−(S) = 0.

Proof. This follows immediately from the fact that a symmetric operator S is es-
sentially selfadjoint if and only if rg(S ± i) is dense in H .

Corollary 3.11. For a S closed symmetric operator on a complex Hilbert space H
the following holds.

(i) S has real points of regular type =⇒ S has a selfadjoint extension.

(ii) S is semibounded ⇐⇒ S has a selfadjoint extension.

Proof. (i) By assumption and Proposition 3.8 (i), Γ(S) is connected, hence n(S, i) =
n(S,−i) by Theorem 3.9. Therefore S has selfadjoint extensions by Theorem 3.5.
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Chapter 3. Selfadjoint extensions 27

(ii) Without restriction we assume that S is semibounded from below. Then there
exists a γ ∈ R such that 〈Sx , x〉 ≥ γ for all x ∈ D(S). For all λ < γ we obtain

‖(λ − S)x‖ ‖x‖ ≥ 〈(λ − S)x , x〉 ≥ (λ − γ)‖x‖2.

Hence (∞, γ) ⊆ Γ(S) and the assertion follows from (i).

Theorem 3.12. Let S be a symmetric operator on a complex Hilbert space H with
defect indices n+(S) = n−(S) = m < ∞. Let T1 and T2 be selfadjoint extensions of
S with spectral resolutions E1 and E2. Let I ⊆ R be an open or closed interval and
kj := dim rg(Ej(I)) for j = 1, 2.

If k1 < ∞, then k2 < ∞ and |k1 − k2| < ∞.

Proof. Assume that I = (α, β) with −∞ < β < α < ∞. Note that rg(Ej(I)) ⊆
D(Tj) for j = 1, 2 and that dim

(
D(T )/D(S)

)
= m. Let us assume that k2 > k1+m.

Then

dim
(
rg(E2(I)) ∩D(S)

)
≥ k2 − m > k1 (3.1)

and for every x ∈
(
rg(E2(I)) ∩ D(S)

)
\ {0}

∥∥∥
(
T1 −

α + β

2

)
x
∥∥∥

2

=
∥∥∥
(
T2 −

α + β

2

)
x
∥∥∥

2

=

∫

(α, β)

(
t − α + β

2

)2

d〈E(t)x , x〉 <
(β − α

2

)2

‖x‖2.

So, for all x ∈
(
rg(E2(I)) ∩ D(S)

)
\ {0}

∥∥∥
(
T1 −

α + β

2

)
x
∥∥∥ <

β − α

2
‖x‖. (3.2)

By (3.1) there exists an x ∈ rg(E2(I)) ∩ D(S) with ‖x‖ − 1 and x ⊥ rg(E1(I). For
this x

∥∥∥
(
T1 −

α + β

2

)
x
∥∥∥

2

=

∫

R\(α, β)

(
t − α + β

2

)2

d〈E(t)x , x〉 ≥ β − α

2
‖x‖ (3.3)

in contradiction to (3.3). This proves k2 ≤ k1 + m < ∞. Applying the same to
reasoning to k2, we find k1 ≤ k2 + m, so |k1 − k2| ≤ m.

If I is a closed interval of the form [α, β] with −∞ < β ≤ α < ∞, then we have to
change “<” to “≤” in (3.2) and “≥” to “>” in (3.3).

Theorem 3.13. Let S be a symmetric operator on a complex Hilbert space H with
defect indices n+(S) = n−(S) = m < ∞. Let T1 and T2 be selfadjoint extensions of
S with spectral resolutions E1 and E2.

(i) For every z ∈ ρ(T1)∩ ρ(T2) the range of the operator (T1 − z)−1 − (T2 − z)−1

is at most m-dimensional.

(ii) σess(T1) = σess(T2).

Let I ⊆ R be an open or closed interval and kj := dim rg(Ej(I)) for j = 1, 2.
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If k1 < ∞, then k2 < ∞ and |k1 − k2| < ∞.

Proof. (i) Observe that every z ∈ ρ(Tj) belongs to Γ(S), hence dim(rg(S − z))⊥ =
m < ∞. Let P be the orthogonal projection on (rg(S − z))⊥. Then for all x ∈ H
and all z ∈ ρ(T1) ∩ ρ(T2)

(T1 − z)−1x − (T2 − z)−1x

=
(
(T1 − z)−1 − (T2 − z)−1

)
(1 − P )x +

(
(T1 − z)−1 − (T2 − z)−1Px

=
(
(S − z)−1 − (S − z)−1

)
(1 − P )x +

(
(T1 − z)−1 − (T2 − z)−1

)
Px

=
(
(T1 − z)−1 − (T2 − z)−1

)
Px.

So we showed that (T1 − z)−1 − (T2 − z)−1 =
(
(T1 − z)−1 − (T2 − z)−1

)
which

implies that dim rg
(
(T1 − z)−1 − (T2 − z)−1

)
≤ dim rg P .

the range of the operator (T1 − z)−1 − (T2 − z)−1 is at most m-dimensional.
(ii) Let λ ∈ C\σess(T1). Then there exists ε > 0 such that dim rg(E1(λ−ε, λ+ε)) <
∞. Using theorem 3.12 it follows that dim rg(E2(λ− ε, λ+ ε)) < ∞, implying that
λ /∈ σess(T2).

Alternative proof : Since T1 and T2 are selfadjoint, i ∈ ρ(T1) ∩ ρ(T2). The operator
(T1− i)−1−(T2− i)−1 is bounded and is compact because it finite-dimensional range
by (i). Hence, by Exercise 7.1, σess(T1) = σess(T2).

Corollary 3.14. With the assumptions and notation as in Theorem 3.13, it follows
that if σ(T1) ∩ (a, b) consists only of discrete eigenvalues with total multiplicity
k1, then σ(T2) ∩ (a, b) consists only of discrete eigenvalues with total multiplicity
k2 ≤ k1 + m.

Theorem 3.15. Let S be a symmetric operator on a complex Hilbert space H with
defect indices n+(S) = n−(S) = m < ∞. Let λ ∈ C and assume that there exists a
c > 0 such that

‖(S − λ)x‖ ≥ c‖x‖, x ∈ D(S).

Then for every selfadjoint extension T of S the set σ(T )∩ (λ− c, λ + c) consists of
isolated eigenvalues with total multiplicity ≤ m.

Proof. Let E be the spectral resolution of T . We have to show that

dim
(
E(λ − c, λ + c)

)
= dim

(
E(λ − c−, λ + c)

)
≤ m.

Assume that this is not true. Since dim
(
D(T )/D(S)

)
= m and rg

(
E(λ − c−, λ +

c)
)
⊆ D(T ), there exists an x0 in rg

(
E(λ− c−, λ + c)

)
with x0 6= 0. We obtain the

contradiction

c‖x0‖ ≤ ‖(S − λ0)x0‖ = ‖(T − λ0)x0‖ =

(∫

|t−λ|<c

|t − λ0|2 d〈Etx0 , x0〉
) 1

2

< c‖x0‖.

Corollary 3.16. Let S be a semibounded symmetric operator on a complex Hilbert
space H with defect indices n+(S) = n−(S) = m < ∞. Without restriction we
assume that S ≥ γ for some γ ∈ R. Let T be a selfadjoint extension T of S. Then
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(i) σ(T ) ∩ (∞, γ) consists of isolated eigenvalues of total multiplicity ≤ m.

(ii) T is semibounded from below.

Proof. (i): Let λ < γ and c := γ − λ. For all x ∈ D(S) we obtain

‖(S − λ)x‖ ≥ 〈(S − λ)x , x〉 = 〈(S − γ)x , x〉 + (γ − λ)‖x‖2 > (γ − λ)‖x‖2 = c‖x‖2.

Hence, by Theorem 3.15, the set σ(T )∩ (λ− c, λ + c) = σ(T )∩ (2λ− γ, γ) consists
only of isolated eigenvalues of total multiplicity ≤ m. Since this is true for all λ < γ,
the claim is proved.

(ii) is an immediate consequence of (i).
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Chapter 4

Perturbation Theory

4.1 Closed operators
11 Oct 2010

Definition 4.1. Let X, Y, Z be normed spaces and T (X → Y ), S(X → Z) be
linear operators. The operator S is called T -bounded (or relatively bounded with
respect to T ) if and only if D(S) ⊇ D(T ) and there exist a, b ≥ 0 such that

‖Sx‖ ≤ a‖x‖ + b‖Tx‖for all x ∈ D(T ). (4.1)

The infimum of all b ≥ 0 such that (4.1) holds for some a ≥ 0, is called the T -bound
of S.

For example, if S is bounded, it is T -bound with relative bound 0.

Remark 4.2. Note that (4.1) is equivalent to the existence of α, β ≥ 0 such that

‖Sx‖2 ≤ α2‖x‖2 + β2‖Tx2‖for all x ∈ D(T ). (4.2)

The infimum of all β ≥ 0 such that (4.2) holds, is equal to the T -bound of T .

Next we will give a criterion for relative boundedness.

Theorem 4.3. Let X, Y, Z be Banach spaces and T (X → Y ), S(X → Z) be linear
operators with D(S) ⊇ D(T ). Assume that T is closed and S is closable. Then S
is T -bounded.

Proof.

Theorem 4.4. Let X, Y be Banach spaces and T (X → Y ), S(X → Y ) be linear
operators. If S is T -bounded with relative bound < 1, then the following holds:

(i) T + S is closable if and only if T is closable.
In this case D(T + S) = D(T ).

(ii) T + S is closed if and only if T is closed.

Proof.

We call a sequence (xn)n∈N ∈⊆ D(T ) T -bounded if both (xn)n∈N and (Txn)n∈N are
bounded. The notion T -convergent is defined analogously.
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Definition 4.5. Let X, Y, Z be normed spaces, and T (X → Y ), S(X → Z) be
linear operators. The operator S is called T -compact (or relatively compact with
respect to T ) if and only if D(S) ⊇ D(T ) and every T -bounded sequence (xn)n∈N

contains the sequence (Sxn)n∈N contains a convergent subsequence.

Proposition 4.6. If S is T -compact, then S is T -bounded.

Proof.

At the end of this section we will show that, under additional conditions, the T -
bound of S is 0.12 Oct 2010

Theorem 4.7. Let X, Y be Banach spaces and T (X → Y ), S(X → Y ) be linear
operators. Assume that T is closable and that S is T -compact. Then the following
holds:

(i) S is T + S-compact.

(ii) T + S is closable.

(iii) D(T + S) = D(T ).

(iv) If T is closed, then T + S is closed.

Proof.

Now we will prove a stronger version of Proposition 4.6.

Theorem 4.8. Let X, Y, Z be Banach spaces and T (X → Y ), S(X → Y ) be linear
operators. Assume that S is T -compact and assume that in addition at least one of
the following conditions hold:

(i) S is closable.

(ii) X and Y are Hilbert spaces and T is closable.

Then S is T -bounded with relative bound 0.

Proof.

4.2 Selfadjoint operators

Theorem 4.9. Let H be a complex Hilbert space, T (H → H) a selfadjoint linear
operator and S(H → H) with D(T ) ⊆ D(S). Then the following is equivalent:

(i) S is T -bounded.

(ii) c := lim sup
n→∞

‖S(T − iη)−1‖ < ∞.

In this case, the lim inf is a limit and the limit is equal to the T -bound of S.

Proof.

Theorem 4.10 (Kato-Rellich). Let H be a complex Hilbert space, T (H → H)
a linear operator and S(H → H) a symmetric linear operator with D(T ) ⊆ D(S).
Assume that S has T -bound < 1. Then the following holds:
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(i) If T is selfadjoint, then so is T + S.

(ii) If T is essentially selfadjoint, then so is T + S and D(T + S) = D(T ).

Proof.

4.3 Stability of the essential spectrum

Theorem 4.11 (Weyl). Let S, T be selfadjoint operators on a complex Hilbert
space H and assume that

(S − z)−1 − (T − z)−1 (4.3)

for some z ∈ ρ(S) ∩ ρ(T ). Then σess(S) = σess(T ).

Note that (4.3) holds for one z ∈ ρ(S) ∩ ρ(T ) if and only if it holds for all z ∈
ρ(S) ∩ ρ(T ).

Proof.

As an immediate corollary we obtain

Corollary 4.12. Let T be selfadjoint and K compact and selfadjoint. Then σess(T ) =
σess(T + K).

Proof. Note that by Theorem 4.7, T + K is selfadjoint. Let λ ∈ ρ(T ) ∩ ρ(T + K).
For example, we can choose λ = i. Then

(T − λ)−1 − (T + K − λ)−1 = (T − λ)−1K(T + K − λ)−1

is compact. Hence the assertion follows from Weyl’s theorem (Theorem 4.11).

We have defined the essential spectrum only for selfadjoint operators. For a non-
selfadjoint operator T it can be defined as

σess(T ) = {λ ∈ C : T − λ is not semi-Fredholm}.

A linear operator S is called semi-Fredholm if rg(λ − T ) is closed and dim(ker(λ −
T )) < ∞ or codim(rg(λ − T )) < ∞.
With this definition, Theorem 4.11 and Corollary 4.12 are valid also for non-
selfadjoint linear operators.

For the next theorem, however, we need selfadjointness and symmetry of the oper-
ators involved.

Theorem 4.13. Let T be selfadjoint and S a symmetric, T -compact linear opera-
tor. Then the following holds.

(i) T + S is selfadjoint and σess(T ) = σess(T + S).

(ii) T and T + S have the same singular sequences.

Proof. That T + S is selfadjoint follows from Theorem 4.7.

Let λ ∈ σess(T ) and (xn)n∈N a singular sequence for T and λ (see Theorem ??).
It follows that (Txn)n∈N converges weakly to 0. In particular, (xn)n∈N converges
weakly to 0 in (D(T ), ‖ · ‖T ). Since S is T -compact, (Sxn)n∈N converges to zero.
Consequently (T + S − λ)xn = (T − λ)xn + Sxn → 0 for n → ∞.
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Now let λ ∈ σess(T + S) and (xn)n∈N a singular sequence for T + S and λ. Since S
(and hence −S) is T + S-compact by Theorem 4.7, by what we already showed we
find that (xn)n∈N is also a singular sequence for T + S − S = T and λ.

4.4 Application: Schrödinger operators

The following is taken mostly from [Kat95, V S5].

Let ∆ = ∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3

. We want to find realisations of ∆ on the space H := L(R3).

The minimal operator T0 is Laplace operator with the compactly supported in-
finitely differentiable functions, that is

T0f = ∆f for all f ∈ D(T0) := C∞
c (R3). (4.4)

Recall that the Fourier transformation is a unitary operator on L(R3) and its re-
striction to the space S of the test functions (Schwartz functions). Recall that f ∈ S
if and only if it is infinitely differentiable and for every α ∈ N

3
0 and p ∈ N0 there

exists a constant Cα,p,f such that

(1 + |x|2p)
1
2 |Dαf(x)| ≤ Cα,p,f , x ∈ R

3.

The restriction of the Fourier transformation maps S bijectively on itself.

Theorem 4.14 (The free Schrödinger operator). T0 is essentially selfadjoint.
Is closure H0 is

H0 = F−1Mk2F , D(H0) = F−1D(Mk2),

where F is the Fourier transformation and Mk2 is the maximal operator of multi-
plication by |k|2 = k2

1 + k2
2 + k2

3 in L(R3, dk3).

Proof. Since the Fourier transformation is unitary and Mk2 is selfadjoint, so is H0.
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Note that T0 is symmetric, hence it is closable. We have to show that T0 = H0.
We define two auxiliary operators:

T1 = −∆|S , M0
k2 = Mk2 |C∞

c (R3).

Step 1. T1 = T0.

It suffices to show T1 ⊆ T1. Let w ∈ Cc(R
3) such that 0 ≤ w ≤ 1 and w(x) = 1 for

all |x| ≤ 1. For n ∈ N we define wn(s) := w( x
n ). Fix f ∈ D(T1) = S. We define

fn := wnf ∈ C∞
c (R3) = D(T0). Note that f(x) = fn(x) for |x| ≤ n. Hence fn → f

because

‖f − fn‖2 =

∫

R3

|f(x) − fn(x)|2 dx ≤
∫

|x|≥n

|f(x) − fn(x)|2 dx

≤ 2

∫

|x|≥n

|f(x)|2 dx −→ ∞, n → ∞.

To show that also T0fn → T1f follows because

∆(wnf)(x) = wn(x)∆f(x) +
2

n
∇w(x/n) · ∇f(x) +

1

n2
f(x)∆w(x/n).

Note that |∇w(x/n)| and |∆w(x/n)| are bounded with bound independent of n and
that |∇f |, ∆f ∈ L2(R

3) because f ∈ S. Hence we obtain

‖Tf − Tfn‖ ≤
(∫

|x|≥n

|1 − w(x/n)||∆f(x)| dx

+
2

n

∫

R3

|∇f(x)||∇w(x/n)| dx +
1

n2

∫

R3

|f(x)||∆w(x/n)| dx

)

and all terms tend to 0 for n → ∞. We have shown that f ∈ D(T0).

Step 2. Mk2 = Mk2 |S .

It suffices to show that Mk2 ⊆ M0
k2 . Let f ∈ D(Mk2 ). Then the function g := (1 +

(Mk2)2)
1
2 f belongs to L2(R

3). Therefore there exists a sequence (ϕn)n∈N ⊆ C∞
c (R3)

such that ϕn → g and let fn = (1+(Mk2)2)−
1
2 ϕn. Then fn ∈ C∞

c (R3) for all n ∈ N.

Moreover fn → f and Mk2fn → Mk2f . Hence we have shown that f ∈ D(M0
k2).

In summary it follows that

H0 = F−1Mk2F = F−1Mk2 |SF = F−1Mk2 |SF = T1 = T0.

Since the Fourier transformation is unitary, the spectra of Mk2 and H0 are equal.
So we have the following corollary.

Corollary 4.15. σ(H0) = σess(H0) = [0,∞).

In the next proposition we collect some properties of functions belonging to D(H0).

Proposition 4.16 (Properties of u ∈ D(H0)). Let u ∈ D(H0).

(i) ‖Fu‖ ≤ π√
α
‖(H0 + α2)−1‖2 < ∞ for all α > 0.

(ii) There exists a constant c > 0, such that for all α > 0 and all u ∈ H

|u(x)| ≤ c(α− 1
2 ‖H0x‖ + α

3
2 ‖u‖).
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(iii) For α > 0 and γ ∈ (0, 1
2 ) there exists a constant c > 0, such that for all u ∈ H

and all x, y ∈ R
3

|u(x) − u(y)| ≤ c|x − y|γ(α−( 1
2
−γ)‖H0x‖ + α

3
2
+γ‖u‖),

that is, u is Hölder continuous.

Proof. (i) Let u ∈ D(H0). Then the function k 7→ (1 + k2)(Ff)(k) belongs to
L2(R

3). Therefore, using Hölder’s inequality, we obtain

(∫

R3

|Fu(k)|2 dk

)2

=

(∫

R3

1

k2 + 1
(1 + k2)|Fu(k) dk

)2

≤
(∫

R3

1

(1 + k2)2
dk

)∫

R3

(
(1 + k2)2|Fu(k)|2 dk

)2

=
π2

α
‖(Mk2 + α)F(u)‖ =

π2

α
‖(H0 + α)(u)‖.

(ii) Using the estimate from (i) we find for u ∈ D(H0)

|u(x)| = |F−1Fu(x)| = (2π)−
3
2

∣∣∣∣
∫

R3

eikx Fu(k) dk

∣∣∣∣

≤ (2π)−
3
2

∫

R3

eikx |Fu(k)|2 dk ≤ α− 1
2 π2(2π)−

3
2 ‖(H0 + α2u‖

≤ c(α− 1
2 ‖H0u‖ + α

3
2 ‖u‖).

(iii) We note that

| eikx − eiky | = |1 − eik(x−y) | ≤ min{2, |k| |x − y|} ≤ 21−γ(|k| |x − y|)γ .

For γ ∈ (0, 1
2 ) we have that

∫
R3 |k|γ |Fu(k)| dk =

∫
R3

|k|γ
1+k2 (1+ |k|2)|Fu(k)| dk < ∞.

|u(x) − u(y)| = (2π)−
3
2

∣∣∣∣
∫

R3

(
eikx − eiky

)
Fu(k) dk

∣∣∣∣

≤ (2π)−
3
2

∫

R3

| eikx − eiky | |Fu(k)| dk

≤ (2π)−
3
2 21−γ |x − y|

∫

R3

|k|γ |Fu(k)| dk

≤ (2π)−
3
2 21−γ |x − y|

(∫

R3

|k|γ
1 + |k|2 dk

)(∫

R3

(1 + |k|2)|Fu(k)| dk

)

≤ (2π)−
3
2 21−γ |x − y|C(γ)

π2

α
‖(H0 + α2)u‖2.

21 Oct 2010

Schrödinger operators with potential

In the following we will always assume

q = q0 + q1

where q0 ∈ L∞(R3) and q1 ∈ L2(R
3). The maximal multiplication operators on

L2(R
3) associated to these functions will be denoted by Q, Q0, Q1 respectively.

Let T0 be defined as before in (4.4). Then the operator

S0 := T0 + Q

is well-defined because D(T0) = C∞
c (R3) ⊆ D(A).
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Theorem 4.17. S0 is essentially selfadjoint and H := S0 = H0 + Q.

Proof. We will show that Q is T -bounded with relative bound 0. By the Kato-
Rellich theorem (Theorem 4.10) the assertion is then proved. Let u ∈ D(H0). By
Proposition 4.16, u is bounded, hence u ∈ D(Q1) and

‖Q1u‖ = ‖q1u‖ ≤ ‖u‖∞‖q1‖2 ≤ c‖q1‖
(
α

3
2 ‖u‖ + α− 1

2 ‖H0u‖
)

.

Moreover, ‖Q0u‖ = ‖‖q0u‖ ≤ ‖u‖2‖q0‖∞. It follows that D(H0) ⊆ D(Q) and

‖Qu‖ ≤ ‖Q1u‖ + ‖Q0u‖ ≤
(
c‖q1‖α

3
2 + ‖q0‖∞

)
‖u‖ + c‖q1‖α− 1

2 ‖H0u‖.

Since α can be taken arbitrarily large, the theorem is proved.

Theorem 4.18. Assume that the conditions of Theorem 4.17 hold. Additionally,
assume that q0(x) → 0 for |x| → ∞. Then Q is H0-compact and σess(H) = [0,∞).

Proof. By Theorem 4.13 and Corollary 4.15 it suffices to show that Q is T0-compact.
First assume that Q0 = 0. Let (xn)n∈N ⊆ D(T0) ⊆ D(H0) such that (xn)n∈N

and (Txn)n∈N are bounded. We have to show that (Qxnk
)k∈N converges for some

subsequence. By Proposition 4.16 it follows that (xn)n∈N is Hölder continuous and
therefore equicontinuous. By assumption it is also uniformely bounded. Hence, by
the Arzelá-Ascoli theorem, for every compact ball BN (0) there exists a subsequence
that converges uniformly in BN (0). Using a diagonal sequence argument, we obtain
a subsequence (xnk

)k∈N that converges on R
3 uniformly to some bounded continuous

function v. Note that v belongs to L2(R
3). Therefore, because Q1 is a multiplication

operator with an L2-function, Q1unk
→ Q1v.

If Q0 6= 0 then we can choose a sequence q̃n of compactly supported bounded func-
tions which converge uniformly to q0. Let Q̃n be the corresponding multiplication
operators. Note that ‖Q̃n − Q0‖ → 0 for n → ∞. By what is already shown it

follows that Q̃n +Q1 is T0-compact. Hence (Q̃n +Q1)(H0 − 1)−1 is compact. Then

also (Q̃0 + Q1)(H0 − 1)−1 is compact since it is the limit of compact operators as
can be seen from

‖(Q̃n + Q1)(H0 − 1)−1 − (Q0 + Q1)(H0 − 1)−1‖
= ‖(Q̃n + Q0)(H0 − 1)−1‖ ≤ ‖Q̃n + Q0‖ ‖(H0 − 1)−1‖.

Note that for example the Coulomb potential q(x) = e
|x| satisfies the conditions of

Theorem 4.18.
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Chapter 5

Operator semigroups

5.1 Motivation

This chapter follows very closely [EN00].

Definition 5.1. A semigroup is a set M with an associative operation on M . A
semigroup with a neutral element is called monoid (or semigroup with a neutral
element).

Example. • (R+, +) with the usual addition on R+ := [0,∞)

• (R+, ∗) with s∗t := es+t, s, t ≥ 0; associativity of ∗ follows from associativity
of (R+, +).

In this chapter we will deal with semigroups of linear operators with some additional
properties.

There are two ways to access semigroups: Using the functional equation (FE) or
the initial value problem ACP.

Semigroups for autonomous systems

A physical system is described by a point in a phase space X . Which space is
appropriate as phase space, depends on the given system. Points in phase space are
called states of the given system.

Let z0 be a point in the phase space X describing the given system at time t0,
then the system after time t > 0 will be in some state (z0)t. We assume that the
new state does not depend on the initial time t0 or the history of the state, but
only on the initial state z0 and the elapsed time t. In this case the system is called
autonomous .
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Consequently, in an autonomous system we find for every initial value z0 ∈ X at
time t0 and for all s, t > 0:

z0 := state with initial value z0 at time t0
(z0)t := state with initial value z0 after time t

((z0)t)s := state with initial value (z0)t after time s
= with initial value z0 after time t + s
= (z0)t+s

Let us write U(t)z0 instead of (z0)t, t > 0. We obtain

U(s + t)z0 = U(s)U(t)z0, s, t > 0

U(0)z0 = z0.
(5.1)

If this is true for every possible z0 ∈ X , this yields the functional equation

U(s + t) = U(s)U(t), s, t > 0,

U(0) = id .
(FE)

Hence the set of all {U(t) : t > 0} with the operation given in (FE) is a semigroup
with neutral element (associativity follows from the associativity of the addition in
R+).

Examples 5.2.

1. Mass on a spring.

We consider a particle with mass m > 0 hanging on an ideal spring with Hook’s
constant k > 0 (that is, we neglect friction and assume that Hook’s law holds for
arbitrarily large amplitudes and momenta). The system is describes completely by
the position x and the momentum p of the particle at a given time t0. For the phase
space we can therefore choose X = R × R = position × momentum.
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Chapter 5. Operator semigroups 41

Without restriction we assume t0 = 0. The equation of motion is

mẍ = −kx, p = mẋ, t ≥ 0, x(0) = x0, p(0) = p0,

or, written as first order system,

d

dt

(
x
p

)
=

(
0 m−1

−k 0

)(
x
p

)
,

(
x
p

)
(0) =

(
x0

p0

)
. (5.2)

By the theorem of Picard-Lindelöf the system has a unique solution. It is given by
the Picard-Lindelöf iteration as

(
x
p

)
(t) =

∞∑

n=0

tn

n!

(
0 m−1

−k 0

)n(
x0

p0

)
,

In this case the time evolution is given by

U(t) =

∞∑

n=0

tn

n!

(
0 m−1

−k 0

)n

=: exp

(
t

(
0 m−1

−k 0

))

In this simple one-dimensional example we observe:

• All initial values (x0, p0)
t

are allowed.

• The solutions exist and are unique for all t ≥ 0 and they are continuous for
t ց 0.

• The solutions depend continuously on the initial value (x0, p0)
t
.

• Also t < 0 is allowed.

• The asymptotic behaviour of the solutions depend on the eigenvalues of the

matrix
(

0 m−1

−k 0

)
.

• It is easy to check the the functional equation (FE) holds.

2. Heat conducting rod.

Let f(x, t) be the temperature in an ideal heat conducting rod of length L at
position x ∈ [0, L] and time t ≥ 0. As phase space we choose X = C([0, L]) oder
X = Lp(0, L). If we disregard boundary conditions, we are led to the following
initial value problem

∂f

∂t
= κ

∂2f

∂x2
, t ≥ 0, x ∈ [0, L],

f( · , 0) = ϕ0 ∈ X.

Instead of treating this initial value problem as a partial differential equation in
(0, L) × R+, we can consider it as a first order problem in the space X :

d

dt
ϕ = Aϕ, t ≥ 0,

ϕ(0) = ϕ0,
(ACP)

where A is the unbounded operator A = κ ∂2

∂x2 in the space X (in order to define
A, we have to specify its domain D(A); here the boundary conditions enter) and ϕ
is a map R+ → X (here ϕ(t) = f( · , t), t ≥ 0).
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42 5.2. Basic definitions and properties

If X is a Banach space and A a linear operator in X , then a problem of the form
(ACP) is called an abstract Cauchy problem.
Formally, the solution of (ACP) is again “ϕ(t) = etA ϕ0”. In contrast to the first

example, however, where the linear operator
(

0 m−1

−k 0

)
is bounded, here we have

the following problems and questions:

• If A is unbounded, then only initial values ϕ0 ∈ D(A) are allowed in (ACP).

• If ϕ0 ∈ D(A), does (ACP) then have a solution ϕ(·)?

• How does the time asymptotic of solutions depend on the spectrum of A?

• What is a solution of (ACP)?

3. More examples.

Many partial differential equations can be treated as above, for instance the Schrödinger
equation

∂

∂t
Ψ = i ∆Ψ + i V Ψ

or the Navier-Stokes equation

∂

∂t
Ψ − ∆Ψ + (Ψ · ∇)Ψ + ∇p = 0,

÷Ψ = 0

Ψ|t=0 = Ψ0.

We are going to deal with existence and uniqueness of solutions of problems of the
form (ACP). This will depend on properties of the operator A. The main theorems
are the generation theorems by Hille and Yosida (Theorem 5.31), by Lumer and
Phillips (Theorem 5.44) and by Stone (Theorem 5.47).

5.2 Basic definitions and properties

Definition 5.3. Let X be a Banach space.

(i) A family T = (T (t))t≥0 ⊆ L(X) is called a semigroup (more precisely a
1-parameter operator semigroup) if

T (t + s) = T (t)T (s), t, s ≥ 0

T (0) = id .
(5.3)

(ii) A family S = (S(t))t∈R ⊆ L(X) is called a group (more precisely a 1-parameter
group) if

S(t + s) = S(t)S(s), t, s ∈ R

S(0) = id .
(5.4)

Definition 5.4. Let X be a Banach space and T = (T (t))t≥0 a semigroup on X .
Let us consider the map

T : R+ → L(X), t 7→ T (t).
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(i) T is called a uniformly continuous semigroup if T is continuous with respect
to the operator norm;
that is, for every t0 ≥ 0 and every ε > 0 exists a δ > 0 such that ‖T (t0) −
T (t)‖ < ε for all t ≥ 0 with |t − t0| < δ.

(ii) T is called strongly continuous or a C0-semigroup1, if T is strongly continuous;
that is, for every x ∈ X the map R+ → X, t 7→ T (t)x is continuous,
that is, for every x ∈ X , t0 ≥ 0 and ε > 0 exists a δ > 0 such that ‖T (t)x −
T (t0)x‖ < ε for all t ≥ 0 with |t − t0| < δ.

Examples. (i) Let X = C and a ∈ C. Then T (t) = eat defines a strongly
continuous semigroup.

(ii) Let X = C
n and A ∈ Mn(C). Then T (t) = eAt defines a strongly continuous

semigroup on X .

Example 5.5 (Multiplication semigroup). Let X = D(K) where K is compact
subset of C and fix q ∈ C(K). Then (T (t)f)(ξ) = etq(ξ) f(ξ) defines a uniformly
continuous semigroup on C(K).

Example 5.6 (Translation semigroup). Consider the function spaces

(i) X = L∞(R)

(ii) X = BUC(R) := {f : R → C : f bounded and uniformly continuous}

(iii) X = Lp(R).

In each case, the translation operators are defined by

T (t)f(ξ) = f(ξ + t), t ≥ 0, ξ ∈ R.

In all three cases T (t) ∈ L(X), t ≥ 0, and T = (T (t))t≥0 satisfies (5.3), hence it is
a semigroup on X .
In case (i), is T not strongly continuous, hence is cannot be continuous in norm.
For instance, let

f : R → R, f(ξ) =

{
1, ξ ≥ 0,

−1, ξ < 0,

then f ∈ L∞(R) and ‖T (t)f − T (0)f‖∞ = 2, t > 0, consequently T (·)f is not
continuous in 0 (T is not strongly continuous in 0).
In the cases (ii) and (iii) T is a strongly continuous by not norm continuous semi-
group on X . It can be shown that ‖T (t)− id ‖ = 2 for t > 0.

Proposition 5.7. Let X be a Banach space and T = (T (t))t≥0 a semigroup on X.
Then the following is equivalent:

(i) T is strongly continuous.

(ii) T is strongly continuous in 0.

(iii) There exist δ > 0, M ≥ 1 and a dense subset D ⊆ X such that

(a) ‖T (t)‖ ≤ M , t ∈ [0, δ],

1C0 stands for Cesàro-summable.
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(b) limtց0 T (t)x = x, x ∈ D.

If (iii) (a) holds, then, with ω = log M
δ ,

‖T (t)‖ ≤ M etω, t ≥ 0. (5.5)

Proof. First we show the estimate (5.5): For every t ∈ R+ there exists an n ∈ N0

and τ ∈ [0, δ) such that t = τ + nδ. Using the semigroup property of T and the
estimate (iii)(a) and 0 < n logM ≤ t

δ log M = tω, we find

‖T (t)‖ = ‖T (τ + nδ)‖ = ‖T (τ)T (δ) · · ·T (δ)︸ ︷︷ ︸
n-mal

‖ ≤ ‖T (τ)‖ ‖T (δ)‖n ≤ MMn

= M en log M ≤ M etω

(ii) ⇒ (iii) We only have to show (iii)(a). Assume there exist no δ > 0 and M ≥ 1
such that (iii)(a) holds. Then there is a sequence (tn)n∈N ⊆ R+ with tn ց 0 and
‖T (tn)‖ → ∞ for n → ∞. By the uniform boundedness principle, there exists an
x ∈ X such that ‖T (tn)x‖ → ∞, n → ∞. Consequently T (tn)x 6→ x = T (0)x, in
contradiction to the strong continuity of T in 0.

(iii) ⇒ (ii) Let (tn)n∈N with tn ց 0, n → ∞; without restriction we can assume
tn ≤ δ, n ∈ N. By assumption ‖T (tn)‖ ≤ M , n ∈ N, and T (·)x|K is continuous for
every x ∈ D. For arbitrary x ∈ X and ε > 0 choose y ∈ D such that ‖x − y‖ <
min{ε/3, ε/(3M)} and choose N ∈ N large enough such that ‖T (tn)y − y‖ < ε/3
for n ≥ N . This implies

‖T (tn)x − x‖ ≤ ‖T (tn)(x − y)‖ + ‖T (tn)y − y‖ + ‖y − x‖
≤ ‖T (tn)‖ ‖x − y‖ + ‖T (tn)y − y‖ + ‖y − x‖ < ε.

Since (tn)n∈N and ε > 0 can be chosen arbitrary, the claim limtց0 ‖T (t)x − x‖ = 0
is proved.

(ii) ⇒ (i) Let t0, h > 0 and x ∈ X be given.

Right continuity of T in t0: Since T is strongly continuous in 0, it follows that

‖T (t0 + h)x − T (t0)x‖ ≤ ‖T (t0)‖ ‖T (h)x − x‖ −→ 0. h ց 0,

Right continuity of T in t0: We already showed “(ii) ⇒ (iii)”, hence ‖T (t)‖ ≤ M etω,
t ≥ 0, for appropriate M ≥ 1 and ω ∈ R. This implies

‖T (t0)x − T (t0 − h)x‖ ≤ ‖T (t0 − h)‖︸ ︷︷ ︸
bounded

‖T (h)x− x‖︸ ︷︷ ︸
→0, h→0

−→ 0, h ց 0.

(i) ⇒ (ii) is clear.

Definition 5.8. A strongly continuous semigroup T = (T (t))t≥0 on a Banach space
X is called

(i) bounded , if we can choose ω = 0 in (5.5).

(ii) contractive or a contraction semigroup if we can choose ω = 0 and M = 1 in
(5.5).

(iii) isometric if ‖T (t)x‖ = ‖x‖, t ≥ 0, x ∈ X .
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Definition 5.9. Let T = (T (t))t≥0 be a strongly continuous semigroup on a Banach
space X . Then

ω0 = ω0(T ) := inf{ω ∈ R : ∃ M ≥ 1 such that ‖T (t)‖ ≤ M etω, t ≥ 0} (5.6)

is the growth bound or the type of T .

Remarks 5.10. • It is possible that ω0 = −∞: Every nilpotent semigroup has
growth bound −∞. (A semigroup is nilpotent, if there exists an T ≥ 0 such
that T (t) = 0 for all t ≥ 0.)

For instance, let X = Lp(0, a) for some a ∈ (0,∞) and

(T (t)f)(ξ) :=

{
f(t − ξ), t ≤ ξ ≤ a,

0, else,
f ∈ X.

Obviously, T = (T (t))t≥0 is a semigroup on X and ω0(T ) = −∞.

• The infimum in (5.6) is in general not a minimum.

• In general M has to be chosen > 1, independently how large ω is chosen.

5.3 Uniformly continuous semigroups

Definition 5.11. Let X be a Banach space and A ∈ L(X). Let

exp(tA) := etA :=

∞∑

n=0

tn

n!
An, t ∈ R. (5.7)

Then the family (exp(tA))t≥0 is the group generated by A, and (exp(tA))t∈R the
semigroup generated by A.

The following proposition shows that Definition 5.11 makes sense.

Proposition 5.12. Let X be a Banach space and A ∈ L(X).

(i) exp(tA) converges absolutely and exp(tA) ∈ L(X) for all t ∈ R.

(ii) exp(0 · A) = id.

(iii) exp((t + s)A) = exp(tA) exp(sA), s, t ≥ 0.

(iv) R → L(X), t 7→ exp(tA) is continuous.

(v) If S ∈ L(X), such that S−1 exists and S−1 ∈ L(X), then

exp(S−1AS) = S−1 exp(A)S. (5.8)

(vi) If B ∈ L(X) with AB = BA, then

exp(A + B) = exp(A) exp(B) = exp(B) exp(A). (5.9)

(i)–(iv) show that (exp(tA))t≥0 is a uniformly continuous semigroup.

Proof. (i) For k < m ∈ N we have
∥∥∥∥∥

m∑

n=0

tn

n!
An −

k∑

n=0

tn

n!
An

∥∥∥∥∥ =

∥∥∥∥∥

m∑

n=k+1

tn

n!
An

∥∥∥∥∥ ≤
m∑

n=k+1

tn

n!
‖An‖ −→ 0, k, m → ∞,

because
∑∞

n=0
tn

n! ‖A‖n = et‖A‖. Consequently, the sequence
(∑k

n=0
tn

n! An
)

k∈N

is a

Cauchy sequence in L(X), hence it converges in L(X) (because L(X) is a Banach
space).
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(ii) is clear.

(iii) follows from (vi).

(iv) For t, h ∈ R we have that

‖exp((t + h)A) − exp(tA)‖ ≤ ‖ exp(tA) ‖ ‖ exp((hA) − id ‖

= ‖ exp(tA) ‖
∥∥∥∥∥

∞∑

n=1

hn

n!
An

∥∥∥∥∥ ≤ ‖ exp(tA) ‖ |h| ‖A‖
∞∑

n=0

hn

(n + 1)!
‖An ‖

≤ |h| ‖A‖ ‖ exp(tA) ‖ ‖ exp(h ‖A‖) ‖ .

Therefore exp((t + h)A) −→ exp(tA) for h → 0.

(v) Since the series are absolutely convergent, we obtain

exp(S−1AS) =

∞∑

n=0

1

n!
(S−1AS)n = S−1

( ∞∑

n=0

1

n!
An

)
S = S−1 exp(A)S.

(vi) Since the series are absolutely convergent, we obtain with Cauchy’s product
formula

exp(A) exp(B) =

( ∞∑

n=0

1

n!
An

)( ∞∑

n=0

1

n!
Bn

)
=

∞∑

n=0

(
n∑

k=0

1

k!
Ak 1

(n − k)!
Bn−k

)

=

∞∑

n=0

1

n!

(
n∑

k=0

n!

k!(n − k)!
Ak Bn−k

)
=

∞∑

n=0

1

n!
(A + B)n

= exp(A + B).
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Example 5.13 (Matrix semigroups). Let X = Cn and A ∈ L(X) = Mn(C).
Then Proposition 5.12 yields a technique how to calculate exponentials of matrices.
There exists a S ∈ Gl(n, C) such that SAS−1 has Jordan normal form , that is,
A = S−1(D + N)S with a diagonal matrix D and a nilpotent matrix N such that
ND = DN . Then

exp(tA) = exp(S−1(tD + tN)S) = S−1 exp(tD + tN)S = S−1 exp(tD) exp(tN)S

= S−1 exp(tD)

( ∞∑

n=0

tn

n!
Nn

︸ ︷︷ ︸
only finitely
many terms!

)
S.

For calculations we use: If A is of block diagonal form

A =




A1 · · · · · · 0
... A2

...
...

. . .
...

0 · · · · · · Aj




=: diag(A1, . . . , An)

where Ak ∈ M(nk, C), nk ∈ N, with
∑j

k=1 nk = n, then

exp(tA) = diag
(
exp(tA1), . . . , exp(tAn)

)
, t ∈ R.

In particular, for a Jordan block of length m

J =




λ 1
0 λ 1
...

. . .
. . .

0 · · · · · · λ 1
0 · · · · · · · · · λ




we obtain

exp(tJ) = etλ




1 t · · · · · · tm−1

(m−1)!

0 1 t
...

...
. . .

. . .
...

0 · · · · · · 1 t
0 · · · · · · · · · 1




.
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The asymptotic behaviour of exp(tA)x depends on the Jordan structure of A.

Example. Let m > 0, k ∈ R and A :=
(

0 m−1

−k 0

)
(see Example 5.2.1). Choose

κ ∈ C such that κ2 = −k and let S := 1√
2

(
κ

√
m−1

−√
m κ−1

)
. Then

SAS−1 =
1

2

(
κ

√
m

−1

−√
m κ−1

)(
0 m−1

−k 0

)(
κ−1 −√

m
−1

√
m κ

)
=

(
κ
m 0
0 − κ

m

)
.

Recall that k ≥ 0, whence κ ∈ iR. The solutions exp(tA) ( x0
p0

) are periodic with
period ω = 2πm

|κ| because

exp ((t + ω)A) = S−1 exp

(
(t + ω)

(
κ
m 0
0 − κ

m

))
S

= S−1

(
exp

(
(t + ω) κ

m

)
0

0 exp
(
−(t + ω) κ

m

)
)

S

= S−1

(
exp(t κ

m ) 0
0 exp(−t κ

m )

)
S = exp(tA).

So far, we only considered the functional equation (FE). From Proposition 5.12
we know that for A ∈ L(X) the group (exp(tA))t∈R is continuous. The following
proposition shows that it is even differentiable.

Proposition 5.14. Let X be a Banach space, A ∈ L(X) and T = (T (t))t≥0 the
semigroup generated by A (i. e., T (t) = exp(tA), t ≥ 0). Then the following holds:

(i) The map R → L(X), t 7→ T (t), is differentiable and with derivative

d

dt
T (t) = AT (t) = T (t)A, t ∈ R.

(ii) If S : R → L(X) is a solution of

U(0) = id,
d

dt
U(t) = AU(t), t ∈ R, (5.10)

then S = T .

Proof. (i) Because of

T (t + h) − T (t)

h
= T (t)

T (h) − id

h
=

T (h) − id

h
T (t), t ∈ R, h ∈ R \ {0},

is suffices to show the differentiability in t = 0 with d
dtT (0) = A. This follows from

∥∥∥∥
1

h
(T (h)− T (0)) − A

∥∥∥∥ =

∥∥∥∥∥
1

h

∞∑

n=1

hn

n!
An − A

∥∥∥∥∥ =

∥∥∥∥∥
1

h

∞∑

n=2

hn

n!
An

∥∥∥∥∥

≤ |h| ‖A‖2
∞∑

n=0

hn‖A‖n

(n + 2)!
≤ |h| ‖A‖2 exp(h ‖A‖) −→ 0,

for |h| → 0.
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(ii) Observe that T (0) = S(0) by assumption. For arbitrary t0 ∈ R it follows that

d

dt

(
T (t)S(t0 − t)

)
=

(
d

dt
T (t)

)
S(t0 − t) + T (t)

(
d

dt
S(t0 − t)

)

= AT (t)S(t0 − t) − T (t)A︸ ︷︷ ︸
=AT (t)

S(t0 − t) = 0.

Suppose that T (t)S(t0 − t) are not constant with respect to t. Then there exists
τ ∈ R, x ∈ X and ϕ ∈ X ′ such that ϕ

(
(T (τ)S(t0 − τ)x

)
6= ϕ

(
(T (0)S(t0)x

)
. But for

arbitrary x ∈ X and ϕ ∈ X ′ the calculation above gives d
dtϕ
(
(T (t)S(t0 − t))x

)
= 0,

t ∈ R, hence ϕ
(
(T (t)S(t0 − t))x

)
is constant in t. Consequently, T (t)S(t0 − t) is

constant with respect to t and therefore

T (t0) = T (t0)S(t0 − t0) = T (0)S(t0 − 0) = S(t0).

Since t0 ∈ R was arbitrary, the assertion is proved.

Corollary 5.15. If X is a Banach space, x0 ∈ X, A ∈ L(X) and (T (t))t≥0 the
group generated by A, then T (·)x0 is the unique solution of the initial value problem

x(0) = x0,
d

dt
x = Ax, t ∈ R.

Theorem 5.16 (Characterisation of uniformly continuous semigroups).
Let X be a Banach space and T = (T (t))t≥0 a semigroup on X. Then T is a
uniformly continuous semigroup on X if and only if there exists an A ∈ L(X)
such that T (t) = exp(tA), t ≥ 0. The operator A is uniquely determined T ; T is
differentiable and

d

dt
T (t) = AT (t) = T (t)A, t ≥ 0. (5.11)

Proof. If A ∈ L(X), then (exp(tA))t≥0 is a uniformly continuous semigroup and
satisfies (5.11) by Proposition 5.12.

Now assume that T = (T (t))t≥0 is a uniformly continuous semigroup on X . Define

V (t) :=

∫ t

0

T (s) ds, t ≥ 0. (5.12)

Since T is continuous, we obtain

1

t
V (t) =

1

t

∫ t

0

T (s) ds −→ T (0) = id, t ց 0.

Hence there exists an t0 such that V (t) is boundedly invertible for all t ∈ (0, t0] (use
that V (t) has bounded inverse if and only if t−1V (t) has bounded inverse and that
t−1V (T ) = id−(id−t−1V (T ))).
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Moreover, (5.12) shows that V is continuously differentiable because for h > 0 we
have that, for h ց 0,

1

h
(V (t + h) − V (t)) =

1

h

∫ t+h

t

T (s) ds = T (t)
1

h

∫ h

0

T (s) ds −→ T (t),

1

h
(V (t − h) − V (t)) =

1

h

∫ t

t−h

T (s) ds = T (t − h)
1

h

∫ h

0

T (s) ds −→ T (t).

Differentiability of T follows from

T (t) = V (t0)
−1V (t0)T (t) = V (t0)

−1

∫ t0

0

T (s + t) ds = V (t0)
−1

∫ t+t0

t

T (s) ds

= V (t0)
−1 (V (t + t0) − V (t)) , t ≥ 0,

because is V differentiable. In particular, it follows that

d

dt
T (t) = V (t0)

−1 d

dt
(V (t + t0) − V (t)) = V (t0)

−1 (T (t + t0) − T (t))

= V (t0)
−1 (T (t0) − id)T (t)

Obviously, the operator A := V (t0)
−1 (T (t0) − id) is linear and bounded. By Propo-

sition 5.12 we get that T (t) = exp(tA), t ≥ 0.

Definition 5.17. Let A and T be as in Theorem 5.16. Then A is called the
(infinitesimal) generator of T .

For a semigroup T = (T (t))t≥0 and its generator A we have

Ax = lim
tց0

1

t
(T (t) − id)x, x ∈ X, (5.13)

T (t)x =
∞∑

n=0

tn

n!
Anx, x ∈ X, t ≥ 0. (5.14)

Example (Multiplication semigroups on C0(Ω)).

Definition 5.18. Let Ω ⊆ Cn be a domain and q ∈ C(Ω). Then the operator Mq,
defined by

Mqf := qf, f ∈ D(Mq) := {f ∈ C0(Ω) : qf ∈ C0(Ω)},

is the multiplication operator induced by q on

C0(Ω) := {f ∈ C(Ω) : ∀ ε > 0 ∃ Kε ⊆ Ω compact such that |f(ξ)| < ε, ξ ∈ Ω \ Kε},

with the norm ‖f‖ = sup{|f(ξ)| : ξ ∈ Ω}.

Proposition 5.19. Let Ω ⊆ Cn be a domain and q ∈ C(Ω). Then the following
holds:

(i) Mq : D(Mq) ⊆ C0(Ω) → C0(Ω) is densely defined and closed.

(ii) Mq is bounded ⇐⇒ q is bounded.

(iii) Mq is boundedly invertible ⇐⇒ q is boundedly invertible,
in this case (Mq)

−1 = Mq−1 .
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(iv) σ(Mq) = q(Ω).

Proof. See, e.g., [EN00, Proposition I.4.2].

Definition 5.20. Let q ∈ C(Ω) with ω := sup Re(q(ξ)) < ∞ and define q̃t(ξ) :=
etq(ξ), t ≥ 0, ξ ∈ Ω. We denote the corresponding multiplication operator by

Tq(t) := Meqt
, t ≥ 0.

Obviously q̃t ∈ C(Ω), t ≥ 0, and therefore for every tge0 the operator Tq(t) is a
multiplication operator on C0(Ω). It is clear that Tq = (Tq(t))t≥0 is a semigroup on
C0(Ω), because for all f ∈ C0(Ω), s, t ≥ 0 and ξ ∈ Ω

(
Tq(s)Tq(t)f

)
(ξ) = etq(ξ)

(
Tq(s)f

)
(ξ) = esq(ξ) etq(ξ) f(ξ) = e(s+t)q(ξ) f(ξ)

=
(
Tq(s + t)f

)
(ξ),

and

‖Tq(t)‖ ≤ etω, t ≥ 0.

What are necessary and sufficient conditions on q such that Tq is a uniformly con-
tinuous or a strongly continuous semigroup? If Tq is uniformly continuous, what is
is generator?

Proposition 5.21. With the definitions from Definition 5.20 the following is true:

(i) Tq is uniformly continuous if and only if q is bounded. In this case Mq is the
generator of Tq.

(ii) If q is unbounded (but still sup{Re(q(ξ)) : ξ ∈ Ω} < ∞), then Tq is a strongly
continuous semigroup on C0(Ω).

Proof. (i) Assume that q is bounded. Then Mq is unbounded and for all t ≥ 0,
f ∈ C0(Ω) and ξ ∈ Ω

(
Tq(t)f

)
(ξ) = etq(ξ) f(ξ) =

∞∑

n=0

tnq(ξ)n

n!
f(ξ) =

∞∑

n=0

tn

n!
(Mqnf)(ξ)

=
∞∑

n=0

tn

n!

(
(Mq)

nf
)
(ξ) =

(( ∞∑

n=0

tn

n!
(Mq)

n
)
f
)
(ξ) =

(
exp(tMq)f

)
(ξ).

Hence Tq(t) = exp(tMq), t ≥ 0, and therefore Tq is a uniformly continuous semi-
group by Theorem 5.16.

Assume that q is unbounded. Then there exists a sequence (ξn) ⊆ Ω such that
|q(ξn)| → ∞. Let tn := 1

|q(ξn)| , n ∈ N. If Tq was uniformly continuous, then,

for every ε > 0 there exists an N ∈ N such that ‖T (tn)f − f‖ < ε, n ≥ N ,
f ∈ C0(Ω). For every n ∈ N we choose a function fn ∈ C0(Ω) such that fn(ξn) = 1
and ‖fn‖ = 1. Define δ := max{| ez −1| z ∈ C, |z| = 1} > 0. Then, for all n ∈ N

‖T (tn)fn − fn‖ = sup{| etnq(ξ) fn(ξ) − fn(ξ)| : ξ ∈ Ω} ≥ | etnq(ξn) fn(ξn) − fn(ξn)|
= | etnq(ξn) −1| |fn(ξn)| = | etnq(ξn) −1| ≥ δ,

hence Tq is not uniformly continuous.

Last Change: Sat Nov 13 12:59:41 COT 2010

D
R

A
F

T

52 5.4. Strongly continuous semigroups

(ii) Let f ∈ C0(Ω). We have to show that R+ → X, t 7→ Tq(t)f is continuous. By
Proposition 5.7 is suffices to show the continuity in 0. Fix ε > 0. By assumption
there is a compact set Kε ⊂ Ω such that

|f(ξ)| <
ε ‖f‖

e|ω| +1
, ξ ∈ Ω \ Kε,

where ω = sup{Re(q(ξ)) : ξ ∈ Ω}. Since Kε is compact and q is continuous, there
exists a t0 ∈ (0, 1) such that

∣∣ 1 − exp(tq(ξ))
∣∣ < ε, t ∈ [0, t0], ξ ∈ Kε.

Hence, for all t ∈ [0, t0],

‖T (t)f − f‖ = sup{| etq(ξ) f(ξ) − f(ξ)| : ξ ∈ Ω}
= sup{|(etq(ξ) −1)f(ξ)| : ξ ∈ Kε} + sup{|(etq(ξ) −1)f(ξ)| : ξ ∈ Ω \ Kε}

≤ ‖f‖ sup{| etq(ξ) −1| : ξ ∈ Kε} +
ε ‖f‖

e|ω| +1
sup{| etq(ξ) −1| : ξ ∈ Ω \ Kε}

< ε ‖f‖ + ε ‖f‖ = 2ε ‖f‖.

5.4 Strongly continuous semigroups

In chapter 5.2 we already saw: If T = (T (t))t≥0 is a semigroup on a Banach space
X , then

T uniformly continuous ⇐⇒ T (t) = exp(tA) for some A ∈ L(X) and all t ≥ 0.

Moreover, T is differentiable and d
dtT (0) = A.

Now we use the latter property to assign a uniquely defined generator to strongly
continuous semigroups.

Definition 5.22. Let X be a Banach space and T = (T (t))t≥0 a strongly contin-
uous semigroup on X . The operator A, defined by

D(A) :=
{

x ∈ X : lim
hց0

1
h(T (h)x − x) exists

}
,

Ax := lim
hց0

1

h
(T (h)x − x), x ∈ D(A),

is called the (infinitesimal) generator or T .

Remark. If T is a uniformly continuous semigroup, then this definition coincides
with the definition of the generator in Definition 5.20.

Lemma 5.23. Let X be a Banach space and T = (T (t))t≥0 strongly continuous
semigroup on X. For x ∈ X we define the map τx : R+ → X, t 7→ τx(t) = T (t)x.
Then the following is equivalent:

(i) τx is differentiable.

(ii) τx is differentiable in 0.

In this case τ̇x(t) = T (t0)τ̇x(0).

Proof. (i) ⇒ (ii) is clear.
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(ii) ⇒ (i) Let t0 > 0, h ∈ (0, t0) and x ∈ X such τx is differentiable in 0. The
differentiability from the right of τx in t0 follows from

1

h

(
τx(t0 + h) − τx(t0)

)
= T (t0)

1

h

(
τx(h) − τx(0)

)
−→ T (t0)

d

dt
τx(0), h → 0.

Differentiability from the left of τx in t0 follows from

1

h

(
τx(t0)−τx(t0 − h)

)

= T (t0 − h)

(
1

h

(
τx(h) − τx(0)

)
− d

dt
τx(0)

)
+ T (t0 − h)

d

dt
τx(0)

−→ T (t0)
d

dt
τx(0), h → 0,

because the first term converges to 0 (since T (t0−h) is bounded uniformly bounded
for h ∈ (0, t0) and the term in brackets tends to 0 by hypothesis).

Corollary 5.24. If T = (T (t))t≥0 is a strongly continuous semigroup on a Banach
space X with generator A, then

D(A) = {x ∈ X : t 7→ T (t)x is differentiable }.

Proposition 5.25. Let X be a Banach space and T = (T (t))t≥0 strongly continu-
ous semigroup on X with generator A. Then the following holds:

(i) A is a linear operator.

(ii) If x ∈ D(A), then T (t)x ∈ D(A) for all t ≥ 0 and the map τx : R+ → X, t 7→
T (t)x is differentiable with derivative

d

dt
T (t)x = AT (t)x = T (t)Ax, t ≥ 0.

(iii) If t ≥ 0 and x ∈ X, then
∫ t

0
T (s)x ds ∈ D(A).

(iv) If t ≥ 0, then

T (t)x − x = A

∫ t

0

T (s)x ds, x ∈ X, (5.15)

T (t)x − x =

∫ t

0

T (s)Ax ds, x ∈ D(A). (5.16)

Proof. (i) is clear.

(ii) If x ∈ D(A), then τx is differentiable with d
dtτx(0) = Ax and d

dtT (t)x =
d
dtτx(t) = T (t) d

dtτ(0) = T (t)Ax. Hence also

lim
hց0

1

h

(
T (h)T (t)x − T (t)x

)
= lim

hց0

1

h

(
T (t + h)x − T (t)x

)
= T (t)Ax

exists and consequently T (t)x ∈ D(A) and AT (t)x = T (t)Ax.

(iii) and (5.15): Let t ≥ 0, h > 0 and x ∈ X . The assertions follow from

1

h

(
T (h)

∫ t

0

T (s)x ds −
∫ t

0

T (s)x ds

)
=

1

h

(∫ t+h

h

T (s)x ds −
∫ t

0

T (s)x ds

)

=
1

h

(∫ t+h

t

T (s)x ds −
∫ h

0

T (s)x ds

)
−→ T (t)x − T (0)x, h → 0.
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(iv) and (5.16): Let x ∈ D(A), t ≥ 0 and h > 0. Define

ϕh : [0, t] → X, ϕh(s) = T (s)
T (h)x − x

h

Then ϕh converges uniformly to T (·)Ax on [0, t] for h → 0. Hence we obtain

A

∫ t

0

T (s)x ds = lim
hց0

1

h

(
T (h) − id

) ∫ t

0

T (s)x ds = lim
hց0

∫ t

0

1

h

(
T (h) − id

)
T (s)x ds

= lim
hց0

∫ t

0

ϕh(s) ds =

∫ t

0

lim
hց0

ϕh(s) ds =

∫ t

0

T (s)Ax ds.

Recall that the semigroup T determines uniquely its generator A (see Definition 5.22).
Now we will show that the generator A determines uniquely the corresponding semi-
group T .

Proposition 5.26. Let X be a Banach space, T = (T (t))t≥0 a strongly continuous
semigroup and A its generator. Then D(A) ⊆ X is dense, A is closed and A
determines the semigroup T uniquely.

Proof. Since for every x ∈ X the map R+ → X, t 7→ T (t)x is continuous, 5.25
shows

D(A) ∋ 1

t

∫ t

0

T (s)x ds −→ x, t ց 0.

Hence we proved that D(A) = X .

Given a sequence (xn)n ⊆ D(A) and x, y ∈ X such that xn → x and Axn → y for
n → ∞, we have to show that x ∈ D(A) and Ax = y. Note that

1

t

(
T (t)x − x

)
= lim

n→∞
1

t

(
T (t)xn − xn

) (5.16)
= lim

n→∞

∫ t

0

T (s)Axn ds

(∗)
=

∫ t

0

lim
n→∞

T (s)Axn ds
(+)
=

∫ t

0

T (s)y ds,

where (∗) holds because the map [0, t] → X, s 7→ T (s)Axn converges uniformly
to s 7→ T (s)y, and (+) follows because T (s) is closed. Hence, by definition of A,
x ∈ D(A) and

Ax = lim
tց0

1

t
(T (t)x − x) = lim

tց0

1

t

∫ t

0

T (s)y ds = y.

Let S = (S(t))t≥0 be a strongly continuous semigroup with generator A. We have
to show that S(t) = T (t), t ≥ 0. For x ∈ D(A) and t > 0 we define η : [0, t] →
X, η(s) := T (t − s)S(s)x (cf. the proof of Proposition 5.14). The function η is
differentiable because for s ∈ (0, t) and small enough |h|

1

h
(η(s + h) − η(s)) =

1

h

(
T (t− s − h)S(s + h)x − T (t − s)S(s)x

)

= T (t− s − h)︸ ︷︷ ︸
unif. bdd. w.r.t. h

1

h

(
S(s + h)x − S(s)x

)
+

1

h

(
T (t − s − h) − T (t − s)

)
S(s)x︸ ︷︷ ︸
∈D(A)

−→ T (t − s)AS(s)x − T (t − s)AS(s)x = 0.

Therefore η is constant on [0, t] and it follows that

T (t)x = η(0) = η(t) = S(t)x.

Since T (t) and S(t) are bounded and D(A) is dense in X , we obtain T (t) = S(t).

Last Change: Sat Nov 13 12:59:41 COT 2010



D
R

A
F

T

Chapter 5. Operator semigroups 55

Remark. Let X be a Banach space and T = (T (t))t≥0 a strongly continuous
semigroup on X with generator A. A classical solution of

d

dt
x = Ax(t), t ≥ 0, x(0) = x0, (5.17)

is a map u : R+ → X which is continuously differentiable, u(t) ∈ D(A) for all t ≥ 0,
and u solves the initial value problem (5.17). For an initial value x0 ∈ D(A), the
unique classical solution of (5.17) is T (·)x0. For k ∈ N and x0 ∈ D(Ak) we have

T (·)x0 ∈ Ck([0,∞), X) ∩ Ck−1([0,∞),D(A)).

Lemma 5.27 (Scaling). Let X be a Banach space and T = (T (t))t≥0 a strongly
continuous semigroup on X with generator A. For every λ ∈ C and α > 0, the
family S = (S(t))t≥0 defined by S(t) = etλ T (αt) is a strongly continuous semigroup
on X with generator B = αA + λ id.

Proof. Straightforward computation.

Theorem 5.28. Let X be a Banach space and T = (T (t))t≥0 a strongly continuous
semigroup on X with generator A. Choose ω ∈ R and M ≥ 1 such that ‖T (t)‖ ≤
M eωt, t ≥ 0 (cf. Proposition 5.7). Then the following holds:

(i) Fix λ ∈ C. If for all x ∈ X the improper integral

R(λ)x :=

∫ ∞

0

e−sλ T (s)x ds (5.18)

exists, then λ ∈ ρ(A) and R(λ) = R(λ, A).

(ii) If λ ∈ C with Re(λ) > ω, then λ ∈ ρ(A) and R(λ) = R(λ, A) and we have the
estimates

‖(λ − A)−1‖ ≤ M

Re(λ) − ω
, (5.19)

‖(λ − A)−n‖ ≤ M

(Re(λ) − ω)n
, n ∈ N. (5.20)

Proof. (i) Without restriction we can assume that λ = 0 (otherwise we rescale
according to Lemma 5.27).
First we show that rg(R(0)) ⊆ D(A) and AR(0)x = −x for all x ∈ X . This follows
from the definition of A and

1

h
(T (h) − id)R(0)x =

1

h
(T (h) − id)

∫ ∞

0

T (s)x ds

=
1

h

∫ ∞

0

T (s + h)x ds − 1

h

∫ ∞

0

T (s)x ds

= − 1

h

∫ h

0

T (s)x ds −→ −x, for h ց 0.

Now we show that R(0)Ax = −x for all x ∈ D(A). We compute for x ∈ D(A)

R(0)Ax = lim
t→∞

∫ t

0

T (s)Ax ds
(1)
= lim

t→∞
A

∫ t

0

T (s)x ds
(2)
= A lim

t→∞

∫ t

0

T (s)x ds

= AR(0)x = −x.

Note that (1) follows from Proposition 5.25 (iv) and (2) holds because A is closed.
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(ii) Let λ ∈ C with Re(λ) > ω. By (i) it suffices to show that R(λ)x exists for all
x ∈ X . This and the estimate (5.19) hold because for all t ≥ 0

∥∥∥∥
∫ t

0

e−sλ T (s)x ds

∥∥∥∥ ≤
∫ t

0

∥∥ e−sλ T (s)x
∥∥ ds ≤ M ‖x‖

∫ t

0

∣∣e−sλ
∣∣ esω ds

≤ M ‖x‖
∫ t

0

es(ω−Re(λ) ds = M ‖x‖ 1 − et(ω−Re(λ))

Re(λ) − ω

≤ M ‖x‖
Re(λ) − ω

.

Now let n ≥ 2. Using the von Neumann series, we have

(R(λ, A))n = (λ − A)−n =
(−)n

(n − 1)!

dn−1

dλn−1
(λ − A)−1,

hence, with (5.18),

‖(R(λ, A))
n‖ =

1

(n − 1)!

∥∥∥∥
dn−1

dλn−1

∫ ∞

0

e−sλ T (s)x ds

∥∥∥∥

=
1

(n − 1)!

∥∥∥∥
∫ ∞

0

sn−1 e−sλ T (s)x ds

∥∥∥∥

≤ M ‖x‖
(n − 1)!

∫ ∞

0

sn−1 es(ω−Re(λ)) ds =
M ‖x‖

(Re(λ) − ω)n
.

Theorem 5.28 shows that the spectrum of a generator always lies in a left semi-plane
of the complex plane.

Definition 5.29. • If the integral in (5.18) exists, then it is called the Laplace
transform of T (·)x.

• If A is the generator of a strongly continuous semigroup T , then

s(A) := sup{Re(λ) : λ ∈ σ(A)}.

is called the spectral bound of A.

If A is the generator of a strongly continuous semigroup T , then

−∞ ≤ s(A) ≤ ω0(T ) < ∞.

Indeed, if Re(λ) > ω then λ ∈ ρ(A) by Theorem 5.28, so the spectral bound must
be less or equal to ω.

Example 5.30 (Multiplication semigroup). Let Ω ∈ C be a domain and q ∈
C(Ω, C) such that ω := sup{Re(q(ξ)) : ξ ∈ Ω} < ∞. Then

Tq(t) := Mt eq , t ≥ 0,

defines a strongly continuous semigroup Tq = (Tq(t))t≥0 on X = C0(Ω), see Propo-
sition 5.21.
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Now we show that the generator of Tq is the multiplication operator Mq.

Proof. Let A be the generator of Tq. Then, for all f ∈ D(A) and ξ ∈ Ω,

(Af)(ξ) = lim
hց0

ehq(ξ) f(ξ) − f(ξ)

h
= f(ξ) lim

hց0

ehq(ξ) −1

h
= f(ξ)q(ξ) = (Mqf)(ξ).

This proves that A ⊆ Mq. Observe that λ ∈ ρ(A) ∩ ρ(Mq) for large enough λ by
assumption. Therefore we also have Mq ⊆ A.

5.5 Generator theorems

Proposition 5.26 and Theorem 5.28 give necessary conditions for a linear operator
to be generator of a strongly continuous semigroup. It must be densely defined, its
spectrum must lie in a left half-plane of C and the powers of the resolvent must
satisfy certain estimates. Now we show that this is sufficient.

Theorem 5.31 (Hille-Yosida-Phillips). For a Banach space X, A(X → X)
a densely defined linear operator and constants M ≥ 1, ω ∈ R the following is
equivalent:

(i) A generates a strongly continuous semigroup T = (T (t))t≥0 on X with

‖T (t)‖ ≤ M etω , t ≥ 0.

(ii) A is densely defined and closed, {λ ∈ R : λ > ω} ⊆ ρ(A) and

‖R(λ, A)n‖ ≤ M

(λ − ω)n
, n ∈ N, λ > ω. (5.21)

(iii) A is densely defined and closed, {λ ∈ C : Re λ > ω} ⊆ ρ(A) and

‖R(λ, A)n‖ ≤ M

(Re λ − ω)n
, n ∈ N, Re λ > ω. (5.22)

The idea of the proof is to approximate the operator A by bounded operators. For
n ∈ N, n > ω define the so-called Yosida approximants

An := n AR(n, A) = n2 R(n, A) − n. (5.23)

Lemma 5.32. Let X be a Banach space and A(X → X) a densely defined linear
operator. Assume that there are ω ∈ R and M ≥ 1 such that (ii) from Theorem 5.31
is satisfied. For λ > ω let Aλ := λAR(λ, A) as in (5.23). Then Aλ ∈ L(X) for all
λ > ω and

lim
λ→∞

λR(λ, A)x = x, x ∈ X, (5.24)

lim
λ→∞

Aλx = Ax, x ∈ D(A). (5.25)

Proof. Aλ is bounded because

Aλ = λ(A − λ + λ)(λ − A)−1 = λ2(λ − A)−1 − λ

Observe that ‖λR(λ, A)‖ ≤ |λ|M
λ−ω , so λR(λ, A) is uniformly bounded in the interval

(ω + 1,∞) (i. e., there is a c ∈ R such that ‖λR(λ, A)‖ ≤ c for all λ > ω + 1). Since
D(A) is dense in X , is suffices to prove (5.24) x ∈ D. For such x we find

‖λR(λ, A)x − x‖ = ‖R(λ, A)Ax‖ ≤ M

λ − ω
‖Ax‖ −→ 0, λ → ∞.
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From (5.24) we obtain for x ∈ D(A)

lim
λ→∞

Aλx = lim
λ→∞

λAR(λ, A)x = lim
λ→∞

λR(λ, A)Ax = Ax.

Proof of 5.31. (i) ⇒ (iii) follows from Proposition 5.26 and Theorem 5.28.

(iii) ⇒ (ii) is obvious.

(ii) ⇒ (i) Let N>ω := {n ∈ N : n > ω}. For n ∈ N>ω let Tn = (Tn(t))t≥0 be
the uniformly continuous semigroup generated by An. We will show that Tn(t)
converges strongly to some T (t) ∈ L(X) for n → ∞ and that T = (T (t))t≥0 is a
strongly continuous semigroup with generator A.

Step 1 : Estimate for ‖Tn(t)‖.
For t ≥ 0, n ∈ N>ω and ω1 := sup

{
n|ω|

(n − ω)
: n ∈ N>ω

}
< ∞ we obtain

‖Tn(t)‖ = e−tn ‖ etn2R(n,A) ‖ ≤ e−tn
∞∑

j=0

tjn2j

j!
‖R(n, A)j‖

≤ M e−tn
∞∑

j=0

tjn2j

(n − ω)jj!
= M e−tn etn2/(n−ω) = M entω/(n−ω) ≤ M etω1 .

Step 2 : Using the series representations we easily see that Tn(t)Am = AmTn(t) for
all m, n ∈ N>ω and t ≥ 0. Proposition 5.25 (ii) yields

Tn(t)x − Tm(t)x =

∫ t

0

d

ds
(Tn(s)Tm(t − s)x) ds

=

∫ t

0

Tn(s)Tm(t − s) (Anx − Amx) ds.

For x ∈ D(A) we use the estimate from Step 1 and formula 5.25 to obtain for t ≥ 0

‖Tn(t)x − Tm(t)x‖ ≤ M2 ‖Anx − Amx‖
∫ t

0

e2sω1 ds −→ 0, n, m → ∞.

(5.26)

Step 3 : For all y ∈ X there exists T (t)y := limn→∞ Tn(t)y where the convergence
is uniform on intervals [0, t0] with t0 > 0. In addition, T (·)y ∈ C([0, t0], X). (To
keep notation simple, we write T (·) instead T (·)|[0,t0], etc.)

Fix y ∈ X and ε > 0. Since D(A) is dense in ⊆ X , there exists an x ∈ D(A) such
that ‖x − y‖ < ε. On finite intervals [0, t0], convergence in (5.26) is uniform with
respect to t, hence there exists an N ∈ N>ω with ‖Tn(t)x − Tm(t)x‖ < ε for all
n, m ≥ N and t ∈ [0, t0]. Consequently, for n, m ≥ N and t ∈ [0, t0],

‖Tn(t)y − Tm(t)y‖ ≤ ‖Tn(t)x − Tm(t)x‖ + ‖Tm(t)(y − x)‖ + ‖Tn(t)(y − x)‖
≤ ε + (‖Tm(t)‖ + ‖Tn(t)‖) ‖x − y‖ ≤

(
1 + 2M et0ω1

)
ε.

Hence, for arbitrary y ∈ X , (Tn(·)y)n is a Cauchy sequence in C([0, t0], X), and
therefore it has a limit T (·)y ∈ C([0, t0], X). Obviously, T (t)y is independent of the
choice of t0 > t, so we obtain a function T (·)y which is well-defined on all of R+.

Step 4 : T = (T (t))t≥0 is a strongly continuous semigroup and ‖T (t)‖ ≤ M etω,
t ≥ 0.
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Strong continuity of T was proved in Step 3. The semigroup property follows
because on bounded intervals, T is the uniform strong limit of semigroups.

‖T (t)‖ = ‖ lim
n→∞

Tn(t)‖ ≤ lim
n→∞

M etnω/(n−ω) ≤ M etω, t ≥ 0.

Step 5 : A is the generator of T = (T (t))t≥0.
Let B be the generator of T . For x ∈ D(A) and t0 > 0, Tn(·)x converges to T (·)x for
n → ∞, where the convergence is uniform on bounded intervals [0, t0]. Since Anx →
Ax and Tn → T uniformly on [0, t0] for n → ∞, also d

dtTn(·)x = Tn(·)Anx converges

to T (·)Ax, uniformly on [0, t0]. Hence T (·)x is differentiable and d
dtT (t)x = T (t)Ax,

t ∈ [0, t0], implying that x ∈ D(B) and Bx = d
dtT (0)x = T (0)Ax = Ax. This shows

A ⊆ B. For every λ > ω we have λ ∈ ρ(A) ∩ ρ(B), hence also R(λ, A) ⊆ R(λ, B).
From D(R(λ, A)) = X = D(R(λ, B)) it follows that R(λ, A) = R(λ, B), so A =
B.

We immediately obtain the following corollary for contraction groups.

Corollary 5.33 (Hille-Yosida). For a Banach space X and a linear operator A
on X the following is equivalent:

(i) A generates a strongly continuous contraction semigroup T = (T (t))t≥0 on
X, that is,

‖T (t)‖ ≤ 1, t ≥ 0.

(ii) A is densely defined and closed, {λ ∈ R : λ > 0} ⊆ ρ(A) and

‖R(λ, A)‖ ≤ 1

λ
, λ > 0. (5.27)

(iii) A is densely defined and closed, {λ ∈ C : Re λ > 0} ⊆ ρ(A) and

‖R(λ, A)‖ ≤ 1

Re λ
, Re λ > 0. (5.28)

Proof. The assertion follows with M = 1 and ω = 0 from theorem 5.31 because
‖R(λ, A)n‖ ≤ ‖R(λ, A)‖n ≤ 1

Re(λ)n .

Generator of strongly continuous groups

Definition 5.34. Let S = (S(t))t∈R strongly continuous group on a Banach space
X . The operator A, defined by

D(A) :=
{
x ∈ X : lim

h→0

1
h (S(h)x − x) exists

}
,

Ax := lim
h→0

1

h
(S(h)x − x), x ∈ D(A),

is called the (infinitesimal) generator of S.

Obviously T+ = (T+(t))t≥0 and T− = (T−(t))t≥0 with T+(t) = S(t) and T−(t) =
S(−t), t ≥ 0 are strongly continuous semigroups on X with generator ±A.

Theorem 5.35 (Generator theorem for strongly continuous groups). Let
X be a Banach space, A a linear operator on X, M ≥ 1 and ω ∈ R. Then the
following is equivalent:
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(i) A generates a strongly continuous group S = (S(t))t∈R on X with

‖S(t)‖ ≤ M e|t|ω, t ∈ R.

(ii) A is densely defined and closed, {λ ∈ R : λ > ω} ⊆ ρ(A) and

‖R(λ, A)n‖ ≤ M

(|λ| − ω)n
, n ∈ N, |λ| > ω. (5.29)

(iii) A is densely defined and closed, {λ ∈ C : Re λ > ω} ⊆ ρ(A) and

‖R(λ, A)n‖ ≤ M

(|Re λ| − ω)n
, n ∈ N, |Re λ| > ω. (5.30)

(iv) A and −A generate strongly continuous semigroups T± = (T±(t))t≥0 with

‖T±(t)‖ ≤ M etω, t ≥ 0.

Proof. Exercise ??.

We saw in Theorem 5.31 that the generator A of a strongly continuous semigroup
necessarily is densely defined. It this is not the case but all other assumptions
of the Hille-Yosida-Phillip theorem (Theorem 5.31 (ii) and (iii) respectively) are
satisfied, then the restriction of A to an appropriate subspace is generator of a
strongly continuous semigroup. This semigroup is then defined only on a subspace
of the original Banach space X .

Definition 5.36. Let X be a Banach space and X0 ⊆ X a subspace. For a linear
operator A with domain D(A) ⊆ X (not necessarily dense in X) we define the part
of A in X0 by

D(A|) = {x ∈ D(A) ∩ X0 : Ax ∈ X0}, A|x = Ax, x ∈ D(A|).

Lemma 5.37. Let X be a Banach space, A : D(A) ⊆ X → X a closed linear
operator on X (not necessarily densely defined). Let X0 := D(A) and A| be the part
of A in X0. If there exist M ≥ 1 and ω ∈ R such that

{λ ∈ R : λ > ω} ⊆ ρ(A) and ‖R(λ, A)n‖ ≤ M

(λ − ω)n
, n ∈ N, λ > ω,

then A| is the generator of a strongly continuous semigroup T = (T (t))t≥0 on X0

with ‖T (t)‖ ≤ M etω, t ≥ 0.

Proof. By assumption, X0 is a Banach space. Note that R(λ, A)(X0) ⊆ D(A|)
for λ ∈ ρ(A) because D(A|) = {x ∈ D(A) : Ax ∈ X0}. Consequently, ρ(A) ⊆
ρ(A|) and R(λ, A|) ⊆ R(λ, A) for all λ ∈ ρ(A). Hence, for n ∈ N and λ > ω we
obtain ‖R(λ, A|)

n‖ ≤ ‖R(λ, A)n‖. Therefore, by the Hille-Yosida-Phillips theorem
(Theorem 5.31), it suffices to prove that D(A|) is dense in X0. To show this, fix
x ∈ X0 and define xn = nR(n, A)x for n ∈ N and n > ω. Observe that, because
x ∈ X0,

Axn = nAR(n, A)x = n(nR(n, A) − x) ∈ X0,

hence xn ∈ D(A|). Lemma 5.32 shows that xn → x, n → ∞, so the lemma is
proved.
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Examples 5.38.

1. Translation semigroup on BUC(R).
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Let X = BUC(R) and A be the linear operator on X be defined by

D(A) = {f ∈ X : f ∈ C1(R), f ′ ∈ X}, Af = f ′.

Then A generates the translation semigroup T = (T (t))t≥0 with (T (t)f)(ξ) =
f(t + ξ) for all t ≥ 0, f ∈ X and ξ ∈ R.

Proof. (i) A is densely defined: Fix f ∈ X and define (cf. proof of Theorem 5.16)

ft(ξ) =
1

t

∫ t

0

f(ξ + s) ds, t > 0, ξ ∈ R.

Obviously, ft is continuous and ‖ft‖ ≤ 1
t

∫ t

0 ‖f‖ ds = ‖f‖ < ∞. Moreover, ft is
uniformly continuous. To see this, fix ε > 0. Since f is uniformly continuous, there
exits δ > 0 such that |f(ξ) − f(η)| < ε if |ξ − η| < δ. Hence, for ξ, η ∈ R with
|ξ − η| < δ, it follows that

| ft(ξ) − ft(η) | ≤ 1

t

∫ t

0

∣∣f(ξ + s) − f(η + s)
∣∣ ds ≤ ε.

Clearly ft ∈ X, t > 0 and every ft is continuously differentiable with derivative
f ′

t(ξ) = 1
t

(
f(t+ ξ)− f(ξ)

)
, hence we obtain ft ∈ D(A), t > 0. Finally we show that

ft → f for t ց 0. Fix ε > 0 we choose δ > 0 as above. Then, for all t ∈ (0, δ), we
find

‖ft − f‖ ≤ sup
ξ∈R

{
1

t

∫ t

0

| f(ξ + s) − f(ξ) |︸ ︷︷ ︸
<ε, because s∈(0,δ)

ds

}
< ε,

that is, ft → f, t → 0.

(ii) A is closed and σ(A) ⊂ iR: For λ ∈ C \ iR define

gλ(ξ) =

{∫∞
ξ e(ξ−s)λ f(s) ds, Re(λ) > 0,

−
∫ ξ

−∞ e(ξ−s)λ f(s) ds, Re(λ) < 0,
ξ ∈ R.

Obviously gλ is continuous and we have ‖gλ‖ ≤ ‖f‖
|Re(λ)| . For instance, for Re(λ) > 0

we have

‖gλ‖ = sup
ξ∈R

{ ∣∣∣∣
∫ ∞

ξ

e(ξ−s)λ f(s) ds

∣∣∣∣
}

≤ ‖f‖ sup
ξ∈R

{∫ ∞

ξ

e(ξ−s) Re(λ) ds

}
=

‖f‖
Re(λ)

.

(5.31)

The uniform continuity of gλ follows for Re(λ) > 0 from

|gλ(ξ) − gλ(η)| =

∣∣∣∣
∫ ∞

ξ

e(ξ−s)λ f(s) ds −
∫ ∞

η

e(η−s)λ f(s) ds

∣∣∣∣

=

∣∣∣∣
∫ η

ξ

e(ξ−s)λ f(s) ds +

∫ ∞

η

e(ξ−s)λ f(s) − e(η−s)λ f(s) ds

∣∣∣∣

=

∣∣∣∣∣

∫ η−ξ

0

esλ f(s) ds +

∫ ∞

η

e(η−s)λ f(s)
[
e(ξ−η)λ −1

]
ds

∣∣∣∣∣

≤ ‖f‖
∣∣∣∣∣

∫ η−ξ

0

e−sλ ds

∣∣∣∣∣+
∣∣∣∣
[
e(ξ−η)λ −1

] ∫ ∞

0

e−sλ f(s) ds

∣∣∣∣ ,

since the right side depends only of ξ − η and converges to 0 if ξ − η → 0. In
summary, we showed gλ ∈ X . Since obviously gλ is continuously differentiable,
it also follows that gλ ∈ D(A) and an easy calculation shows (A − λ)gλ = f . In
particular, λ − A is surjective. Injectivity of λ − A follows because for f ∈ C1(R)
we have

λf − f ′ = 0 ⇐⇒ f(ξ) = c eξλ, ξ ∈ R,

thus f ∈ X if and only if c = 0. Because of (5.31), ‖(λ − A)−1f‖ = ‖gλ‖ ≤ ‖f‖
|Re(λ)|

for all f ∈ X , i. e.,

λ ∈ ρ(A) and ‖(A − λ)−1‖ ≤ 1

|Reλ| , λ ∈ C \ iR.

Hence A−λ is closed by virtue of the closed graph theorem, hence also A is closed.

(iii) A is generator of a strongly continuous group T : This follows from the Hille-
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Chapter 5. Operator semigroups 63

Let 1 ≤ p < ∞ and X = Lp(R). Let A(X → X) be defined by

D(A) = W 1,p(R) = {f ∈ X : f absolutely continuous, f ′ ∈ X}, Af = f ′.

Then A generates the translation semigroup T = (T (t))t≥0 with

(T (t)f)(ξ) = f(t + ξ), t ≥ 0, f ∈ X, ξ ∈ R.

Proof. See, e. g., [EN00, II.2.10, II.2.11].

3. Diffusion semigroup on Lp(R
n).

Let 1 < p < ∞ and X = Lp(R
n). Then T = (T (t))t≥0, defined by T (0) = id and

(T (t)f)(ξ) = (4πt)−
n
2

∫

Rn

e−
|ξ−s|2

4t f(s) ds, ξ ∈ R
n, f ∈ X, t > 0, (5.32)

is the so-called diffusion semigroup (or heat semigroup).

T is a strongly continuous semigroup on X . Its generator A is

(Af)(ξ) = (∆f)(ξ) =

n∑

j=1

∂2

∂ξ2
j

f(ξ), f ∈ D(A), ξ = (ξ1, . . . , ξn) ∈ R
n

D(A) = W 2,p(Rn) = {f ∈ Lp(R
n) : f twice weakly differentiable and ∆f ∈ Lp(R

n)} .

Proof. See, e. g., [EN00, II.2.12, II.2.13]or [Wer00, ]

(i) T is a strongly continuous semigroup:

Let γt(s) := (4πt)−1 e
−|s|2

4t , t > 0, s ∈ Rn. It can be shown that

γt ∈ S(Rn) = {f ∈ C∞(Rn) : lim
|ξ|→∞

|x|kDαf(x) → 0, k ∈ N, α ∈ N
n}

S(Rn) is called the Schwartz space. It can be shown that S(Rn) ⊆ Lp(R
n) is dense

for p ≥ 1 and that S(Rn) is invariant under Fourier transformation (see Section 4.4).

Observe that

T (t)f = γt ∗ f, t > 0, f ∈ X,

hence Young’s inequalities yields

‖T (t)f‖p ≤ ‖γt‖1 ‖f‖p = ‖f‖p.

Hence we showed that ‖T (t)‖ ≤ 1, t ≥ 0.

The semigroup properties of T follow from γt+s = γs ∗ γt (easy to verify) and the
associativity of the convolution. Strong continuity of T can be shown using measure
theory.

(ii) Generator of T : We show the assertion only for p = 2.

Let A be the generator of T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.6 Dissipative operators and contraction semigroups

Definition 5.39. Let X be a Banach space and A a (not necessarily densely de-
fined) linear operator on X . A is called dissipative if

‖(λ − A)x‖ ≥ λ‖x‖, λ > 0, x ∈ D(A).
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64 5.6. Dissipative operators and contraction semigroups

Proposition 5.40. If A is a dissipative operator on a Banach space X, then

(i) λ − A is injective for λ > 0 and

‖(λ − A)−1y‖ ≤ 1

λ
‖y‖, λ > 0, y ∈ rg(λ − A).

(ii) λ−A is surjective for some λ > 0 ⇐⇒ λ−A is surjective for all λ > 0.

In this case, (0,∞) ⊆ ρ(A).

(iii) A is closed ⇐⇒ rg(λ − A) is closed for some λ > 0,
⇐⇒ rg(λ − A) is closed for all λ > 0.

(iv) If rg(λ, A) ⊆ D(A), then A is closable. In this case, also its closure A is
dissipative and rg(λ − A) = rg(λ − A), λ > 0.

Proof. (i) is clear. (ii) Assume that λ0 − A is surjective for a λ0 > 0. Then

λ0 ∈ ρ(A) and ‖R(λ0, A)‖ ≤ 1
λ0

by (i). For µ ∈ (0, 2λ0) the operator

µ − A = µ − λ0 + λ0 − A =
(
(µ − λ0)R(λ0, A) + id

)
(λ0 − A)

is bijective by the theorem of von Neumann because ‖(µ−λ0)R(λ0, A)‖ < 1, hence
(0, 2λ0) ⊆ ρ(A). By induction, (0,∞) ⊆ ρ(A).

(iii) To show that A is closed, it suffices to show that λ−A is closed for some (and
then for all) λ > 0. This is equivalent to

(λ − A)−1 : rg(λ − A) → X

being closed for some (all) λ > 0. By the closed graph theorem, this is the case if
and only if rg(λ − A) is close for some (all) λ > 0.

(iv) Assume that rg(λ − A) ⊆ D(A). Let y ∈ X and (xn)n∈N with xn → 0 and
Axn → y for n → ∞. We have to show that y = 0. For all w ∈ D(A) and λ > 0
the following holds

‖λ(λ − A)xn − (λ − A)w‖ ≥ λ ‖λxn − w‖.

Taking the limit n → ∞ we obtain

‖λy − (λ − A)w‖ ≥ λ ‖w‖,
=⇒ ‖y − w − λ−1Aw‖ ≥ ‖w‖,

λ→∞
=⇒ ‖y − w‖ ≥ ‖w‖.

Since y ∈ rg(A) ⊆ D(A), there exists a sequence (wn)n∈N ⊆ D(A) which converges
to y. The inequality above yields ‖y‖ = limn→∞ ‖wn‖ ≤ limn→∞ ‖y − wn‖ = 0.
For the proof of the dissipativity of A fix x ∈ D(A). By assumption there exists
a sequence (xn)n∈N such that xn → x and Axn → Ax for n → ∞. Since ‖ · ‖ is
continuous, it follows that

‖(λ − A)x‖ = lim
n→∞

‖(λ − A)xn‖ ≥ λ lim
n→∞

‖xn‖ = λ‖x‖.

Using that rg(λ−A) is dense in rg(λ−A), we find rg(λ − A) = rg(λ − A) = rg(λ−A).
The last equality follows from (iii) because A is closed.
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Chapter 5. Operator semigroups 65

In the special case of Hilbert spaces we have the following lemma.

Lemma 5.41. Let H be a Hilbert space and A a linear operator on H. Then

A dissipative ⇐⇒ Re〈Ax , x〉 ≤ 0, x ∈ D(A).

Proof. “⇐=” Fix x ∈ D(A), without restriction we assume ‖x‖ = 1. Then, for
λ > 0,

‖(λ − A)x‖ = ‖(λ − A)x‖ ‖x‖ ≥ |〈(λ − A)x , x〉| ≥ Re
(
λ − 〈Ax , x〉

)

= λ − Re
(
〈Ax , x〉

)
≥ λ.

“=⇒” Fix x ∈ D(A), without restriction we assume ‖x‖ = 1. For λ > 0 define xλ =
‖(λ−A)x‖−1(λ−A)x. Then limλ→∞ xλ = limλ→∞ ‖x−λ−1 Ax‖−1 (x−λ−1A)x = x
and, by hypothesis,

λ ≤ ‖(λ − A)x‖ = 〈(λ − A)x , xλ〉 = Re〈λx , xλ〉 − Re〈Ax , xλ〉
≤ λ‖x‖ ‖xλ ‖ − Re〈Ax , xλ〉 = λ − Re〈Ax , xλ〉.

Hence it follows that Re〈Ax , xλ〉 ≤ 0.

Lemma 5.42. Let H be a Hilbert space and A a dissipative operator on H. If λ−A
is surjective for some λ > 0, then A is densely defined.

Proof. By Proposition 5.40 (ii) we know that λ ∈ ρ(A). We have to show that
rg(λ − A)−1 is dense in H . Choose v ∈ rg(λ − A)⊥. Hence 〈v , (λ − A)−1u〉 = 0,
u ∈ H . In particular, taking u = v yields

0 = 〈v , (λ − A)−1v〉 = 〈(λ − A)(λ − A)−1v , (λ − A)−1v〉
= λ‖(λ − A)−1v‖2 − Re〈A(λ − A)−1v , (λ − A)−1v〉 ≥ λ‖(λ − A)−1v‖2 ≥ 0,

hence ‖(λ − A)−1v‖ = 0. Since (λ − A)−1 is injective, it follows that v = 0, as we
wanted to show.

Lemma 5.41 and Lemma 5.42 are special cases of the following lemmas:

Dissipative operators in Banach spaces

Definition 5.43. Let X be a Banach space with dual space X ′. For every x ∈ X
we call

J (x) := {x′ ∈ X ′ : 〈x , x′〉 = ‖x‖ = ‖x′‖ } . (5.33)

the duality set of x.

By the Hahn-Banach theorem J (x) 6= {0}. The elements x′ ∈ J (x) are called
normalised tangent functionals to x. If X is a Hilbert space, then J (x) consists of
exactly one element.

In analogy to Lemma 5.41 we have:

Lemma. Let X be a Banach space and A a linear operator on X. Then

A dissipative ⇐⇒ ∀ x ∈ D(A) ∃ j(x) ∈ J (x) : Re〈Ax , j(x)〉 ≤ 0.

If X is a reflexive Banach space, then in analogy to Lemma 5.42 we have:
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Lemma. Let X be a reflexive Banach space and A a dissipative operator on X. If
λ − A is surjective for some λ > 0, then A is densely defined.

Theorem 5.44 (Lumer-Phillips). Let X be a Banach space and A a densely
defined dissipative linear operator on X. Then the following is equivalent:

(i) A generates a contraction semigroup.

(ii) There exists some λ > 0 such that rg(λ − A) is dense in X.

Proof. (i) ⇒ (ii) By the Hille-Yosida theorem (Corollary 5.33) we know that rg(λ−
A) = X , consequently by Proposition 5.40 rg(λ − A) = rg(λ − A) = X . (ii) ⇒ (i)

Since D(A) is dense in X , Proposition 5.40 (iv) shows that A is closable and that
A − λ is surjective for every λ > 0. Proposition 5.40 (i) yields that λ ∈ ρ(A) and
‖R(λ, A)‖ ≤ 1

λ . Therefore, by the Hille-Yosida theorem (Corollary 5.33) A the
generator of a contraction semigroup.

Remark. Let H be a Hilbert space and A a linear operator on H . If

(i) 〈Ax , x〉 ≤ 0, x ∈ D(A)

(ii) rg(λ − A) = H for some λ > 0,

then A generates a contraction semigroup on H . The hypothesis (i) shows that
A is dissipative, together with condition (ii) it follows that A is densely defined
(Proposition 5.42). The Lumer-Phillips theorem implies then that A generates a
strongly continuous semigroup.

In particular for spaces of functions, the conditions (i) and (ii) are often easier to
check then the hypothesis in the Hille-Yosida theorem.

Example 5.45. Let X = C([0, 1]) and the linear operator A on X be defined by

Af = f ′, f ∈ D(A) =
{
f ∈ C1([0, 1]) : f(0) = 0, f ′ ∈ C([0, 1])

}
.

Then A is closed, λ − A is bijective for every λ ∈ C and

R(λ, A)f(ξ) =

∫ ξ

0

e−(ξ−s)λ f(s) ds, ξ ∈ [0, 1], λ ∈ C, f ∈ X.

For λ 6= 0, the estimate

‖R(λ, A)f‖ ≤ ‖f‖ sup
ξ∈[0,1]

∫ ξ

0

e−(ξ−s) Re λ ds =
1

λ
‖f‖ (1 − e−Re λ) ≤ 1

λ
‖f‖,

shows that A is dissipative.

However, A is not densely defined and therefore does not generate a strongly contin-
uous semigroup on X . By Lemma 5.37, A induces a strongly continuous semigroup
on the subspace

X0 = D(A) = {f ∈ X : f(0) = 0} .

Let A| be the part of A in X , that is,

A|f = f ′, f ∈ D(A|) =
{
f ∈ X : f ∈ C1([0, 1]), f(0) = f ′(0) = 0

}
.

Then A| is densely defined in X0 (Lemma 5.37), dissipative and λ − A| : X0 → X0

is surjective, hence A| generates a strongly continuous semigroup by the Lumer-
Phillips theorem (Theorem 5.44).
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Chapter 5. Operator semigroups 67

Definition 5.46. A (strongly continuous) semigroup T = (T (t))t≥0 on a Banach
space X is called a (strongly continuous) unitary semigroup, if every T (t), t ≥ 0, is
unitary. Analogously, (strongly continuous) unitary groups are defined.

Theorem 5.47 (Stone). Let H be a Hilbert space and A a densely defined linearer
operator on H. Then the following is equivalent:

(i) A generates a unitary group T = (T (t))t∈R on H.

(ii) A is skew-selfadjoint, that is, A∗ = −A.

Proof. (i) ⇒ (ii) Observe that T (t)∗ = T (t)−1 = T (−t) for all t ∈ R by assumption.
Hence T ∗ = (T (t)∗)t∈R is a strongly continuous group with generator −A.

If x ∈ D(A), then

〈x , Ay〉 = lim
tց0

〈
x ,

1

t
(T (t) − id) y

〉
= lim

tց0

〈1

t
(T (t)∗ − id)x , y

〉
= 〈−Ax , y〉,

so D(A) ⊆ D(A∗) and A∗x = −Ax for x ∈ D(A).

It remains to show that A∗ ⊆ −A. Note that this is equivalent to show that
(iA)∗ ⊆ iA. By what we already showed, we know that iA is symmetric. It is closed
because it is the generator of a strongly continuous semigroup. Hence it suffices
to show that ±i belong to the resolvent set of iA (see Corollary 3.10). Note that
A generates a contraction semigroups, so R \ {0} ⊆ ρ(A) (Theorem 5.35). Hence
iR \ {0} ⊆ ρ(iA) which completes the proof.

Alternative proof of “A∗ ⊆ −A”:

Let x ∈ D(A∗). Since −A is the generator of T ∗ ist, Proposition 5.25 (iv) shows
that

1

t
(T (t)∗x − x) =

1

t
(−A)

∫ t

0

T (s)∗x ds.

Using that −A ⊆ A∗ and T (s)∗x ∈ D(−A) ⊆ D(A∗) for all s ∈ [0, t], we conclude

1

t
(T (t)∗x − x) =

1

t
A∗
∫ t

0

T (s)∗x ds =
1

t

∫ t

0

A∗ T (s)∗x ds.

Note that 〈T (s)∗x , Ay〉 = 〈x , T (s)Ay〉 = 〈x , AT (s)y〉 = 〈A∗x , T (s)y〉, y ∈ D(A),
so that T (s)∗x ∈ D(A∗). Since T (s) is bounded, it follows that A∗T (s)∗ = (T (s)A)∗.
Note that A and T (s) commute and, because of (AT (s))∗ ⊇ T (s)∗A∗, it follows that

1

t
(T (t)∗x − x) =

1

t

∫ t

0

T (s)∗A∗x ds
t→0−−−→ T (0)∗A∗x = A∗x.

The last equality holds because s → T (s)∗A∗x in continuous in 0. Consequently,
x ∈ D(−A) (because −A is the generator or T ∗) and we have −Ax = A∗x.
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(ii) ⇒ (i) By assumption, A and −A are densely defined and closed and

〈Ax , x〉 = 〈x , A∗x〉 = −〈x , Ax〉 = −〈Ax , x〉, x ∈ D(A),

hence A and −A are dissipative. By the Lumer-Phillips theorem (Theorem 5.44),
both A and −A generate contraction semigroups, hence A generates a contraction
group T = (T (t))t∈R on H (see Theorem 5.35). It remains to be proved that
T (t)∗ = T (t)−1, t ∈ R.
For every s ∈ R, T (s) is surjective (because it is even invertible) and isometric
because

‖x‖ = ‖T (s)−1T (s)x‖ ≤ ‖T (s)−1‖ ‖T (s)x‖ ≤ ‖T (−s)‖ ‖T (s)‖ ‖x‖, x ∈ H.

Since ‖T (s)‖ ≤ 1, s ∈ R, (recall that T is a contraction semigroup) the above
inequality shows that ‖x‖ = ‖T (s)x‖, x ∈ H . Therefore T (s) is unitary (see, e. g.,
[Kat95, V § 2.2]).

Remark 5.48. By scaling we can always convert a strongly continuous semigroup
on a Banach space X in a bounded strongly continuous semigroup. The spectrum
of the generator is then shifted to the left (Lemma 5.27). But we do not necessarily
obtain a contraction semigroup.

The next lemma shows that there exists a norm on X , equivalent to the original
norm, such that the semigroup is a contraction semigroup. Therefore the Lumer-
Phillips theorem is true for arbitrary strongly continuous semigroups.

Lemma 5.49. Let (X, ‖ · ‖) be a Banach space and T = (T (t))t≥0 a bounded
strongly continuous semigroup on X. Then

‖x‖T := sup{ ‖T (s)x‖ : s ≥ 0 }, x ∈ X,

defines a norm which is equivalent to ‖ · ‖, and T is a contraction semigroup on
(X, ‖ · ‖T ).

Proof. Since T is a bounded semigroup, there exists M ≥ 1 such that ‖T (s)‖ ≤ M
for all s ≥ 0. It is easy to check that ‖ · ‖T has all properties of a norm. Moreover,

‖x‖ = ‖T (0)x‖ ≤ ‖x‖T = sup{ ‖T (s)x‖ : s ≥ 0 } ≤ M‖x‖, x ∈ X,

therefore ‖ · ‖ and ‖ · ‖T are equivalent. If x ∈ X and t ≥ 0, then

‖T (t)x‖T = sup{ ‖T (t)T (s)x‖ : s ≥ 0 } = sup{ ‖T (t + s)x‖ : s ≥ 0 }
≤ sup{ ‖T (s)x‖ : s ≥ 0 } = ‖x‖T ,

hence ‖T (t)‖ ≤ 1, t ≥ 0.
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Chapter 6

Analytic semigroups

In Proposition 5.40 it was shown that the spectrum of a dissipative operator A lies
in a left semiplane in C and that the resolvent on the right semiaxis satisfies the
estimate ‖R(λ, A)‖ ≤ λ−1 if λ − A is surjective for λ > 0.

In this chapter we deal with linear operators whose spectrum lies in a sector and
whose resolvent satisfies a certain estimate outside of the sector.

Let us recall:

Cauchy’s integral formula. Let Ω ⊂ C be a domain, z0 ∈ Ω, r > 0 such that
the closed disk Kr(z0) = {z ∈ C : |z − z0| ≤ r} belongs to Ω. If f : Ω → C is
holomorphic, then

f(z0) =
1

2πi

∫

∂Kr(z0)

f(ζ)

ζ − z0
dζ,

where ∂Kr(z0) is the positively oriented boundary of Kr(z0).

More generally, if γ is a closed path in Ω\{z0} and ν(z0, γ) is the XXX Umlaufszahl
of γ around z0, then

f (n)(z0)ν(z0, γ) =
n!

2πi

∫

∂Kr(z0)

f(ζ)

(ζ − z0)n+1
dζ.

Dunford functional calculus. Let X be a Banach space and A a densely defined
linear operator on X . Then the map ρ(A) → L(X), λ → R(λ, A), is holomorphic.
If A is a everywhere defined bounded operator, then σ(A) bounded. Let Ω ⊆ C be
a domain with σ(A) ⊆ Ω and γ a closed path which lies in Ω and goes around every
point in σ(A) exactly once positively oriented. Then we define for holomorphic
f : Ω → C

f(A) =
1

2πi

∫

γ

f(ζ)R(ζ, A) dζ. (6.1)

This definition does not depend on the choice of γ.
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If A is selfadjoint, then f(A) defined in the definition (6.1) coincides with the
definition with the help of the spectral family (Definition ??).

γ

Examples:

(i) f : C → C, f(z) = 1, then f(A) = id.

Proof. For arbitrary y ∈ X ′ the map z 7→ 〈(z − A)−1x , y〉 is holomorphic in
ρ(A). Without restriction, we can assume that γ = Kr(0) for large enough r.
Then

f(A)x =
1

2πi

∫

γ

R(ζ, A)x dζ =
1

2πi

∫

γ

1

ζ

(
1 − 1

ζ
R(ζ, A)

)−1

x dζ

=
1

2πi

∫

γ

1

ζ

∞∑

n=0

ζ−nAnx

︸ ︷︷ ︸
converges unif. for ζ ∈ γ

dζ =
1

2πi

∞∑

n=0

∫

γ

ζ−n−1Anx dζ

︸ ︷︷ ︸
=0, falls n≥1

=2πi, falls n=0

= x.

(ii) f : C → C, f(z) = z, then f(A) = A.

(iii) For the exponential function exp(tA) as in Definition ??

exp(tA) =
1

2πi

∫

γ

etζ R(ζ, A) dζ.

For unbounded operators, the spectrum is in general unbounded. Therefore, the
functional calculus described above cannot be applied to unbounded operators with-
out additional assumptions. For sectorial operatoren there is an integral represen-
tation of the generated semigroup.

For ϕ ∈ (0, π] we define the (open) sector

Σϕ := {z ∈ C : | arg z| < ϕ} \ {0}.

Definition 6.1. Let X be a Banach space. A densely defined linear operator
A(X → X) is called sectorial with angle δ if there exists a δ ∈ (0, π/2] such that

Σπ/2+δ ⊆ ρ(A),

and if for every ε ∈ (0, δ) there exists an Cε ≥ 0 such that

‖R(λ, A)‖ ≤ Cε

|λ| , λ ∈ Σπ/2+δ−ε \ {0}. (6.2)
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δ

Figure 6.1: Spectrum of a sectorial operator.

Definition 6.2. Let X ein Banach space and A a sectorial operator on X with
angle δ ∈ (0, π/2]. We define T (0) := id and for z ∈ Σδ we define T (z) as follows.
Choose an arbitrary δ′ ∈ (| arg(z)|, δ) and define

T (z) :=
1

2πi

∫

γ

eµz R(µ, A) dµ, (6.3)

where γ is an arbitrary piecewise smooth contour in Σπ/2+δ from ∞ e−i(δ′+π/2) to

∞ ei(δ+π/2)′ , see Figure 6.2.

r

γr,1

γr,3

γr,2
δ′

Figure 6.2: Path of integration γr,δ′ .

The condition z ∈ Σδ guarantees that arg(µz) ∈ (π/2 + ε, 3π/2− ε) for sufficiently
small ε > 0, so that Re(µz) ∼ −C|µ| for a positive constant C for |µ| large enough.
Consequently, the norm of the integrand decays exponentially and the integral is
well-defined. More precisely:

Proposition 6.3. Let X be a Banach space and A a sectorial operator on X with
angle δ ∈ (0, π/2]. Then (6.2) defines a bounded linear operator and

(i) ‖T (z)‖ is uniformly bounded for z ∈ Σδ′ for every δ′ ∈ (0, δ).
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(ii) The map z 7→ T (z) is analytic.

(iii) T (z1 + z2) = T (z1)T (z2), z1, z2 ∈ Σδ.

(iv) The map z 7→ T (z) is strongly continuous in Σδ′ ∪ {0} for every δ′ ∈ (0, δ).

(v) (T (t))t≥0 is a strongly continuous semigroup with generator A.

Definition 6.4. Let δ ∈ (0, π/2]. A family T = (T (z))z∈Σδ
⊆ L(X) is called a

bounded analytic semigroup with angle δ if

(i) T (0) = id and T (z1 + z2) = T (z1)T (z2), z1, z2 ∈ Σδ;

(ii) z 7→ T (z) is analytic in Σδ;

(iii) lim
z→0

z∈Σδ′

T (z)x = x, δ′ ∈ (0, δ), x ∈ X (strong continuity in sectors Σδ′).

If in addition the following holds,
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(iv) for every δ′ ∈ (0, δ) there exits an Mδ′ such that ‖T (z)‖ ≤ Mδ′ for all z ∈ Σδ′ ,

then T is called an analytic semigroup.

Remark. For a strongly continuous semigroup T = (T (t))t≥0 with generator A
the maps [0,∞) → X, t 7→ T (t)x are differentiable for every x ∈ D(A). If T is an
analytic semigroup with angle δ, then T (·) is norm differentiable in every sector Σδ′

with 0 < δ′ < δ.

Remark. If T is an analytic semigroup and its restriction to real t is a bounded
strongly continuous semigroup, then T is not necessarily a bounded analytic semi-
group. For instance, the multiplication semigroup (eiz)z∈C on X = C is a non-
bounded analytic semigroup whose restriction (eit)t≥0 to R+ is a bounded semi-
group.

Proof of Proposition 6.3. Proof that T (z) is well-defined and of (i): Fix δ′ ∈ (0, δ)
and z ∈ Σδ′ . Since the integrand in (6.2) is analytic, the integral does not depend
on the path γ if the integral exists. Let r = |z|−1, ε = (δ − δ′)/2 and choose a
contour γ = γr, δ−ε = γ1

r, δ−ε ∪ γ2
r, δ−ε ∪ γ3

r, δ−ε (see Figure 6.2) with

γ1
r, δ−ε =

{
s e−i(π/2+δ−ε) : s ∈ (∞, r)

}
,

γ3
r, δ−ε =

{
s ei(π/2+δ−ε) : s ∈ (r, ∞)

}
,

γ2
r, δ−ε =

{
r eis : s ∈ (−(π/2 + δ − ε), (π/2 + δ − ε))

}
.

For µ ∈ γ3
r, δ−ε we have arg(µz) = arg(µ) + arg(z) ∈ (π/2 + ε, 3π/2 − ε). Since

cos(ϕ) ≤ cos(π/2 + ε) = − sin ε < 0, ϕ ∈ (π/2 + ε, 3π/2 − ε), it follows that

Re(µz) = |µz| cos(arg(µz)) ≤ −|µz| sin ε. (6.4)

It is easy to check that (6.4) holds also for µ ∈ γ1
r, δ−ε. For µ ∈ γ2

r, δ−ε we obtain

Re(µz) ≤ |µz| = 1.

Since A is sectorial, we obtain, using estimate (6.2),

‖ eµz R(µ, A)‖ ≤ eRe(µz) ‖R(µ, A)‖ ≤ Cε

|µ| e−|µz| sin ε, µ ∈ γ1
r, δ−ε ∪ γ3

r δ−ε,

‖ eµz R(µ, A)‖ ≤ e
Cε

|µ| ≤ e |z|C, µ ∈ γ2
r δ−ε.

For the integral this yields

∥∥∥∥
∫

γ

eµz R(µ, A) dµ

∥∥∥∥ ≤
∫

γ

‖ eµz R(µ, A) ‖ dµ

≤ 2

∫ ∞

r

∥∥∥∥ e−s|z| sin ε Cε

s

∥∥∥∥ ds +

∫ π/2+δ−ε

−(π/2+δ−ε)

e |z|Cε|ir eis | ds

= 2

∫ ∞

1

∥∥∥∥ e−s sin ε Cε

s

∥∥∥∥ ds + 2(π/2 + δ − ε) e Cε < ∞.

Hence T (z) is well-defined and uniformly bounded in the sector Σδ′ because the
right-hand-side does not depend on z ∈ Σδ′ .

(ii) The integrand in (6.2) is analytic and, as in (i), it can be shown that the
integrals of the derivatives exist.
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(iii) Let z1, z2 ∈ Σδ and choose δ′ ∈ (0, δ) such that z1, z2 ∈ Σδ′ . Choose γ = γ1,δ−ε

with ε = (δ − δ′)/2 as before and let γ′ = γ + c with c > 0 large enough such that
γ∩γ′ = ∅. Then, using the resolvent identity R(µ, A)R(λ, A) = (λ−µ)−1[R(µ, A)−
R(λ, A)]:

T (z1)T (z2) =
1

(2πi)2

∫

γ

∫

γ′

eµz1 eλz2 R(µ, A)R(λ, A) dµ dλ

=
1

(2πi)2

∫

γ

∫

γ′

eµz1 eλz2(λ − µ)−1[R(µ, A) − R(λ, A)] dλ dµ

=
1

(2πi)2

∫

γ

eµz1 R(µ, A)

∫

γ′

(λ − µ)−1 eλz2 dλ dµ

− 1

(2πi)2

∫

γ′

eλz2 R(λ, A)

∫

γ

(λ − µ)−1 eµz1 dµ dλ

=
1

2πi

∫

γ

eµz2 R(µ, A) eµz1 dµ = T (z1 + z2),

because
∫

γ′(µ − λ)−1 eλz2 dλ = 2πi eµz2 and
∫

γ(µ − λ)−1 eµz1 dµ = 0 by Cauchy’s

integral formula (if the contours are closed “to the left at infinity” with a piece of
circle).

(iv) Again, let δ′ ∈ (0, δ) and ε = (δ − δ′)/2. Because of (i), (ii) and because A is
densely defined, it suffices to show

lim
z→0

z∈Σδ′

T (z)x − x = 0, x ∈ D(A).

Choose again γ = γ1,δ−ε as before. Cauchy’s integral formula yields

∫

γ

eµz

µ
dµ = e0 = 1,

hence

T (z)x − x =

∫

γ

eµz

(
R(µ, A) − 1

µ

)
x dµ =

∫

γ

eµz µ−1R(µ, A)Ax dµ.

The norm of the integrand can be estimated as follows:

‖µ−1 eµz R(A, µ)Ax‖ ≤
{
‖Ax‖ |µ|−2Cε e−|µz| sin ε for µ ∈ γ1

1, δ−ε ∪ γ3
1, δ−ε,

‖Ax‖ |µ|−2 e Cε, for µ ∈ γ2
1, δ−ε.

Hence the integrand can be bounded by an integrable function, therefore, by Lebesgue’s
theorem of dominated convergence,

lim
z→0

z∈Σδ′

T (z)x− x =

∫

γ

lim
z→0

z∈Σδ′

eµz µ−1R(µ, A)Ax dµ =

∫

γ

µ−1R(µ, A)Ax dµ = 0.

The last equality, again, is a consequence of Cauchy’s integral theorem if the contour
γ is closed on the right side.

Last Change: Wed Dec 1 13:03:46 COT 2010



D
R

A
F

T

Chapter 6. Analytic semigroups 75

(v) From (iv) we obtain that (T (t))t≥0 is a strongly continuous semigroup. Let
B be the generator of (T (t))t≥0. If λ is large enough, then λ ∈ ρ(A) ∩ ρ(B) (for
instance choose λ = |ω0| + 1 where ω0 is the growth bound of (T (t))t≥0). For the
proof of A = B we show R(λ, A) = R(λ, B). By Theorem 5.28

R(B, λ)x = lim
t0→∞

∫ t0

0

e−λs T (s)x ds.

For t0 > 0 and the contour γ = γ1 as above, Fubini’s theorem shows that

∫ t0

0

e−λs T (s)x ds =
1

2πi

∫ t0

0

∫

γ

e−λs eµs R(µ, A)x dµ ds

=

∫

γ

1

2πi

∫ t0

0

e−λs eµs R(µ, A)x ds dµ

=
1

2πi

∫

γ

(µ − λ)−1(e(µ−λ)t0 −1)R(µ, A)x dµ
t0→∞−−−−→ R(λ, A)x,

because (again by Cauchy’s integral theorem, close right)

∫

γ

(µ − λ)−1R(µ, A)x dµ = R(λ, A),

and because for Re(µ − λ) < 0

∥∥∥∥
∫

γ

(µ − λ)−1 e(µ−λ)t0 R(µ, A)x dµ

∥∥∥∥ ≤ e−t0 ‖x‖
∫

γ

|µ − λ|−1 Cε

|µ| | dµ| −→ 0

for t0 → ∞.

Note that the proposition shows that the generator of an analytic continuous semi-
group is unique because it is the unique generator of the strongly continuous semi-
group (T (t))t≥0.

Example 6.5. If H is a Hilbert space and A is selfadjoint and dissipative linear
operator on H , then A is sectorial with arbitrary angle δ ∈ (0, π/2). In particular,
A generates an analytic semigroup with angle δ ∈ (0, π/2).

Proof. By assumption, W (A) ⊂ (−∞, 0] (because A is sectorial and selfadjoint),
hence C \ (−∞, 0] ⊂ ρ(A) (because A is selfadjoint and the defect index of A is
constant in connected components of C \ W (A)). Fix δ ∈ (0, π/2) arbitrary. It
remains to prove the resolvent estimate (6.2) for λ ∈ Σπ/2+δ. Since λ ∈ Σπ/2+δ,

there exist ρ > 0 and ϑ ∈ (−π/2 − δ, π/2 + δ) such that λ = ρ eiϑ. For x ∈ H
let u = R(λ, A)x, hence ρ eiϑ u − Au = x. Multiplication by e−iϑ/2 and scalar
multiplication by u yields

ρ eiϑ/2 ‖u‖2 − e−iϑ/2〈Au , u〉 = e−iϑ/2〈x , u〉.

Taking the real part on both sides, leads to

ρ‖u‖2 cos(ϑ/2)︸ ︷︷ ︸
∈(cos(δ/2),1)

−〈Au , u〉 cos(ϑ/2)︸ ︷︷ ︸
≤0

= Re(e−iϑ/2〈x , u〉) ≤ ‖x‖ ‖u‖

=⇒ ‖R(λ, A)x‖ = ‖u‖ ≤ ‖x‖
ρ cos(δ/2)

=
‖x‖

|λ| cos(δ/2)
.
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Example 6.6. • Consider the differential operator A defined by Af = f ′′, f ∈
D(A) = W 2,2(R) on X = L2(R). Then A generates an analytic semigroup on
L2(R).

• Translation semigroup: X = Lp(R), T = (T (t))t≥0 with T (t)f = f(t + ·) is
not an analytic semigroup because its generator A is Af = f ′, f ∈ D(A) =
W 1,p(R). Since σ(A) = iR, A is not sectorial (see Proposition ??).

Lemma 6.7. If X is a Banach space and T = (T (z))z∈Σδ
is an analytic semigroup

on X with generator A, then

(i) t > 0, k ∈ N, x ∈ X =⇒ T (t)x ∈ D(Ak) and

AkT (t)x = (AT (t/k))kx,

t > 0, k ∈ N, x ∈ D(Ak) =⇒ AkT (t)x = T (t)Ak.

(ii) For every x ∈ X the map (0,∞) → X, t 7→ T (t)x is infinitely differentiable
with derivatives

dk

dtk
T (t)x = AkT (t)x, k ∈ N.

Note that the assertions are true in the case of a strongly continuous semigroup
only for x ∈ D(A).

Proof. (i) Let t > 0 and δ′ ∈ (0, δ). By assumption, T is norm-differentiable in the
sector Σδ′ , so the limit for h → 0 of

1

h
(T (t + h) − T (t))x =

1

h
(T (h) − id)T (t)x.

Hence T (t)x ∈ D(A). We already saw in Proposition 5.25 that AT (t)x = T (t)Ax
for x ∈ D(A). Because of

AT (t)x = AT (t/2)T (t/2)x = T (t/2)AT (t/2)x ∈ D(A)

it follows that T (t)x ∈ D(A2) and A2T (t)x = (AT (t/2))2x, x ∈ X , t > 0. Now the
assertion follows by induction.
(ii) Let ε ∈ (0, t/(2k)). Then, by (i),

dk

dtk
T (t)x =

dk−1

dtk−1
AT (t)x =

dk−1

dtk−1
T (t − ε)AT (ε)x︸ ︷︷ ︸

D(A)

= . . . = T (t − kε)
(
AT (ε)

)k
x = T (t − kε)AkT (kε)x = AkT (t)x.

Proposition 6.8 (Characterisation of analytic semigroups). Let X be a Ba-
nach space and A a linear operator on X. Then the following is equivalent:

(i) A is sectorial.

(ii) A generates a bounded analytic semigroup T = (T (z))z∈Σδ∪{0} on X.

(iii) A generates a bounded strongly continuous semigroup T = (T (t))t≥0 on X,
rg(T (t)) ⊆ D(A) for all t > 0, and

C := sup{ ‖tAT (t)‖ : t > 0 } < ∞.

Proof. (i) ⇒ (ii) Proposition 6.3.
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(ii) ⇒ (i) Let δ ∈ (0, π/2] be the angle of T . By assumption, (T (t))t≥0 is a strongly
continuous semigroup with generator A. We have to show that A is sectorial with
angle δ.

Choose α ∈ (−δ, δ) and define

Tα(t) := T (eiα t), t ≥ 0.

Clearly, Tα = (Tα(t))t≥0 is a strongly continuous semigroup on X . Let Aα be the
generator of Tα. We show that Aα = eiα A. Let γα = eiα γ. For x ∈ X , Theorem ??
and Cauchy’s integral theorem show that

R(1, A)x =

∫ ∞

0

e−t T (t)x dt =

∫

γα

e−µ T (µ)x dµ =

∫ ∞

0

e−t eiα T (eiα t)x dt

= eiα

∫ ∞

0

e−t eiα Tα(t)x dt = eiα R(eiα, A)x,

hence x ∈ D(Aα) if and only if x ∈ D(A), and in this caseAαx = eiα Ax.

Since Aα is the generator of a strongly continuous semigroup, it follows that {λ ∈
C : Re(λ) > 0} ⊆ ρ(Aα) = ρ(eiα A) = eiα ρ(A). Hence also

ρ(A) ⊃
⋃

α∈(−δ, δ)

eiα {λ ∈ C : Re(λ) > 0 } = {λ ∈ C : | arg(λ)| < π/2 + δ } = Σπ/2+δ.

It remains to show the resolvent estimate (6.2). Choose δ′ ∈ (0, δ) and ε > 0 such
that δ − δ′ > ε. Since T is a bounded semigroup, there exists an M ≥ 1 such that
‖T (z)‖ ≤ M for all z ∈ Σδ′+ε. Now fix λ ∈ Σπ/2+δ′ and choose α ∈ (−δ′− ε, δ′ + ε)
such that eiα λ ∈ Σπ/2−ε. It follows that

‖R(λ, A)‖ = ‖R(eiα λ, eiα A)‖ = ‖R(eiα λ, Aα)‖ ≤ M

Re(eiα λ)
≤ M

|λ| cos(π − ε)
.

In the second to last inequality we applied the Hille-Phillips-Yosida theorem to Aα

(note that ‖Tα(t)‖ ≤ M for all t ≥ 0 and that Re(eiα)λ > 0).

Last Change: Wed Dec 1 13:03:46 COT 2010

D
R

A
F

T

78

δ δ′

t

(ii) ⇒ (iii) By assumption, (T (t))t≥0 is a strongly continuous semigroup on X with
generator A. Since T is norm-differentiable in every sector Σδ′ with δ′ ∈ (0, δ), for
every t > 0 the limit

lim
h→0

h−1
(
T (t + h)x − T (t)x

)
= lim

h→0
h−1

(
T (h) − id

)
T (t)x

exists, therefore T (t)x ∈ D(A). Define the contour γr, δ′ as in the proof of Propo-
sition 6.3. Since A is closed and, as we will show,

∫
γr,δ′

A etµ R(µ, A) dµ exists, we

obtain as in Proposition 6.3:

‖AT (t)‖ =

∥∥∥∥∥

∫

γt−1,δ′

A etµ R(µ, A) dµ

∥∥∥∥∥ =
1

2π

∥∥∥∥∥

∫

γt−1,δ′

etµ
(
µR(µ, A) − 1

)
dµ

∥∥∥∥∥

=
1

2π

∥∥∥∥
∫ ∞

t−1

ets eiδ
′ (

eiδ′

sR(eiδ′

s, A) − 1
)

eiδ′

ds

+

∫ t−1

∞
ets e−iδ′

(
e−iδ′

sR(e−iδ′

s, A) − 1
)

e−iδ′

ds

+

∫ δ′

−δ′

eeis
(
t−1 eis R(t−1 eis, A) − 1

) i

t
eis ds

∥∥∥∥∥

≤ 1

π

∥∥∥∥∥

∫ ∞

t−1

ets cos δ′
(
s
M

s
+ 1
)

ds +
1

2π

∫ δ′

−δ′

e
(
t−1 M

t−1
+ 1
)
t−1 ds

∥∥∥∥∥

=
1

t

1

π

∫ ∞

1

es cos δ′
(
M + 1

)
ds +

1

t

1

2π

∫ δ′

−δ′

e
(
M + 1

)
ds =

C

t
,

with a constant C < ∞ that does not depend on t.

(iii) ⇒ (ii) Let x ∈ X . By Lemma 6.7, the map (0,∞) → X, s 7→ T (s)x is
arbitarily differentiable and rg(T (s)) ⊆ D(A∞) = ∩∞

k=1D(Ak) for all s > 0.
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Moreover, Lemma 6.7 and the inequality kk ≤ ek k! show that

1

k!

∥∥∥∥
dk

dsk
T (s)

∥∥∥∥ =
1

k!

∥∥AkT (s)
∥∥ =

1

k!

∥∥(AT (s/k))k
∥∥ ≤ kk

skk!
‖s/k(AT (s/k))‖k ≤ Ck ek

sk
.

For t > 0 and |h| ∈ (0, t) the Taylor expansion shows that

T (t + h)x =

n∑

k=0

hk

k!
T (k)(t)x +

1

n!

∫ t+h

t

(t + h − s)nT (n+1)(s)x ds. =:

n∑

k=0

hk

k!
T (k)(t)x + Rn+1(h)

The integral term Rn+1(h) can be estimated as follows:

‖Rn+1(h)‖ ≤ ‖x‖
n!

∫ t+h

t

|t + h − s|n(n + 1)!

(
C e

s

)k

ds ≤ (n + 1)

( |h|C e

t − |h|

)n+1

.

For q ∈ (0, 1) and |h| < qt
Ce+1 , we have that

|h| C e

t − |h| ≤ qtC e

(C e +1)(t − qt
C e +1 )

=
qC e

Ce + 1 − q
≤ q,

so

‖Rn+1(h)‖ ≤ (n + 1)qn+1 −→ 0, n → ∞.

This leads to the Taylor expansion for T (·)

T (t + h)x =

∞∑

k=0

hk

k!
T (k)(t)x, |h| <

qt

C e +1
.

The series converges also for h ∈ C with |h| < qt
C e +1 , hence T has an analytic

extension to Σδ with δ = arctan 1
C e +1 .

It remains to be shown that the extension to every sector Σδ′ with δ′ ∈ (0, δ) is
bounded. If z ∈ Σδ′ , then | Im z| ≤ t tan δ′ ≤ tq

C e +1 , and consequently

‖T (z)‖ = ‖T (Re z + i Im z)‖ ≤
∞∑

k=0

1

k!
‖T (k)(Re z)‖ | Im z|k

≤
∞∑

k=0

(
C e

t

)k (
qt

C e +1

)k

≤
∞∑

k=0

qk = (1 − q)−1.

Not densely defined operators

In Proposition 6.3, we used that A is densely defined only to prove that the generated
semigroup T is strongly continuous. If we do not assume that A is densely defined,
then in Proposition 6.3, instead of (iv), the following:

(iv’) For all x ∈ D(A) the map z 7→ T (z)x is continuous in Σδ′ ∪ {0} for every
δ′ ∈ (0, δ).

More precisely:

Proposition 6.9. Let X be a Banach space, A a linear operator on X and δ ∈
(0, π/2] with Σπ/2+δ ⊆ ρ(A) and assume that for every ε ∈ (0, δ) there exists a
constant Cε such that

‖R(λ, A)‖ ≤ Cε

|λ| , λ ∈ Σπ/2+δ−ε \ {0}.

Then the claims (i)–(iii) from Proposition 6.3 hold. In addition:
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(i) (a) x ∈ D(A) =⇒ limt→0 T (t)x = x,

(b) If the limit y = limt→0 T (t)x exists, then x ∈ D(A) and y = x.

(ii) (a) x ∈ X, t ≥ 0 =⇒
∫ t

0 T (s)x ds ∈ D(A) and A
∫ t

0 T (s)x ds = T (t)x − x.

(b) If the fuction s 7→ AT (s)x in (0, ε) is integrable for some ε > 0, then

A

∫ t

0

T (s)x ds =

∫ t

0

AT (s)x ds.

(iii) (a) x ∈ D(A), Ax ∈ D(A) =⇒ limt→0 t−1
(
T (t)x − x

)
= Ax,

(b) If the limit y = limt→0 t−1
(
T (t)x−x

)
exists, then x ∈ D(A), Ax ∈ D(A)

and y = Ax.

(iv) x ∈ D(A), Ax ∈ D(A) =⇒ limt→0 AT (t)x = Ax.

Proof. (i) (a) was shown in Proposition 6.3 (iv). Assume that x, y satisfy (b). Since
T (t)x ∈ D(A) for all t > 0 and y = limtց0 T (t)x, it follows that y ∈ D(A). Now let
λ ∈ ρ(A). By (a), we obtain

R(λ, A)y = lim
tց0

R(λ, A)T (t)x = lim
tց0

T (t)R(λ, A)x︸ ︷︷ ︸
∈D(A)

= R(λ, A)x.

(ii) (a) Let λ ∈ ρ(A), x ∈ X and t > 0. For ε ∈ (0, t) it follows that

∫ t

ε

T (s)x ds =

∫ t

ε

(λ − A)R(λ, A)T (s)x ds = λ

∫ t

ε

R(λ, A)T (s)x ds −
∫ t

ε

AR(λ, A)T (s)x ds

= λ

∫ t

ε

R(λ, A)T (s)x ds −
∫ t

ε

d

ds
T (s)R(λ, A)x ds

= λ

∫ t

ε

T (s)R(λ, A)x ds − T (t)R(λ, A)x + T (ε)R(λ, A)x.

Hence the limit for ε → 0 exists and
∫ t

0

T (s)x ds = λ

∫ t

0

T (s)R(λ, A)x ds − R(λ, A)T (t)x + R(λ, A)T (0)x

= λR(λ, A)

∫ t

0

T (s)x ds − R(λ, A)
(
T (t)x − x

)
∈ D(A).

The claim follows from

R(λ, A)A

∫ t

0

T (s)x ds =
(
λR(λ, A) − 1

) ∫ t

0

T (s)x ds = R(λ, A)
(
T (t)x − x

)

(b) Let x ∈ X and ε > 0. Suppose that s 7→ T (s)x is integrable in (0, ε). Then also
s 7→ ‖T (s)x‖ is integrable in (0, ε) and therefore the improper integral of s 7→ T (s)x
in (0, t) exists. So the claim follows from Theorem ??.

(iii) (a) Shows that (ii) that

t−1
(
T (t)x − x

)
= t−1A

∫ t

0

T (s)x ds = t−1

∫ t

0

AT (s)x ds

= t−1

∫ t

0

T (s)Ax ds
t→0−−−−→ T (0)Ax = Ax,

because the integrand T (·)x is continuous in [0, t] by (i) because Ax ∈ D(A).
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(b) Let x ∈ X such that the limit y = limt→0 t−1
(
T (t)x − x

)
exists. Then, for

λ ∈ ρ(A):

R(λ, A)y = lim
t→0

t−1R(λ, A)
(
T (t)x − x

)
= lim

t→0
t−1R(λ, A)A

∫ t

0

T (s)x ds

= lim
t→0

t−1
(
λR(λ, A) − 1

) ∫ t

0

T (s)x ds =
(
λR(λ, A) − 1

)
lim
t→0

t−1

∫ t

0

T (s)x ds

(∗)
=
(
λR(λ, A) − 1

)
x

so x ∈ D(A) and R(λ, A)y = R(λ, A)Ax. In (∗) we used

lim
tց0

t−1
(
T (t)x − x

)
exists =⇒ lim

tց
T (t)x = x =⇒ x ∈ D(A)

=⇒ s 7→ T (s)x continuous in [0, t].

Connection with the Cauchy problem.

Let A as in the proposition above, T = (T (z))z∈Σδ
se analytic semigroup generated

by A and x0 ∈ X . Consider the initial value problem

x′(t) = Ax(t), t > 0, x(0) = x0. (6.5)

• x0 ∈ X arbitrary Then z 7→ T (z)x0 is an analytic solution of x′ = Ax in the
open sector Σδ and T (z)x0 ∈ D(A) for all z ∈ Σδ.

• x0 ∈ D(A): The solution T (·)x0 is continuous in 0, hence it solves the initial
value problem (6.5) for t > 0.

• x0 ∈ D(A): The solution T (·)x0 is differentiable in 0, hence it solves the
initial value problem (6.5) for t > 0.

Remark. If x0 ∈ X , then by definition T (0)x0 = x0, but limtց0 T (t)x0 = x0 holds

only if x0 ∈ D(A). But it is always true that

lim
tց0

R(λ, A)T (t)x0 = R(λ, A)x0, λ ∈ ρ(A).
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Problem Sheet 1

1. Let H be a Hilbert space. If (xn)n∈N is a sequence of pairwise orthogonal vectors
in H , then the following are equivalent:

(a)

∞∑

n=1

xn converges in the norm topology of H .

(b)

∞∑

n=1

||xn||2 < ∞.

(c)

∞∑

n=1

〈xn, y〉 converges for every y ∈ H .

2. Let P1 and P2 be orthogonal projections acting on the Hilbert space H . Then
we have

‖P1 − P2‖ = max{ρ12, ρ21}

where

ρjk := sup
{
‖Pjx‖ : x ∈ rg(Pk)⊥, ‖x‖ ≤ 1

}
.

3. If P and Q are orthogonal projection on the Hilbert space H such that
||P − Q|| < 1, then we have

dim (rg P ) = dim (rg Q), dim (rg(I − P )) = dim (rg(I − Q)).

4. Define the right shift operator S on ℓ2(Z) by

(Sx)k = xk−1, k ∈ Z,

where x = (xk)∞k=−∞ is in ℓ2(Z). Find σp(S), σc(S), σr(S).
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Problem Sheet 2

Functions of bounded variation; spectral resolution.

1. Let α ∈ BV[a, b], f ∈ I[a, b] and define K : [a, b] → K by K(x) :=

∫ x

a

f(t) dα(t)

for x ∈ (a, b] and K(a) := 0. Show:

(a) K ∈ BV[a, b].

(b) If α is right continuous, then so is K.

(c)

∫ b

a

g(t) dK(t) =

∫ b

a

(fg)(t) dα(t) for all g ∈ I[a, b].

2. Let H be a Hilbert space and T ∈ L(H) a compact selfadjoint operator with
pairwise distinct eigenvalues µj and let Pj be the orthogonal projections on the
corresponding eigenspaces. Show that (Eλ)λ∈R is a spectral resolution where

Eλx :=





∑
λj≤λ Pjx, λ < 0,

x −∑λj>λ Pjx, λ ≥ 0,
λ ∈ R, x ∈ H.

3. Let H be a Hilbert space, (Eλ)λ∈R a spectral resolution on H and ϕ : R → (a, b)
a continuous monotonically increasing bijection. Moreover assume that Ea = 0
and Eb−0 = Eb = I. Show that (F (λ))λ∈R is a spectral resolution on H where

Fλ := Eϕ(λ), λ ∈ R.

4. Let H be a Hilbert space, (Eλ)λ∈R a spectral resolution on H and f, g ∈ I[a, b].
Show:

(a)
〈(∫ b

a

f(λ) dEλ

)
x , y

〉
=

∫ b

a

f(λ) 〈Eλx , y〉, x, y ∈ H ;

(b)

∫ b

a

f(λ) dEλ = 0 for f ≡ 0,

∫ b

a

f(λ) dEλ =

∫ b

a

dEλ = Eb − Ea for

f ≡ 1;

(c) Eµ

∫ b

a

f(λ) dEλ =

∫ µ

a

f(λ) dEλ, a ≤ µ ≤ b;

(d)
(∫ b

a

f(λ) dEλ

)( ∫ b

a

g(λ) dEλ

)
=

∫ b

a

f(λ)g(λ) dEλ;

(e)
(∫ b

a

f(λ) dEλ

)∗
=

∫ b

a

f(λ) dEλ;

(f)
∥∥∥
∫ b

a

f(λ) dEλx
∥∥∥

2

=

∫ b

a

|f(λ)|2 d‖Eλx‖2 , x ∈ H .
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Problem Sheet 3

Spectral theorem.

1. Let H , ϕ : R → (a, b), (Eλ)λ∈R and (Fλ)λ∈R be as in Problem Sheet 2, Exercise
3.

Moreover let f : (a, b) → R such that f |[a0,b0] ∈ I[a0, b0] for every compact
subinterval [a0, b0] of (a, b). Show:

(a)

∫ ϕ(β)

ϕ(α)

f(λ) dEλ =

∫ β

α

(f ◦ ϕ)(λ) dFλ for all [α, β] ⊆ R.

(b) Let x ∈ H . Then

∫ b−0

a+0

f(λ) dEλx := lim
λցa
λ2րb

∫ λ2

λ1

f(λ) dEλ

exists if and only if

∫ ∞

−∞
(f ◦ ϕ)(λ) dFλx := lim

λց−∞
λ2ր∞

∫ λ2

λ1

(f ◦ ϕ)(λ) dFλ x

exists.

2. Let a : [0, 1] → R be continuous and A : L2(0, 1) → L2(0, 1) be defined by

(Ax)(t) := a(t)x(t), t ∈ (0, 1), x ∈ L2(0, 1).

(a) Show that A is selfadjoint.

(b) Find m := infx∈H,‖x‖=1(Ax, x) and M := supx∈H,‖x‖=1(Ax, x).

(c) Find the spectral resolution of A.

3. Let A and B be bounded selfadjoint operators on a Hilbert space H with spectral
resolutions (EA(λ))λ∈R and (EB(λ))λ∈R. Show that dimEA(λ) ≤ dimEB(λ) 1

for every λ ∈ R if A ≥ B.

4. Let H be a Hilbert space and A ∈ L(H).

(a) Show that Exp(A) :=
∞∑

n=0

1

n!
An converges in the operator norm. Show

that
(
Exp(A)

)∗
= Exp(A∗). In particular, Exp(A) is selfadjoint and(

Exp(iA)
)∗

= Exp(−iA) if A is selfadjoint.

(b) Show that Exp(A) = exp(A) for selfadjoint A where exp(A) is defined via
the continuous functional calculus.

1using the notation dim P := dim(rg P ) for an orthogonal projection P .
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Problem Sheet 4

Cayley transform.

1. Let A be a bounded selfadjoint operator on a complex Hilbert space H with
spectral resolution (Eλ)λ∈R. Show that A is compact if and only if for every
ε > 0 the projection E({|λ| > ε}) has finite rank.

2. Let R be the right shift operator on ℓ2(N), that is

S(x1, x2, x3, . . . ) = (0, x1, x2, x3, . . . )

for x = (x1, x2, x3, . . . ) ∈ ℓ2(N). Is there an operator A ∈ L(ℓ(N)) such that
A2 = S?

3. Let H be a complex Hilbert space, A a selfadjoint operator such that A−1 exists
and is densely defined. Let U be its Cayley transform. Show:

(a) A−1 is symmetric.

(b) The Cayley transform of A−1 is −U−1.

(c) A−1 is selfadjoint.

4. Let (en)n∈N be an orthonormal basis of a complex Hilbert space H and (αn)n∈N ⊆
R. Define the operator A by

D := {x ∈ H :

∞∑

n=1

|αn〈x , en〉|2 < ∞}, Ax :=

∞∑

n=1

αn〈x , en〉 en for x ∈ D.

(a) Show that A is well-defined, closed and symmetric.

(b) Find the Cayley transform of A.
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Problem Sheet 5

1. (a) Is the right shift on ℓ2(N) the Cayley transform of a closed symmetric
operator A? If so, find A and its deficiency indices dim(rg(A ± i)⊥).

(b) Is the left shift on ℓ2(N) the Cayley transform of a closed symmetric oper-
ator B? If so, find B and its deficiency indices dim(rg(B ± i)⊥).

2. Let (Eλ)λ∈R be a spectral resolution on a complex Hilbert space H . Let x ∈ H
and f ∈ C(R, C). Then the following is equivalent:

(a)

∫ ∞

−∞
f(λ) dEλx exists.

(b)

∫ ∞

−∞
|f(λ)|2 d〈Eλx , x〉 exists

(that is, f ∈ L2(R, dαx) where αx(λ) = 〈Eλx , x〉 for λ ∈ R).

(c) The map ϕ : H → C, ϕ(y) =

∫ ∞

−∞
f(λ) d〈Eλx , y〉 is a bounded anti-linear

functional.

3. Let A be a selfadjoint operator on a complex Hilbert space H with spectral
resolution (Eλ)λ∈R. Then

s- lim
εց0

1

2πi

∫ b

a

[
(A − λ − iε)−1 − (A − λ + iε)−1

]
dλ =

1

2

(
E([a, b]) + E((a, b))

)
.

4. Use Stone’s formula to find the spectral resolution of at least one of the following
operators:

(a) T =

(
1 0
0 2

)
on C

2.

(b) Let (X, µ) be a measure space. For a µ-measurable function g : X → R

define the maximal multiplication operator Tg on L2(X) by

D(Tg) :=
{
f ∈ L2(X) : fg ∈ L2(X)

}
, Tgf := gf for x ∈ D(Tg).
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Problem Sheet 6

1. Let (Ω, Σ, µ) be a σ-finite measure space, X, Y Banach spaces and f : Ω → X
Bochner-integrable. Let T ∈ L(H). Show that Tf is also Bochner-integrable
and that

T

∫

Ω

f dµ =

∫

Ω

Tf dµ.

2. Let H be a complex Hilbert space and T (H → H) a selfadjoint linear operator.
Let a, b ∈ ρ(T ) ∩ R and Γ a positively oriented Jordan curve which encloses
(a, b) ∩ σ(T ) and the rest of the spectrum of T lies outside of Γ. Then

E(b) − E(a) =
1

2πi

∮

Γ

(λ − T )−1 dλ.

a b

σ(T )

Γ

3. Let H be a complex Hilbert space, T (H → H) a selfadjoint linear operator
with spectral resolution (Et)t∈R and λ ∈ C. Show that the following is equiva-
lent:

(a) λ ∈ σd(T ).

(b) There exists a sequence (xn)n∈N ⊆ D(T ) such that xn 6→ 0 and (T−λ)xn →
0 for n → N and every such sequence contains a convergent subsequence.

(c) 0 6= dim(rg E({λ}) < ∞ and there exists an ε > 0 such that E((λ− ε, λ +
ε)) = E({λ}).

4. Let H be a complex Hilbert space and T (H → H) a selfadjoint linear operator.
Show that σ(T ) = σess(T ) ∪ σd(T ).
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Problem Sheet 7

1. Let H be a complex Hilbert space and S, T selfadjoint linear operators on
H .

(a) Let z ∈ ρ(T ) and λ ∈ C \ {z}. Show that λ ∈ σess(T ) if and only if there
exists a sequence (xn)n∈N ⊆ D(T ) such that

xn 6→ 0, xn
w−→ 0 and

(
(T − z)−1 − (λ − z)−1

)
xn → 0 for n → ∞.

(b) Assume that there exists a z ∈ ρ(S)∩ρ(T ) such that (S−z)−1− (T −z)−1

is compact. Show that then σess(S) = σess(T ).

2. Let H be a complex Hilbert space and S(H → H) be a closable linear operator.
Show that the deficiency numbers are constant in connected components of its
domain of regularity Γ(S).
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Problem Sheet 8

Relative boundedness; relative compactness.

1. Let X, Y, Z be Banach spaces and T (X → Y ), S(X → Z) linear operators.
Show that S is T -bounded if and only if D(S) ⊇ D(T ) and there exist α, β ≥ 0
such that

‖Sx‖2 ≤ α2‖x‖2 + β2‖Tx‖2, x ∈ D(T ). (∗)

Show that the infimum over all β > 0 such that (∗) holds for some α e 0 is equal
to the T -bound of S.

Hint. Show that 2xy ≤ c2x2 + c−2y2 for c, x, y ∈ R, c 6= 0.

2. Let X be a Banach spaces and T (X → X) a closed linear operator. Let S(X →
X) with D(S) ⊇ D(T ) and z ∈ ρ(T ). Show that S is T -compact if and only if
S(T − z)−1 is compact.

3. Let S and T be closed operators on a Banach space X . Show that (S − z)−1 −
(T − z)−1 is compact for some z ∈ ρ(S) ∩ ρ(T ) if and only if it is compact for
all z ∈ ρ(S) ∩ ρ(T ).

4. Recall: If T is a closed operator between Hilbert spaces H1 and H2 and S is
T -compact, then S has T -bound 0.

Show that there exist Hilbert spaces H1, H2, a linear operator T (H1 → H2) and
a T -compact operator S with T -bound 1.

Hint. Consider an unbounded linear functional on H1.

Last Change: Wed Dec 1 13:03:46 COT 2010

D
R

A
F

T

94

Problem Sheet 9

Core of a linear operator; exp; semigroups.

1. Let X be a Banach space, T (X → X) a closed operator and D0 ⊆ D(T ). Show
that D0 is a core of T if and only of (T − λ)D0 is dense in X for one (for all)
λ ∈ ρ(T ).

2. Let X be a Banach space and A(X → X) a closed linear operator. Let Γ be a
positively oriented Jordan curve which does not intersect σ(A).

(a) Show that
1

2πi

∮

Γ

(λ − A)−1 dλ is a projection.

(b) Show that, if A is bounded and Γ encloses σ(A), then

exp(tA) =
1

2πi

∮

Γ

eλt(λ − A)−1 dλ.

3. Show that every continuous solution f : R → R of

f(s + t) = f(s)f(t)

is differentiable and consequently of the form f(t) = c eta.

4. Define the semigroup T = (T (t))t≥0 by

(T (t)f)(ξ) = f(ξ + t), f ∈ X, ξ ∈ R.

(a) Show that T is a strongly continuous, but not uniformly continuous semi-
group if X = BUC(R) or X = Lp(R) with 1 ≤ p < ∞.

(b) Show that T is not strongly continuous if X = L∞(R).
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Problem Sheet 10

1. Let Ω be a domain in C and q ∈ C(Ω) an unbounded function with supξ∈Ω{Re q(ξ)} <
∞. Let X = C0(Ω) together with the supremum norm and M(X → X) the
maximal multiplication operator corresponding to q and define T = (T (t))t≥0

by

(
T (t)f

)
(ξ) = etq(ξ) f(ξ), f ∈ X, ξ ∈ Ω.

(a) Show that T is a strongly continuous semigroup.

(b) Show that T is not uniformly continuous.

(c) Show that M is the generator of T .

A semigroup is called uniformly exponentially stable if there exist ω > 0 and M ≥ 1
such that ‖T (t)‖ ≤ M e−ωt for all t ≥ 0.

2. Let X = C0(R) and q(s) = − 1
1+|s| + is. Show that the corresponding multipli-

cation semigroup is not uniformly exponentially stable but converges strongly
to 0.

3. If T = (T (t))t≥0 is a uniformly continuous semigroup, then the following is
equivalent:

(a) T is uniformly exponentially stable.

(b) limt→∞ ‖T (t)‖ = 0.

(c) There exists a t0 > 0 such that ‖T (t0)‖ < 1.

(d) There exists a t1 > 0 such that r(T (t1)) < 1 where r(T (t1)) denotes the
spectral radius of T (t1).

4. Let X be a Banach space and K ⊆ R a compact set. For a function F : K →
L(X) the following is equivalent:

(a) F is strongly continuous.

(b) F is uniformly bounded on K and there exists a dense subset D ⊆ X such
that for every x ∈ D the following map is continuous:

K → X, t 7→ F (t)x.

(c) For every compact subset C ⊆ X the following map is uniformly continu-
ous:

K × C → X, (t, x) 7→ F (t)x.
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Problem Sheet 11

Let X be a Banach space and X0 ⊆ X a subspace. For a linear operator A with
not necessarily dense domain D(A) ⊆ X we define the part of A in X0 by

D(A|) = {x ∈ D(A) ∩ X0 : Ax ∈ X0}, A|x = Ax, x ∈ D(A|).

1. Let X be a Banach space, A : D(A) ⊆ X → X a closed linear operator on X
(not necessarily densely defined). Let X0 := D(A) and A| be the part of A in
X0. If there exist M ≥ 1 and ω ∈ R such that

{λ ∈ R : λ > ω} ⊆ ρ(A) and ‖R(λ, A)n‖ ≤ M

(λ − ω)n
, n ∈ N, λ > ω,

then A| is the generator of a strongly continuous semigroup T = (T (t))t≥0 on
X0 with ‖T (t)‖ ≤ M etω, t ≥ 0.

2. Let (X, ‖·‖) be a Banach space and T = (T (t))t≥0 a bounded strongly continuous
semigroup on X . Then

‖x‖T := sup{ ‖T (s)x‖ : s ≥ 0 }, x ∈ X,

defines a norm which is equivalent to ‖ · ‖.

3. Let (X, ‖·‖) be a Banach space and T = (T (t))t≥0 a bounded strongly continuous
semigroup on X . Show that there exists an equivalent norm on X such that T
is a contraction semigroup with respect to the new norm.

4. Let X = {f ∈ C[0, 1] : f(1) = 0} and

T (t) : X → X, T (t)f(ξ) =

{
f(ξ + t), if 0 ≤ x + t ≤ 1,

0 else.

Show that (T (t))t≥0 is a strongly continuous semigroup on X . Find its generator
and its growth bound.
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analytic semigroup, 72
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autonomous, 39

Banach space, 3
Banach-Steinhaus theorem, 6
bounded C0-semigroup, 44

C0-semigroup, 43
C0(Ω), 50
Cauchy’s integral formula, 69
classical solution, 55
closable operator, 7
closed graph theorem, 7
closed operator, 7
compact operator, 11

spectrum, 12
contraction semigroup, 44
contractive C0-semigroup, 44

deficiency number, 22
descent, 12
diffusion semigroup, 63
dissipative operator, 63
duality set, 65

essential spectrum, 33
exp(tA), 45

Fréchet-Riesz representation theorem, 5
functional calculus, 69

generator, 50, 52
strongly continuous group, 59

graph, 7
graph norm, 7
group, 42
growth bound, 45

Hahn-Banach theorem, 5
heat equation, 41
Hellinger-Toeplitz theorem, 9
Hilbert space, 4

inner product, 3
inner product space, 3
inverse mapping theorem, 6
isometric C0-semigroup, 44

Jordan normal form, 47

Kato-Rellich theorem, 32

Laplace transform, 56

matrix semigroups, 46
monoid, 39
multiplication operator, 50
multiplication semigroup, 50, 56

norm, 3
normed space, 3

open map, 6
open mapping theorem, 6
operator

closable ∼, 7
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D
R

A
F

T
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closed ∼, 7
closure ∼, 7
compact ∼, 11
dissipative, 63
essentially selfadjoint ∼, 9
sectorial, 70
selfadjoint ∼, 9
spectrum of a ∼, 9

part of A, 60
point of regular type, 24
pre-Hilbert space, 3
projection, 10

orthogonal, 10

R+, 39
regularity domain, 24
relatively bounded, 31
relatively compact, 31
resolent map, 10
resolvent set, 9
Riesz index, 12
Riesz representation theorem, 6

s(a), 56
scaling, 68
Scaling, 55
Schwartz space, 63
sectorial operator, 70
selfadjoint operator, 9
semi-Fredholm, 33
semigroup, 39, 42

analytic, 72
bounded, 44
contractive, 44
isometric, 44
strongly continuous, 43
uniformly continuous, 42, 49
unitary, 67

seminorm, 3
sesquilinear form, 3
solution

classical, 55
space

normed ∼, 3
spectral bound, 56
spectral family, 17
spectral resolution of the identity, 17
spectrum, 9

compact operator, 12
essential, 33

step function, 15
symmetric operator, 9

tangent functionals, 65

theorem
Banach-Steinhaus ∼, 6
closed graph ∼, 7
F. Riesz, 16
Fréchet-Riesz representation ∼, 5
Hahn-Banach ∼, 5
Hellinger-Toeplitz ∼, 9
Hille-Yosida, 59
Kato-Rellich, 32
Lumer-Phillips, 66
open mapping ∼, 6
Riesz representation ∼, 6
Schauder, 12
Stone, 67
von Hille-Yosida-Phillips, 57
Weyl, 33

translation semigroup, 62, 63
type, 45

Uniform boundedness principle, 6
unitary semigroup, 67

variation, 15
von Neumann

formula of, 21

Weyl theorem, 33

Yosida approximants, 57
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