Operator Theory

Problem Sheet 11

Hand in: 12th of November 2010

Let X be a Banach space and $X_0 \subseteq X$ a subspace. For a linear operator A with not necessarily dense domain $\mathcal{D}(A) \subseteq X$ we define the *part of* A *in* X_0 by

$$\mathcal{D}(A_{|}) = \{ x \in \mathcal{D}(A) \cap X_0 : Ax \in X_0 \}, \qquad A_{|}x = Ax, \quad x \in \mathcal{D}(A_{|}).$$

1. Let X be a Banach space, $A : \mathcal{D}(A) \subseteq X \to X$ a closed linear operator on X (not necessarily densely defined). Let $X_0 := \overline{\mathcal{D}(A)}$ and $A_{|}$ be the part of A in X_0 . If there exist $M \geq 1$ and $\omega \in \mathbb{R}$ such that

$$\{\lambda \in \mathbb{R} : \lambda > \omega\} \subseteq \varrho(A) \text{ and } \|R(\lambda, A)^n\| \le \frac{M}{(\lambda - \omega)^n}, n \in \mathbb{N}, \lambda > \omega,$$

then $A_{|}$ is the generator of a strongly continuous semigroup $\mathcal{T} = (T(t))_{t \geq 0}$ on X_0 with $||T(t)|| \leq M e^{t\omega}, t \geq 0.$

2. Let $(X, \|\cdot\|)$ be a Banach space and $\mathcal{T} = (T(t))_{t\geq 0}$ a bounded strongly continuous semigroup on X. Then

$$||x||_{\mathcal{T}} := \sup\{ ||T(s)x|| : s \ge 0 \}, \quad x \in X,$$

defines a norm which is equivalent to $\|\cdot\|$.

- 3. Let $(X, \|\cdot\|)$ be a Banach space and $\mathcal{T} = (T(t))_{t\geq 0}$ a bounded strongly continuous semigroup on X. Show that there exists an equivalent norm on X such that \mathcal{T} is a contraction semigroup with respect to the new norm.
- 4. Let $X = \{f \in C[0,1] : f(1) = 0\}$ and

$$T(t): X \to X, \quad T(t)f(\xi) = \begin{cases} f(\xi+t), & \text{if } 0 \le x+t \le 1, \\ 0 & \text{else.} \end{cases}$$

Show that $(T(t))_{t\geq 0}$ is a strongly continuous semigroup on X. Find its generator and its growth bound.