Operator Theory

Problem Sheet 10

Hand in: 5th of November 2010

1. Let Ω be a domain in \mathbb{C} and $q \in C(\Omega)$ an unbounded function with $\sup_{\xi \in \Omega} \{\operatorname{Re} q(\xi)\} < \infty$. Let $X = C_0(\Omega)$ together with the supremum norm and $M(X \to X)$ the maximal multiplication operator corresponding to q and define $\mathcal{T} = (T(t))_{t>0}$ by

$$(T(t)f)(\xi) = e^{tq(\xi)}f(\xi), \qquad f \in X, \ \xi \in \Omega.$$

- (a) Show that \mathcal{T} is a strongly continuous semigroup.
- (b) Show that \mathcal{T} is not uniformly continuous.
- (c) Show that M is the generator of \mathcal{T} .

A semigroup is called *uniformly exponentially stable* if there exist $\omega > 0$ and $M \ge 1$ such that $||T(t)|| \le M e^{-\omega t}$ for all $t \ge 0$.

- 2. Let $X = C_0(\mathbb{R})$ and $q(s) = -\frac{1}{1+|s|} + is$. Show that the corresponding multiplication semigroup is not uniformly exponentially stable but converges strongly to 0.
- 3. If $\mathcal{T} = (T(t))_{t \geq 0}$ is a uniformly continuous semigroup, then the following is equivalent:
 - (a) \mathcal{T} is uniformly exponentially stable.
 - (b) $\lim_{t \to \infty} ||T(t)|| = 0.$
 - (c) There exists a $t_0 > 0$ such that $||T(t_0)|| < 1$.
 - (d) There exists a $t_1 > 0$ such that $r(T(t_1)) < 1$ where $r(T(t_1))$ denotes the spectral radius of $T(t_1)$.
- 4. Let X be a Banach space and $K \subseteq \mathbb{R}$ a compact set. For a function $F: K \to L(X)$ the following is equivalent:
 - (a) F is strongly continuous.
 - (b) F is uniformly bounded on K and there exists a dense subset $D \subseteq X$ such that for every $x \in D$ the following map is continuous:

$$K \to X, \quad t \mapsto F(t)x.$$

(c) For every compact subset $C \subseteq X$ the following map is uniformly continuous:

$$K \times C \to X, \quad (t, x) \mapsto F(t)x.$$