Operator Theory

Problem Sheet 9

Core of a linear operator; exp; semigroups.

Hand in: 28th of October 2010

- 1. Let X be a Banach space, $T(X \to X)$ a closed operator and $\mathcal{D}_0 \subseteq \mathcal{D}(T)$. Show that \mathcal{D}_0 is a core of T if and only of $(T \lambda)\mathcal{D}_0$ is dense in X for one (for all) $\lambda \in \varrho(T)$.
- 2. Let X be a Banach space and $A(X \to X)$. Let Γ be a positively oriented Jordan curve which does not intersect $\sigma(A)$.
 - (a) Show that $\frac{1}{2\pi i} \oint_{\Gamma} (\lambda A)^{-1} d\lambda$ is a projection.
 - (b) Show that, if A is bounded and Γ encloses $\sigma(A)$, then

$$\exp(tA) = \frac{1}{2\pi i} \oint_{\Gamma} e^{\lambda t} (\lambda - A)^{-1} d\lambda.$$

3. Show that every continuous solution $f : \mathbb{R} \to \mathbb{R}$ of

$$f(s+t) = f(s)f(t)$$

is differentiable and consequently of the form $f(t) = ce^{ta}$.

4. Define the semigroup $\mathcal{T} = (T(t))_{t>0}$ by

$$(T(t)f)(\xi) = f(\xi + t), \qquad f \in X, \ \xi \in \mathbb{R}.$$

- (a) Show that \mathcal{T} is a strongly continuous, but not uniformly continuous semigroup if $X = BUC(\mathbb{R})$ or $X = L_p(\mathbb{R})$ with $1 \le p < \infty$.
- (b) Show that \mathcal{T} is not strongly continuous if $X = L_{\infty}(\mathbb{R})$.