Operator Theory

Problem Sheet 8

1. Let X, Y, Z be Banach spaces and $T(X \rightarrow Y), S(X \rightarrow Z)$ linear operators. Show that S is T-bounded if and only if $\mathcal{D}(S) \supseteq \mathcal{D}(T)$ and there exist $\alpha, \beta \geq 0$ such that

$$
\begin{equation*}
\|S x\|^{2} \leq \alpha^{2}\|x\|^{2}+\beta^{2}\|T x\|^{2}, \quad x \in \mathcal{D}(T) \tag{*}
\end{equation*}
$$

Show that the infimum over all $\beta>0$ such that $(*)$ holds for some $\alpha \mathrm{e} 0$ is equal to the T-bound of S.

Hint. Show that $2 x y \leq c^{2} x^{2}+c^{-2} y^{2}$ for $c, x, y \in \mathbb{R}, c \neq 0$.
2. Let X be a Banach spaces and $T(X \rightarrow X)$ a closed linear operator. Let $S(X \rightarrow X)$ with $\mathcal{D}(S) \supseteq \mathcal{D}(T)$ and $z \in \varrho(T)$. Show that S is T-compact if and only if $S(T-z)^{-1}$ is compact.
3. Let S and T be closed operators on a Banach space X. Show that $(S-z)^{-1}-(T-z)^{-1}$ is compact for some $z \in \varrho(S) \cap \varrho(T)$ if and only if it is compact for all $z \in \varrho(S) \cap \varrho(T)$.
4. Recall: If T is a closed operator between Hilbert spaces H_{1} and H_{2} and S is T-compact, then S has T-bound 0 .

Show that there exist Hilbert spaces H_{1}, H_{2}, a linear operator $T\left(H_{1} \rightarrow H_{2}\right)$ and a T compact operator S with T-bound 1 .

Hint. Consider an unbounded linear functional on H_{1}.

