Operator Theory

Problem Sheet 8

Relative boundedness; relative compactness.

Hand in: 21st of October 2010

1. Let X, Y, Z be Banach spaces and $T(X \to Y)$, $S(X \to Z)$ linear operators. Show that S is T-bounded if and only if $\mathcal{D}(S) \supseteq \mathcal{D}(T)$ and there exist $\alpha, \beta \ge 0$ such that

$$||Sx||^{2} \le \alpha^{2} ||x||^{2} + \beta^{2} ||Tx||^{2}, \qquad x \in \mathcal{D}(T).$$
(*)

Show that the infimum over all $\beta > 0$ such that (*) holds for some $\alpha e0$ is equal to the *T*-bound of *S*.

Hint. Show that $2xy \leq c^2x^2 + c^{-2}y^2$ for $c, x, y \in \mathbb{R}, c \neq 0$.

- 2. Let X be a Banach spaces and $T(X \to X)$ a closed linear operator. Let $S(X \to X)$ with $\mathcal{D}(S) \supseteq \mathcal{D}(T)$ and $z \in \varrho(T)$. Show that S is T-compact if and only if $S(T-z)^{-1}$ is compact.
- 3. Let S and T be closed operators on a Banach space X. Show that $(S-z)^{-1} (T-z)^{-1}$ is compact for some $z \in \varrho(S) \cap \varrho(T)$ if and only if it is compact for all $z \in \varrho(S) \cap \varrho(T)$.
- 4. Recall: If T is a closed operator between Hilbert spaces H_1 and H_2 and S is T-compact, then S has T-bound 0.

Show that there exist Hilbert spaces H_1, H_2 , a linear operator $T(H_1 \to H_2)$ and a *T*-compact operator *S* with *T*-bound 1.

Hint. Consider an unbounded linear functional on H_1 .