Operator Theory

Problem Sheet 6

Hand in: 16th of September 2010

1. Let (Ω, Σ, μ) be a σ-finite measure space, X, Y Banach spaces and $f: \Omega \rightarrow X$ Bochnerintegrable. Let $T \in L(H)$. Show that $T f$ is also Bochner-integrable and that

$$
T \int_{\Omega} f \mathrm{~d} \mu=\int_{\Omega} T f \mathrm{~d} \mu
$$

2. Let H be a complex Hilbert space and $T(H \rightarrow H)$ a selfadjoint linear operator. Let $a, b \in \varrho(T) \cap \mathbb{R}$ and Γ a positively oriented Jordan curve which encloses $(a, b) \cap \sigma(T)$ and the rest of the spectrum of T lies outside of Γ. Then

$$
E(b)-E(a)=\frac{1}{2 \pi \mathrm{i}} \oint_{\Gamma}(\lambda-T)^{-1} \mathrm{~d} \lambda
$$

3. Let H be a complex Hilbert space, $T(H \rightarrow H)$ a selfadjoint linear operator with spectral resolution $\left(E_{t}\right)_{t \in \mathbb{R}}$ and $\lambda \in \mathbb{C}$. Show that the following is equivalent:
(a) $\lambda \in \sigma_{\mathrm{d}}(T)$.
(b) There exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq \mathcal{D}(T)$ such that $x_{n} \nrightarrow 0$ and $(T-\lambda) x_{n} \rightarrow 0$ for $n \rightarrow \mathbb{N}$ and every such sequence contains a convergent subsequence.
(c) $0 \neq \operatorname{dim}(\operatorname{rg} E(\{\lambda\})<\infty$ and there exists an $\varepsilon>0$ such that $E((\lambda-\varepsilon, \lambda+\varepsilon))=$ $E(\{\lambda\})$.
4. Let H be a complex Hilbert space and $T(H \rightarrow H)$ a selfadjoint linear operator. Show that $\sigma(T)=\sigma_{\text {ess }}(T) \cup \sigma_{\mathrm{d}}(T)$.

