Operator Theory

Problem Sheet 5

Hand in: 9th of September 2010

- 1. (a) Is the right shift on $\ell_2(\mathbb{N})$ the Cayley transform of a closed symmetric operator A? If so, find A and its deficiency indices dim $(rg(A \pm i)^{\perp})$.
 - (b) Is the left shift on $\ell_2(\mathbb{N})$ the Cayley transform of a closed symmetric operator *B*? If so, find *B* and its deficiency indices dim $(rg(B \pm i)^{\perp})$.
- 2. Let $(E_{\lambda})_{\lambda \in \mathbb{R}}$ be a spectral resolution on a complex Hilbert space H. Let $x \in H$ and $f \in C(\mathbb{R}, \mathbb{C})$. Then the following is equivalent:
 - (a) $\int_{-\infty}^{\infty} f(\lambda) \, \mathrm{d}E_{\lambda}x$ exists.
 - (b) $\int_{-\infty}^{\infty} |f(\lambda)|^2 d\langle E_{\lambda}x, x\rangle \text{ exists}$ (that is, $f \in L_2(\mathbb{R}, d\alpha_x)$ where $\alpha_x(\lambda) = \langle E_{\lambda}x, x\rangle$ for $\lambda \in \mathbb{R}$).
 - (c) The map $\varphi: H \to \mathbb{C}, \ \varphi(y) = \int_{-\infty}^{\infty} f(\lambda) \, d\langle E_{\lambda}x, y \rangle$ is a bounded anti-linear functional.
- 3. Let A be a selfadjoint operator on a complex Hilbert space H with spectral resolution $(E_{\lambda})_{\lambda \in \mathbb{R}}$. Then

$$s - \lim_{\varepsilon \searrow 0} \frac{1}{2\pi \mathrm{i}} \int_a^b \left[(A - \lambda - \mathrm{i}\varepsilon)^{-1} - (A - \lambda + \mathrm{i}\varepsilon)^{-1} \right] \mathrm{d}\lambda = \frac{1}{2} \left(E([a, b]) - E((a, b)) \right).$$

- 4. Use Stone's formula to find the spectral resolution of at least one of the following operators:
 - (a) $T = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ on \mathbb{C}^2 .
 - (b) Let (X, μ) be a measure space. For a μ -measurable function $g: X \to \mathbb{R}$ define the maximal multiplication operator T_g on $L_2(X)$ by

$$\mathcal{D}(T_g) := \{ f \in L_2(X) : fg \in L_2(X) \}, \qquad T_g f := gf \quad \text{for } x \in \mathcal{D}(T_g)$$