Operator Theory

Cayley transform.

Problem Sheet 4

Hand in: 2nd of September 2010

- 1. Let A be a bounded selfadjoint operator on a complex Hilbert space H with spectral resolution $(E_{\lambda})_{\lambda \in \mathbb{R}}$. Show that A is compact if and only if for every $\varepsilon > 0$ the projection $E(\{|\lambda| > \varepsilon\})$ has finite rank.
- 2. Let R be the right shift operator on $\ell_2(\mathbb{N})$, that is $S(x_1, x_2, x_3, \dots) = (0, x_1, x_2, x_3, \dots)$ for $x = (x_1, x_2, x_3, \dots) \in \ell_2(\mathbb{N})$. Is there an operator $A \in L(\ell(\mathbb{N}))$ such that $A^2 = S$?
- 3. Let H be a complex Hilbert space, A a selfadjoint operator such that A^{-1} exists and is densely defined. Let U be its Cayley transform. Show:
 - (a) A^{-1} is symmetric.
 - (b) The Cayley transform of A^{-1} is $-U^{-1}$.
 - (c) A^{-1} is selfadjoint.
- 4. Let $(e_n)_{n \in \mathbb{N}}$ be an orthonormal basis of a complex Hilbert space H and $(\alpha_n)_{n \in \mathbb{N}} \subseteq \mathbb{R}$. Define the operator A by

$$\mathcal{D} := \{ x \in H : \sum_{n=1}^{\infty} |\alpha_n \langle x, \mathbf{e}_n \rangle|^2 < \infty \}, \qquad Ax := \sum_{n=1}^{\infty} \alpha_n \langle x, \mathbf{e}_n \rangle \mathbf{e}_n \quad \text{for } x \in \mathcal{D}.$$

- (a) Show that A is well-defined, closed and symmetric.
- (b) Find the Cayley transform of A.