Operator Theory

Problem Sheet 1

Hand in: 13th of August 2010

1. Let *H* be a Hilbert space. If $(x_n)_{n \in \mathbb{N}}$ is a sequence of pairwise orthogonal vectors in *H*, then the following are equivalent:

2. Let P_1 and P_2 be orthogonal projections acting on the Hilbert space H. Then we have

$$||P_1 - P_2|| = \max\{\varrho_{12}, \ \varrho_{21}\}$$

where

$$\varrho_{jk} := \sup \left\{ \|P_j x\| : x \in \operatorname{rg}(P_k)^{\perp}, \|x\| \le 1 \right\}.$$

3. If P and Q are orthogonal projection on the Hilbert space H such that ||P - Q|| < 1, then we have

 $\dim (\operatorname{rg} P) = \dim (\operatorname{rg} Q), \quad \dim (\operatorname{rg} (I - P)) = \dim (\operatorname{rg} (I - Q)).$

4. Define the right shift operator S on $\ell_2(\mathbb{Z})$ by

$$(Sx)_k = x_{k-1}, \quad k \in \mathbb{Z},$$

where $x = (x_k)_{k=-\infty}^{\infty}$ is in $\ell_2(\mathbb{Z})$. Find $\sigma_p(S), \sigma_c(S), \sigma_r(S)$.