Operator Theory

Problem Sheet 1

1. 2. Let H be a Hilbert space. If $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a sequence of pairwise orthogonal vectors in H, then the following are equivalent:
(a) $\sum_{n=1}^{\infty} x_{n}$ converges in the norm topology of H.
(b) $\sum_{n=1}^{\infty}\left\|x_{n}\right\|^{2}<\infty$.
(c) $\sum_{n=1}^{\infty}\left\langle x_{n}, y\right\rangle$ converges for every $y \in H$.
1. Let P_{1} and P_{2} be orthogonal projections acting on the Hilbert space H. Then we have

$$
\left\|P_{1}-P_{2}\right\|=\max \left\{\varrho_{12}, \varrho_{21}\right\}
$$

where

$$
\varrho_{j k}:=\sup \left\{\left\|P_{j} x\right\|: x \in \operatorname{rg}\left(P_{k}\right)^{\perp},\|x\| \leq 1\right\} .
$$

3. If P and Q are orthogonal projection on the Hilbert space H such that $\|P-Q\|<1$, then we have

$$
\operatorname{dim}(\operatorname{rg} P)=\operatorname{dim}(\operatorname{rg} Q), \quad \operatorname{dim}(\operatorname{rg}(I-P))=\operatorname{dim}(\operatorname{rg}(I-Q))
$$

4. Define the right shift operator S on $\ell_{2}(\mathbb{Z})$ by

$$
(S x)_{k}=x_{k-1}, \quad k \in \mathbb{Z}
$$

where $x=\left(x_{k}\right)_{k=-\infty}^{\infty}$ is in $\ell_{2}(\mathbb{Z})$. Find $\sigma_{\mathrm{p}}(S), \sigma_{\mathrm{c}}(S), \sigma_{\mathrm{r}}(S)$.

