Teoría de Medida e Integración

Taller 4

Un conjunto no Lebesgue-medible.

Fecha de entrega: 22 de febrero de 2024

Sea $I = \{[a,b) : a \leq b\} \subseteq \mathbb{PR}$ y sea $\lambda_0 : I \to \mathbb{R}$, $\lambda_0([a,b)) = b - a$. Ya sabemos que λ_0 es un contenido σ -aditivo en I. Sea λ_0^* la medida exterior generada por λ y sean

- $\mathfrak{B} = \sigma(I) =$ la sigma álgebra generada por I,
- $\mathfrak{M} = \{ M \subseteq \mathbb{R} : M \text{ es } \lambda^*\text{-medible} \}.$

Entonces $\mathfrak{B} \subseteq \mathfrak{M}$ y λ_0 tiene una extensión única a una medida λ en \mathfrak{M} (¿por qué?). Esta medida λ se llama la medida de Lebesgue.

1. Sean \mathfrak{A}_0 un álgebra sobre un conjunto X y \mathfrak{A} la σ -álgebra generada por \mathfrak{A}_0 . Sea μ una medida finita sobre \mathfrak{A} . Demuestre que para todo $A \in \mathfrak{A}$ existe una sucesión $(C_n)_{n \in \mathbb{N}} \subseteq \mathfrak{A}_0$ tal que

$$\lim_{n \to \infty} \mu(A\Delta C_n) = 0.$$

2. Sea (X, \mathfrak{A}, μ) un espacio de medida donde μ es σ -finita. Sea μ^* la medida exterior generada por μ . Muestre que para todo $Y \subseteq X$ existe un conjunto $A \in \mathfrak{A}$ tal que

$$Y \subseteq A$$
, $\mu^*(Y) = \mu(A)$, $\mu^*(B) = 0$ para todo $B \in \mathfrak{A}$ con $B \subseteq A \setminus Y$.

3. Sea λ la medida de Lebesgue en $\mathbb R$ y $\mathfrak M$ como arriba. Muestre: Si $M\in\mathfrak M$ y $\lambda(M)>0$, existe un $N\in\mathfrak M$ tal que $N\subseteq M$ y

$$\lambda(N) > 0$$
 y $\lambda(M \setminus N) > 0$.

(Se dice que la medida de Lebesque no tiene átomos.)

- 4. (a) No existe ninguna medida μ sobre el espacio medible $(\mathbb{R}, \mathbb{PR})$ tal que μ es invariante bajo translación y $0 < \mu([0, 1)) < \infty$.
 - (b) Existe un conjunto $M \subseteq \mathbb{R}$ que no es Lebesgue-medible.
 - (c) Demuestre que cada conjunto Lebesgue-medible A con $\lambda(A)>0$ contiene un subconjunto no Lebesgue-medible.

Hint para (a):

- Define una relación de equivalencia sobre \mathbb{R} por $x \sim y : \iff x y \in \mathbb{Q}$.
- \blacksquare De cada clase escoja un representante en [0,1). Sea M la unión de ellos.
- Si μ es una medida como en (a), qué es $\mu(M) = ?$