Teoría de Medida e Integración

Taller 13

Medidas complejas; teorema de Radon-Nikodym.

Fecha de entrega: 12 de mayo de 2022

- 1. Sea μ una medida con signo sobre la σ -álgebra $\mathfrak A$ y sea $(A_j)_{j\in\mathbb N}\subseteq\mathfrak A$. Demuestre
 - (i) $A_1 \subseteq A_2 \subseteq A_3 \subseteq \dots$ $\Longrightarrow \qquad \mu\Big(\bigcup_{j=1}^{\infty} A_j\Big) = \lim_{n \to \infty} \mu(A_n),$
 - (ii) $A_1 \supseteq A_2 \supseteq A_3 \supseteq \dots \ y \ |\mu(A_1)| < \infty \implies \mu\left(\bigcap_{j=1}^{\infty} A_j\right) = \lim_{n \to \infty} \mu(A_n).$
- 2. Sea $\mu:\mathfrak{A}\to[-\infty,\infty)$ una medida con signo sobre la σ -álgebra \mathfrak{A} y sea $A\in\mathfrak{A}$ con $\mu(A)>-\infty.$
 - (a) Demuestre que para todo $\varepsilon > 0$ existe un conjunto $B \subseteq A$, $B \in \mathfrak{A}$ tal que $\mu(B) \ge \mu(A)$ y que para todo $C \subseteq B$, $C \in \mathfrak{A}$ se tiene que $\nu(C) \ge -\varepsilon$.
 - (b) Demuestre que existe una sucesión $AB_1 \supseteq B_2 \supseteq \dots$ de conjuntos $B_j \in \mathfrak{A}$ tal que $\mu(A) \ge \mu(B_1) \ge \mu(B_2) \ge \dots$ y $\mu(C) > -\frac{1}{n}$ para todo $C \in \mathfrak{A}$ con $C \subseteq B_n$.
 - (c) Demuestre que existe un conjunto $B \in \mathfrak{A}$ con $B \subseteq A$ y B es μ -positivo.
- 3. Sean μ, ν medidas complejas sobre una σ -álgebra \mathfrak{A} . Muestre que $\nu \ll \mu$ si y sólo si para cada $\varepsilon > 0$ existe un $\delta > 0$ tal que $|\nu(A)| < \varepsilon$ si $A \in \mathfrak{A}$ con $|\mu|(A) < \delta$.
- 4. Sea $\mu: \mathfrak{A} \to \mathbb{C}$ una medida compleja.
 - (a) Muestre que existe una función $g: X \to \mathbb{C}$ tal que |g| = 1 y $\mu = g \odot |\mu|$.
 - (b) Para $f \in \mathcal{L}_1(X,\mu)$ muestre que $f \in \mathcal{L}_1(X,|\mu|)$ y que

$$\left| \int_X f \, \mathrm{d}\mu \right| \le \int_X |f| \, \mathrm{d}|\mu|,$$

donde

$$\int_X f \, \mathrm{d}\mu := \int_X f \, \mathrm{d}\operatorname{Re}(\mu)^+ - \int_X f \, \mathrm{d}\operatorname{Re}(\mu)^- + \mathrm{i} \int_X f \, \mathrm{d}\operatorname{Im}(\mu)^+ + \mathrm{i} \int_X f \, \mathrm{d}\operatorname{Im}(\mu)^-.$$

Definiciones que veremos el lunes:

Sea \mathfrak{A} una σ -álgbra y sean μ, ν medidas signadas.

Un conjunto $B \in \mathfrak{A}$ se llama μ -positivo si $\mu(C) \geq 0$ para todo $C \subseteq B$. Un conjunto $B \in \mathfrak{A}$ se llama μ -cero si $\mu(C) = 0$ para todo $C \subseteq B$.

Se dice que ν es absolutamente continua con respecto a μ , si cada conjunto μ -cero también es ν -cero. En este caso se escribe $\nu \ll \mu$. Para todo $A \in \mathfrak{A}$ se define

$$|\mu|(A) = \sup \left\{ \sum_{j=1}^{n} |\mu(A_j)| : A_j \in \mathfrak{A}, \text{ disjuntos dos a dos}, A = \bigcup_{j=1}^{n} A_j \right\}.$$