Teoría de Medida e Integración

Taller 6

Teoremas de Fatou y Levi.

Fecha de entrega: 19 de septiembre de 2019

- 1. Sea (X, \mathfrak{A}, μ) un espacio de medida, $(f_n)_{n \in \mathbb{N}} \subseteq \mathscr{L}_1(X)$ y $f \in \mathscr{L}_1(X)$ tal que $f_n \to f$ μ -c.s. y $\lim_{n \to \infty} \int_X |f_n| \, \mathrm{d}\mu = \int_X |f| \, \mathrm{d}\mu$. Muestre que $\lim_{n \to \infty} \int_X |f_n f| \, \mathrm{d}\mu = 0$.
- 2. Sea (X, \mathfrak{A}, μ) un espacio de medida y $(E_j)_{j \in \mathbb{N}} \subset \mathfrak{A}$ tal que $\sum_{j=1}^{\infty} \mu(E_j) < \infty$. Muestre que casi todo $x \in X$ pertenecen a lo sumo a finitos conjuntos E_j .

Hint. Funciones características y teorema de convergencia monótona.

3. Sea (X, \mathfrak{A}, μ) un espacio de medida y $f \in \mathscr{L}_1(X)$ con $f \geq 0$. Muestre que para todo $\varepsilon > 0$ existe un $\delta > 0$ tal que para todo $A \in \mathfrak{A}$ con $\mu(A) < \delta$

$$\int_A f \, \mathrm{d}\mu < \varepsilon.$$

Hint. Teorema de Levi aplicado a $f_n(x) := \min\{n, f(x)\}, (x \in X)$.

4. Una función $g:[a,b]\to\mathbb{R}$ se llama absolutamente continua, si para todo $\varepsilon>0$ existe un $\delta>0$ tal que para todo $n\in\mathbb{N}$ y toda partición $a\leq\alpha_1<\beta_1\leq\alpha_2<\beta_2\leq\cdots\leq\alpha_n<\beta_n\leq b$ se tiene que

$$\sum_{j=1}^{n} (\beta_j - \alpha_j) < \delta \qquad \Longrightarrow \qquad \sum_{j=1}^{n} |g(\beta_j) - g(\alpha_j)| < \varepsilon.$$

Sea $f:[a,b]\to\mathbb{R}$ Lebesgue-integrable. Muestre que la siguiente función es absolutamente continua:

$$F: [a,b] \to \mathbb{R}, \qquad F(x) := \int_a^x f(t) dt := \int_{[a,x]} f d\mu.$$

Ejercicio voluntario

5. Sea $M \subset \mathbb{R}$ un conjunto de Lebesgue con $\mu(M) < \infty$. Muestre que para cada $\varepsilon > 0$ existe una step function φ tal que

$$\int_{\mathbb{R}} |\chi_M - \varphi| \, \mathrm{d}\mu < \varepsilon.$$

Una step function es una función de la forma $\varphi = \sum_{j=1}^{n} \beta_j \chi_{V_j}$ con $n \in \mathbb{N}$, $\beta_j \in \mathbb{R}$ y los V_j son intervalos abiertos o singletons para $j = 1, \ldots, n$.