Medida e Integración

Taller 3

Extensión de una medida; conjunto de Cantor.

Fecha de entrega: 4 de Septiembre 2014

1. Sea X un conjunto no contable y defina

$$\mathfrak{M}:=\{E\subset X: E \text{ contable o } X\setminus E \text{ contable }\},$$

$$\mu: \mathfrak{M} \to \mathbb{R}, \quad \mu(E) := \begin{cases} 0, & E \text{ contable,} \\ 1, & X \setminus E \text{ contable.} \end{cases}$$

- (a) Muestre que \mathfrak{M} es una σ -álgebra y μ es una medida sobre \mathfrak{M} .
- (b) Determine la medida exterior μ^* .
- 2. Para $\mu: H \to \mathbb{R} \cup \{\infty\}$ contenido sobre un semianillo H, denotamos con μ^* la medida exterior generado por μ , y con \mathfrak{A}_{μ^*} la σ -álgebra de los conjuntos μ^* -medibles.

Sean $\mu, \nu: H \to \mathbb{R} \cup \{\infty\}$ contenidos sobre un semianillo H. Muestre:

- (a) $(\mu + \nu)^* = \mu^* + \nu^*$.
- (b) $\mathfrak{A}_{(\mu+\nu)^*} \supseteq \mathfrak{A}_{\mu^*} \cap \mathfrak{A}_{\nu^*}$.
- (c) Se tiene que $\mathfrak{A}_{(\mu+\nu)^*} = \mathfrak{A}_{\mu^*} \cap \mathfrak{A}_{\nu^*}$?
- 3. Sea H un semianillo sobre X, $\sigma(H)$ la σ -álgebra generada por H y sean $\mu, \nu: \sigma(H) \to \mathbb{R} \cup \{\infty\}$ medidas con
 - (i) $\mu(A) \leq \nu(A)$ para todo $A \in H$.
 - (ii) $\nu|_H$ es σ -finita.

Muestre que $\mu(B) \leq \nu(B)$ para todo $B \in \sigma(H)$.

4. Un conjunto de Borel, no contable, con medida de Lebesgue 0.

$$T := \left\{ \sum_{n=1}^{\infty} \frac{x_n}{3^n} : x_n \in \{0, 2\} \right\} =: \text{Cantor set.}$$

- (a) Muestre que T es cerrado, en particular es un conjunto de Borel.
- (b) Muestre que $\lambda(T) = 0$, donde λ es la medida de Lebesgue.
- (c) Muestre que T no es contable.