Álgebra lineal

Taller 15

Valores y vectores propios; diagonalización.

Fecha de entrega: 28 de noviembre de 2025

9 pts.

1. Para las siguientes matrices, encuentre los vectores propios, los espacios propios, una matriz invertible C y una matriz diagonal D tal que $C^{-1}AC = D$.

$$A_1 = \begin{pmatrix} -3 & 5 & -20 \\ 2 & 0 & 8 \\ 2 & 1 & 7 \end{pmatrix}, \qquad A_2 = \begin{pmatrix} -2 & 0 & 1 \\ 0 & 2 & 0 \\ 9 & 0 & 6 \end{pmatrix}, \qquad A_3 = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 2 & 0 \\ 1 & 3 & 2 \end{pmatrix}.$$

3 pts.

2. Sean
$$\vec{v} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 y $\vec{w} = \begin{pmatrix} 4 \\ 3 \\ 1 \end{pmatrix}$.

- (a) ¿Existe una matriz $A \in M(3 \times 3)$ tal que \vec{v} es vector propio con valor propio 5 y \vec{w} es vector propio con valor propio 2?
- (b) ¿Existe una matriz simétrica $A \in M(3 \times 3)$ tal que \vec{v} es vector propio con valor propio 5 y \vec{w} es vector propio con valor propio 2?
- (c) ¿Existe una matriz simétrica $A \in M(3 \times 3)$ tal que \vec{v} es vector propio con valor propio 5 y \vec{w} es vector propio con valor propio 5?

En los tres casos debe encontrar una matriz que sirva o justificar por qué no existe.

4 pts.

3. Sea $A = \begin{pmatrix} 4 & -3 \\ 1 & 0 \end{pmatrix}$. Encuentre matries invertibles F y G y matrices diagonales D y E tal que

$$FAF^{-1} = D$$
 y $G^{-1}AG = E$.

4 pts.

4. Sea
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$$
. Calcule A^{2025} y $e^A := \sum_{n=0}^{\infty} \frac{1}{n!} A^n$.

 $\mathit{Hint}.$ Encuentre una matriz invertible C y una matriz diagonal D tal que $A=C^{-1}DC$ y use esto para calcular $A^n.$

Ejercicios voluntarios¹

- 5. (a) Sea $\Phi: M(2\times 2,\mathbb{R}) \to M(2\times 2,\mathbb{R}), \ \Phi(A)=A^t+A.$ Encuentre los valores propios y los espacios propios de Φ .
 - (b) Sea P_2 el espacio vectorial de polinomios de grado menor o igual a 0 con coeficientes reales. Encuentre los valores propios y los espacios propios de $T: P_2 \to P_2$, Tp = p' + 3p.
 - (c) Sea R la reflexión en el plano P: x+2y+3z=0 en \mathbb{R}^3 . Calcule los valores propios y los espacios propios de R.
- 6. Sea $A \in M(n \times n, \mathbb{C})$ una matriz hermitiana tal que todos sus autovalores son estrictamente mayores a 0. Sea $\langle \cdot, \cdot \rangle$ el producto interno estandar en \mathbb{C}^n . Demuestre que A induce un producto interno en \mathbb{C}^n a través de

$$\mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}, \qquad (x,y) := \langle Ax, y \rangle.$$

7. Sea $A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$. Calcule $e^A := \sum_{n=0}^{\infty} \frac{1}{n!} A^n$.

Hint. Encuentre una matriz invertible C y una matriz diagonal D tal que $A = C^{-1}DC$ y use esto para calcular A^n .

8. Considere la ecuación

$$5x^2 + 4xy + 2y^2 = 6. (1)$$

- 1 pts.
- (a) Escriba la ecuación en forma matricial.
- 4 pts.
- (b) Haga un cambio de variables en la ecuación cuadrática (1) de tal forma que en las nuevas variables no haya término mixto.
- 2 pts.
- (c) Diga cuál forma geométrica describe la ecuación (1). Haga un dibujo de ella e indique los ejes principales.
- 9. Considere la ecuación

$$2x^2 - 12xy - 7y^2 = 15. (2)$$

- 1 pts.
- (a) Escriba la ecuación en forma matricial.
- 4 pts.

2 pts.

- (b) Haga un cambio de variables en la ecuación cuadrática (2) de tal forma que en las nuevas variables no haya término mixto.
- (c) Diga cuál forma geométrica describe la ecuación (2). Haga un dibujo de ella e indique los ejes principales.

¹Los ejercicios voluntarios no aportan a la nota de niguna forma. Si los entregan de forma ordenada y bien legibles, intentaremos calificarlos para fines de retroalimentación.