Álgebra lineal

Taller 14

Bases ortogonales; valores y vectores propios.

Fecha de entrega: 21 de noviembre de 2025

1 pts.

1. Sea $Q \in M(n \times n)$ una matriz ortogonal. Demuestre que para todo $\vec{x}, \vec{y} \in \mathbb{R}^n$ se cumple que

$$\langle Q\vec{x}, Q\vec{y} \rangle = \langle \vec{x}, \vec{y} \rangle.$$

Concluya que

1 pts.

(a) Q no cambia magnitudes de vectores, es decir que $||Q\vec{x}|| = ||\vec{x}||$ para todo $\vec{x} \in \mathbb{R}^n$;

1 pts.

(b) Q no cambia ángulos entre vectores, es decir que $\triangleleft(Q\vec{x},Q\vec{y})=\triangleleft(\vec{x},\vec{y})$ para todo $\vec{x},\vec{y}\in\mathbb{R}^n$.

7 pts.

2. Dados la matriz A y los vectores u y w:

$$A = \begin{pmatrix} 25 & 15 & -18 \\ -30 & -20 & 36 \\ -6 & -6 & 16 \end{pmatrix}, \qquad u = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \qquad w = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}.$$

- (a) Diga si los vectores u y w son autovectores de A. Si lo son, cuáles son los valores propios correspondientes?
- (b) Calcule todos los valores propios de A.

8 pts.

3. Encuentre los vectores y espacios propios de

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}, \qquad B = \begin{pmatrix} 2 & 3 & 4 \\ 0 & 4 & 4 \\ 0 & 0 & 4 \end{pmatrix}.$$

2 pts.

4. Encuentre los valores propios, los espacios propios y el polinomio característico de la siguiente matriz $n \times n$:

$$A = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \vdots & \vdots & & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}.$$

Hint. Encuentre la dimensión del kernel de A. ¿Qué nos dice sobre el polinomio característico? Después mire la imagen.

Ejercicios voluntarios¹

5. Encuentre los valores propios y los espacios propios de las siguientes matrices $n \times n$:

$$A = \begin{pmatrix} 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & \cdots & 1 & 2 \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & 1 & \cdots & 1 & n \end{pmatrix},$$

- 6. (a) Sea $\varphi \in \mathbb{R}$ y sean $\vec{v}_1 = \begin{pmatrix} \cos \varphi \\ -\sin \varphi \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} \sin \varphi \\ \cos \varphi \end{pmatrix}$. Demuestre que \vec{v}_1, \vec{v}_2 es una base ortonormal de \mathbb{R}^2 .
 - (b) Sea $\alpha \in \mathbb{R}$. Encuentre la matriz $Q(\alpha) \in M(2 \times 2)$ que describe rotación por α contra las manecillas del reloj.
 - (c) Sean $\alpha, \beta \in \mathbb{R}$. Explique por qué es claro que $Q(\alpha)Q(\beta) = Q(\alpha + \beta)$. Use esta relación para concluir las identidades trigonométricas

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta, \qquad \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta.$$

7. Sea $Q \in M(2 \times 2)$ una matriz ortogonal. Demuestre que es de la forma $Q = \begin{pmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{pmatrix}$ o $Q = \begin{pmatrix} \cos \varphi & \sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$ para un $\varphi \in \mathbb{R}$.

Definición. Sea V un espacio vectorial sobre \mathbb{K} (con $\mathbb{K} = \mathbb{R}$ o $\mathbb{K} = \mathbb{C}$). Un *producto interno* es una función $\langle \cdot , \cdot \rangle : V \times V \to V$ tal que para todo $x, y, z \in V$ y $\lambda \in \mathbb{K}$:

$$\text{(I)} \ \, \langle x + \lambda y \,, z \rangle = \langle x \,, z \rangle + \lambda \langle y \,, z \rangle, \\ \text{(Linealidad en la primera componente)}$$

(II)
$$\langle x, z \rangle = \overline{\langle x, z \rangle}$$
 (Simetría; la barra significa conjugación compleja.)

- (III) $\langle x, x \rangle \ge 0$,
- (IV) $\langle x, x \rangle = 0 \iff x = 0,$

Observe que

- (i) y (iii) implican $\langle x, \lambda y + z \rangle = \overline{\lambda} \langle x, y \rangle + \langle x, z \rangle$,
- (ii) implica que $\langle x, x \rangle \in \mathbb{R}$

Definición. Sea V un espacio vectorial con producto interno $\langle \cdot, \cdot \rangle$ y sean $x, y \in V$. Entonces x es ortogonal a y si y solo si $\langle x, y \rangle = 0$. Notación en este caso: $x \perp y$.

¹Los ejercicios voluntarios no aportan a la nota de niguna forma. Si los entregan de forma ordenada y bien legibles, intentaremos calificarlos para fines de retroalimentación.

Ejemplos. El producto punto en \mathbb{R}^n es un producto interno. Más ejemplos hay en Ejercio 2.

Definición. Sea $A \in m(n \times n)$. Entonces la *matriz adjunta* es aquella que conseguimos de A al transponerla y conjugar sus entradas (como números complejos).

Ejemplos.
$$\begin{pmatrix} 3+1 & 5-41 \\ 8 & 91 \end{pmatrix}^* = \begin{pmatrix} 3-1 & 8 \\ 5+41 & -91 \end{pmatrix}, \quad \begin{pmatrix} 1+21 & 3+41 \\ 5+61 & 7+81 \end{pmatrix}^* = \begin{pmatrix} 1-21 & 5-61 \\ 3-41 & 7-81 \end{pmatrix}.$$

Ejercicios.

1. (a) Demuestre que lo siguiente define un producto interno en \mathbb{C}^n :

$$\langle \vec{x}, \vec{y} \rangle = \sum_{j=1}^{n} x_j \overline{y_j},$$
 para $\vec{x} = (x_1, \dots, x_n)^t, \ \vec{y} = (y_1, \dots, y_n)^t \in \mathbb{C}^n.$

(b) Sea $A \in M(n \times n, \mathbb{C})$. Demuestre que A^* es la única matriz con

$$\langle Ax, y \rangle = \langle x, A^*y \rangle$$
 para todo $x, y \in \mathbb{C}^n$.

2. (a) Sea V el espacio de todas la funciones continuas $[0,1] \to \mathbb{R}$. Claramente V es un espacio vectorial. Demuestre que lo siguiente define un producto interno en V:

$$\langle f, g \rangle = \int_0^1 f(x)g(x) \, \mathrm{d}x, \qquad \text{para } f, g \in V.$$
 (1)

(b) Demuestre que el sistema de las funciones

$$v_0(x) = 1, \ v_n(x) = \sin(n\pi x), \ w_n(x) = \cos(n\pi x), \qquad n \in \mathbb{N},$$

es un sistema ortogonal en C[0,1] con el product interno definido en (1).

(c) Aplique el proceso de Gram-Schmidt a $p_0 = 1$, $p_1 = x$, $p_2 = x^2$, $p_3 = x^3$ para obtener una base ortonormal $\{q_0, \ldots, q_3\}$ de P_3 con el product interno definido en (1).

Observación. Salvo constantes multiplicativos, el polinomio q_j es el poliniomo j-ésimo de Legendre.

Definición. Sean U, V espacios vectoriales con normas $\|\cdot\|_U$ y $\|\cdot\|_V$. Una función lineal $T: U \to V$ se llama *isometría* si para todo $u \in U$

$$||Tu||_V = ||u||_U.$$

Es claro que isometrías son inyectivas (porque si Tu=0, entonces $||u||_U=||Tu||_V=0$, por tanto u=0).

Ejemplos.

- Rotaciones en \mathbb{R}^n .
- Reflexiones en \mathbb{R}^n .

Ejercicios.

- 1. Sea $n \in \mathbb{N}$ y sean $Q, T \in M(n \times n)$.
 - (a) Demuestre que T es una isometría si y solo si $\langle T\vec{x}, T\vec{y} \rangle = \langle \vec{x}, \vec{y} \rangle$ para todo $\vec{x}, \vec{y} \in \mathbb{R}^n$ (es decir: una isometría mantiene ángulos).
 - (b) Demuestre que Q es una matriz ortogonal si y solo si Q es una isometría.

Definición. Un grupo es un conjunto no-vacío G junto con una operación $G \times G \to G$ tal que:

- (I) Existencia de un elemento neutro: existe un $e \in G$ tal que eg = ge = g para todo $g \in G$.
- (II) Existencia de inversos: para todo $g \in G$ existe un $\widetilde{g} \in G$ tal que $g\widetilde{g} = \widetilde{g}g = e$.
- (III) Asociatividad: para todo $g, h, k \in G$ se tiene que (gh)k = g(hk).

El grupo G se llama conmutativo si además gh = hg para todo $g, h \in G$.

Ejemplos.

- (I) \mathbb{Z} con la suma;
- (II) \mathbb{Q} con la suma;
- (III) \mathbb{R} con la suma;
- (IV) $\mathbb{Q} \setminus \{0\}$ con el producto;
- (v) $\mathbb{R} \setminus \{0\}$ con el producto;
- (VI) funciones $\mathbb{R} \to \mathbb{R}$ con la suma;
- (VII) $M(n \times n)$ con la suma;
- (VIII) cada espacio vectorial con su suma;
 - (IX) funciones biyectivas $\mathbb{R} \to \mathbb{R}$ con la composición;
 - (x) $\{A \in M(n \times n) : \det(A) \neq 0\}$ con producto;
 - (XI) funciones lineales biyectivas $V \to V$ con la composición donde V es un espacio vectorial.

Los ejemplos (i)–(viii) son grupos conmutativos; los ejemplos (ix)-(xi) son no-conmutativos para $n \ge 2$.

Ejercicios.

- 1. Demuestre que los ejemplos arriba son grupos.
- 2. Sean $O(n) = \{Q \in M(n \times n) : Q \text{ es matriz ortogonal}\}$ y $SO(n) = \{Q \in O(n) : \det Q = 1\}$.
 - (a) Demuestre que O(n) con la composición es un grupo. Es decir, hay que probar que:
 - (I) Para todo $Q, R \in O(n)$, la composición QR es un elemento en O(n).
 - (II) Existe un $E \in O(n)$ tal que QE = Q y EQ = Q para todo $Q \in O(n)$.
 - (III) Para todo $Q \in O(n)$ existe un elemento inverso \widetilde{Q} tal que $\widetilde{Q}Q = Q\widetilde{Q} = E$.
 - (b) Es O(n) conmutativo (es decir, se tiene QR = RQ para todo $Q, R \in O(n)$)?
 - (c) Demuestre que SO(n) con la composición es un grupo.