Álgebra lineal

Taller 12

Bases. Representación matricial de transformaciones lineales.

Fecha de Entrega: 07 de noviembre de 2025 antes de las 2 pm en mi casillero H-28

3 pts.

1. Sean $R = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$, $S = \begin{pmatrix} 3 & 2 \\ 0 & 7 \end{pmatrix}$, $T = \begin{pmatrix} 3 & 2 \\ 0 & 1 \end{pmatrix}$. Demuestre que $\mathcal{B} = \{R, S, T\}$ es una base del espacio de las matrices triangulares superiores y exprese las siguientes matrices como combinaciones lineales de los elementos de la base.

$$K = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad L = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad M = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

3 pts.

- 2. Sean $\vec{a}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\vec{a}_2 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$, $\vec{b}_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$, $\vec{b}_2 = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \in \mathbb{R}^2$ y sean $\mathcal{A} = \{\vec{a}_1, \vec{a}_2\}$, $\mathcal{B} = \{\vec{b}_1, \vec{b}_2\}$.
 - (a) Demuestre qu \mathcal{A} y \mathcal{B} son bases de \mathbb{R}^2 .
 - (b) Sea $(\vec{x})_{\mathcal{A}} = \begin{pmatrix} 7 \\ 8 \end{pmatrix}$. Encuentre $(\vec{x})_{\mathcal{B}}$ y \vec{x} (en la representación estandar).
 - (c) Sea $(\vec{y})_{\mathcal{B}} = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$. Encuentre $(\vec{y})_{\mathcal{A}}$ y \vec{y} (en la representación estandar).

1 pts.

3. (a) Demuestre que la siguente función es lineal:

$$\Phi: M(2\times 2) \to M(2\times 2), \qquad \Phi(A) = A^t$$

2 pts.

(b) Sea $\mathcal{B} = \{E_1, E_2, E_3, E_4\}$ la base estandar¹ de $M(2 \times 2)$. Encuentre la matriz que representa a Φ con respecto a esta base.

2 pts.

(c) Sean $R = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, $S = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $T = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $U = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$ y sea $\mathcal{C} = \{R, S, T, U\}$. Demuestre que \mathcal{C} es una base de $M(2 \times 2)$ y escriba Φ como matriz con respecto a esta base.

1 pts.

4. (a) Demuestre que $T: P_3 \to P_3$, Tp = p' es una función lineal.

2 pts.

(b) Determine ker(T), Im(T), dim(ker(T)), dim(Im(T)).

2 pts.

(c) Sea $\mathcal{B} = \{1, X, X^2, X^3\}$ la base estandar de P_3 . Encuentre la matriz que representa a T con respecto a esta base.

2 pts.

(d) Sean $q_1 = X + 1$, $q_2 = X - 1$, $q_3 = X^2 + X$, $q_4 = X^3 + 1$. Demuestre que $\mathcal{C} = \{q_1, q_2, q_3, q_4\}$ es una base de P_3 .

2 pts.

(e) Encuentre la matriz que representa a T con respecto a la base \mathcal{C} .

$$^{1}E_{1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_{2} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_{3} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_{4} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Ejercicios voluntarios²

- 5. Sean $m, n \in \mathbb{N}$ y $A \in M(m \times n)$.
 - (a) ¿Cuáles son las dimensiones posibles de $\ker A$ y $\operatorname{Im} A$?
 - (b) Para cada j=0,1,2,3 encuentre una matriz $A_j \in M(2\times 3)$ con dim(ker $A_j)=j$, es decir: encuentre matrices A_0,A_1,A_2,A_3 con dim(ker $A_0)=0$, dim(ker $A_1)=1,\ldots$. Si tal matriz no existe, explique por qué no existe.
- 6. Sea $\mathcal{B} = \{\vec{b}_1, \vec{b}_2\}$ una base de \mathbb{R}^2 y sean $\vec{x}_1 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$, $\vec{x}_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$, $\vec{x}_3 = \begin{pmatrix} 4 \\ 6 \end{pmatrix}$ (dados en coordenadas cartesianas).
 - (a) Si se sabe que $\vec{x}_1 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}_{\mathcal{B}}$, $\vec{x}_2 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}_{\mathcal{B}}$, es posible calcular \vec{b}_1 y \vec{b}_2 ? Si sí, calcúlelos. Si no, explique por qué no es posible.
 - (b) Si se sabe que $\vec{x}_1 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}_{\mathcal{B}}$, $\vec{x}_3 = \begin{pmatrix} 6 \\ 2 \end{pmatrix}_{\mathcal{B}}$, es posible calcular \vec{b}_1 y \vec{b}_2 ? Si sí, calcúlelos. Si no, explique por qué no es posible.
 - (c) ¿Existen \vec{b}_1 y \vec{b}_2 tal que $\vec{x}_1 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}_{\mathcal{B}}$, $\vec{x}_2 = \begin{pmatrix} 6 \\ 2 \end{pmatrix}_{\mathcal{B}}$? Si sí, calcúlelos. Si no, explique por qué no es posible.
 - (d) ¿Existen \vec{b}_1 y \vec{b}_2 tal que $\vec{x}_1 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}_{\mathcal{B}}$, $\vec{x}_3 = \begin{pmatrix} 2 \\ 5 \end{pmatrix}_{\mathcal{B}}$? Si sí, calcúlelos. Si no, explique por qué no es posible.

 $^{^2}$ Los ejercicios voluntarios no aportan a la nota de niguna forma. Si los entregan de forma ordenada y bien legibles, intentaremos calificarlos para fines de retroalimentación.