Álgebra lineal

1 pts.

3 pts.

Taller 9

Combinaciones lineales; independencia lineal.

Fecha de entrega: 17 de octubre de 2024

1. (a) Sean
$$\vec{v}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
, $\vec{v}_2 = \begin{pmatrix} -2 \\ 5 \end{pmatrix} \in \mathbb{R}^2$. Escriba $v = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$ como combinación lineal de \vec{v}_1 y \vec{v}_2 .

[1 pts.] (b) ¿Es
$$\vec{v} = \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix}$$
 combinación lineal de $\vec{v}_1 = \begin{pmatrix} 1 \\ 7 \\ 2 \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix}$?

(c)
$$\xi$$
Es $A = \begin{pmatrix} 13 & -5 \\ 50 & 8 \end{pmatrix}$ combinación lineal de $A_1 = \begin{pmatrix} 1 & 0 \\ 2 & 2 \end{pmatrix}$, $A_2 = \begin{pmatrix} 0 & 1 \\ -2 & 2 \end{pmatrix}$, $A_3 = \begin{pmatrix} 2 & 1 \\ 5 & 0 \end{pmatrix}$, $A_4 = \begin{pmatrix} 1 & -1 \\ 5 & 2 \end{pmatrix}$?

[3 pts.] 2. Sean
$$\vec{v}_1 = \begin{pmatrix} 1 \\ 7 \\ 3 \end{pmatrix}, \ \vec{v}_2 = \begin{pmatrix} -5 \\ 1 \\ 2 \end{pmatrix} \in \mathbb{R}^3$$
. Sea E el plano $E = \operatorname{span}\{\vec{v}_1, \vec{v}_2\}$.

- (a) Escriba E en la forma E: ax + by + cz = d.
- (b) Encuentre un vector $w \in \mathbb{R}^3$, distinto de \vec{v}_1 y \vec{v}_2 , tal que span $\{\vec{v}_1, \vec{v}_2, w\} = E$.
- (c) Encuentre un vector $\vec{v}_3 \in \mathbb{R}^3$ tal que span $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\} = \mathbb{R}^3$.

$$3$$
. (a) ¿El siguiente conjunto genera las matrices simétricas 2×2 ?

$$A_1 = \begin{pmatrix} 2 & 0 \\ 0 & 7 \end{pmatrix}, \qquad A_2 = \begin{pmatrix} 13 & 0 \\ 0 & 5 \end{pmatrix}, \qquad A_3 = \begin{pmatrix} 0 & 3 \\ 3 & 0 \end{pmatrix}.$$

Si no lo hace encuentre una matriz $T \in M_{\text{sym}}(2 \times 2) \setminus \text{span}\{A_1, A_2, A_3\}$.

(b) ¿El siguiente conjunto genera las matrices simétricas
$$2 \times 2$$
?

$$B_1 = \begin{pmatrix} 2 & 0 \\ 0 & 7 \end{pmatrix}, \qquad B_2 = \begin{pmatrix} 13 & 0 \\ 0 & 5 \end{pmatrix}, \qquad B_3 = \begin{pmatrix} 0 & 3 \\ -3 & 0 \end{pmatrix},$$

Si no lo hace encuentre una matriz $T \in M_{\text{sym}}(2 \times 2) \setminus \text{span}\{B_1, B_2, B_3\}$.

(c) ¿El siguiente conjunto genera las matrices triangulares superiores
$$2 \times 2$$
?

$$C_1 = \begin{pmatrix} 1 & 3 \\ 0 & 4 \end{pmatrix}, \qquad C_2 = \begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}, \qquad C_3 = \begin{pmatrix} 4 & 3 \\ 0 & 5 \end{pmatrix}.$$

Si no lo hace encuentre una matriz $T \in M(2 \times 2)$ que es triangular superior pero que no pertenece a span $\{C_1, C_2, C_3\}$.

1 Pts. 4. (a) ¿Los vectores
$$\vec{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $\vec{v}_2 = \begin{pmatrix} 2 \\ -2 \\ 5 \end{pmatrix}$, $\vec{v}_3 = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}$ son linealmente independientes en \mathbb{R}^3 ?

[1 pts.] (b) ¿Los vectores
$$\vec{v}_1 = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix}$$
, $\vec{v}_2 = \begin{pmatrix} 1 \\ 7 \\ 2 \end{pmatrix}$, $\vec{v}_3 = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix}$ son linealmente independientes en \mathbb{R}^3 ?

1 pts.

(c) ¿Los vectores $A_1 = \begin{pmatrix} 1 & 3 & 1 \\ -2 & 2 & 3 \end{pmatrix}$, $A_2 = \begin{pmatrix} 1 & 7 & 3 \\ 2 & -1 & 2 \end{pmatrix}$, $A_3 = \begin{pmatrix} 1 & -1 & 0 \\ 5 & 2 & 8 \end{pmatrix}$ son linealmente independientes en $M(2 \times 3)$?

2 pts.

(d) ¿Los vectores $p_1 = X^2 - X + 2$, $p_2 = X + 3$, $p_3 = X^2 - 1$ son linealmente independientes en P_2 ? ¿Son linealmente independientes en P_n para $n \ge 3$?

2 pts.

- 5. Sea V un espacio vectorial. Escoja dos de las afirmaciones abajo y diga si es falso o verdadero. Justifique su respuesta.
 - (a) Suponga $v_1, \ldots, v_k, u, z \in V$ tal que z es combinación lineal de los v_1, \ldots, v_k . Entonces z es combinación lineal de v_1, \ldots, v_k, u .
 - (b) Si u es combinación lineal de $v_1, \ldots, v_k \in V$, entonces v_1, \ldots, v_k, u es un sistema de vectores linealmente dependientes.
 - (c) Si $v_1, \ldots, v_k \in V$ es un sistema de vectores linealmente dependientes, entonces v_1 es combinación lineal de los v_2, \ldots, v_k .

Ejercicios voluntarios¹

- 6. (a) ¿Es \mathbb{C}^n un espacio vectorial sobre \mathbb{R} ?
 - (b) Es \mathbb{C}^n un espacio vectorial sobre \mathbb{Q} ?
 - (c) Es \mathbb{R}^n un espacio vectorial sobre \mathbb{C} ?
 - (d) Es \mathbb{R}^n un espacio vectorial sobre \mathbb{Q} ?
 - (e) ¿Es \mathbb{Q}^n un espacio vectorial sobre \mathbb{R} ?
 - (f) ¿Es \mathbb{Q}^n un espacio vectorial sobre \mathbb{C} ?
- 7. Sea F el plano dado por F: 2x 5y + 3z = 0.
 - (a) Demuestre que F es subespacio de \mathbb{R}^3 y encuentre vectores \vec{u} y $\vec{w} \in \mathbb{R}^3$ tal que $F = \text{span}\{\vec{u}, \vec{w}\}$.
 - (b) Encuentre un vector $\vec{z} \in \mathbb{R}^3$, distinto de \vec{u} y \vec{w} , tal que span $\{\vec{u}, \vec{w}, \vec{z}\} = F$.
 - (c) Encuentre un vector $\vec{v} \in \mathbb{R}^3$ tal que span $\{\vec{u}, \vec{w}, \vec{v}\} = \mathbb{R}^3$.

8. Sean
$$\vec{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $\vec{v}_2 = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}$, $\vec{a} = \begin{pmatrix} 4 \\ 2 \\ -6 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} \in \mathbb{R}^3$ y sea $U = \operatorname{span}\{\vec{v}_1, \ \vec{v}_2\}$.

- (a) Diga qué es U geométricamente.
- (b) Encuentre tres vectores diferentes en U.
- (c) Encuentre tres vectores diferentes en \mathbb{R}^3 que no pertenecen a U.
- (d) ¿Los vectores $\vec{v}_1, \vec{v}_2, \vec{a}, \vec{b}$ pertenecen a U?

¹Los ejercicios voluntarios no aportan a la nota de niguna forma. Si los entregan de forma ordenada y bien legibles, intentaremos calificarlos para fines de retroalimentación.

- 9. Sea $n \in \mathbb{N}$ y sea V el conjunto de las matrices simétricas $n \times n$ con la suma y producto con $\lambda \in \mathbb{R}$ usual.
 - (a) Demuestre que V es un espacio vectorial sobre \mathbb{R} .
 - (b) Encuentre matrices que generan V. ¿Cual es el número mínimo de matrices que se necesitan para generar V?
- 10. Determine si span $\{\vec{a}_1, \vec{a}_2, \vec{a}_3, \vec{a}_4\} = \text{span}\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ para

$$\vec{a}_1 = \begin{pmatrix} 0 \\ 1 \\ 5 \end{pmatrix}, \ \vec{a}_2 = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}, \ \vec{a}_3 = \begin{pmatrix} 1 \\ 2 \\ 13 \end{pmatrix}, \ \vec{a}_4 = \begin{pmatrix} 2 \\ 1 \\ 11 \end{pmatrix}, \ \vec{v}_1 = \begin{pmatrix} 5 \\ -3 \\ 0 \end{pmatrix}, \ \vec{v}_2 = \begin{pmatrix} 1 \\ 1 \\ 8 \end{pmatrix}, \ \vec{v}_3 = \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix}.$$

- 11. Sean V y W espacios vectoriales.
 - (a) Sea $U \subset V$ un subspacio y sean $u_1, \ldots, u_k \in U$. Demuestre que span $\{u_1, \ldots u_k\} \subset U$.
 - (b) Sean $u_1, \ldots, u_k, w_1, \ldots, w_m \in V$. Demuestre que lo siguiente es equivalente:
 - (I) $\operatorname{span}\{u_1, \dots, u_k\} = \operatorname{span}\{w_1, \dots, w_m\}.$
 - (II) Para todo j = 1, ..., k tenemos $u_j \in \text{span}\{w_1, ..., w_m\}$ y para todo $\ell = 1, ..., m$ tenemos $w_\ell \in \text{span}\{u_1, ..., u_k\}$.
 - (c) Sean $v_1, v_2, v_3, \ldots, v_m \in V$ y sea $c \in \mathbb{R}$. Demuestre que

$$span\{v_1, v_2, v_3, \dots, v_m\} = span\{v_1 + cv_2, v_2, v_3, \dots, v_m\}.$$

(d) Sean $v_1, \ldots, v_k \in V$ y sea $A: V \to W$ una función lineal invertible. Demuestre que dim span $\{v_1, \ldots, v_k\}$ = dim span $\{Av_1, \ldots, Av_k\}$. ¿Es verdad si A no es invertible?