Álgebra lineal

Taller 6

Matrices inversas: matrices elementales.

Fecha de entrega: 22 de septiembre de 2023

4 pts.

1. Sea $A \in M(m \times n)$. Demuestre que AA^t y A^tA son matrices simétricas.

6 pts.

2. (a) Encuentre $(S_i(c))^{-1}, (Q_{ij}(c))^{-1}, (P_{ij})^{-1}$.

6 pts.

(b) Encuentre $(S_j(c))^t$, $(Q_{ij}(c))^t$, $(P_{ij})^t$.

3 pts.

- 3. Escoja tres de las siguientes afirmaciones y diga si son verdaderas o falsas y pruebe sus respuestas.
 - (a) Si A es una matriz simétrica invertible, entonces A^{-1} es símetrica.
 - (b) Si A, B son matrices simétricas, entonces AB es símetrica.
 - (c) Si AB es una matriz simétrica, entonces A, B son matrices simétricas.
 - (d) Si A, B son matrices simétricas, entonces A+B es símetrica.
 - (e) Si A + B es una matriz simétrica, entonces A, B son matrices simétricas.
 - (f) Si A es una matriz simétrica, entonces A^t es símetrica.
 - (g) $AA^t = A^tA$ para toda matriz $A \in M(n \times n)$.

2 pts.

4. (a) Sea $A \in M(n \times n)$. Demuestre que $A + A^t$ es una matriz simétrica y que $A - A^t$ es una matriz antisimétrica.

2 pts.

(b) Demuestre que toda matriz cuadrada es suma de una matriz simétrica y una matriz antisimétrica. (Es decir: Si $A \in M(n \times n)$, entonces existen matrices $B, C \in M(n \times n)$ tal que B es simétrica, C es antisimétrica y A = B + C.)

Ejercicios voluntarios¹

5. Sean $R,S\in M(n,n)$ matrices invertibles. Demuestre que

$$RS = SR \iff R^{-1}S^{-1} = S^{-1}R^{-1}.$$

- 6. (a) Sea $A \in M(m \times n)$ y sean $\vec{x}, \vec{y} \in \mathbb{R}^n$, $\lambda \in \mathbb{R}$. Demuestre que $A(\vec{x} + \lambda \vec{y}) = A\vec{x} + \lambda A\vec{y}$.
 - (b) Demuestre que el espacio $M(m \times n)$ es un espacio vectorial con la suma de matrices y producto con $\lambda \in \mathbb{R}$ definido en clase.
- 7. Inversa de una matriz a bloques. Sean A,B,C,D matrices $n\times n$ y suponga que A es invertible. Consideramos la matriz a bloques

$$\mathcal{T} = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

¹Los ejercicios voluntarios no aportan a la nota de niguna forma. Si los entregan de forma ordenada y bien legibles, intentaremos calificarlos para fines de retroalimentación.

(a) Demuestre que

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} \mathrm{id} & 0 \\ CA^{-1} & \mathrm{id} \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & D - CA^{-1}B \end{pmatrix} \begin{pmatrix} \mathrm{id} & A^{-1}B \\ 0 & \mathrm{id} \end{pmatrix}.$$

- (b) Demuestre que $\begin{pmatrix} \mathrm{id} & 0 \\ CA^{-1} & \mathrm{id} \end{pmatrix}$ y $\begin{pmatrix} \mathrm{id} & A^{-1}B \\ 0 & \mathrm{id} \end{pmatrix}$ son invertibles y encuentre sus inversas.
- (c) Demuestre que, bajo la hipótesis que A es invertible, la matrix \mathcal{T} es invertible si y solo si $C CA^{-1}B$ lo es. En este caso se tiene que

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1} = \begin{pmatrix} \mathrm{id} & A^{-1}B \\ 0 & \mathrm{id} \end{pmatrix}^{-1} \begin{pmatrix} A & 0 \\ 0 & D - CA^{-1}B \end{pmatrix}^{-1} \begin{pmatrix} \mathrm{id} & 0 \\ CA^{-1} & \mathrm{id} \end{pmatrix}^{-1}$$

$$= \begin{pmatrix} \mathrm{id} & -A^{-1}B \\ 0 & \mathrm{id} \end{pmatrix} \begin{pmatrix} A^{-1} & 0 \\ 0 & (D - CA^{-1}B)^{-1} \end{pmatrix} \begin{pmatrix} \mathrm{id} & 0 \\ -CA^{-1} & \mathrm{id} \end{pmatrix}$$

$$= \begin{pmatrix} A^{-1} \left\{ A + B[D - CA^{-1}B)^{-1}C \right\} & -A^{-1}B[D - CA^{-1}B]^{-1} \\ -[D - CA^{-1}B]^{-1}CA^{-1} & [D - CA^{-1}B]^{-1} \end{pmatrix}$$

(d) Verifique que para el caso cuando A, B, C, D son números coincide con la fórmula

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

- (e) ¿Cómo serían la fórmulas si asumimos que D es invertible?
- 8. Sea $A \in M(m \times n)$.
 - (a) Demuestre que $\langle A\vec{x}, \vec{y} \rangle = \langle \vec{x}, A^t \vec{y} \rangle$ para todo $\vec{x} \in \mathbb{R}^n, y \in \mathbb{R}^m$.
 - (b) Sea $B \in M(n \times m)$ y suponga que $\langle B\vec{x}, \vec{y} \rangle = \langle \vec{x}, A^t \vec{y} \rangle$ para todo $\vec{x} \in \mathbb{R}^n, \vec{y} \in \mathbb{R}^m$. Demuestre que $B = A^t$.
 - (c) Demuestre que $\langle AA^t\vec{x}, \vec{x} \rangle \geq 0$ para todo $\vec{x} \in \mathbb{R}^n$.