Álgebra lineal

Taller 2

Vectores en \mathbb{R}^2 y \mathbb{R}^3 .

Fecha de entrega: 10 de febrero de 2022

5 pts.

- 1. Sean P(2,3), Q(-1,4) puntos en \mathbb{R}^2 y sea $\vec{v} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$ un vector en \mathbb{R}^2 .
 - (a) Calcule y grafica \overrightarrow{PQ} , $\|\overrightarrow{PQ}\|$, $\overrightarrow{PQ} + \vec{v}$, $\overrightarrow{PQ} \vec{v}$.
 - (b) Encuentre todos los vectores unitarios cuya dirección es opuesta a la de \vec{v} .
 - (c) Encuentre todos los vectores de longitud 3 que son paralelos a \vec{v} .
 - (d) Encuentre todos los vectores que tienen la misma dirección que \vec{v} y que tienen el doble de la longitud de \vec{v} .
 - (e) Encuentre todos los vectores que son ortogonales a \vec{v} . Encuentre todos los vectores con norma 2 que son ortogonales a \vec{v} .

2 pts.

2. Para los siguientes vectores \vec{u} y \vec{v} decida si son ortogonales, paralelos o ninguno de los dos. Calcule el coseno del ángulo entre ellos. Si son paralelos, encuentre números reales λ y μ tales que $\vec{v} = \lambda \vec{u}$ y $\vec{u} = \mu \vec{v}$.

(a)
$$\vec{v} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$
, $\vec{w} = \begin{pmatrix} 5 \\ -2 \end{pmatrix}$, (b) $\vec{v} = \begin{pmatrix} -6 \\ 4 \end{pmatrix}$, $\vec{w} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$.

5 pts.

3. (a) Para las siguientes parejas \vec{v} y \vec{w} encuentre todos los $\alpha \in \mathbb{R}$ tal que \vec{v} y \vec{w} son paralelos:

$$(\mathrm{i}) \quad \vec{v} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}, \ \vec{w} = \begin{pmatrix} \alpha \\ -2 \end{pmatrix}, \quad (\mathrm{ii}) \quad \vec{v} = \begin{pmatrix} 2 \\ \alpha \end{pmatrix}, \ \vec{w} = \begin{pmatrix} 1+\alpha \\ 2 \end{pmatrix}, \quad (\mathrm{iii}) \quad \vec{v} = \begin{pmatrix} \alpha \\ 5 \end{pmatrix}, \ \vec{w} = \begin{pmatrix} 1+\alpha \\ 2\alpha \end{pmatrix}.$$

(b) Para las siguientes parejas \vec{v} y \vec{w} encuentre todos los $\alpha \in \mathbb{R}$ tal que \vec{v} y \vec{w} son perpendiculares:

(i)
$$\vec{v} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$
, $\vec{w} = \begin{pmatrix} \alpha \\ -2 \end{pmatrix}$, (ii) $\vec{v} = \begin{pmatrix} \alpha \\ 5 \end{pmatrix}$, $\vec{w} = \begin{pmatrix} 1 + \alpha \\ 2 \end{pmatrix}$.

3 pts.

- 4. Sean $\vec{a} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ y $\vec{b} = \begin{pmatrix} 5 \\ 2 \end{pmatrix}$.
 - (a) Calcule $\operatorname{proy}_{\vec{b}} \vec{a} \text{ y } \operatorname{proy}_{\vec{a}} \vec{b}$.
 - (b) Encuentre todos los vectors $\vec{v} \in \mathbb{R}^2$ tal que $\|\operatorname{proy}_{\vec{a}} \vec{v}\| = 0$. Describa este conjunto geométricamente y haga un bosquejo.
 - (c) Encuentre todos los vectors $\vec{v} \in \mathbb{R}^2$ tal que $\|\operatorname{proy}_{\vec{a}} \vec{v}\| = 2$. Describa este conjunto geométricamente y haga un bosquejo.

1 pts.

5. (a) Calcule el área del triángulo con los vértices adyacentes A(1,2,3), B(2,3,4), C(-1,2,-5).

2 pts.

(b) Calcule el volumen del paralelepipedo determinado por los vectores

$$\vec{u} = \begin{pmatrix} 5 \\ 2 \\ 1 \end{pmatrix}, \ \vec{v} = \begin{pmatrix} 1 \\ 4 \\ 3 \end{pmatrix}, \vec{w} = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}.$$

2 pts.

(c) Sean \vec{v} y \vec{w} los vectores del literal (b). ¿Cuántos vectores \vec{a} con norma 7 hay tal que el volumen del parelelepípedo geneardo por $\vec{v}, \vec{w}, \vec{a}$ sea 24? Diga geométricamente cómo se encuentran todos los \vec{a} con esta propiedad y calcule dos de ellos.

Ejercicios voluntarios¹

- 6. (a) Demuestre que no existe un elemento neutral para el producto cruz en \mathbb{R}^3 . Es decir: Demuestre que no existe ningún vector $\vec{v} \in \mathbb{R}^3$ tal que $\vec{v} \times \vec{w} = \vec{w}$ para todo $\vec{w} \in \mathbb{R}^3$.
 - (b) Sea $\vec{w} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \in \mathbb{R}^3$.
 - (I) Encuentre todos los vectores $\vec{a}, \vec{b} \in \mathbb{R}^3$ tales que $\vec{a} \times \vec{w} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \vec{b} \times \vec{w} = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}$,
 - (II) Encuentre todos los vectores $\vec{v} \in \mathbb{R}^3$ tales que $\langle \vec{v}, \vec{w} \rangle = 4$.
- 7. Sean $\vec{a}, \vec{b} \in \mathbb{R}^n$ con $\vec{b} \neq \vec{0}$.
 - (a) Demustre que $\|\operatorname{proy}_{\vec{b}} \vec{a}\| \leq \|\vec{a}\|$.
 - (b) Encuentre condiciones para \vec{a} y \vec{b} para que $\|\operatorname{proy}_{\vec{b}}\vec{a}\| = \|\vec{a}\|$.
 - (c) ¿Es cierto que $\|\operatorname{proy}_{\vec{b}}\vec{a}\| \leq \|\vec{b}\|$?

¹Los ejercicios voluntarios no aportan a la nota de niguna forma. Si los entregan de forma ordenada y bien legibles, intentaremos calificarlos para fines de retroalimentación.