Álgebra lineal

Taller 14

Proceso de Gram-Schmidt; matrices ortogonales. Método de mínimos cuadrados.

Fecha de entrega: 15 de mayo de 2020

1. Sean
$$\vec{v} = \begin{pmatrix} 0 \\ 2 \\ 2 \\ 1 \end{pmatrix}$$
, $\vec{w} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 5 \end{pmatrix}$, $\vec{a} = \begin{pmatrix} 0 \\ 3 \\ 4 \\ 0 \\ 0 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \\ 3 \end{pmatrix}$, $\vec{c} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$, $\vec{d} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$.

Demuestre que \vec{v} y \vec{w} son linealmente independientes y encuentre una base ortonormal de $U = \operatorname{span}\{\vec{v}, \vec{w}\} \subseteq \mathbb{R}^4$.

$$2. \text{ Sean } \vec{v} = \begin{pmatrix} 0 \\ 2 \\ 2 \\ 1 \end{pmatrix}, \quad \vec{w} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 5 \end{pmatrix}, \quad \vec{a} = \begin{pmatrix} 0 \\ 3 \\ 4 \\ 0 \\ 0 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \\ 3 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \quad \vec{d} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}.$$

- (a) Demuestre que \vec{v} y \vec{w} son linealmente independientes y encuentre una base ortonormal de $U = \operatorname{span}\{\vec{v}, \vec{w}\} \subseteq \mathbb{R}^4$.
- (b) Demuestre que \vec{a} , \vec{b} , \vec{c} y \vec{d} son linealmente independientes. Use el proceso de Gram-Schmidt para encontrar una base ortonormal de $U = \operatorname{span}\{\vec{a}, \vec{b}, \vec{c}, \vec{d}\} \subseteq \mathbb{R}^5$. Encuentre una base de U^{\perp} .
- 3. (a) Sea $U = \{(x, y, z)^t \in \mathbb{R}^3 : x + 2y + 3z = 0\} \subseteq \mathbb{R}^3$.
 - (I) Sea $\vec{v} = (0, 2, 5)^t$. Ecuentre el punto $\vec{x} \in U$ que esté más cercano a \vec{v} y calcule la distancia entre \vec{v} y \vec{x} .
 - (II) ¿Hay un punto $\vec{y} \in U$ que esté a una distancia máximal de \vec{v} ?
 - (III) * Encuentre la matriz que representa la proyección ortogonal sobre U (en la base estandar).
 - (b) Sea $W = \text{gen}\{(1, 1, 1, 1)^t, (2, 1, 1, 0)^t\} \subseteq \mathbb{R}^4$.
 - (I) Encuentre una base ortogonal de W.
 - (II) Sean $\vec{a}_1 = (1,2,0,1)^t$, $\vec{a}_2 = (11,4,4,-3)^t$, $\vec{a}_3 = (0,-1,-1,0)^t$. Para cada j=1,2,3 encuentre el punto $\vec{w}_j \in W$ que esté más cercano a \vec{a}_j y calcule la distancia entre \vec{a}_j y \vec{w}_j .
 - (III) Encuentre la matriz que representa la proyección ortogonal sobre W (en la base estandar).
- 4. Encuentre una base ortonormal de U^{\perp} donde $U = \text{gen}\{(1,0,2,4)^t\} \subseteq \mathbb{R}^4$.
- 5. (a) Una bola rueda a lo largo del eje x con velocidad constante. A lo largo de la trayectoria de la bola se miden las coordenadas x de la bola en ciertos tiempos t. Las siguientes mediciones son (t en segundos, x en metros):

- lacksquare Dibuje los puntos en el plano tx.
- tse el método de mínimos cuadrados para econtrar la posición inicial x_0 y la velocidad v de la bola.

 \bullet Dibuje la recta en el bosquejo anterior. ¿Dónde/Cómo se ven x_0 y v?

Hint. Recuerde que $x(t) = x_0 + vt$ para un movimiento con velocidad constante.

(b) Se supone que una sustancia química inestable decaye según la ley $P(t) = P_0 e^{kt}$. Suponga que se hicieron las siguientes mediciones:

Con el método de mínimos cuadrados aplicado a ln(P(t)), encuentre P_0 y k que mejor corresponden con las mediciones. Dé una estimada para P(8).

(c) Con el método de mínimos cuadrados encuentre el polínomio y = p(x) de grado 2 que mejor aproxima los siguientes datos:

- 6. Sea $n \in \mathbb{N}$ y sean $Q, T \in M(n \times n)$.
 - (a) Demuestre que T es una isometría si y solo si $\langle T\vec{x}, T\vec{y} \rangle = \langle \vec{x}, \vec{y} \rangle$ para todo $\vec{x}, \vec{y} \in \mathbb{R}^n$ (es decir: una isometría mantiene ángulos).
 - (b) Demuestre que Q es una matriz ortogonal si y solo si Q es una isometría.
- 7. (a) Sea $\varphi \in \mathbb{R}$ y sean $\vec{v}_1 = \begin{pmatrix} \cos \varphi \\ -\sin \varphi \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} \sin \varphi \\ \cos \varphi \end{pmatrix}$. Demuestre que \vec{v}_1, \vec{v}_2 es una base ortonormal de \mathbb{R}^2 .
 - (b) Sea $\alpha \in \mathbb{R}$. Encuentre la matriz $Q(\alpha) \in M(2 \times 2)$ que describe rotación por α contra las manecillas del reloj.
 - (c) Sean $\alpha, \beta \in \mathbb{R}$. Explique por qué es claro que $Q(\alpha)Q(\beta) = Q(\alpha + \beta)$. Use esta relación para concluir las identidades trigonométricas

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$
, $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$.

- 8. Sean $O(n) = \{Q \in M(n \times n) : Q \text{ es matriz ortogonal}\}$ y $SO(n) = \{Q \in O(n) : \det Q = 1\}$.
 - (a) Demuestre que O(n) con la composición es un grupo. Es decir, hay que probar que:
 - (I) Para todo $Q, R \in O(n)$, la composición QR es un elemento en O(n).
 - (II) Existe un $E \in O(n)$ tal que QE = Q y EQ = Q para todo $Q \in O(n)$.
 - (III) Para todo $Q \in O(n)$ existe un elemento inverso \widetilde{Q} tal que $\widetilde{Q}Q = Q\widetilde{Q} = E$.
 - (b) Es O(n) conmutativo (es decir, se tiene QR = RQ para todo $Q, R \in O(n)$)?
 - (c) Demuestre que SO(n) con la composición es un grupo.

Definición. Sea V un espacio vectorial sobre \mathbb{K} (con $\mathbb{K} = \mathbb{R}$ o $\mathbb{K} = \mathbb{C}$). Un producto interno es una función $\langle \cdot, \cdot \rangle : V \times V \to V$ tal que para todo $x, y, z \in V$ y $\lambda \in \mathbb{K}$:

(I) $\langle x + \lambda y, z \rangle = \langle x, z \rangle + \lambda \langle y, z \rangle$,

(Linealidad en la primera componente)

(II) $\langle x, z \rangle = \overline{\langle x, z \rangle}$

(Simetría; la barra significa conjugación compleja.)

- (III) $\langle x, x \rangle \geq 0$,
- (IV) $\langle x, x \rangle = 0 \iff x = 0,$

Observe:

- (i) y (iii) implican $\langle x, \lambda y + z \rangle = \overline{\lambda} \langle x, y \rangle + \langle x, z \rangle$,
- (ii) implica que $\langle x, x \rangle \in \mathbb{R}$

Definición. Sea V un espacio vectorial con producto interno $\langle \cdot, \cdot \rangle$ y sean $x, y \in V$. Entonces x es ortogonal a y si y solo si $\langle x, y \rangle = 0$. Notación en este caso: $x \perp y$.

Ejemplos. El producto punto en \mathbb{R}^n es un producto interno. Más ejemplos hay en Ejercio ??.

Definición. Sean U, V espacios vectoriales con normas $\|\cdot\|_U$ y $\|\cdot\|_V$. Una función lineal $T: U \to V$ se llama *isometría* si para todo $u \in U$

$$||Tu||_V = ||u||_U.$$

Es claro que isometrías son inyectivas (porque si Tu = 0, entonces $||u||_U = ||Tu||_V = 0$, por tanto u = 0).

Ejemplos.

- Rotaciones en \mathbb{R}^n .
- Reflexiones en \mathbb{R}^n .

Definición. Un grupo es un conjunto no-vacío G junto con una operación $G \times G \to G$ tal que:

- (I) Existencia de un elemento neutro: existe un $e \in G$ tal que eg = ge = g para todo $g \in G$.
- (II) Existencia de inversos: para todo $g \in G$ existe un $\widetilde{g} \in G$ tal que $g\widetilde{g} = \widetilde{g}g = e$.
- (III) Asociatividad: para todo $g, h, k \in G$ se tiene que (gh)k = g(hk).

El grupo G se llama conmutativo si además gh = hg para todo $g, h \in G$.

Ejemplos.

- (I) \mathbb{Z} con la suma;
- (II) \mathbb{Q} con la suma;
- (III) \mathbb{R} con la suma;
- (IV) $\mathbb{Q} \setminus \{0\}$ con el producto;
- (v) $\mathbb{R} \setminus \{0\}$ con el producto;
- (VI) funciones $\mathbb{R} \to \mathbb{R}$ con la suma;
- (VII) $M(n \times n)$ con la suma;

- (VIII) cada espacio vectorial con su suma;
 - (IX) funciones biyectivas $\mathbb{R} \to \mathbb{R}$ con la composición;
 - (x) $\{A \in M(n \times n) : \det(A) \neq 0\}$ con producto;
- (XI) funciones lineales biyectivas $V \to V$ con la composición donde V es un espacio vectorial.

Los ejemplos (i)–(viii) son grupos conmutativos; los ejemplos (ix)-(xi) son no-conmutativos para $n \geq 2$.