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Chapter 1. Systems of Linear Equations 5

Chapter 1

Systems of Linear Equations

Bla bla bla

1.1 Examples of systems of linear equations

Let us start with a few examples of linear systems of linear equations.

Example 1.1. Assume that a zoo has birds and cats. All of their animals combined, they have 60
heads and 200 legs. How many birds and cats are in the zoo?

Solution. First, we give names to the quantities we want to calculate. So let B = number of birds,
C = number of cats in the zoo. If we write the information given in the exercise in formulas, we
obtain

1 b + c = 60, (total number of heads)
2 2b + 4c = 200, (total number of legs)

since each bird has 1 head and 2 legs and each cat has 1 head and legs. Equation 1 tells us that
B = 60− C. If we insert this into equation 2 , we find

200 = 2(60− C) + 4C = 120− 2C + 4C = 120 + 2C =⇒ 2c = 80 =⇒ c = 40.

This implies that B = 60 − C = 60 = 40 = 20. Note that in our calculations and arguments, all
the arrow all go “from left to right”, so we found that the only possible solution is B = 40, C = 20.
Inserting this in the original equation shows that this is indeed a solution. So there are 40 birds
and 20 cats. �

Let us put one more equation into the zoo.

Example 1.2. Assume that a zoo has birds and cats. All of their animals combined, they have
60 heads and 200 legs. Moreover, there are 140 cage and in every cage there are either 2 birds or 3
cats. How many birds and cats are in the zoo?
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6 1.1. Examples of systems of linear equations

Solution. Again, let B = number of birds, C = number of cats in the zoo. The information of the
exercise gives the following equations:

1 B+ C = 60, (total number of heads)

2 2B + 4C = 200, (total number of legs)

3 2B + 3C = 140. (total number of cages)

As in the previous exercise, we obtain from that B = 40, C = 20. Clearly, this also satisfies equation
3 . �

Example 1.3. Assume that a zoo has birds and cats. All of their animals combined, they have
60 heads and 200 legs. Moreover, there are 100 cage and in every cage there are either 2 birds or 3
cats. How many birds and cats are in the zoo?

Solution. Again, let B = number of birds, C = number of cats in the zoo. The information of the
exercise gives the following equations:

1 B+ C = 60, (total number of heads)

2 2B + 4C = 200, (total number of legs)

3 2B + 3C = 100. (total number of cages)

As in the previous exercise, we obtain from that B = 40, C = 20. However, this does not satisfy
equation 3 ; so there is no way to choose B and C such that all three equations are satisfied
simultaneously. Therefore, a zoo as in this example does not exist. �

We give a few more examples.

Example 1.4. Find a polynomial P of degree at most 3 with

P (0) = 1, P (1) = 7, P ′(0) = 3, P ′(2) = 23. (1.1)

Solution. A polynomial of degree at most 3 is known, if we know its 4 coefficients. In this exercise,
the unknowns are the coefficients of the polynomial P . We can write P (x) = αx3 + βx2 + γx + δ
and we have to find α, β, γ, δ such that (1.1) is satisfied. Note that P ′(x) = 3αx2 + 2βx+ γ. Hence
(1.1) is equivalent to the following system of equations:

P (0) = 1,

P (1) = 7,

P ′(0) = 3,

P ′(2) = 23.

 ⇐⇒


1 δ = 1,

2 α+ β+ γ+δ = 7,

3 γ = 3,

4 24α+ 8β + 2γ+δ = 23.

Clearly, δ = 1 and γ = 3. If we insert this in the remaining equations, we obtain a system of two
equations for the two unknowns α, β:

2’ α+ β = 3,

4’ 24α+ 8β = 16.
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Chapter 1. Systems of Linear Equations 7

From 2’ we obtain β = 4−α. If we insert this into 4’ , we get that 16 = 24α+8(4−α) = 16α+32,
that is, α = (32− 16)/16 = 1. So the only possible solution is

α = 1, β = 2, γ = 3, δ = 1.

It is easy to verify that the polynomial P (x) = x3 + 2x2 + 3x+ 1 has all the desired properties. �

Example 1.5. A pole is 5 metres long and shall be coated with varnish. There are two types of
varnish available: The green one adds 3 g per 50 cm to the pole, the red one adds 6 g per meter to
the pole. Is it possible to coat the pole in a combination of the varnishes so that the total weight
added is

(a) 35 g? (b) 30 g?

Solution. (a) We call g the length of the pole which will be covered in green and r the length of
the pole which will be covered in red. Then we obtain the system of equations

1 g+ r = 5 (total length)

2 6g+6r = 35 (total weight)

The first equation gives r = 5−g. Inserting into the second equation yields 35 = 6g+ 6(5−g) = 30
which is a contradiction. This shows that there is no solution.

(b) As in (a), we obtain the system of equations

1 g+ r = 5 (total length)

2 6g+6r = 30 (total weight)

Again, the first equation gives r = 5−g. Inserting into the second equation yields 30 = 6g+6(5−g) =
30 which is always true, independently of how we choose g and r as long as 1 is satisfied. This
means that in order to solve the system of equations, it is sufficient to solve only the first equation
since then the second one is automatically satisfied. So we have infinitely many solutions. Any pair
g, r such that g+ r = 5 gives a solution. So for any g that we choose, we only have to set r = 5− g
and we have a solution of the problem. Of course, we could also fix r and then choose g = 5− r to
obtain a solution.
For example, we could choose g = 1, then r = 4, or g = 0.00001, then r = 4.99999, or r = −2 then
g = 7. Clearly, the last example does not make sense for the problem at hand, but it still does
satisfy our system of equations. �

All the examples were so-called linear systems of linear equations. Let us define what we mean by
this,

Definition 1.6. Am×n system of linear equations is a system ofm linear equations for n unknowns
of the form

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...
...

...

am1x1 + am2x2 + · · ·+ amnxn = bm.
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8 1.1. Examples of systems of linear equations

The unknowns are x1, . . . , xn. The numbers aij and bi (i = 1, . . . ,m, j = 1, . . . , n) are given. The
numbers aij are called the coefficients of the linear system and numbers b1, . . . , bn are called the
right side of the linear system.

In the special case when all bi are equal to 0, the system is called a homogeneous; otherwise it is
called inhomogeneous.

The coefficient matrix A of the system is the collection of all coefficients aij

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

am1 am2 . . . amn


The coefficient matrix is nothing else than the collection of the coefficients aij ordered in some sort
of table or rectangle such that the place of the coefficient aij is in the ith row of the jth column.

Let us come back to our examples.

Example 1.1: This is a 2× 2 system with coefficients a11 = 1, a11 = 1, a21 = 2, a22 = 4 and right
hand side b1 = 60, b2 = 200. The system has a unique solution. The coefficient matrix is

A =

(
1 1
2 4

)
.

Example 1.2: This is a 3× 2 system with coefficients a11 = 1, a11 = 1, a21 = 2, a22 = 4, a31 = 2,
a32 = 3, and right hand side b1 = 60, b2 = 200, b3 = 140. The system has a unique solution. The
coefficient matrix is

A =

1 1
2 4
2 3

 .

Example 1.3: This is a 3× 2 system with coefficients a11 = 1, a11 = 1, a21 = 2, a22 = 4, a31 = 2,
a32 = 3, and right hand side b1 = 60, b2 = 200, b3 = 100. The system has no solution. The
coefficient matrix is the same as in Example 1.2.

Example 1.4: This is a 4× 4 system with coefficients a11 = 0, a12 = 0, a13 = 0, a14 = 1, a21 = 1,
a22 = 1, a23 = 1, a24 = 1, a31 = 0, a32 = 0, a33 = 1, a34 = 0, a41 = 24, a42 = 8, a43 = 2, a44 = 1,
and right hand side b1 = 1, b2 = 7, b3 = 3, b4 = 23. The system has a unique solution. The
coefficient matrix is

A =


0 0 0 1
1 1 1 1
0 0 1 0
24 8 2 1

 .

Example 1.5: This is a 2× 2 system with coefficients a11 = 1, a11 = 6, a21 = 1, a22 = 6. In case
(a) the right hand side is b1 = 5, b2 = 35 and the system has no solution.
In case (b) the right hand side is b1 = 5, b2 = 30 and the system has infinite solutions.
In both cases, the coefficient matrix is

A =

(
1 6
1 6

)
.
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Chapter 1. Systems of Linear Equations 9

Given an m× n system of linear equations, two important solutions arise:

• Existence: Does the system have a solution?

• Uniqueness: If the system has a solution, is it unique?

As we saw, in Examples 1.1, 1.2, 1.4, 1.5 (b) solutions do exist. In Example 1.5 (b) the solution
is not unique (on the contrary: it has infinite solutions!). Examples 1.3 and 1.5(a) do not admit
solutions.

More generally, we would like to be able so say something about the structure of solutions of linear
systems. For example, is it possible that there is only one solution? That there are exactly two
solutions? That there are infinite solutions? That there is is no solution? Can we give criteria for
existence and/or uniqueness of solutions? Can we give criteria for existence of infinite solutions?

(Spoiler alert: A system of linear equations has either no or exactly one or infinite solutions. It is
not possible that it has, e.g., exactly 7 solutions.)

Before answering these questions for general m × n systems, we will have a closer look at 2 × 2
systems in the next section.

1.2 Linear 2× 2 systems of equations

Let us come back to the equation from Example 1.1. For convenience, we write now x instead of B
and y instead of C. Recall that the system of equations that we are interested in solving is

1 x+ y = 60,

2 2x+ 4y = 200.
(1.2)

We want to give a geometric meaning to this system of equations. To this end we think of pairs
x, y as points (x, y) in the plane. Let’s forget about equation 2 for a moment and concentrate only
on 1 . Clearly, there are infinitely many solutions. If we choose an arbitrary x, we can always find
y such that 1 satisfied (just take y = 60− x). Similarly, if we choose any y, then we only have to
take x = 60− y and we obtain a solution of 1 .
Now, where in the xy-plane lie all solutions of 1 ? Clearly, 1 is equivalent to y = 60− x which we
easily identify of the equation of the line L1 in the xy-plane which passes through (0, 60) and has
slope −1. In summary, a pair (x, y) is a solution of 1 if and only if it lies on the line L1.

If we apply the same reasoning to 2 , we find that a pair (x, y) satisfies 2 if and only if (x, y) lies
on the line L2 in the xy-plane given by y = 1

4 (200 − 2x) (this is the line in the xy-plane passing
through (9, 50) with slope − 1

2 ).

Now it is clear that a pair (x, y) satisfies both 1 and 2 if and only if it lies both on L1 and L2.
So finding the solution of our system (1.2) is the same as finding the intersection of the two lines
L1 and L2. From elementary geometry we know that there are exactly three possibilities:

(i) L1 and L2 are not parallel. Then they intersect in exactly one point.

Last Change: Mi 18. Mr 04:25:26 CET 2020



D
R
A
F
T

10 1.2. Linear 2× 2 systems of equations

Figure 1.1: Example 1.1. Graphs of L1, L2 and their intersection.

(ii) L1 and L2 are parallel and not equal. Then they do not intersect.

(iii) L1 and L2 are parallel and equal. Then L1 = L2 and they intersect in infinite points (they
intersect in every point of L1 = L2).

In our example we know that the slope of L1 is −1 and that the slope of L2 is − 1
2 , so they are not

parallel and therefore intersect in exactly one point. Consequently, the system (1.2) has exactly
one solution, see Figure 1.1

If we look again at Example 1.5, we see that in Case (a) we look for the intersection of the lines

L1 : y = 5− x, L2 : y =
35

6
− x.

Both lines have slope −1 so they are parallel. Since the constant terms in both lines are not equal,
they never intersect, showing that the system of equations has no solution, see Figure 1.2.
In Case (b), the two lines that we have to intersect are

G1 : y = 5− x, G2 : y = 5− x.

Last Change: Mi 18. Mr 04:25:26 CET 2020
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Chapter 1. Systems of Linear Equations 11

Figure 1.2: Example 1.5. Graphs of G1, G2.

We see that G1 = G2, so every point on G1 (or G2) is solution of the system and therefore we have
infinite solutions.

Now let us consider the general case.

One linear equation with two unknowns

The general form of one linear equation with two unknowns is

αx+ βy = γ. (1.3)

For the set of solutions, there are three possibilities:

(i) The set of solutions forms a line. This happens if at least one of the coefficients α or β is
different from 0. If β 6= 0, then set of all solutions is equal to the line L : y = −αβ x+ γ

β which

is a line with slope −αγ . If β = 0 and α 6= 0, then the set of solutions of (1.3) is a line parallel

to the y-axis passing through ( γα ).

(ii) The set of solutions is all of the plane. This happens if α = β = γ = 0. In this case, clearly
every pair (x, y) is a solution of (1.3).

(iii) The set of solutions is empty. This happens if α = β = 0 and γ 6= 0. In this case, no pair
(x, y) can be a solution of (1.3) since the left hand side is always 0.

Two linear equations with two unknowns

The general form of one linear equation with two unknowns is

1 Ax+By = U

2 Cx+Dy = V.
(1.4)

Last Change: Mi 18. Mr 04:25:26 CET 2020
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12 1.2. Linear 2× 2 systems of equations

We are using the letters A,B,C,D instead of a11, a12, a21, a22 in order to make the calculations
more readable. If we interprete the system of equations as intersection of two geometrical objects,
we already know how the possible solutions will be:

• A point if 1 and 2 describe two non-parallel lines.

• A line if 1 and 2 describe the same line; or if one of the equations is a plane and the other
one is a line.

• A plane if both equations describe a plane.

• The empty set if the two equations describe parallel but different lines; or if one of the
equations has no solution.

In summary, we have:

Remark 1.7. The system (1.4) has either exactly 1 solution or infinite solutions or no solution.

It is not possible to have for instance exactly 7 solutions.

Exercise. How is the situation if we had a system of 3 linear equations for 2 unknowns?

Proof of Remark 1.7. Now we want proof the Remark 1.7 algebraically and we want to find a
criteria on a, b, c, d which allows us to decide easily how many solutions there are. Let’s look at the
different cases.

Case 1. B 6= 0. In this case we can solve 1 for y and obtain y = 1
B (U − Ax). In 2 this gives

Cx+ D
B (U −Ax) = V . If we put all terms with x on one side and all other terms on the other side,

we obtain
2’ (AD −BC)x = DU −BV

(i) If AD − BC 6= 0 then there is at most one solution, namely x = DU−BV
AD−BC and consequently

y = 1
B (U−Ax) = AV−CU

AD−BC . Inserting these expressions for x and y in our system of equations,
we see that they indeed solve the system (1.4), so that we have exactly one solution.

(ii) If AD − BC = 0, then equation 2’ reduces to 0 = DU − BV . This equation has either no
solution (if DU − BV 6= 0) or infinite solutions (if DU − BV = 0). Since 1 has infinite
solutions, it follows that the system (1.4) has either no solution or infinite solutions.

Case 2. D 6= 0. In this case we can solve 2 for y and obtain y = 1
D (V − Cx). In 2 this gives

Ax+ B
D (V −Cx) = U . If we put all terms with x on one side and all other terms on the other side,

we obtain
2’ (AD −BC)x = DU −BV

We have the same subcases as before:

(i) If AD − BC 6= 0 then there is exactly one solution, namely x = DU−BV
AD−BC and consequently

y = 1
B (U −Ax) = AV−CU

AD−BC .
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D
R
A
F
T

Chapter 1. Systems of Linear Equations 13

(ii) If AD − BC = 0, then equation 2’ reduces to 0 = DU − BV . This equation has either no
solution (if DU − BV 6= 0) or infinite solutions (if DU − BV = 0). Since 2 has infinite
solutions, it follows that the system (1.4) has either no solution or infinite solutions.

Case 3. B = 0 and D = 0. Observe that in this case AD − BC = 0. In this case the system (1.4)
reduces to

Ax = U, Cx = V. (1.5)

We see that the system no longer depends on y. So, if the system (1.5) has at least one solution,
then we automatically have infinite solutions since we can choose y freely. If the system (1.5) has
no solution, then the original system (1.4) cannot have a solution either.

Note that there are no other cases for the coefficients than these three cases.

Summing up, we find the following theorem:

Theorem 1.8. The system of linear equations

1 Ax+By = U

2 Cx+Dy = V.
(1.6)

has

(i) exactly one solution if and only if AD −BC 6= 0. In this case, the solution is

x =
DU −BV
AD −BC

, y =
AV − CU
AD −BC

. (1.7)

(ii) no solution or infinite solutions if AB −BC = 0.

Definition 1.9. The number d := AD −BC is called the determinant of the system (1.6).

Later we will generalise this concept to systems with more equations and more variables.

Remark 1.10. Let us see how this connects to our geometric interpretation of the system of
equations. Assume that B 6= 0 and D 6= 0. Then we can solve 1 and 2 for y obtain equations for
lines

L1 : y= −A
B
x+

1

B
U, L2 : y= −C

D
x+

1

D
V.

The two lines intersect in exactly one point if and only if they have different slopes, i.e., if−A
B 6= −

C
D .

After multiplication by −BD we see that this is the same as AD 6= BC, or AD −BC 6= 0.
On the other hand, the lines are parallel (and hence have either no intersection or are equal) if
−A
B 6= −

C
D . This is the case if and only if AD = BC, or in other word, if AD −BC = 0.

Exercise. Consider the cases when B = 0 or D = 0 and make the connection between Theorem 1.8
and the geometric interpretation of the system of equations.
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14 1.2. Linear 2× 2 systems of equations

Figure 1.3: Example 1.11(a). Graphs of L1, L2 and their intersection (5, 3).

Let us consider same examples.

Examples 1.11. (a)

1 x+ 2y = 11

2 3x+ 4y = 27.

Clearly, the determinant is d = 4− 6 = −2 6= 0. So we expect exactly one solution.

We can check this easily: The first equation gives x = 11− 2y. Inserting this into the second
equations leads to

3(11− 2y) + 4y = 27 =⇒ −2y = −6 =⇒ y = 3 =⇒ x = 11− 2 · 3 = 5.

So the solution is x = 5, y = 3. (If we did not have Theorem 1.8, we would have to check that
this is not only a candidate for a solution, but indeed is one.)

Exercise. Check that the formula (1.7) is satisfied.

(b)

1 x+ 2y = 1

2 2x+ 4y = 5.

Here, the determinant is d = 4− 4 = 0, so we expect either no solution or infinite solutions.
The first equations gives x = 1−2y. Inserting into the second equations gives 2(1−2y)+4y = 5.
We see that the terms with y cancel and we obtain 2 = 5 which is a contradiction. Therefore,
the system of equations has no solution.

(c)

1 x+ 2y = 1

2 3x+ 6y = 3.
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Chapter 1. Systems of Linear Equations 15

Figure 1.4: Example 1.11(b). The lines L1, L2 are parallel and do not intersect.

Figure 1.5: Example 1.11(c). The lines L1, L2 are equal.

The determinant is d = 6− 6 = 0, so again we expect either no solution or infinite solutions.
The first equations gives x = 1−2y. Inserting into the second equations gives 3(1−2y)+6y = 3.
We see that the terms with y cancel and we obtain 3 = 3 which is true. Therefore, the system
of equations has infinite solutions given by x = 1− 2y.

Remark. This was somewhat clear since we can obtain the second equation from the first one
by multiplying both sides by 3 which shows that both equations carry the same information
and we loose nothing if we simply forget about one of them.

Example 1.12. Find all k ∈ R such that the system

1 kx+(15/2− k)y= 1

2 4x+ 2ky= 3

has exactly one solution.

Solution. We only need to calculate the determinant and find all k such that it is different from
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16 1.3. Summary

zero. So let’s start by calculating

d = k · 2k − (15/2− k) · 4 = 2k2 + 4k − 30 = 2(k2 + 2k − 15) = 2[(k + 1)2 − 16].

So we see that there are exactly two values for k where d = 0, namely k = −1± 4, that is k1 = 3,
k2 = −5. For all other k, we have that d 6= 0.
So the answer is: The system has exactly one solution if and only if k ∈ R \ {−5, 3}. �

Remark 1.13. 1. Note that the answer does not depend on the right hand side of the system
of the equation. Only the coefficients on the left hand side determine if there is exactly one
solution or not.

2. If we wanted, we could also calculate the solution x, y in the case k ∈ R \ {−3, 1}. We could
do it by hand or use (1.7). Either way, we find

x =
1

d
[2k − 3(15/2− k)] =

5k − 45/2

2k2 + 4k − 30
, y =

1

d
[6k − 4] =

6k − 4

2k2 + 4k − 30
.

Note that the denominators would become 0 if k = −5 or k = 3.

3. What happens if k = −3 or k = 1? In both cases, d = 0, so we will either have no solution or
infinite solutions.

If k = −3, then the system becomes

3x+ 9/2y = 1, 4x+ 6y = 3.

Multiplying the first equation by 4/3, we obtain

4x− 6y =
4

9
, 4x− 6y = 3

which clearly cannot be satisfied simultaneously.

If k = 5, then the system becomes

5x+ 5/2y = 1, 4x+ 10y = 3.

Multiplying the first equation by 4/5, we obtain

4x−+10 =
4

5
, 4x+ 10y = 3

which clearly cannot be satisfied simultaneously.

1.3 Summary

1.4 Exercises
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Chapter 2

R2 and R3

2.1 Vectors in R2

Recall that the xy-plane is the set of all pairs (x, y) with x, y ∈ R. We will denote it by R2.

Maybe you already encountered vectors in a physics lecture. For instance velocities and forces are
described by vectors. The velocity of a particle says how fast and in which direction the particle
moves. Usually, a velocity are represented by an arrow which points in the direction in which the
particle moves and whose length is proportional to the magnitude of the velocity.

A force has strength and a direction so it is represented by an arrow which point in the direction
in which it acts and with length proportional to its strength.

Observe that it is not important where in the space R2 or R3 we put the arrow. As long it points
in the same direction and has the same length, it is considered the same vector. We call two arrows
equivalent if they have the same direction and the same length. A vector is the set of all arrows
which are equivalent to a given arrow. Each specific arrow in this set is called a representation of
the vector. A special representation is the arrow that starts in the origin (0, 0).

Given two points P,Q in the xy-plane, we write
#    –

PQ for the vector which is represented by the
arrow that starts in P and ends in Q.

Example 2.1.
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Let P (1, 1) and Q(3, 4) be points in the xy-

plane. The arrow from P to Q is
#    –

PQ =

(
2
3

)
.

Figure 2.1: The vector
#    –

PQ and several of
its representations. The green arrow is the
special representation whose initial point in
is in the origin.

We can identify a point P (p1, p2) in the xy-plane with the vector starting in (0, 0) and ending in

P . We denote this vector by
#  –

0P or

(
p1

p2

)
or sometimes by (p1, p2)t in order to save space (the

subscript t stands for “transposed”). p1 is called the x-coordinate or the x-component of ~v and p2

is called the y-coordinate or the y-component of ~v.
On the other hand, given a vector (a, b), then it describes a unique point in the xy-plane, namely
the tip of the arrow which represents the given vector and starts in the origin.
So we can identify the set of all vectors in R2 with R2 itself.
Observe that the slope of the arrow ~v = (a, b) is b

a if a 6= 0. If a = 0, then we obtain a vector which
is parallel to the y-axis. Vectors are usually denoted by a small letter with an arrow on top.
If a vector is given, e.g., as ~v = (2, 5)t, then this is an arrow whose tip would be at the point (2, 5)
if its initial point is in the origin. If it is anywhere else, then we find the tip if we move 2 units to
the right parallel to the x-axis and 5 units up parallel to the y-axis.

A very special vector is the zero vector (0, 0)t. Is is usually denoted by ~0.

In order to distinguish numbers in R from vectors, we call them scalars.

Now we want to do algebra with vectors. If we think of a force and we double its strength then
the corresponding vector should be twice as long. If we multiply the force by 5, then the length
of the corresponding vector should be 5 times as long, that is, if for instance a force ~F = (3, 4) is

given, then 5~F should be (5 · 3, 5 · 4) = (15, 20). In general, if a vector ~v = (a, b) is given, then
c~v = (ca, cb). Note that the resulting vector is always parallel to the original one. If c > 0, then
the resulting vector points in the same direction as the original one, if c < 0, then it points in the
opposite direction, see Figure 2.2

How should we sum two vectors? Again, let us think of forces. Assume we have two forces ~F1

and ~F2 both acting on the same particle. Then we get the resulting force by drawing the arrow
representing ~F1 and at its tip put the initial point of the arrow representing ~F2. The total force is
then represented by the arrow starting in the initial point of ~F1 and ending in the tip of ~F2.
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Figure 2.2: Multiplication of a vector by a scalar.

Exercise. Convince yourself that we obtain the same result if we start with ~F2 and put the initial
point of ~F1 at the tip of ~F2.

We could also think of the sum of velocities. For example, if the have a train with velocity ~vt and
on the train a passenger is moving with relative velocity ~vp, then the total velocity is the vector
sum of the two.
Now assume that ~F1 = (a, b)t and ~F2 = (p, q)t. Algebraically, we obtain the components of their

sum by summing the components: ~F1 + ~F2 = (a + p, b + q), see Figure 2.3. When you do vector
sums, you should always think in triangles (or polygons if you sum more than two vectors).

Exercise. Given two points P (p1, p2), Q(q1, q2) in the xy-plane. Convince yourself that
#  –

0P+
#    –

PQ =
#  –

0Q and consequently
#    –

PQ =
#  –

0Q− #  –

0P .
How could you write

#    –

QP in terms of
#  –

0P and
#  –

0Q? What is its relation with
#    –

PQ?

We sum up:

Definition 2.2. Let ~v =

(
a
b

)
, ~w =

(
p
q

)
, c ∈ R. Then:

Vector sum: ~v + ~w =

(
a
b

)
+

(
p
q

)
=

(
a+ p
b+ q

)
,

Product with a scalar: c~v = c

(
a
b

)
=

(
ca
cb

)
,

With this definition, it is easy to see that for arbitrary vectors ~u,~v, ~w ∈ R2 and scalars α, β ∈ R
the so-called vector space axioms hold:

Vector Space Axioms.

(a) Associativity: ~(u+ ~v) + ~w = ~u+ (~v + ~w)
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Figure 2.3: Sum of two vectors.

(b) Commutativity: ~v + ~w = ~w + ~v.

(c) Identity element of addition: For every ~v ∈ R2, we have ~0 + ~v = ~v +~0 = ~v.

(d) Inverse element: For every ~v ∈ R2, we have an inverse element
#–

v′ such that ~v +
#–

v′ = ~0,

namely
#–

v′ = −~v.

(e) Identity element of multiplication by scalar: For every ~v ∈ R2, we have that 1~v = ~v.

(f) Compatibility: For every ~v ∈ R2 and a, b ∈ R, we have that (ab)~v = a(b~v).

(g) Distributivity laws: For all ~v, ~w ∈ R2 and a, b ∈ R, we have

(a+ b)~v = a~v + b~v and a(~v + ~w) = a~v + a~w.

These axioms are fundamental for linear algebra. We will come back to them later when we deal
with abstract vector spaces in Chapter 4.

Let us look at some more geometric properties of vectors. Clearly a vector is known if we know its
length and its angle with the x-axis.

From the Pythagoras theorem it is clear that the length of a vector ~v = (a, b)t is
√
a2 + b2.

Definition 2.3 (Norm of a vector in R2). The length ~v =

(
a
b

)
∈ R2 is denoted by ‖~‖. It is

given by

‖~v‖ =
√
a2 + b2 .

Other names for the length of ~v are magnitude of ~v or norm of ~v.
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Figure 2.4: Length and angle of a vector.

As already mentioned earlier, the slope of vector ~v is b
a if a 6= 0. If ϕ is the angle of the vector ~v

with the x-axis then tanϕ = b
a if a 6= 0. If a = 0, then ϕ = 0 or ϕ = π. Recall that the range

of arctan is (−π/2, π/2), so we cannot simply take arctan of the fraction a
b in order to obtain ϕ.

Observe that arctan b
a = arctan−b−a, however the angles of the vectors (a, b)t and (−a,−b)t are

parallel but point in opposite directions, so they do not have the same angle with the x-axis. From
geometry, we find

ϕ =


arctan b

a if a > 0,

π − arctan b
a if a < 0,

π/2 if a = 0, b > 0,

−π/2 if a = 0, b < 0.

Note that this formula gives angles with values [−π/2, 3π/2).

Proposition 2.4 (Properties of the norm). Let λ ∈ R and ~v, ~w ∈ R2. Then the following is
true:

(i) ‖λ~v‖ = |λ|‖~v‖,

(ii) ‖~v + ~w‖ ≤ ‖~v‖+ ‖~w‖,

(iii) ‖~v‖ = 0 if and only if ~v = ~0.

Proof. Let ~v = (a, b)t, ~w = (c, d)t ∈ R2 and λ ∈ R.

(i) ‖λ~v‖ = ‖λ(a, b)t‖ = ‖(λa, λb)t‖ =
√

(λa)2 + (λb)2 =
√
λ2(a2 + b2) = |λ|

√
a2 + b2

= |λ|‖~v‖.
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(ii) This will be shown later in XXX.

(iii) Since ‖~v‖ =
√
a2 + b2 it follows that ‖~‖ = 0 if and only if a = 0 and b = 0. This is the case if

and only if ~v = ~0.

Definition 2.5. A vector ~v ∈ R2 is called a unit vector if ‖~v‖ = 1.

Note that every vector ~v 6= ~0 defines a unit vector pointing in the same direction as itself by ‖~v‖−1~v.

Remark 2.6. (i) The tip of every unit vector lies on the unit circle, and every vector whose
initial point is the origin and whose tip lies on the unit circle is a unit vector.

(ii) Every unit vector is of the from

(
cosϕ
sinϕ

)
where ϕ is its angle with the positive x-axis.

Figure 2.5: Unit vectors.
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Finally, we define two very special unit vectors:

~e1 =

(
1
0

)
, ~e2 =

(
0
1

)
.

Clearly, #–e1 is parallel to the x-axis, #–e2 is parallel to the y-axis and ‖~e1‖ = ‖~e2‖ = 1.

Remark 2.7. Every vector ~v =

(
a
b

)
can be written as

~v =

(
a
b

)
=

(
a
0

)
+

(
0
b

)
= a~e1 + b~e2.

Remark 2.8. Another notation for ~e1 and ~e2 is ı̂ and ̂.

2.2 Inner product and orthogonal projections

Let us start with a definition.

Definition 2.9. Sean ~v =

(
v1

v2

)
, ~w =

(
w1

w2

)
vectors in R2. The inner product of ~v and ~w is

〈~v , ~w〉 := v1w1 + v2w2.

The inner product is also called scalar product or dot product and it can also be denoted by ~v · ~w.

We usually prefer the notation 〈~v , ~w〉 since this notation is used frequently in physics and extends
naturally to abstract vector spaces with an inner product. Moreover, the the notation with the dot
seems to suggest that the dot product behaves like a usual product, but it does not, see Remark 2.12.

Before we give properties of the inner product, we want to calculate a few examples.

Examples 2.10.

(i)

〈(
2
3

)
,

(
−1
5

)〉
= 2 · (−1) + 3 · 5 = −2 + 15 = 13.

(ii)

〈(
2
3

)
,

(
2
3

)〉
= 22 + 32 = 4 + 9 = 13. Note that this is equal to

∥∥∥∥(2
3

)∥∥∥∥2

.

(iii)

〈(
2
3

)
,

(
1
0

)〉
= 2,

〈(
2
3

)
,

(
0
1

)〉
= 3,

(iv)

〈(
2
3

)
,

(
−3
2

)〉
= 0.

Proposition 2.11 (Properties of the inner product). Let ~u, vecv, ~w ∈ R2 and λ ∈ R. Then
the following holds.
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(i) 〈~v ,~v〉 = ‖~v‖2. In dot notation: ~v · ~v = ‖~v‖2.

(ii) 〈~u ,~v〉 = 〈~v , ~u〉. In dot notation: ~u · ~v = ~v · ~u.

(iii) 〈~u ,~v + ~w〉 = 〈~u ,~v〉+ 〈~u , ~w〉. In dot notation: ~u · (~v + ~w) = ~u · ~v + ~u · · · ~w).

(iv) 〈λ~u ,~v〉 = λ〈~u ,~v〉. In dot notation: (λ~u) · ~v = λ(~u · ~v) .

Proof. Let ~u =

(
u1

u2

)
,~v =

(
v1

v2

)
and ~w =

(
w1

w2

)
.

(i) 〈~v ,~v〉 = v1
1 + v2

2 = ‖~v‖2.

(ii) 〈~u ,~v〉 = u1v1 + u2v2 = v1u1 + v2u2 = 〈~v , ~u〉.

(iii)

〈~u ,~v + ~w〉 =

〈(
u1

u2

)
,

(
v1 + w1

v2 + w2

)〉
= u1(v1 + w1) + u2(v2 + w2) = u1v1 + u2v2 + u1w1 + u2w2

=

〈(
u1

u2

)
,

(
v1

v2

)〉
+

〈(
u1

u2

)
,

(
w1

w2

)〉
= 〈~u ,~v〉+ 〈~u , ~w〉.

(iv) 〈λ~u ,~v〉 = 〈
(
λu1

λu2

)
,

(
v1

v2

)
〉 = λu1v1 + λu2v2 = λ(u1v1 + u2v2) = λ〈~u ,~v〉.

Remark 2.12. Observe that the proposition says that the inner product is commutative and
distributive, so has some properties of “usual multiplication” that we are used to from the product
in R or C, but there are some properties that show that the inner product is NOT a product:

(a) The inner products takes to vectors and gives back a number, so it gives back an object which
is not of the same type as the two things we put in.

(b) In Example 2.10(iv) we saw that it may happen that ~v 6= ~0 and ~w 6= ~0 but still 〈~v , ~w〉 = 0,
something that is impossible for a “decent” product.

(c) Given a vector ~v 6= 0 and a number c ∈ R, there are many solutions of the equation 〈~v , ~x〉 = c
for the vector ~x, in stark contrast to the usual product in R or C. As an example, look at
Example 2.10(i) and (ii). Therefore it makes NO sense to write something like ~v−1.

(d) There is no such thing as a neutral element for scalar multiplication.

Now let us see what the inner product is good for. We will see that inner product between two
vectors is connected to the angle between them and it will help us to define orthogonal projections
of one vector onto another.
Let us start with a definition.

Definition 2.13. Let ~v, ~w be vectors in R2. The angle between ~v and ~w is the smallest nonnegative
angle between them, see Figure 2.6. It is denoted by ^(~v, ~w).
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Figure 2.6: Angle between two vectors. XXXXXX Faltan π y 0.

The following properties of the angle are easy to see.

Proposition 2.14. (i) Note that by definition, ^(~v, ~w) ∈ [0, π].

(ii) ^(~v, ~w) = ^(~w,~v).

(iii) If λ > 0, then ^(λ~v, ~w) = ^(~v, ~w).

(iv) If λ < 0, then ^(λ~v, ~w) = π − ^(~v, ~w).

Figure 2.7: Angle between vectors ~v and ~w.
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Definition 2.15. (a) Two vectors ~v and ~w are called parallel if ^(~v, ~w) = 0 or π. In this case
we use the notation ~v ‖ ~w.

(b) Two vectors ~v and ~w are called orthogonal or perpendicular if ^(~v, ~w) = π/2. In this case we
use the notation ~v ⊥ ~w.

The following properties should be known from geometry. We will proof them after Theorem 2.19.

Proposition 2.16. Let ~v, ~w be vectors in R2. Then:

(i) ~v ‖ ~w and ~v 6= ~0, then there exists λ ∈ R such that ~w = λ~v.

(ii) If ~v ‖ ~w and λ, µ ∈ R, then also λ~v ‖ µ~w.

(iii) If ~v ⊥ ~w and λ, µ ∈ R, then also λ~v ⊥ µ~w.

Remark 2.17. Observe that (i) is wrong if we do not assume that ~v 6= ~0 because if ~v = ~0, then it
is parallel to every vector ~w in R2, but there is no λ ∈ R such that λ~v could ever become different
from ~0.

Further observe that the reverse direction in (ii) is true only if λ 6= 0 and µ 6= 0.

Without proof, we state the following theorem which should be known.

Theorem 2.18 (Cosine Theorem). Let a, b, c be the sides or a triangle and let ϕ be the angle
between the sides a and b. Then

c2 = a2 + b2 − 2ab cosϕ. (2.1)

Theorem 2.19. Let ~v, ~w ∈ R2 and let ϕ = ^(~v, ~w). Then

〈~v , ~w〉 = ‖~v‖‖~w‖ cosϕ.

Proof. The vectors ~v and ~w define a triangle in R2, see Figure 2.8
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Figure 2.8: Triangle given by ~v and ~w.

Now we apply the cosine theorem with a = ‖~v‖, b = ‖~w‖, c = ‖~v − w‖. We obtain

‖~v − ~w‖2 = ‖~v‖2 + ‖~w‖2 − 2‖~v‖‖~w‖ cosϕ. (2.2)

On the other hand,

‖~v − ~w‖2 = 〈~v − ~w ,~v − ~w〉 = 〈~v ,~v〉 − 〈~v , ~w〉 − 〈~w ,~v〉+ 〈~w , ~w〉 = 〈~v ,~v〉 − 2〈~v , ~w〉+ 〈~w , ~w〉
= ‖~v‖2 − 2〈~v , ~w〉+ ‖~w‖2. (2.3)

Comparison of (2.2) and (2.3) show that

‖~v‖2 + ‖~w‖2 − 2‖~v‖‖~w‖ cosϕ = ‖~v‖2 − 2〈~v , ~w〉+ ‖~w‖2,

which gives the claimed formula.

A very important consequence of this theorem is that we can now determine if two vectors ara
parallel or perpendicular to each other by simply calculating their inner product as can be seen
from the following corollary.

Corollary 2.20. Let ~v, ~w ∈ R2 and ϕ = ^(~v, ~w). Then:

(i) |〈~v , ~w〉| ≤ ‖~v‖ ‖~w‖.

(ii) ~v ‖ ~w ⇐⇒ ‖~v‖ ‖~w‖ = |〈~v , ~w〉|.

(iii) ~v ⊥ ~w ⇐⇒ 〈~v , ~w〉 = 0.

Proof. (i) From Theorem 2.19 we have that |〈~v , ~w〉| = ‖~v‖ ‖~w‖ cosϕ ≤ ‖~v‖ ‖~w‖ since 0 ≤ cosϕ ≤
1.

The claims in (ii) and (iii) are clear if one of the vectors is equal to ~0 since the zero vector is parallel
and orthogonal to every vector in ′R2. So let us assume now that ~v 6= ~0 and ~w 6= ~0.
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(ii) From Theorem ?? we have that |〈~v , ~w〉| = ‖~v‖ ‖~w‖ if and only if cosϕ = 1. This is the case
if and only if ϕ = 0 or π, that is, if and only if ~v and ~w are parallel.

(iii) From Theorem ?? we have that |〈~v , ~w〉| = 0 if and only if cosϕ = 0. This is the case if and
only if ϕ = π/2, that is, if and only if ~v and ~w are perpendicular.

With this corollary, the proof of Proposition 2.16(ii) and (iii) is now easy and left to the reader.

Example 2.21. Theorem ?? lets us calculate the angle of a given vector with the x-axis easily (see
Figure 2.9):

cosϕx =
〈~v ,~e1〉
‖~v‖‖~e1‖

, cosϕy =
〈~v ,~e2〉
‖~v‖‖~e2‖

.

If we now use that ‖~e1‖ = ‖~e2‖ = 1 and that 〈~v ,~e1〉 = v1 and 〈~v ,~e2〉 = v2, then

cosϕx =
v1

‖~v‖
, cosϕy =

v2

‖~v‖
.

Figure 2.9: Angle of ~v with the axes.

Orthogonal Projections in R2.

Let ~v and ~w be vectors in R2 and ~w 6= ~0. We want to find the orthogonal projection of ~v onto ~w.
Geometrically, we find it as follows: We move ~v such that its initial point coincides with that of ~w.
Then we extend ~w to a line and construct a line that passes through the tip of ~v. The vector from
the initial point to the intersection of the two lines is the see Figure 2.10
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Figure 2.10: Orthogonal projections in R2.

We denote the orthogonal projection of ~v onto ~w by proj~w ~v, or sometimes by ~v‖ it is clear on which
vector we are projecting. By construction of proj~w ~v it is clear that

• proj~w ~v is parallel to ~w,

• ~v − proj~w ~v is orthogonal to ~w. Therefore, we sometimes write ~v⊥ = ~v − proj~w ~v.

This procedure allows us to write ~v as sum of a vector parallel to ~w and one orthogonal to ~w. How
we can calculate these two vectors, is the content of the next theorem.

Theorem 2.22. Let ~v and ~w be vectors in R2 and ~w 6= ~0. Then

proj~w ~v =
〈~v , ~w〉
‖~w‖2

~w. (2.4)

Before we prove the formula, note that it seems to make sense. The right hand side is a multiple
of ~w, so it is parallel to ~w as it should be. Moreover, it does not depend on ‖w‖ as it should be
because it should not matter if we project on ~w or on 5~w or on −0.4~w; only the direction of ~w
matters, not its length.

Proof. Let ~v‖ = proj~w ~v and ~v⊥ = ~v − ~v‖. Then ~v = ~v‖ + ~v⊥. Since ~v‖ ‖ ~w, there exists a λ ∈ R
such that ~v‖ = λ~w, so we only need to determine λ. For this, we write

~v = λ~w + ~v⊥

=⇒ 〈~v , ~w〉 = 〈λ~w + ~v⊥ , ~w〉 = 〈λ~w , ~w〉+ 〈~v⊥ , ~w〉︸ ︷︷ ︸
=0 since ~v⊥⊥~w

= 〈λ~w , ~w〉 = λ〈~w , ~w〉 = λ‖~w‖2

=⇒ λ =
〈~v , ~w〉
‖~w‖2
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So it follows that

proj~w ~v = ~v‖ = λ~w =
〈~v , ~w〉
‖~w‖2

~w.

Remark 2.23. (i) proj~w ~v depends only of the direction of ~w. It does not depend on its length.

Proof. By our geometric intuition, this should be clear. But we can see this also from the
formula. Suppose we want to project on c~w for some c ∈ R \ {0}. Then

projc~w ~v =
〈~v , c~w〉
‖c~w‖2

(c~w) =
c〈~v , ~w〉
c2‖~w‖2

(c~w) =
〈~v , ~w〉
‖~w‖2

~w = proj~w ~v.

(ii) For every c ∈ R, we have that proj~w(c~v) = cproj~w ~v.

Proof. Again, by geometric considerations, this should be clear. The corresponding calculus
is

proj~w(c~v) =
〈c~v , ~w〉
‖~w‖2

~w =
c〈~v , ~w〉
‖~w‖2

~w = cproj~w ~v.

(iii) As special cases of the above, we find proj~w(−~v) = proj~w ~v and proj−~w ~v = −proj~w ~v.

(iv) ~v ‖ ~w =⇒ proj~w ~v = ~v.

(v) ~v ⊥ ~w =⇒ proj~w ~v = ~0.

(vi) proj~w ~v is the unique vector in R2 such that

~v − proj~w ~v ⊥ ~v and proj~w ~v ‖ ~w.

We end this section with some examples.

Example 2.24. Let ~u = 2~e1 + 3~e2, ~v = 4~e1 −~e2.

(i) proj~e1 ~u = 〈~u ,~e1〉
‖~e1‖2 ~e1 = 2

12~e1 = 2~e1.

(ii) proj~e2 ~u = 〈~u ,~e2〉
‖~e2‖2 ~e2 = 3

12~e2 = 3~e2.

(iii) Similarly, we can calculate proj~e1 ~v = 4~e1, proj~e2 ~v = −~e2.

(iv) proj~u ~v = 〈~u ,~v〉
‖~u‖2 ~u =

〈2
3

 ,

 5
−1

〉
‖~u‖2 ~u = 8−3

22+32 ~u = 5
13~u = 5

13

(
2
3

)
.

(v) proj~v ~u = 〈~v ,~u〉
‖~v‖2 ~v =

〈 4
−1

 ,

2
3

〉
‖~u‖2 ~u = 8−3

42+(−1)2~v = 5
17~v = 5

17

(
4
−1

)
.
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Example 2.25 (Angle with coordinate axes). Let ~v =

(
a
b

)
∈ R2 \ {~0}.

Then cos^(~v,~e1) = a
‖~v‖ , cos^(~v,~e2) = b

‖~v‖ , hence

~v =

(
a
b

)
= ‖~v‖

(
cos^(~v,~e1)
cos^(~v,~e2)

)
.

2.3 Vectors in R3

In this section we extend our calculations from R2 to R3. Recall that R3 is the space of all points
P (a, b, c) with a, b, c ∈ R. This is a model for our usual physical everyday space. Recall that the dis-
tance between two points P (p1, p2, p3) andQ(q1, q2, q3) is PQ =

√
(q1 − p1)2 + (q2 − p2)2 + (q3 − p3)2.

As in R2, we can identify every point in R3 with the arrow that starts in the origin of coordinate
system and ends in the given point. The set of all arrows with the same length and the same
direction is called a vector in R3. Again, we denote a vector in R3 as a column

~v =

ab
c

 .

In order to save space, we will also use the notation (a, b, c)t, where, as in R2, the superscript t
stands for transposed.

Definition 2.26. Let ~v =

v1

v2

v3

 , ~w =

w1

w2

w3

 ∈ R3 and c ∈ R. We define the sum of ~v and ~w and

the product of the scalar c with the vector ~v as follows:

~v + ~w =

v1

v2

v3

+

w1

w2

w3

 =

v1 + w1

v2 + w2

v3 + w3

 , c~v =

cv1

cv2

cv3

 .

It is easy to see that R3 with this sum and product satisfies the vector space axioms on page 19.

As in R2, we define an inner product

〈~v , ~w〉 =

〈v1

v2

v3

 ,

w1

w2

w3

〉 = v1w1 + v2w2 + v3 + w3

and a norm

‖~v‖ =

∥∥∥∥∥∥
v1

v2

v3

∥∥∥∥∥∥ :=
√
v2

1 + v2
2 + v2

3 .

We also use the words magnitude or length of ~w. .
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Two vectors in R3 which are not parallel generate a plane. Then we can measure the angle between
the two vectors in this plane as if it was R2 and we call it the angle between the two vectors.
As in R2, we have the following properties:

(i) Symmetry of the inner product: For all vectors ~v, ~w ∈ R3, we have that 〈~v , ~w〉 = 〈~w ,~v〉.

(ii) Bilinearity of the inner product: For all vectors ~u,~v, ~w ∈ R3 and all c ∈ R, we have that
〈~u ,~v + ~w〉 = 〈~u ,~v〉+ c〈~u , ~w〉.

(iii) Relation of the inner product with the angle between vectors: Let ~v, ~w ∈ R3 and let ϕ =
^(~v, ~w). Then

〈~v , ~w〉 = ‖~v‖ ‖~w‖ cosϕ.

Remark 2.27. Actually, the inner product usually is used to define the angle between two
vectors by the formula above.

In particular, we have (cf. Proposition 2.16):

(a) ~v ‖ ~w ⇐⇒ ^(~v, ~w) ∈ {0, π} ⇐⇒ |〈~v , ~w〉| = ‖~v‖ ‖~w‖
(b) ~v ⊥ ~w ⇐⇒ ^(~v, ~w) = π/2 ⇐⇒ 〈~v , ~w〉 = 0.

(iv) Relation of norm and inner product: For all vectors ~v ∈ R3, we have that ‖~v‖2 = 〈~v ,~v〉.

(v) Properties of the norm: For all vectors ~v, ~w ∈ R3 and scalars c ∈ R, we have that ‖c~v‖ = |c|‖~v‖
and ‖~v + ~w‖ ≤ ‖~v‖+ ‖~w‖.

(vi) Orthogonal projections of one vector onto another: For all vectors ~v, ~w ∈ R3 the orthogonal
projection of ~v onto ~w is

proj~w ~v =
〈~v , ~w〉
‖~w‖2

~w.

As in R3, we have three sort of special vectors which are parallel to the coordinate system:

~e1 :=

1
0
0

 , ~e2 :=

0
1
0

 , ~e3 :=

0
0
1

 .

Another notation for them is ı̂, ̂, k̂.
For a given vector ~v 6= ~0, we can now easily determine its angle with the coordinate axes:

ϕx = ^(~v,~e1) =⇒ cosϕx =
〈~v ,~e1〉
‖~v‖ ‖~e1‖

=
v1

‖~v‖
,

ϕy = ^(~v,~e2) =⇒ cosϕx =
〈~v ,~e2〉
‖~v‖ ‖~e2‖

=
v2

‖~v‖
,

ϕz = ^(~v,~e3) =⇒ cosϕx =
〈~v ,~e3〉
‖~v‖ ‖~e3‖

=
v3

‖~v‖
.
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Esto nos dice que

~v = ‖~v‖

cosϕx
cosϕy
cosϕz

 .

If we take the norm both sides of the equation, we find

(cosϕx)2 + (cosϕy)2 + (cosϕz)
2 = 1.

2.4 Cross product

In this section we define the so-called cross product. Another name for it its vector product. It takes
two vectors and gives back two vectors. It does have several properties which makes it look like a
product, however we will see that it is NOT a product. Here is the definition.

Definition 2.28 (Cross product). Let ~v =

v1

v2

v3

 , ~w =

w1

w2

w3

 ∈ R3. Their cross product or

vector product is

~v × ~w =

v1

v2

v3

×
w1

w2

w3

 :=

v2w3 − v3w2

v3w1 − v1w3

v1w2 − v2w1

 .

Remark 2.29. The cross product exists only in R3!

Before we collect some easy properties of the cross product, let us calculate a few examples.

Examples 2.30. Let ~u =

1
2
3

, ~v =

5
6
7

.

• ~u× ~v =

1
2
3

×
5

6
7

 =

2 · 7− 3 · 6
3 · 5− 1 · 7
1 · 6− 2 · 5

 =

14− 18
15− 7
6− 10

 =

−4
8
−4

.

• ~v × ~u =

5
6
7

×
1

2
3

 =

6 · 3− 7 · 2
7 · 1− 3 · 5
5 · 2− 6 · 1

 =

18− 14
7− 15
10− 6

 =

 4
−8
4

.

• ~v ×~e1 =

5
6
7

×
1

0
0

 =

6 · 0− 7 · 0
7 · 0− 7 · 1
5 · 0− 6 · 1

 =

 0
−7
−6

.

Proposition 2.31 (Properties of the cross product). Let ~u,~v, ~w ∈ R3 and let c ∈ R. Then:

(i) ~u×~0 = ~0× ~u = ~0.

(ii) ~u× ~v = −~v × ~u.
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(iii) ~u× (~v + ~w) = (~u× ~v) + (~u× ~w).

(iv) (c~u)× ~v = c(~u× ~v).

(v) ~u ‖ ~v =⇒ ~u× ~v = ~0. In particular, ~v × ~v = ~0.

(vi) 〈~u ,~v × ~w〉 = 〈~u× ~v , ~w〉.

(vii) 〈~u , ~u× ~v〉 = 0 and 〈~v , ~u× ~v〉 = 0, in particular

~v ⊥ ~v × ~u, ~u ⊥ ~v × ~u

that means that the vector ~v × ~w is orthogonal to both ~v and ~w.

Proof. The proofs of the formulas (i) to (v) are easy calculations (you should do them!).

(vi) The proof is a long but straightforward calculation:

〈~u ,~v × ~w〉 =

〈u1

u2

u3

 ,

v1

v2

v3

×
w1

w2

w3

〉 =

〈u1

u2

u3

 ,

v2w3 − v3w2

v3w1 − w3v1

v1w2 − v2w1

〉
= u1(v2w3 − v3w2) + u2(v3w1 − v1w3) + u3(v1w2 − v2w1)

= u1v2w3 − u1v3w2 + u2v3w1 − u2v1w3 + u3v1w2 − u3v2w1

= u2v3w1 − u3v2w1 + u3v1w2 − u1v3w2 + u1v2w3 − u2v1w3

= (u2v3 − u3v2)w1 + (u3v1 − u1v3)w2 + (u1v2 − u2v1)w3

= 〈~u× ~v , ~w〉.

(vii) It follows from (vi) and (v) that

〈~u , ~u× ~v〉 = 〈~u× ~u ,~v〉 = 〈~0 , ~v〉 = 0.

Note that the cross product is distributive but it is not commutative nor associative.

Recall that for the inner product we proved the formula 〈~v , ~w〉 = ‖~v‖ ‖~w‖ cosϕ where ϕ is the angle
between the two vectors, see Theorem 2.19. In the next theorem we will prove a similar relation
for the cross product.

Theorem 2.32. Let ~v, ~w be vectors in R3 and let ϕ be the angle between them. Then

‖~v × ~w‖ = ‖~v‖ ‖~w‖ sinϕ

Proof. A long, but straightforward calculations shows that ‖~v × ~w‖2 = ‖~u‖2‖~w‖2 − 〈~v , ~w〉2. Now
it follows from Theorem 2.19 that

‖~v × ~w‖2 = ‖~u‖2‖~w‖2 − 〈~v , ~w〉2 = ‖~u‖2‖~w‖2 − ‖~v‖2‖~w‖2(cosϕ)2

= ‖~u‖2‖~w‖2(1− (cosϕ)2) = ‖~u‖2‖~w‖2(sinϕ)2.

Observe that sinϕ ≥ 0 because ϕ ∈ [0, π]. So if we take the square root we we do not need to take
the absolute value and we arrive at the claimed formula.
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Application: Area of a parallelogram and volume of a parelellepiped

Area of a parallelogram

Let ~v and ~w be two vectors in R3. Then they define a parallelogram (if the vectors are parallel or
one of them is equal to ~0, it is a degenerate parallelogram).

Figure 2.11: Parallelogram spanned by ~v and ~w.

Proposition 2.33 (Area of a parallelogram). The area of the parallelogram spanned by the
vectors ~v and ~w is

A = ‖~v × ~w‖. (2.5)

Proof. The area of a parallelogram is the product of the length of its base with the height. We
can take ~w as base. Let ϕ be the angle between ~w and ~v. Then we obtain that h = ‖~v‖ sinϕ and
therefore, with the help of Theorem 2.32

A = ‖~w‖h = ‖~w‖‖~v‖ sinϕ = ‖~v × ~w‖.

Note that in the case when ~v and ~w are parallel, this gives the right answer A = 0.

Any three vectors in R3 define a parallelepiped.
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Figure 2.12: Parallelepiped spanned by ~u,~v, ~w.

Proposition 2.34 (Volume of a parallelepiped). The volume of the parallelepiped spanned by
the vectors ~u, ~v and ~w is

V = ‖~u(~v × ~w)‖. (2.6)

Proof. The volume of a parallelepiped is the product of the area of its base with the height. Let us
take the parallelogram spanned by ~v, ~w as base. If ~v and ~w are parallel or one or them is equal to
~0, then (2.6) is true because V = 0 and ~v × ~w = ~0 in this case.
Now let us assume that they are not parallel. By Proposition 2.33 we already know that its base
has area A = ‖~v × ~w‖. The height is the length of the orthogonal projection of ~u onto the normal
vector of the plane spanned by ~v and ~w. We already know that ~v × ~w is such a normal vector.
Hence we obtain that

h = ‖ proj~v×~w ~u‖ =

∥∥∥∥ 〈~u ,~v × ~w〉
‖~v × ~w‖2

~v × ~w

∥∥∥∥ =
|〈~u ,~v × ~w〉|
‖~v × ~w‖2

‖~v × ~w‖ =
|〈~u ,~v × ~w〉|
‖~v × ~w‖

.

We can take ~w as base. Let ϕ be the angle between ~w and ~v. Then we obtain that h = ‖~v‖ sinϕ
and therefore, with the help of Theorem 2.32

A = ‖~w‖h = ‖~w‖‖~v‖ sinϕ = ‖~v × ~w‖.

Therefore, the volume of the parallelepiped is

V = Ah = ‖~v × ~w‖ |〈~u ,~v × ~w〉|
‖~v × ~w‖

= |〈~u ,~v × ~w〉|.

Corollary 2.35. Let ~u,~v, ~w ∈ R3. Then

|〈~u ,~v × ~w〉| = |〈~v , ~w × ~u〉| = |〈~w , ~u× ~v〉|.
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Proof. The formula holds because each of the expressions describes the volume of the parallelepiped
spanned by the three given vectors since we can take any of the sides of the parallelogram as its
base.

2.5 Lines and planes in R3

Lines

In order to know a line in R3 completely, it is not necessary to know all its points. It is sufficient
to know either

(a) two different points P,Q on the line

or

(b) one point P on the line and the direction of the line.

Figure 2.13: Line L given (a) by two points P,Q on L, (b) by a point P on L and the direction
of L.

Clearly, both descriptions are equivalent. If we have two different points P,Q on the line L, then
its direction is given by the vector

#    –

PQ. If on the other hand we are given a point P on L and a
vector ~v which is parallel to L, then we easily get another point Q on L by

#    –

OQ =
#  –

0P + ~v.
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Now we want to give formulas for the line.

Vector equation

Given two points P (p1, p2, p3) and Q(q1, q2, q3) with P 6= Q, there is exactly one line L which passes
through both points. In formulas, this line is described as

L =
{

#  –

0P + t
#    –

PQ : t ∈ R
}

=


p1 + (q1 − p1)t
p2 + (q2 − p2)t
p3 + (q3 − p3)t

 : t ∈ R

 (2.7)

If we are given a point P (p1, p2, p3) on L and a vector ~v =

v1

v2

v3

 6= ~0 parallel to L, then

L =
{

#  –

0P + t~v : t ∈ R
}

=


p1 + v1t
p2 + v2t
p3 + v3t

 : t ∈ R

 (2.8)

The formulas (2.7) and (2.8) are called vector equation for the line L. Note that they are the same
if we set v1 = q1− p1, v2 = q2− p2, v3 = q3− p3. We will mostly use the notation with the v’s since
it is shorter. The vector ~v is called directional vector of the line L. Observe that if ~v is a directional
vector for L, then c~v is so too for every c ∈ R \ {0}.

Parametric equation

From the formula (2.8) it is clear that a point (x, y, z) belongs to L if and only if there exists t ∈ R
such that

x = p1 + tv1,

y = p2 + tv2,

z = p3 + tv3.

(2.9)

If we had started with (2.7), then had obtained

x = p1 + t(q1 − p1),

y = p2 + t(q2 − p2),

z = p3 + t(q3 − p3)

(2.10)

The system of equations (2.9) or (2.10) are called the parametric equations of L. Here, t is the
parameter.

Symmetric equation

Observe that for (x, y, z) ∈ L, the three equations in (2.9) must hold for the same t. So if we assume
that v1, v2, v3 6= 0, then we can solve for t and we obtain that

x− p1

v1
=
y − p2

v2
=
z − p3

v3
(2.11)
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If we use (2.10) then we obtain

x− p1

q1 − p1
=

y − p2

q2 − p2
=

z − p3

q3 − p3
. (2.12)

The system of equations (2.11) or (2.12) is called the symmetric equation of L.
If for instance, v1 = 0 and v2, v3 6= 0, then the symmetric equation would be

x = p1,
y − p2

v2
=
z − p3

v3
.

This is a line which is parallel to the yz-plane.
If v1 = v2 = 0 and v3 6= 0, then the symmetric equation would be

x = p1, y = p2, z ∈ R.

This is a line which is parallel to the z-axis.

Remark 2.36. It is important to observe that a given line has many different parametrizations.
For example, the vector equation that we write down depends on the points we choose on L. Clearly,
we have infinitely many possibilities to do so.

Example 2.37. The following equations describe the same line:

L =


1

2
3

+ t

4
5
6

 : t ∈ R

 =


1

2
3

+ t

 8
10
12

 : t ∈ R

 =


1

2
3

+ t

−4
−5
−6

 : t ∈ R


=


5

7
9

+ t

4
5
6

 : t ∈ R


Two lines G and L in ′R3 are parallel if and only if their directional vectors are parallel.

Planes

In order to know a plane in R3 completely, it is sufficient to

(a) three points P,Q on the plane that do not lie on a line,

or

(b) one point P on the plane and two non-parallel vectors ~v, ~w which are both parallel the plane,

or

(c) one point P on the plane and a vector ~n which is perpendicular to the plane,

Figure 2.14: Plane π given (a) by three points P,Q,R on π, (b) by a point P on L and two vectors
~v, ~w parallel to π. (c) by a point P on L and a vector ~n perpendicular to π.
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First, let us see how we can pass from one description to another. Clearly, the descriptions ((a))
and ((b)) are equivalent because given three points P,Q,R on π which do not lie on a line, we can

form the vectors
#    –

PQ and
#    –

PR. Theses vectors are then parallel to the plane π but are not parallel
with each other. (Of course, we also could have taken

#    –

QR and
#    –

QP or
#    –

RP and
#    –

RQ.) If, on the
other hand, we have one point P on π and two vectors ~v and ~w, parallel to π and ~v 6‖ ~w, then we

can easily get two other points on π, for instance by
#  –

0Q =
#  –

0P + ~v and
#  –

0R =
#  –

0P + ~w. Then the
three points P,Q,R lie on π and do not lie on a plane.

In formulas, we can now describe our plane π as

π =

(x, y, z) :

xy
z

 =
#  –

0P + s~v + t~w for some s, t ∈ R


Now we want to use the normal vector of the plane to describe it. Assume that we are given a point
P on π and a normal vector ~n perpendicular to the plane. This means that every vector which is
parallel to the plane π must be perpendicular to ~n. If we take an arbitrary point Q(x, y, z) ∈ R3,

then Q ∈ π if and only if
#    –

PQ is parallel to π, that means that
#    –

PQ is orthogonal to ~n. Recall that
two vectors are perpendicular if and only if their inner product is 0, so Q ∈ π if and only if

0 = 〈n , #    –

PQ〉 =

〈n1

n2

n3

 ,

x− p1

y − p2

z − p3

〉 = n1(x− p1) + n2(y − p2) + n3(z − p3)

= n1x+ n2y + n3z − (n1p1 + n2p2 + n3 − p3)

If we set d = n1p1 + n2p2 + n3 − p3, then it follows that a point Q(x, y, z) belongs to π if and only
if its coordinates satisfy

n1x+ n2y + n3z = d. (2.13)

Equation (2.13) is called the normal equation for the plane π.

Remark 2.38. As before, note that the normal equation for a plane is not unique. For instance,

x+ 2y + 3z = 5 and 2x+ 4y + 6z = 10

describe the same plane. The reason is that “the” normal vector of a plane is not unique. Given
one normal vector ~n, than every c~n with c ∈ R \ {0} is also a normal vector to the plane.

Definition 2.39. The angle between two planes is the angle between their normal vectors.

Note that this definition is consistent with the fact that two planes are parallel if and only if their
normal vectors are parallel.

Remark 2.40. • Assume a plane is given as in ((b)) (that is, we know a point P on π and two
vectors ~v and ~w parallel to π but with ~v 6‖ ~w). In order to have description as in ((c)) (that is
one point on ı and a normal vector), we only have to find a vector ~n that is perpendicular to
both ~v and ~w. Proposition 2.31(vii) tells us how to do this: we only need to calculate ~v × ~w.
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• Assume a plane is given as in ((c)) (that is, we know a point P on π and its normal vector).
In order to find vectors ~v and ~w as in ((b)), we can guess either find two solutions of ~x×~n = 0
which are not parallel. Or we find only one solution ~v which usually is easy to guess and then
calculate ~w = ~v×~n. This vector is perpendicular to ~n and therefore it is parallel to the plane.
It is also perpendicular to ~v and therefore it is not parallel to ~v. In total, this vector ~w does
what we need.

2.6 Intersections of lines and planes in R3

Intersection of lines

Given two lines G and L in R3, there are three possibilities:

(a) The lines intersect in exactly one point. In this case, they cannot be parallel.

(b) The lines intersect in infinitely many points. In this case, the lines have to be equal. In
particular the have to be parallel.

(c) The lines do not intersect. Not that in contrast to the case in R2, the lines do not have to be
parallel for this to happen. For example, the line L : x = y = 1 is a line parallel to the z-axis
passing through (1, 1, 0), and G : x = z = 0 is a line parallel to the y-axis passing through
(0, 0, 0), The lines do not intersect and they are not parallel.

Example 2.41. We consider four lines Lj = {~pj + t~vj : t ∈ R} with

(i) ~v1 =

1
2
3

 , ~p1 =

0
0
1

 , (ii) ~v2 =

2
4
6

 , ~p2 =

2
4
7

 ,

(iii) ~v3 =

1
1
2

 , ~p3 =

−1
0
0

 , (iv) ~v4 =

1
1
2

 , ~p4 =

3
0
5

 .

We will calculate their mutual intersections.

L1 ∩ L2 = L1

Proof. A point Q(x, y, z) belongs to L1∩L2 if and only if it belongs both to L1 and L2. This means

that there must exist an s ∈ R such that
#  –

0Q = ~p1 + s~v1 and there must exist a t ∈ R such that
#  –

0Q = ~p2 + t~v2. Note the s and t are different parameters. So we are looking for s and t such that

~p1 + s~v1 = ~p2 + t~v2, that is

0
0
1

+ s

1
2
3

 =

2
4
7

+ t

2
4
6

 (2.14)

Once we have solved this for s and t, we insert the into the equation for L1 and L2 respectively,
and obtain Q. Note that (2.14) in reality is a system of three equations: one equation for each
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component of the vector equation. Writing it out, and solving each equation for s, we obtain

0 + s = 2 + 2t
0 + 2s = 4 + 4t
1 + 3s = 7 + 6t

⇐⇒
s = 2 + 2t
s = 2 + 2t
s = 2 + 2t.

This means that we have infinitely many solutions: Given any point R on L1, there is a correspond-
ing s ∈ R such that

#  –

0R = ~p1 + s~v1. Now if we choose t = (s−2)/2, then
#  –

0R = ~p2 + t~v2 holds, hence
R ∈ L2 too. If on the other hand we have a point R′ ∈ L2, then there is a corresponding t ∈ R
such that

#    –

0R′ = ~p2 + t~v2. Now if we choose s = 2 + 2t, then
#    –

0R′ = ~p1 + t~v1 holds, hence R′ ∈ L2

too. In summary, we showed that L1 = L2.

Remark 2.42. We could also have seen that the directional vectors of L1 and L2 are parallel. In
fact, ~v2 = 2~v1. It then suffices to show that L1 and L2 have at least one point in common in order
to conclude that the lines are equal.

L1 ∩ L3 = {(1, 2, 4)}

Proof. As before, we need to find s, t ∈ R such that

~p1 + s~v1 = ~p3 + t~v3, that is

0
0
1

+ s

1
2
3

 =

−1
0
0

+ t

1
1
2

 . (2.15)

We write this as a system of equations, we get

1 0 + s = −1 + t
2 0 + 2s = 0 + t
3 1 + 3s = 0 + 2t

⇐⇒
1 s − t = −1
2 2s − t = 0
3 3s − 2t = −1

From 1 it follows that s = t− 1. Inserting in 2 gives 0 = 2(t− 1)− t = t− 2, hence t = 2. From
1 we then obtain that s = 2 − 1 = 1. Observe that so far we used only equations 1 and 2 . In

order to see if we really found a solution, we must check if it is consistent with 3 . Inserting our
candidates for s and t, we find that 3 · 1− 2 · 2 = −1 which is consistent with 3 .
So we have exactly one point of intersection. In order to find it, we put s = 1 in the equation for
L1:

#  –

0Q = ~p1 + 1 · ~v1 =

0
0
1

+

1
2
3

 =

1
2
4

 ,

hence the intersection point is Q(1, 2, 4).

In order to check if this result is correct, we can put t = 2 in the equation for L3. The result must
be the same. The corresponding calculation is:

#  –

0Q = ~p3 + 2 · ~v3 =

−1
0
0

+

2
2
4

 =

1
2
4

 ,

which confirms that the intersection point is Q(1, 2, 4).
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L1 ∩ L4 = ∅

Proof. As before, we need to find s, t ∈ R such that

~p1 + s~v1 = ~p4 + t~v4, that is

0
0
1

+ s

1
2
3

 =

3
0
5

+ t

1
1
2

 . (2.16)

We write this as a system of equations, we get

1 s = 3 + t
2 2s = t
3 1 + 3s = 5 + 2t

⇐⇒
1 s − t = 3
2 2s − t = 0
3 3s − 2t = 5

From 1 it follows that s = t + 3. Inserting in 2 gives 0 = 2(t + 3) − t = t + 6, hence t = −6.
From 1 we then obtain that s = −6 + 3 = −3. Observe that so far we used only equations 1 and
2 . In order to see if we really found a solution, we must check if it is consistent with 3 . Inserting

our candidates for s and t, we find that 3 · (−3) − 2 · (−6) = 3 which is inconsistent with 3 .
Therefore we conclude that there is no pair of real numbers s, t which satisfies all three equations
1 – 3 simultaneously, so the two lines do not intersect.

Exercise. Show that L3 ∩ L4 = ∅.

Intersection of planes

Given two planes π1 and π2 in R3, there are two possibilities:

(a) The planes intersect. In this case, they necessarily intersect in infinitely many points. The
intersection is either a line. In this case π1 and π2 are not parallel. Or the intersection is a
plane. In this case π1 = π2.

(b) The planes do not intersect. In this case, the planes must be parallel and not equal.

Example 2.43. We consider the following four planes:

π1 : x+ y + 2z = 3, π2 : 2x+ 2y + 4z = 3, π3 : 2x+ 2y + 4z = 6, π4 : x+ y − 2z = 5.

We will calculate their mutual intersections.

π1 ∩ π2 = ∅

Proof. The set of all points Q(x, y, z) which belong both to π1 and π2 is the set of all x, y, z which
simultaneously satisfy

1 x + y + 2z = 3,
2 2x + 2y + 4z = 3.

Now clearly, if x, y, z satisfies 1 , then it cannot satisfy 2 (the right side would be 6). We can
see this more formally if we solve 1 , e.g., for x and then insert into 2 . We obtain from 1 :
x = 3− y − 2z. Inserting into 2 leads to

3 = 2(3− y − 2z) + 2y + 4z = 6,
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which is absurd.

Geometrically, this was to be expected. The normal vectors of the planes are ~n1 =

1
1
2

 and

~n2 =

2
2
4

 respectively. Since they are parallel, the planes are parallel and therefore they either are

equal or they have empty intersection. Now we see that for instance (3, 0, 0) ∈ π1 but (3, 0, 0) /∈ π2,
so the planes cannot be equal. Therefore they have empty intersection.

π1 ∩ π3 = π1

Proof. The set of all points Q(x, y, z) which belong both to π1 and π3 is the set of all x, y, z which
simultaneously satisfy

1 x + y + 2z = 3,
2 2x + 2y + 4z = 6.

Clearly, both equations are equivalent: if x, y, z satisfies 1 , then it also satisfies 2 and vice versa.
Therefore, π1 = π3.

π1 ∩ π4 =


 4

0
− 1

2

+ t

−1
1
0

 : t ∈ R

 .

Proof. First, we notice that the normal vectors ~n1 =

1
1
2

 and ~n4 =

 1
1
−2

 are not parallel, so we

expect that the solution is a line in R3.
The set of all points Q(x, y, z) which belong both to π1 and π4 is the set of all x, y, z which
simultaneously satisfy

1 x + y + 2z = 3,
2 x + y − 2z = 5.

Equation 1 shows that x = 3− y− 2z. Inserting into 2 leads to 5 = 3− y− 2z+ y− 2z = 3− 4z,
hence z = − 1

2 . Putting this into 1 , we find that x+y = 3−2z = 4. So in summary, the intersection
consists of all points (x, y, z) which satisfy

z = −1

2
, x = 4− y with y ∈ R arbitrary,

in other words,xy
z

 =

4− y
y
− 1

2

 =

 4
0
− 1

2

+

−yy
0

 =

 4
0
− 1

2

+ y

−1
1
0

 with y ∈ R arbitrary.
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Intersection of several lines and planes

If we wanted to intersect for instance, 5 planes in R3, then we would have to solve a system of
5 equations for 3 unknowns. Or if we wanted to intersect 7 lines in R3, then we had to solve a
system of 3 equations for 7 unknowns. If we do it like here, this could become quite messy. So the
next chapter is devoted to find a systematic way how to solve a system of m linear equations for n
unknowns.

2.7 Summary

x − 2y − 4z = 1
3x − y − z = −1
x − 11y + 22z = 110

Faltan Figures 11, 12.
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Chapter 3

Linear Systems and Matrices
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Chapter 4

Vector spaces and linear maps

In the following, K always denotes a field. In this chapter, you may always think of K = R, though
almost everything is true also for other fields, like C, Q or Fp where p is a prime number. Later, in
Chapter ?? it will be more useful to work with K = C.

In this rather we will first work with abstract vector spaces. We will first discuss their basic
properties. Then, in Section 4.2 we will talk about subspaces. These are subsets of vector space
which are themselves vector spaces. In Section 4.3 we will introduce basis and dimension of a
vector space. These concepts are fundamental in linear algebra since they allow to classify all finite
dimensional vector spaces. In a certain sense, all n dimensional vector spaces over the same field
K are the same. In Chapter ?? we will study linear maps between vector spaces.

4.1 Definitions and basic properties

First we recall the definition of an abstract vector space from Chapter 2.

Definition 4.1. Let V be a set together with two operations

vector sum + : V × V → V, (v, w) 7→ v + w,

product of a scalar and a vector · : K× V → V, (λ, v) 7→ λ · v.

Note that we will usually write λv instead of λ · v. Then V (or more precisely, (V,+, ·)) is called a
vector space if for all u, v, w ∈ V and all λ, µ ∈ K the following holds:

(a) Associativity: (u+ v) + w = u+ (v + w).

(b) Commutativity: v + w = w + v.

(c) Identity element of addition: There exists an element 0 ∈ V , called the additive identity
such that for every v ∈ R2, we have 0 + v = v + 0 = v.

(d) Inverse element: For all v ∈ V , we have an inverse element v′ such that v + v′ = 0.

49
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50 4.1. Definitions and basic properties

(e) Identity element of multiplication by scalar: For every v ∈ V , we have that 1v = v.

(f) Compatibility: For every v ∈ V and λ, µ ∈ R, we have that (λµ)v = λ(µv).

(g) Distributivity laws: For all v, w ∈ V and λ, µ ∈ R, we have

(λ+ µ)v = λv + µv and λ(v + w) = λv + λw.

Remark 4.2. (i) Note that the notation ~v with an arrow is reserved for the special case of a
vector in Rn or Cn. Vectors in an abstract vector space are usually denoted without an arrow.

(ii) If K = R, then V is called a real vector space. If K = C, then V is called a complex vector
space.

Before we give examples of vector spaces, we first show some basic properties of vector spaces.

Properties 4.3. (i) The identity element is unique. (Note that in the vector space axioms we
only asked for existence of an additive identity element; we did not ask for uniqueness. So one
could think that there may be several elements which satisfy (c) in Definition 4.1. However,
this is not possible as the following proof shows.)

Proof. Assume there are two neutral elements 0 and 0′. Then we know that for every v and
w in V the following is true:

v = 0 + v, w = 0′ + w.

Now let us take v = 0′ and w = 0. Then, using commutativity, we obtain

0′ = 0 + 0′ = 0′ + 0 = 0.

(ii) For every v ∈ V , its inverse element is unique. (Note that in the vector space axioms we
only asked for existence of an additive inverse for every element x ∈ V ; we did not ask
for uniqueness. So one could think that there may be several elements which satisfy (d) in
Definition 4.1. However, this is not possible as the following proof shows.)

Proof. Let v ∈ V and assume that there are elements v′, v′′ in V such that

v + v′ = 0, v + v′′ = 0.

We have to show that v′ = v′′. This follows from

v′ = v′ + 0 = v′ + (v + v′′) = (v′ + v) + v′′ = 0 + v′′ = v′′.

(iii) For every λ ∈ K we have λ0 = 0.

Proof. Observe that
λ0 = λ(0 + 0) = λ0 + λ0.

Now let (λ0)′ be the inverse of λ0 and sum it to both sides of the equation. We obtain

λ0 + (λ0)′ = (λ0 + λ0) + (λ0)′

=⇒ 0 = λ0 + (λ0 + (λ0)′)

=⇒ 0 = λ0 + 0

=⇒ 0 = λ0.
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(iv) For every v ∈ V we have that 0v = 0.

Proof. The proof is similar to the one above. Observe that

0v = (0 + 0)v = 0v + 0v.

Now let (0v)′ be the inverse of 0v and sum it to both sides of the equation. We obtain

0v + (0v)′ = (0v + 0v) + (0v)′

=⇒ 0 = 0v + (0v + (0v)′)

=⇒ 0 = 0v + 0

=⇒ 0 = 0v.

(v) If λv = 0, then either λ = 0 or v = 0.

Proof. If λ = 0, then there is nothing to prove. Now assume that λ 6= 0. Then v is 0 because

v =
1

λ
(λv) =

1

λ
0 = 0.

(vi) For every v ∈ V , its inverse is (−1)v.

Proof. Let v ∈ V . Observe that by (v), we have that 0v = 0. Therefore

0 = 0v = (1 + (−1))x = v + (−1)v.

Hence (−1)v is an additive inverse of v. By (ii), the inverse of v is unique, therefore (−1)v is
the inverse of v.

Remark 4.4. From now on, we write −v for the additive inverse of a vector. This notation is
justified by Property 4.3 (vi).

Examples 4.5. We give some important examples of vector spaces.

• R is a real vector space. More generally, Rn is a real vector space. The proof is the same
as for R2 in Chapter 2. Associativity and commutativity are clear. The identity element is
the vector whose entries are all equal to zero: ~0 = (0, . . . , 0)t. The inverse for a given vector
~x = (x1, . . . , xn)t is (−x1, . . . ,−xn)t. The distributivity laws are clear, as is the fact that
1~x = ~x for every ~x ∈ Rn.

• C is a complex vector space. More generally, Cn is a real complex space. The proof is as for
Rn.

• C can also be seen as a real vector space.
Exercise. Check that C is a real vector space!

• R is not a complex vector space. If it was, then the vectors would be real numbers and the
scalars would be complex numbers. But then if we take 1 ∈ R and i ∈ C, then the product i1
must be a vector, that is, a real number, which is not the case.
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• R can be seen as a Q-vector space.

• For every n,m ∈ N, the space M(m× n) of all m× n matrices with real coefficients is a real
vector space.

Proof. Note that in this case, the vectors are matrices. Associativity and commutativity are
easy to check. The identity element is the matrix whose entries are all equal to zero. Given
a matrix A = (aij)i=1,...,m

j=1,...,n
, its (additive) inverse is the matrix −A = (−aij)i=1,...,m

j=1,...,n
. The

distributivity laws are clear, as is the fact that 1A = A for every A ∈M(m× n).

• For every n,m ∈ N, the space M(m × n,C) of all m × n matrices with complex coefficients,
is a complex vector space.

Proof. As in the case of real matrices.

• Let C(R) be the set of all continuous functions from R to R. We define the sum of two
functions f and g in the usual way as the new function

f + g : R→ R, (f + g)(x) = f(x) + g(x).

The product of a function f with a real number λ gives the new function λf defined by

λf : R→ R, (λf)(x) = λf(x).

Then C(R) is a vector space with these new operations.

Proof. It is clear that these operations satisfy associativity, commutativity and distributivity
and that 1f = f for every function f ∈ C(R). The additive identity is the zero function
(the function which is constant to zero). For a given function f , its (additive) inverse is the
function −f .

Observe that the sets M(m × n) and C(R) admit more operations, for example we can multiply
functions, or we can multiply matrices or we can calculate detA for a square matrix. However, all
these operations have nothing to do with the question whether they are vector spaces or not. It is
important to note that for a vector space we only need the sum of two vectors and the product of
a scalar with vector.

We give more examples.

Examples 4.6. • Consider R2 but we change the usual sum to the new sum ⊕ defined by(
x
y

)
⊕
(
a
b

)
=

(
x+ a

0

)
.

With this new sum, R2 is not a vector space. The reason is that there is no additive identity.

To see this, assume that we had an additive identity, say

(
α
β

)
. Then we must have

(
α
β

)
+

(
x
y

)
=

(
x
y

)
for all

(
x
y

)
∈ R2.
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However, for example, (
α
β

)
+

(
0
1

)
=

(
α
0

)
6=
(

0
1

)
,

• Consider R2 but we change the usual sum to the new sum ⊕ defined by(
x
y

)
⊕
(
a
b

)
=

(
x+ b
y + b

)
.

With this new sum, R2 is not a vector space. One of the reasons is that the sum is not
commutative. For example(

1
0

)
+

(
0
1

)
=

(
1 + 1
0 + 0

)
=

(
2
0

)
, but

(
0
1

)
+

(
1
0

)
=

(
0 + 0
1 + 1

)
=

(
0
2

)
.

(One could also show that there is no additive identity 0 which satisfies ~x ⊕ 0 = ~x for all
~x ∈ R2. You should try to show this.)

• Let V = R+ = (0,∞). We make V a real vector space with the following operations: Let
x, y ∈ V and λ ∈ R. We define

x⊕ y = xy and λ� x = xλ.

Then (V,⊕,�) is a real vector space.

Proof. Let u, v, w ∈ V and let λ ∈ R. Then:

(a) Associativity: (u⊕ v)⊕ w = (uv)⊕ w = (uv)w = u(vw) = u(v ⊕ w) = u⊕ (v ⊕ w).

(b) Commutativity: v ⊕ w = vw = wv = w ⊕ v.

(c) The additive identity of ⊕ is 1 because for every x ∈ V we have that 1⊕ x = 1x = x.

(d) Inverse element: For every x ∈ V , its inverse element is x−1 because x⊕x−1 = xx−1 =
1 which is the identity element. (Note that this is in accordance with Properties 4.3 (v)
since (−1)� x = x−1.)

(e) Identity element of multiplication by scalar: For every x ∈ V , we have that
1� x = 1x = x.

(f) Compatibility: For every x ∈ V and λ, µ ∈ R, we have that

(λµ)� v = vλµ = (vλ)µ = µ� (vλ) = λ� (µ� v).

(g) Distributivity laws: For all x, y ∈ V and λ, µ ∈ R, we have

(λ+ µ)� x = xλ+µ = xλxµ = (λ� v)(µ� v) = (λ� v)⊕ (µ� v)

and

λ� (v ⊕ w) = (v ⊕ w)λ = (vw)λ = vλwλ = vλ ⊕ wλ = (λ� v)⊕ (λ� w).
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• The example above can be generalised: Let f : R→ (a, b) be an injective function. Then the
interval (a, b) becomes a real vector space with the following operations if we define the sum
of two vectors x, y ∈ (a, b) by

x⊕ y = f(f−1(x) + f−1(y))

and the product of a scalar λ ∈ R and a vector x ∈ (a, b) by

λ� x = f(λf−1(x)).

Note that in the example above we have (a, b) = (0,∞) and f = exp (that is: f(x) = ex).

4.2 Subspaces

In this section, we work mostly with real vector spaces for definiteness sake. However, all the
statements are also true for complex vector spaces. We only have to replace everywhere R by C
and the word real by complex.

Now we will investigate when a subset of a given vector space is itself a vector space.

Definition 4.7. Let V be a vector space and let W ⊆ V be a subset of V . Then W is called a
subspace of V if W itself is a vector space with the sum and product with scalars inherited from V .
A subspace W is called a proper subspace if W 6= ∅ and W 6= V .

First we remark the following basic facts.

Remark 4.8. Let V be a vector space.

• If W is a subspace of V , then 0 ∈W since W must contain the additive identity.

• If V is a vector space, W is a subspace of V and U is a subspace of W , then U is a subspace
of V .

• V always contains the following subspaces: {0} and V itself. However, they are not proper
subspaces.

Exercise 4.9. Prove these statements.

Now assume that we are given a vector space V and in it a subset W ⊆ V and we would like to
check if W is a vector space. In principle we would have to check all seven vector space axioms
from Definition 4.1. However, if W is a subset of V , then we get some of the vector space axioms
for free. More precisely, the axioms (a), (b), (e), (f) and (g) hold automatically. For example, to
prove (b), we take two elements w1, w2 ∈ W . They belong also to V since W ⊆ V , and therefore
they commute: w1 + w2 = w2 + w1.
We can even show the following proposition:

Proposition 4.10. Let V be a real vector space and W ⊆ V a subset. Then W is a subspace of V
if and only if the following three properties hold:
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(i) W 6= ∅, that is, W is not empty.

(ii) W is closed under sums, that is, if we take w1 and w2 in W , then their sum w1 +w2 belongs
to W .

(iii) W is closed under product with scalars, that is, if we take w ∈ W and λ ∈ R, then it must
follow that λw ∈W .

Note that (ii) and (iii) can be resumed in the following:

(iv) W is closed under sums and product with scalars, that is, if we take w1, w2 ∈ W and λ ∈ R,
then λw1 + w2 ∈W .

Proof of 4.10. Assume that W is a subspace, then clearly (ii) and (iii) hold. (i) holds because every
vector space must contain at least the additive identity ′veczero.

Now suppose that W is a subset of V such that the properties (i), (ii) and (iii) are satisfied. In
order to show that W is a subspace of V , we need to verify the vector space axioms (a) - (f) from
Definition 4.1. By assumptions (ii) and (iii) the sum and product with scalars are well defined in
W . Moreover, we already convinced ourselves that (a), (b), (e), (f) and (g) hold. Now, for the
existence of an additive identity, we take an arbitrary w ∈ W (such a w exists because W is not
empty by assumption (i)). Hence 0 = 0w ∈ W where 0 is the additive identity in V . This then is
also the additive identity in W . Finally, given w ∈W ⊆ V , we know from Propertie 4.3 (v) that its
additive inverse is (−1)w, which, by our assumption (iii), belongs to W . So we have verified that
W satisfies all vector space axioms, so it is a vector space.

The proposition is also true if V is a complex vector space. We only have to replace R everywhere
by C.

In order to verify that a given W ⊆ V is a subspace, one only has to verify (i), (ii) and (iii) from
the preceding proposition. In order to verify that W is not empty, one typically checks if it contains
0.

The following definition is very important in many applications.

Definition 4.11. Let V be a vector space and W ⊆ V a subset. The W is called an affine subspace
if there exists an v0 ∈ V such that set

v0 +W := {v0 + w : w ∈W}

is a subspace of V .

Clearly, every subspace is also an affine subspace (take v0 = 0).
Let us see examples of subspaces and affine subspaces.

Examples 4.12. Let V be a vector space. We assume that V is a real vector space, but everything
works also for a complex vector space (we only have to replace R everywhere by C.)

(i) {0} is a subspace of V . It is called the trivial subspace of V .

(ii) V itself is a subspace of V .
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(iii) Fix z ∈ V . Then the set W := {λz : λ ∈ R} is a subspace of V .

(iv) More generally, if we fix z1, . . . zk ∈ V , then the set W := {λ1z1 + · · ·λkzk : λ1, . . . , λk ∈ R}
is a subspace of V .

(v) If we fix v0 and z1, . . . zk ∈ V , then the set W := {v0 + λ1z1 + · · ·λkzk : λ1, . . . , λk ∈ R} is an
affine subspace of V . In general it will not be a subspace.

Exercise. Show that W := {v0 + λ1z1 + · · ·λkzk : λ1, . . . , λk ∈ R} is an affine subspace of
V . Show that it is a subspace if and only if v0 ∈ span{z1, . . . , zk}.

(vi) If W is a subspace of V , then V \W is not a subspace. This can be seen easily if we recall
that W must contain 0. But then V \W cannot contain 0, hence it cannot be a vector space.

Some more examples:

Examples 4.13. • The set of all solutions of a homogeneous system of linear equations is a
vector space.

• The set of all solutions of an inhomogeneous system of linear equations is an affine vector
space.

• The set of all solutions of a homogeneous linear differential equation is a vector space.

• The set of all solutions of an inhomogeneous linear differential equation is an affine vector
space.

Examples 4.14 (Examples and non-examples of subspaces of R2).

• W =

{(
λ
0

)
: λ ∈ R

}
is a subspace of R2. This is actually a subspace of the form (iii) from

Example 4.12 with z =

(
1
0

)
. Note that geometrically W is a line.

• For fixed x0, y0 ∈ R let W =

{
λ

(
x0

y0

)
: λ ∈ R

}
. Then W is a subspace of R2. Geomet-

rically, W is a line in R2 passing through the origin which is parallel to the vector

(
x0

y0

)
.

Figure 4.1: The subspace W generated by
the vector ( x0

y0 ).
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• For fixed a, b, x0, y0 ∈ R let W =

{(
a
b

)
+ λ

(
x0

y0

)
: λ ∈ R

}
. Then W is an affine subspace.

Geometrically, W represents a line in R2 parallel which passes through the point (a, b) and

is parallel to the vector

(
x0

y0

)
. Note that W is a subspace if and only if

(
a
b

)
and

(
x0

y0

)
are

parallel.

Figure 4.2: In the figure on the left hand side, W is not a subspace It is only an affine subspace.
In the figure on the right hand side, W is a subspace.

• W = {~x ∈ R2 : ~x ≥ 3} is not a subspace of R2 since it does not contain ~0.

• W = {~x ∈ R2 : ~x ≤ 3} is not a subspace of R2. For example, take ~z =

(
2
0

)
. Then ~z ∈ W ,

however 3~z /∈W . (or: ~z + ~z /∈W )

• W =

{(
x
y

)
: x ≥ 0

}
. Then W is not a vector space. For example, ~z =

(
2
0

)
∈ W , but

(−1)~z =

(
−2
0

)
/∈W .

Note that geometrically W is a right half plane in R2.
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Figure 4.3: The sets W in the figures a not subspaces of R2.

Examples 4.15 (Examples and non-examples of subspaces of R3).

• For fixed x0, y0, z0 ∈ R let W =

λ
x0

y0

z0

 : λ ∈ R

. Then W is a subspace of R3. Geomet-

rically, W is a line in R2 passing through the origin which is parallel to the vector

x0

y0

z0

.

• For fixed a, b, c ∈ R the set W =


xy
z

 : ax+ by + cz = 0

 is a subspace of R3.

Proof. We use Proposition 4.10 to verify that W is a subspace of R3. Clearly, ~0 ∈ W since

0a+0b+0c = 0. Now let ~w1 =

x1

y1

z1

 and ~w2 =

x2

y2

z2

 in W and let λ ∈ R. Then ~w1+ ~w2 ∈W

because

a(x1 + x2) + b(y1 + y2) + c(z1 + z2) = (ax1 + by1 + cz1) + (ax2 + by2 + cz2) = 0 + 0 = 0.

Also λ~w1 ∈W because

a(λx1) + b(λy1) + c(λz1) = λ(ax1 + by1 + cz1) = λ0 = 0.

Hence W is closed under sum and product with scalars, so it is a subspace of R.

Remark. If at least one of the numbers a, b, c ∈ R is different from zero, then W is a plane
in R3 which passes through the origin and has normal vector ~n = (a, b, c)t. If a = b = c = 0,
then W = R3.
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• For fixed a, b, c, d ∈ R with d 6= 0, the set W =


xy
z

 : ax+ by + cz = d

 is not a subspace

of R3.

Proof. Let ~w1 =

x1

y1

z1

 and ~w2 =

x2

y2

z2

 in W . Then ~w1 + ~w2 /∈W because

a(x1 + x2) + b(y1 + y2) + c(z1 + z2) = (ax1 + by1 + cz1) + (ax2 + by2 + cz2) = d+ d = 2d 6= d.

(We also could have shown that if ~w1 ∈W and λ ∈ R \ {1}, then λ~w1 /∈W . Show this!)

Remark. If at least one of the numbers a, b, c ∈ R is different from zero, then W is a
plane in R3 which has normal vector ~n = (a, b, c)t but does not pass through the origin. If
a = b = c = 0, then W = ∅.

• W = {~x ∈ R3 : ~x ≥ 5} is not a subspace of R3 since it does not contain ~0.

• W = {~x ∈ R3 : ~x ≤ 9} is not a subspace of R3. For example, take ~z =

2
0
0

. Then ~z ∈ W ,

however, for example, 7~z /∈W .

• W =


 x
x2

x3

 : x ∈ R

. Then W is not a vector space. For example, ~a =

1
1
1

 ∈ W , but

2~a =

2
2
2

 /∈W .

Examples 4.16 (Examples and non-examples of subspaces of M(m × n). The following
sets are examples for subspaces of M(m× n):

• The set all matrices with a11 = 0.

• The set all matrices with a11 = 5a12.

• The set all matrices such that its first row is equal to its last row.

If m = n, then also the following sets are subspaces of M(n× n):

• The set all symmetric matrices.

• The set all antisymmetric matrices.

• The set all diagonal matrices.

• The set all upper triangular matrices.
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• The set all lower triangular matrices.

The following sets are not subspaces of M(n× n):

• The set all invertible matrices.

• The set all non-invertible matrices.

• The set all matrices with determinant equal to 1. The set all functions f with f(7) = 13.

Examples 4.17 (Examples and non-examples of subspaces of the set all functions from
R to R). Let V be the set of all functions from R to R. Then V clearly is a real vector space.
The following sets are examples for subspaces of V :

• The set all continuous functions.

• The set all differential functions.

• The set all bounded functions.

• The set all polynomials.

• The set all polynomials with degree ≤ 5.

• The set all functions f with f(7) = 0.

• The set all even functions.

• The set all odd functions.

The following sets are not subspaces of V :

• The set all polynomials with degree 3.

• The set all polynomials with degree ≥ 3.

• The set all functions f with f(7) = 13.

• The set all functions f with degree f(7) ≥ 0.

Exercise. Prove these claims.

Definition 4.18. For n ∈ N0 let Pn be the set of all polynomials of degree less or equal to n.

Remark 4.19. Pn is a vector space.

Proof. Clearly, the zero function belongs to Pn (it is the polynomial of degree 0). For polynomials
p, q ∈ Pn and numbers λ ∈ R, we clearly have that p + q and λp are again polynomials of degree
at most n, so they belong to Pn. By Proposition 4.10, Pn is a subspace of the space of all real
functions, hence it is a vector space.
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4.3 Linear Combinations and linear independence

In this section, we work with real vector spaces for definiteness sake. However, all the statements
are also true for complex vector spaces. We only have to replace everywhere R by C and the word
real by complex.

We start with a definition.

Definition 4.20. Let V be a real vector space and let v1, . . . , vk ∈ V and α1, . . . , αk ∈ R. Then
the vector

v = α1v1 + · · ·αkvk (4.1)

is called a linear combination of the vectors v1, . . . , vk ∈ V .

Examples 4.21. • Let V = R3 and let #–v1 =

1
2
3

 , #–v2 =

4
5
6

 , #–a =

 9
12
15

 ,
#–

b =

3
3
3

 .

Then ~a and ~b are linear combinations of #–v1 and #–v2 because ~a = #–v1 + 2 #–v2 and ~b = − #–v1 + #–v2.

• Let V = M(2× 2) and let A = ( 1 0
0 1 ), B =

(
0 1
−1 0

)
, R =

(
5 7
−7 5

)
, S =

(
1 2
−2 3

)
.

Then R is a linear combination of A and B because R = 5A+7B. S is not a linear combination
of A and B. To see this note that because clearly for every linear combination of A and B

αA+ βB =

(
α β
−β α

)
but S is not of this form (S has two different elements on its diagonal).

Definition and Theorem 4.22. Let V be a real vector space and let v1, . . . , vk ∈ V . Then the
set of all their possible linear combinations is denoted by

span{v1, . . . , vk} := {α1v1 + · · ·+ αkvk : α1, . . . , αk ∈ R}.

It is a subspace of V and it is called the linear span of the v1, . . . , vk. The vectors v1, . . . , vk are
called generators of the subspace span{v1, . . . , vk}.

Remark. Other names for “linear span” that are commonly used, are subspace generated by
the v1, . . . , vk or subspace spanned by the v1, . . . , vk. Instead of span{v1, . . . , vk} the notation
gen{v1, . . . , vk} is used frequently. All these names and notations mean exactly the same.

Proof of Theorem 4.22. We have to show that W := span{v1, . . . , vk} is a subspace of V . To this
end, we use again Proposition 4.10. Clearly, W is not empty since at least 0 ∈W (we only need to
choose all the αj = 0). Now let u,w ∈ W and λ ∈ R. We have to show that λu + w ∈ W . Since
u,w ∈ W , there are real numbers α1, . . . , αk and β1, . . . , βk such that u = α1v1 + . . . , αkvk and
w = β1w1 + · · ·+ βkvk. Then

λu+ v = λ(α1v1 + · · ·+ αkvk) + β1w1 + · · ·+ βkvk

= λα1v1 + · · ·+ λαkvk) + β1w1 + · · ·+ βkvk

= (λα1 + β1)v1 + · · ·+ (λαk + βk)vk
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which belongs to W since it is a linear combination of the v1, . . . , vk.

Remark. • The generators of a given subspace are not unique.

For example, let A = ( 1 0
0 1 ), B =

(
0 −1
1 0

)
, C =

(
1 −1
1 1

)
. Then

span{A,B} = {αA+ βB : α, β ∈ R} =

{(
α −β
β α

)
: α, β ∈ R

}
,

span{A,B,C} = {αA+ βB + γC : α, β, γ ∈ R} =

{(
α+ γ −(β + γ)
β + γ α+ γ

)
: α, β, γ ∈ R

}
,

span{A,C} = {αA+ γC : α, γ ∈ R} =

{(
α+ γ −γ
γ α+ γ

)
: α, γ ∈ R

}
.

We see that span{A,B} = span{A,B,C} = span{A,C} (in all cases it consists of exactly
those matrices whose diagonal entries are equal and the off-diagonal entries differ by a minus
sign). So we see that neither the generators nor their number is unique.

• If a vector is a linear combination, then the coefficients are not necessarily unique.

For example, if A,B,C are the matrices above, then A + B + C = 2A + 2B = 2C or
A+ 2B + 3C = 4A+ 5B = B + 4C, etc.

Exercise 4.23. (i) Find generators of Pn.
Solution. A set of generators is for example {1, X,X2, . . . , Xn−1, Xn} since every vector in
Pn is a polynomial of the form p = αnX

n + αn−1X
n−1 + · · · + α1X + α0, so it is a linear

combination of the polynomials Xn, Xn−1, . . . , X, 1. �

(ii) Find generators of the set of all antisymmetric 2× 2 matrices.
Solution. A set of generators is for example {

(
0 1
−1 0

)
} �

(iii) Let V = R3 and let ~v, ~w ∈ R3 \ {~0}. Describe span{~v} and span{~v, ~w} geometrically
Solution. • span{~v} is a line which passes through the origin and is parallel to ~v.

• span{~v, ~w} is a plane which passes through the origin and is parallel to ~v and ~w if ~v 6‖ ~w.
Otherwise, if ~v ‖ ~w, then it is a line which passes through the origin and is parallel to
~v. �

Remark 4.24. Let V be a vector space and let v1, . . . , vn and w1, . . . , wm be vectors in V . Then
the following is equivalent:

(i) span{v1, . . . , vn} = span{w1, . . . , wm}.

(ii) vj ∈ span{w1, . . . , wm} for every j = 1, . . . , n and wj ∈ span{v1, . . . , vn} for every j =
1, . . . ,m.

Proof. (i) =⇒ (ii) is clear.
(i) =⇒ (ii): Note that vj ∈ span{w1, . . . , wm} for every j = 1, . . . , n implies that every vj can be
written as a linear combination of the w1, . . . , wm. Then also every linear combination of v1, . . . , vn
is a linear combination of w1, . . . , wm. This implies that span{v1, . . . , vn} ⊆ span{w1, . . . , wm}. The
converse inclusion span{w1, . . . , wm} ⊆ span{v1, . . . , vn} can be shown analogously. Both inclusions
together show that we must have equality.
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No we ask ourselves how many vectors we need at least in order to generate Rn. We now that for
example Rn = span{~e1, . . . , ~vn}. So in this case we have n vectors that generate Rn. Could it be
that less vetors are sufficient? Clearly, if we take away one of the ~ej , then the remaining system no
longer generates Rn since “one coordinate is missing”. However, could we maybe find other vectors
so that n− 1 or less vectors are enough to generate all of Rn? The next Proposition says that this
is not possible.

Proposition 4.25. Let ~v1, . . . , ~vk be vectors in Rn. If Let span{~v1, . . . , ~vk} = Rn, then m ≥ n.

Proof. Let A = (~v1| . . . |~vm) be the matrix whose columns are the given vectors. We know that
there exists an invertible matrix E such that A′ = EA is in reduced echelon form (the matrix E
is the product of elementary matrices which correspond to the steps in the Gauß-Joradan process
to arrive at the reduced echelon form). Now, if m < n, then we know that A′ must have at least
one row which consists of zeros only. If we can find a vector ~w such that it is transformed to ~en
under the Gausß-Jordan process, then we would have that A~x = ~w is inconsistent, which means
that ~w /∈ span{~v1, . . . , ~vn}. How do we find such a vector ~w? Well, we only have to start with ~en
and “do the Gauß-Jordan porcess backwards”. In other words, we define ~w = E−1~en. Now if we
apply the Gauß-Jordan process to the augmented matrix (A|~w), we arrive at (EA|E ~w) = (A′|~en)
which we already know is inconsistent.
Therefore, m < n is not possible and we must therefore have that m ≥ n.

Now we will pay attention to when the coefficients of a linear combination are unique.

Let V be a vector space and fix vectors v1, . . . , vk in V . We consider the equation

α1v1 + · · ·+ αkvk = 0 (4.2)

and we ask ourselves how many solutions this equation has for α1, . . . , αk. In other words, we ask if
and in how many ways 0 can be written as a linear combination of the v1, . . . , vk. Clearly, there is
always at least one solution, namely α1 = · · · = αk = 0. This solution is called the trivial solution.
On the other hand, if we have one non-trivial solution, then we automatically have infinitely many
solutions, because if α1, . . . , αk is solution, then also cα1, . . . , cαk is solution for arbitrary c ∈ R
since

cα1v1 + · · ·+ cαkvk = c(α1v1 + · · ·+ αkvk) = c 0 = 0.

So we see that only one of the following two cases can occur: (4.2) as exactly one solution (namely
the trivial one) or it has infinitely many solutions. Note that this is analogous to the situation of
the solutions of homogeneous linear systems: They have either only the trivial solution or they have
infinitely many solutions.
The following definition distinguishes between the two cases.

Definition 4.26. In the situation as above, the vectors v1, . . . , vk are called linearly independent if
(4.2) has only one solution. The are called linearly dependent if (4.2) has more than one solution.

Before we continue with the theory, we give a few examples.

Examples. (i) The vectors ~v1 = ( 1
2 ) and ~v2 =

(−4
−8

)
∈ R2 are linearly dependent because

4~v1 + ~v2 = ~0.
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(ii) The vectors ~v1 = ( 1
2 ) and ~v2 = ( 5

0 ) ∈ R2 are linearly independent.

Proof. Consider the equation α~v1 + β ~v2 = ~0. This equation is equivalent to the following
system of linear equations for α and β:

α + 3β = 0
2α + 0β = 0.

We can use the Gauß-Jordan process to obtain all solutions. However, in this case we easily
see that α = 0 (from the second line) and then that β = − 1

3α = 0. Note that we could also
have calculated det(( 1 3

2 0 ) = −6 6= 0 to conclude that the homogeneous system above has only
the trivial solution. Observe that the columns of the matrix are exactly the given vectors.

(iii) The vectors ~v1 =
(

1
1
1

)
and ~v2 =

(
2
3
4

)
∈ R2 are linearly independent.

Proof. Consider the equation α~v1 + β ~v2 = ~0. This equation is equivalent to the following
system of linear equations for α and β:

α + 2β = 0
α + 3β = 0
α + 4β = 0.

If we subtract the first from the second equation, we obtain β = 0 and then α = −2β = 0. So
again, this system has only the trivial solution and therefore the vectors ~v1 and ~v2 are linearly
independent.

(iv) Let ~v1 =
(

1
1
1

)
, ~v2 =

(−1
2
3

)
~v3 =

(
0
0
1

)
and ~v4 =

(
0
6
8

)
∈ R2 Then

(a) The system {~v1, ~v2, ~v3} is linearly independent.

(b) The system {~v1, ~v2, ~v4} is linearly dependent.

Proof. (a) Consider the equation α~v1 + β ~v2 + γ ~v3 = ~0. This equation is equivalent to the
following system of linear equations for α, β and γ:

α − 1β + 0γ = 0
α + 2β + 0γ = 0
α + 3β + 1γ = 0.

We use the Gauß-Jordan process to solve the system. Note that the columns of the
matrix associated to the above system are exactly the given vectors ~v1, ~v2, ~v3.

A =

1 −1 0
1 2 0
1 3 1

 −→
1 −1 0

0 3 0
0 4 1

 −→
1 −1 0

0 1 0
0 4 1

 −→
1 0 0

0 1 0
0 0 1

 .

Therefore the unique solution is α = β = γ = 0 and consequently the vectors ~v1, ~v2, ~v3

are linearly independent.

Observe that we also could have calculated detA = 3 6= 0 to conclude that the homoge-
neous system has only the trivial solution.
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(b) Consider the equation α~v1 + β ~v2 + δ ~v4 = ~0. This equation is equivalent to the following
system of linear equations for α, β and δ:

α − 1β + 0δ = 0
α + 2β + 6δ = 0
α + 3β + 8δ = 0.

We use the Gauß-Jordan process to solve the system. Note that the columns of the
matrix associated to the above system, are exactly the given vectors.

A =

1 −1 0
1 2 6
1 3 8

 −→
1 −1 0

0 3 6
0 4 8

 −→
1 −1 0

0 1 2
0 1 2

 −→
1 −1 0

0 1 2
0 0 0


−→

1 0 2
0 1 2
0 0 0

 .

Therefore the unique solution is α = β = γ = 0 and consequently the vectors ~v1, ~v2, ~v3

are linearly independent. So there are infinitely many solutions. If we take δ + t, then
α = β = −2t. Consequently the vectors ~v1, ~v2, ~v3 are linearly dependent, because, for
example, −2~v1 − 2~v2 + ~v3 = 0 (taking t = 1).

Observe that we also could have calculated detA = 0 to conclude that the system has
infinite solutions.

(v) The matrices

(
0 1
0 0

)
and

(
1 0
0 0

)
are linearly independent in M(2× 2).

(vi) The matrices

(
1 1
0 1

)
,

(
1 0
0 1

)
and

(
0 0
1 0

)
are linearly dependent in M(2× 2).

After these examples we will proceed with some facts on linear independence. We start with the
special case when we have only two vectors.

Proposition 4.27. Let v1, v2 be vectors in a vector space V . Then v1, v2 are linearly dependent if
and only if one vector is a multiple of the other.

Proof. Assume that v1, v2 are linearly dependent. Then there exist α1, α2 ∈ R such that α1v1 +
α2v2 = 0 and at least one of the α1 and α2 is different from zero. Let’s say that α1 6= 0. Then we
have v1 + α2

α1
v2 = 0, hence v1 = −α2

α1
v2.

Now assume on the other hand that, e.g., v1 is a multiple of v2, that is v1 = λv2 for some λ ∈ R.
Then v1−λv2 = 0 which is a nontrivial solution of α1v1 +α2v2 = 0 because we can take α1 = 1 6= 0
(note that λ may be zero).

Proposition 4.28. Let V be a vector space.

(i) Every system of vectors which contains 0 is linearly dependent.
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(ii) Let v1, . . . , vk ∈ V and assume that there are α1, . . . , αk ∈ R such that α1v1 + · · ·+αkvk = 0.
If α` 6= 0, then v` is a linear combination of the other vj.

(iii) If the vectors v1, . . . , vk ∈ V are linearly dependent, then for every w ∈ V , the vectors
v1, . . . , vk, w are linearly dependent.

(iv) If the vectors v1, . . . , vk ∈ V are linearly independent, then every subset of them is linearly
independent.

(v) If v1, . . . , vk are vectors in V and w is a linear combination of them, then v1, . . . , vk, w are
linearly dependent.

Proof. (i) Let v1, . . . , vk ∈ V . Clearly 10 + 0v1 + · · ·+ 0vk = 0 is non-trivial linear combination
with gives 0. Therefore the system {v1, . . . , vk, 0} is linearly dependent.

(ii) If α` 6= 0, then we can solve for v`: v` = −α1

α`
v1 − · · · − α`−1

α`
v`−1 − α`+1

α`
v`+1 − · · · − αk

α`
vk.

(iii) Suppose that the vectors v1, . . . , vk ∈ V are linearly dependent. Then there exist α1, . . . , αk ∈
R such that at least one of them is different from zero and α1v+ 1 + · · ·+αkvk = 0. But then
also α1v + 1 + · · · + αkvk + 0w = 0 which shows that the system {v1, . . . , vk, w} is linearly
dependent.

(iv) If the vectors v1, . . . , vk ∈ V are linearly independent, then there exists a non-trivial linear
combination α1v1 + · · ·+αkvk = 0. But then also α1v1 + · · ·+αkvk + 0w = 0 is a non-trivial
linear combination.

(v) Assume that w is a linear combination of v1, . . . , vk. Then there exist α1, . . . , αk ∈ R such
that w = α1v1 + · · ·+αkvk. Therefore we obtain w−α1v1−· · ·−αkvk = 0 which is non-trivial
linear combination since the coefficient of w is 1.

Now we specialise to the case when V = Rn. Let us take vectors ~v1, . . . , ~vk ∈ Rn and let us write
(~v1| · · · |~vk) for the n× k matrix whose columns are the vectors ~v1, . . . , ~vk.

Lemma 4.29. With the above notation, the following statements are equivalent:

(i) ~v1, . . . , ~vk are linearly dependent.

(ii) There exist α1, . . . , αk not all equal to zero, such that α1~v1 + · · ·+ αk~vk = 0.

(iii) There exists a vector

α1

...
αk

 6= ~0 such that (~v1| · · · |~vk)

α1

...
αk

 = ~0.

(iv) The homogeneous system corresponding to the matrix (~v1| · · · |~vk) has at least one non-trivial
(and therefore infinitely many) solutions.

Proof. (i) =⇒ (ii) is simply the definition of linear independence. (ii) =⇒ (iii) is only rewriting the
vector equation in matrix form. (iv) only says in word what the equation in (iii) means. And finally,
(iv) =⇒ (i) because every non trivial solution the inhomogeneous system associated to (~v1| · · · |~vk)
gives a non-trivial solution of α1~v1 + · · ·+ αk~vk.
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Since we know that a homogeneous linear system with more unknowns than equations has infinitely
many solutions, we immediately obtain the following corollary.

Corollary 4.30. Let ~v1, . . . , ~vk ∈ Rn.

(i) If k > n, then the vectors ~v1, . . . , ~vk are linearly dependent.

(ii) If the vectors ~v1, . . . , ~vk are linearly independent, then k ≤ n.

Observe that (ii) does not say that if k ≤ n, then the vectors ~v1, . . . , ~vk are linearly independent.
It just says that we cannot have a system of more than n vectors which is linearly independent.

Now we specialise further to the case when k = n.

Theorem 4.31. Let ~v1, . . . , ~vn be vectors in Rn. Then the following is equivalent:

(i) ~v1, . . . , ~vn are linearly independent.

(ii) The only solution of (~v1| · · · |~vn)

α1

...
αn

 = ~0 is the zero vector

α1

...
αn

 = ~0.

(iii) The matrix (~v1| · · · |~vn) is invertible.

(iv) det(~v1| · · · |~vn) 6= 0.

Proof. The prove is analogous to the proof of Lemma 4.29

Exercise 4.32. Formulate an analogous theorem for linearly dependent vectors.

Now we can state when a system n vectors in Rn is generating Rn.

Theorem 4.33. Let ~v1, . . . , ~vn be vectors in Rn. and let A = (~v1| · · · |~vn) be the matrix whose
columns are the given vectors ~v1, · · · , ~vn. Then the following is equivalent:

(i) ~v1, . . . , ~vn are linearly independent.

(ii) Rn = span{~v1, . . . , ~vn}.

(iii) detA 6= 0.

Proof. (i) ⇐⇒ (iii) is shown in Theorem 4.31.

(ii) ⇐⇒ (iii): The vectors ~v1, . . . , ~vn generate Rn if and only if for every ~w ∈ Rn there exist

numbers β1, . . . , βn such that β1~v1 + · · ·+βnvn = ~w. In matrix form that means that A

(
β1

...
βn

)
= ~w.

By Theorem ?? (in Chapter 3 on existence and uniqueness of solutions of inhomogeneous linear
systems) we know that this has a solution for every vector ~w if and only if A is invertible (because
if we apply Gauß-Jordan to A, we must get to the identity matrix).
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The proof of the precding theorem basically goes like this: We consider the equation A~β = ~w.
When are the vectors ~v1, . . . , ~vn linearly independent? – They are linearly independent if and only
if for ~w = ~0 the system has only the trivial solution. This happens if and only if the reduced echelon
form of A is the identity matrix. And this happens if and only if detA 6= 0.
When do the vectors ~v1, . . . , ~vn generate Rn? – They do, if and only if for every given vector
~w ∈ Rn0 the system has at least one solution. This happens if and only if the reduced echelon form
of A is the identity matrix. And this happens if and only if detA 6= 0.

Since a square matrix A in invertible if and only if its transpose At is invertible, Theorem 4.33 leads
immediately to the following corollary.

Corollary 4.34. For a matrix A ∈M(n× n) the following is equivalent:

(i) A is invertible.

(ii) The columns of A are linearly independent.

(iii) The rows of A are linearly independent.

We end this section with more examples.

Examples. • Recall that Pn is the vector space of all polynomials of degree ≤ n.

In P3, we consider the vectors p1 = X3 − 1, p2 = X2 − 1, p3 = X − 1. These vectors are
linearly independent.

Proof. Let α1, α2, α3 ∈ R such that α1p1 + α2p2 + α3p3 = 0. This means that

0 = α1(X3 − 1) + α2(X2 − 1) + α3(X − 1)

= α1X
3 + α2X

2 + α3X − (α1 + α2 + α3).

Comparing coefficients, it follows that α1 = 0, α2 = 0, α3 = 0 and α1 + α2 + α3 = 0 which
shows that p1, p2 and p3 are linearly independent.

If in addition we take p4 = X3−X2, then the system p1, p2, p3 and p4 is linearly dependent.

Proof. As before, let α1, α2, α3, α4 ∈ R such that α1p1 +α2p2 +α3p3 +α4p4 = 0. This means
that

0 = α1(X3 − 1) + α2(X2 − 1) + α3(X − 1) + α4(X3 −X2)

= (α1 + α4)X3 + (α2 − α4)X2 + α3X − (α1 + α2 + α3).

Comparing coefficients, this is equivalent to α1 + α4 = 0, α2 − α4 = 0, α3 = 0 and α1 +
α2 + α3 = 0. This system of equations has infinitely many solutions. They are given by
α2 = α4 = −α1 ∈ R, α3 = 0. Therefore p1, p2, p3 and p4 are linearly dependent.

Exercise. Show that p1, p2, p3 and p5 are linearly independent if p5 = X3 +X2.
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• In P2, we consider the vectors p1 = X2 + 2X − 1, p2 = 5X + 2, p3 = 2X2 − 11X − 8. These
vectors are linearly dependent.

Proof. Let α1, α2, α3 ∈ R such that α1p1 + α2p2 + α3p3 = 0. This means that

0 = α1(X2 + 2X − 1) + α2(5X + 2) + α3(2X2 − 11X − 8)

= (α1 + 2α3)X2 + (2α1 + 5α2 − 11α3)X − α1 + 2α2 − 8α3).

Comparing coefficients, it follows that α1+2α3 = 0, 2α1+5α2−11α3 = 0,−α1+2α2−8α3 = 0.
We write this in matrix form and apply the Gauß-Jordan: 1 0 2

2 5 −11
−1 2 −8

 −→
1 0 2

0 5 −15
0 2 −6

 −→
1 0 2

0 1 −3
0 1 −3

 −→
1 0 2

0 1 −3
0 0 0


This shows that the system has non-trivial solutions (find them!) and therefore p1, p2 and p3

are linearly dependent.

• In V = M(2 × 2) consider A = ( 1 2
2 1 ), B = ( 1 0

0 1 ), C = ( 0 5
5 0 ). Then A,B,C are linearly

dependent because A−B − 1
5C = 0.

• In V = M(2 × 3) consider A = ( 1 2 3
4 5 6 ), B = ( 2 2 2

1 1 1 ), C = ( 1 2 2
2 1 1 ). Then A,B,C are linearly

independent.

Exercise. Prove this!

4.4 Basis and dimension

In this section, we work with real vector spaces for definiteness sake. However, all the statements
are also true for complex vector spaces. We only have to replace everywhere R by C and the word
real by complex.

Definition 4.35. Let V be a vector space. A basis of V is a set of vectors {v1, . . . , vn} in V which
is linearly independent and generates V .

The following remark shows that a basis is a minimal system of generators of V and at the same
time a maximal system of linear independent vectors.

Remark. Let {v1, . . . , vn} be a basis of V .

(i) Let w ∈ V . Then {v1, . . . , vn, w} in not a basis of V because this system of vectors is no
longer linearly independent by Proposition 4.28 (v)

(ii) If we take away one of the vectors from {v1, . . . , vn}, then it is no longer a basis of V be-
cause the new system of vectors no longer generates V . For example, if we take away v1,
then v1 /∈ span{v2, . . . , vn} (otherwise v1, . . . , vn would be linearly dependent), and therefore
span{v2, . . . , vn} 6= Rn.
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Remark 4.36. Every basis of Rn has exactly n elements. To see this note that by Corollary 4.30,
a basis can have at most n elements because oetherwise it could not be linearly independent. On
the other hand, if it had less elements than n elements, then it cannot be a generator of Rn by
Remark 4.25.

Examples 4.37. • A basis of R3 is, for example,


1

0
0

 ,

0
1
0

 ,

0
0
1

. The vectors of this

basis are the standard unit vectors. The basis is called the standard basis (or canonical basis)
of R3.

Other examples of bases of R3 are
1

0
0

 ,

1
1
0

 ,

1
1
1

 ,


1

2
3

 ,

4
5
6

 ,

0
2
1


Exercise. Verify that the systems above are bases of R3.

The following systems are not bases of R3
1

2
3

 ,

4
5
6

 ,

3
2
1

 ,


1

2
3

 ,

4
5
6

 ,


1

0
0

 ,

1
1
0

 ,

1
1
1

 ,

0
0
1

 .

Exercise. Verify that the systems above are not bases of R3.

• The standard basis in Rn (or canonical basis in Rn) is {~e1, . . . ,~en}. Recall that the ~ej are the
standard unit vectors whose jth entry is 1 and all other entries are 0.

Exercise. Verify that they form a basis of Rn.

• The standard basis in Pn (or canonical basis in Pn) is {1, X,X2, . . . , Xn}.

Exercise. Verify that they form a basis of Rn.

• Let p1 = X, p2 = 2X2 + 5X − 1, p3 = 3X2 + X + 2. Then the system {p1, p2, p3} is a basis
of P2.

Proof. We have to show that the system in linearly independent and that it generates the
space P2. Let q = aX2 + bX + c ∈ P2. We want to see if there are α1, α2, α3 ∈ R such that
q = α1p1 + α2p2 + α3p3. If we write this equation out, we find

aX2 + bX + c = α1X + α2(2X2 + 5X − 1) + α3(3X2 +X + 2)

= (2α2 + 3α3)X2 + (α1 + 5α2 + α3)X − α2 + 2α3.
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Comparing coefficients, we obtain the following system of linear equations for the αj :

2α2 +3α3 = a
α1 + 5α2 +α3 = b

−α2 +2α3 = c

 in matrix form:

0 2 3
1 5 1
0 −1 2

α1

α2

α3

 =

ab
c

 .

Now we apply Gauß-Jordan to the augmented matrix:0 2 3 a
1 5 1 b
0 −1 2 c

 −→
1 5 1 b

0 −1 2 c
0 2 3 a

 −→
1 0 11 b+ 5c

0 1 −2 c
0 0 7 a+ 2c

 .

So we see that there is exactly one solution for any given q. The existence of such a solution
shows that {p1, p2, p3} generates P2. We also see that there for any give q ∈ P2 there is
exactly one way to write it as a linear combination of p1, p2, p3. If we take the special case
q = 0, this shows that the system is linearly independent. In summary, {p1, p2, p3} is a basis
of P2.

• Let p1 = X + 1, p2 = X2 + X, p3 = X3 + X2.p4 = X3 + X2 + X + 1. Then the system
{p1, p2, p3, p4} is not a basis of P2.

Exercise. Show this!

• In the spaces M(m×n), the set of all matrices Aij form a basis, where Aij is the matrix with
aij = 1 and all other entries equal to 0. For example, in M(2×3) we have the following basis:(

1 0 0
0 0 0

)
,

(
0 1 0
0 0 0

)
,

(
0 0 1
0 0 0

)
,

(
0 0 0
1 0 0

)
,

(
0 0 0
0 1 0

)
,

(
0 0 0
0 0 1

)
.

• Let A = ( 1 0
0 0 ), B = ( 1 0

1 0 ), C = ( 1 0
1 1 ), D = ( 1 1

1 1 ). Then {A,B,C,D} is a basis of M(2× 2).

Proof. Let M =
(
a b
c d

)
an arbitrary 2× 2 matrix. Consider the equation M = α1A+ α2B +

α3C + α4D. This leads to(
a b
c d

)
= α1

(
1 0
0 0

)
+ α2

(
1 0
1 0

)
+ α3

(
1 0
1 1

)
+ α4

(
1 1
1 1

)
=

(
α1 + α2 + α3 + α4 α4

α2 + α3 + α4 α3 + α4

)
.

So we obtain the following set of equations for the αj :

α1 + α2 +α3 +α4 = a
α4 = b

α2 +α3 +α4 = c
α3 +α4 = d

 in matrix form:


1 1 1 1
0 0 0 1
0 1 1 1
0 0 1 1



α1

α2

α3

α4

 =


a
b
c
d

 .
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Now we apply Gauß-Jordan to the augmented matrix:
1 1 1 1 a
0 0 0 1 b
0 1 1 1 c
0 0 1 1 d

 −→


1 1 1 1 a
0 1 1 1 c
0 0 1 1 d
0 0 0 1 b

 −→


1 1 1 0 a− b
0 1 1 0 c− b
0 0 1 0 d− b
0 0 0 1 b



−→


1 1 0 0 a− d
0 1 0 0 c− d
0 0 1 0 d− b
0 0 0 1 b

 −→


1 0 0 0 a− c
0 1 0 0 c− d
0 0 1 0 d− b
0 0 0 1 b

 .

So we see that there is exactly one solution for any given M ∈ M(2 × 2). Existence of the
solution shows that the matrices A,B,C,D generate M(2 × 2) and uniqueness shows that
they are linearly independent if we choose M = 0.

Now we proceed with some theory. The next theorem is very important. It says that if V has a
basis which consists of n vectors, then every basis consists of exactly n vectors.

Theorem 4.38. Let V be a vector space and let {v1, . . . , vn} and {w1, . . . , wn} be bases of V . Then
n = m.

Definition 4.39. The number n (=number of elements of a basis) is called the dimension of V .
It is denoted by dimV .

Proof of Theorem 4.38. Suppose that m > n. We will show that then the vectors w1, . . . , wm
cannot be linearly independent, hence they cannot be a basis of V . Let us start. Since the vectors
v1, . . . , vn are a basis of V , every wj can be written as a linear combination of them. So there exist
numbers aij which

w1 = a11v1 + a12v2 + · · · + a1nvn
w2 = a21v1 + a22v2 + · · · + a2nvn

...
...

wm = am1v1 + am2v2 + · · · + amnvn.

(4.3)

Now we consider the equation

c1w1 + · · ·+ cmwm = 0. (4.4)

If the w1, . . . , wm were linearly independent, then it should follow that all cj are 0. We insert (4.3)
into (4.4) and obtain

0 = c1(a11v1 + a12v2 + · · ·+ a1nvn) + c2(a21v1 + a22v2 + · · ·+ a2nvn)

+ · · ·+ cm(am1v1 + am2v2 + · · ·+ amnvn)

= (c1a11 + c2a21 + · · ·+ cmam1)v1 + · · ·+ (c1a1n + c2a2n + · · ·+ cmamn)vn.

Since the vectors v1, . . . , vn are linearly independent, the expressions in the parentheses must be
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equal to zero. So we find

c1a11 + c2a12 + · · · + cma1m = 0
c1a21 + c2a22 + · · · + cma2m = 0

...
...

c1a1n + c2a2n + · · · + cmamm = 0.

(4.5)

This is a homogeneous system of n equations for the m unknowns c1, . . . , cm. Since n < m, we
know that it has infinitely many solutions. So the system {w1, . . . , wm} is not linearly independent
and therefore it cannot be a basis of V . Therefore m > n cannto be true and me must have that
n ≥ m.

If we assume that n > m, then the same argument as above, with the roles of the vj and the wj
exchanged, leads to a contradiction and we must have n ≤ m.
In summary we showed that both mn ≥ m and n ≤ m must be true. Therefore m = n.

Corollary 4.40. Let V be a vector space.

• If the vectors v1, . . . , vk ∈ V are linearly independent, then k ≤ dimV .

• If the vectors v1, . . . , vm ∈ V generate V , then m ≥ dimV .

Theorem 4.41. Let V be a vector space with basis {v1, . . . , vn}. Then every x ∈ V can be written
in unique way as linear combination of the vectors v1, . . . , vn.

Proof. We have to show existence and uniqueness of numbers c1, . . . , cn such that w = c1v1 +
· · · cnvn.

Existence is clear since the set {v1, . . . , vn} is a set of generators of V (it is even a basis!).
Uniqueness can be shown as follows. Assume that there are numbers c1, . . . , cn and d1, . . . , dn such
that w = c1v1 + · · · cnvn and w = d1v1 + · · · dnvn. Then it follows that

0 = w − w = c1v1 + · · · cnvn − (d1v1 + · · · dnvn) = (c1 − d1)v1 + · · · (cn − dn)vn.

Then all the parentheses have to be zero because the v1, . . . , vn are linearly independent. Hence it
follows that c1 = d1, . . . , cn = dn, which shows uniqueness.

Definition 4.42. A vector space V is called finitely generated if has a basis consisting of finitely
many vectors.

For example the spaces Rn, M(m × n), Pn are finitely generated. The spaces P consisting of all
polynomials is not finitely generated. (Can you prove this?1)
Next we show that every finitely generated vector space has a basis.

1Assume that P is finitely generated and let q1, . . . , qk be a system of generators of P . Note that the qj are
polynomials. We will denote their degrees by mj = deg qj and we set M = max{m1, . . . ,mk}. No matter which
coefficients we choose, any linear combination of them will be a polynomial of degree at most M . However, there are
elemnts in P which have higer degree, for example Xm+1. Therefore q1, . . . , qk cannot generate all of P .

Another proof using the conept of dimension will be given in Example 4.49 (f).

Last Change: Do 9. Apr 02:18:22 CEST 2020



D
R
A
F
T

74 4.4. Basis and dimension

Theorem 4.43. Let V be a vector space and assume that there are vectors w1, . . . , wm ∈ V such
that V = span{w1, . . . , wm}. Then V has a finite basis.

Proof. Without restriction we may assume that all vectors wj are different from 0. We start with
the first vector. If V = span{w1}, then {w1} is a basis of V and dimV = 1. Otherwise we set
V1 = span{w1} and we note that V1 6= V . Now we check if w2 ∈ span{w1}. If it is, we throw it out
because in this case span{w1} = span{w1, w2} so we do not need w2 to generate V . Next we look
if w3 ∈ span{w1}. If it is, we throw it out, etc. We proceed like this until we find a vector wi2 in
our list which does not belong to span{w1}. Such an i2 must exist because otherwise we already
had that V1 = V . Then we set V2 = span{w1, wi2}. If V2 = V , then we are done. Otherwise, we
proceed as before. We check if wi2+1 ∈ V2. If this is the case, then we can throw it out because
span{w1, wi2} = span{w1, wi2 , wi2+1}. Then we check wi2+2, etc., until we find a wi3 such that
wi3 /∈ span{w1, wi2} and we set V3 = span{w1, wi2 , wi3}. If V3 = V , then we are done. If not, then
we repeat the process. Note that after at most m repetitions, this comes to an end. This shows
that we can extract from the system of generators a basis {w1, wi2 , . . . , wik} of V .

The following theorem complements the preceding one.

Theorem 4.44. Let V be a finitely generated vector space and assume that there are vectors
w1, . . . , wm ∈ V which are linearly independent. Then they can be complemented to a basis
{w1, . . . , wm, vm+1, . . . , vn} of V .

Proof. Let n = dimV . Note that it follows that n ≥ m because we have m linearly independent
vectors in V . If m = n, then it follows that w1, . . . , wm is already a basis of V and we are done.
If m < n, then span{w1, . . . , wm} 6= V and we choose an arbitrary vector vm+1 /∈ span{w1, . . . , wm}
and we define Vm+1 := span{w1, . . . , wm, vm+1}. Then dimVm+1} = m + 1. If m + 1 = n,
then necessarily Vm+1 = V and we are done. If m + 1 < n, then we choose an arbitrary vector
vm+2 ∈ V \Vm+1 and we let Vm+2 := span{w1, . . . , wm, vm+1, vm+2}. If m+2 = n, then necessarily
Vm+2 = V and we are done. If not, we repeat the step before. Note that after n−m steps we have
found a basis {w1, . . . , wm, vm+1, . . . , vn} of V .

In summary, the two preceding theorems say the following:

• If we have a set of vectors v1, . . . vm which generate the vector space V , then it is always
possible to extract a subset which is a basis of V (we need to eliminate m− n vectors).

• If we have a set of linearly independent vectors v1, . . . vm in a finitely generated vector space
V , then it is possible to find vectors vm+1, . . . , vn such that {v1, . . . , vn} is a basis of V (we
need dimV −m such vectors).

Example 4.45. • Let A = ( 1 0
0 0 ), B = ( 1 1

1 1 ) ∈M(2×2) and suppoose that we want to complete
them to a basis of M(2× 2) (it is clear that A and B are linearly independent, so this makes
sense). Since dim(M(2×2)) = 4, we know that we need 2 more matrices. We take any matrix
C /∈ span{A,B}, for example C = ( 0 1

0 0 ). Finally we need a matrix D /∈ span{A,B,C}. We
can take for example D = ( 0 0

1 0 ). So we find that A,B,C,D is a basis of M(2× 2).

Exercise. Check that D /∈ span{A,B,C}
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• Suppose that we are given the vectors ~v1 =
(

1
0
1

)
, ~v2 =

(
4
0
4

)
, ~v3 =

(
1
2
3

)
, ~v4 =

(
0
2
1

)
, ~v5 =(

0
0
2

)
, ~v6 =

(
2
1
5

)
and we want to find a subset of them which form a basis of R3.

First observe that we need 3 vectors for a basis since dimR3 = 3. So we start with the
first non-zero vector which is ~v1. We see that ~v2 = 4~v1, so we discard it. We keep ~v3 since
~v3 /∈ span{~v1}. Next, ~v4 = ~v3−~v1, so ~v4 ∈ span{~v1, ~v3} and we discard it. A little calculation
shows that ~v5 /∈ span{~v1, ~v3}. Hence {~v1, ~v3, ~v5} is a basis of R3.

Remark 4.46. We will present a more systematic way to solve exercises of this type in
Theorem 5.27 and Remark 5.28.

If we have a vector space V and a subspace W ⊂ V , then we can ask ourselves what the relation
between their dimensions is because W itself is a vector space.

Theorem 4.47. Let V be a finitely generated vector space and let W ⊆ V be a subspace. Then the
following is true:

(i) dimW ≤ dimV .

(ii) dimW = dimV if and only if W = V .

Proof. (i) Let {w1, . . . , wk} be a basis of W . Then these vectors are linearly independent in
W , and therefore also in V . By Theorem 4.44 we can find vectors vm+1, . . . , vn such that
{w1, . . . , wm, vm+1, . . . , vn} is a basis of V . Note that by construction m ≤ n. We also know
that m = dimW and n = dimV , hence the claim is proved.

(ii) If V = W , then clearly dimV = dimW . To show the converse, we now assume that dimV =
dimW and we have to show that V = W . As before let {w1, . . . , wk} be a basis of W . Then
these vectors are linearly independent in W , and therefore also in V . Since dimW = dimV ,
we know that these vectors form a basis of V . Therefore V = span{w1, . . . , wm} = W .

Remark 4.48. Note that (i) is true even when V is not finitely generated. Note however that in
general (ii) is not true for infinite dimensional vector spaces. In Example 4.49 (f) and (g) we will
show that dimP = dimC(R) in spite of P 6= C(R). (Recall that P is the set of all polynomials and
that C(R) is the set of all continuous functions. So we have P ( C(R).)

Now we give a few examples of dimensions of spaces.

Examples 4.49. (a) dimRn = n, dimCn = n.

(b) dimM(m×n) = mn. This follows because the set of all m×n matrices Aij which have a 1 in
the ith row and jth column and all other entries are equal to zero form a basis of M(m× n)
and there are exactly mn such matrices.

(c) Let Msym(n×n) be the set of all symmetric n×n matrices. Then dimMsym(n×n) = n(n+1)
2 .

To see this, let Aij be the n × n matrix with aij = aji = 1 and all other entries equal to 0.
Observe that Aij = Aji. It is not hard to see that the set of all Aij with i ≤ j form a basis of
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Msym(n×n). The dimension of Msym(n×n) is the number of different matrices of this type.
So how many of them are there? If we fix j = 1, then only i = 1 is possible. If we fix j = 2,
then i = 1, 2 is possible, etc. until for j = n the allowed values for i are 1, 2, . . . , n. In total

we have 1 + 2 + · · · + n = n(n+1)
2 possibilities. For example, in the case n = 2, the matrices

are

A11 = ( 1 0
0 0 ), A12 = ( 0 1

1 0 ), A12 = ( 0 0
0 1 ).

In the case n = 3, the matrices are

A11 =
(

1 0 0
0 0 0
0 0 0

)
, A12 =

(
0 1 0
1 0 0
0 0 0

)
, A22 =

(
0 0 0
0 1 0
0 0 0

)
, A13 =

(
0 0 1
0 0 0
1 0 0

)
, A23 =

(
0 0 0
0 0 1
0 1 0

)
, A33 =

(
0 0 0
0 0 0
0 0 1

)
.

Exercise. Convince yourself that the Aij form a basis of Msym(n× n).

(d) Let Masym(n× n) be the set of all antisymmetric n× n matrices. Then dimMasym(n× n) =
n(n−1)

2 . To see this, for i 6= j let Aij be the n × n matrix with aij = −aji = 1 and all other
entries equal to 0 form a basis of Msym(n × n). It is not hard to see that the set of all Aij
with i < j form a basis of Masym(n × n). How many of these matrices are there? If we fix
j = 2, then only i = 1 is possible. If we fix j = 3, then i = 1, 2 is possible, etc. until for j = n

the allowed values for i are 1, 2, . . . , n − 1. In total we have 1 + 2 + · · · + (n − 1) = n(n−1)
2

possibilities. For example, in the case n = 2, the matrices are

A12 =
(

0 1
−1 0

)
.

In the case n = 3, the matrices are

A12 =
(

0 1 0
−1 0 0

0 0 0

)
, A13 =

(
0 0 1
0 0 0
−1 0 0

)
, A23 =

(
0 0 0
0 0 1
0 −1 0

)
.

Exercise. Convince yourself that the Aij form a basis of Masym(n× n).

Remark. Observe that dimMsym(n × n) + dimMasym(n × n) = n2 = dimM(n × n). This
is no coincidence. Observe that every n× n matrix M can be written as

M = 1
2 (M +M t) + 1

2 (M −M t)

and that 1
2 (M +M t) ∈Msym(n× n) and 1

2 (M −M t) ∈Masym(n× n). Therefore M(n× n)
is the direct sum of Msym(n× n) and Masym(n× n). We will talk about direct sums later.

(e) dimPn = n+ 1 since {1, X, . . . ,Xn} is a basis of Pn and consists of n+ 1 vectors.

(f) dimP =∞. Recall that P is the space of all polynomials.

Proof. We know that for every n ∈ N, the space Pn is a subspace of P . Therefore for every
n ∈ N, we must have that n+ 1 = dimPn ≤ dimP . This is possible only if dimP =∞.

(g) dimC(R) =∞. Recall that C(R) is the space of all continuous functions.
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Proof. Since P is a subspace of C(R), it follows that dimP ≤ dim(C(R)), hence dim(C(R)) =
∞.

Now we use the concept of dimension to classify all subspaces of R2 and R3. We already know that
for examples lines and planes which pass through the origin are subspaces of R3. Now we can show
that there are no other proper subspaces.

Subspaces of R2. Let U be a subspace of R2. Then U must have a dimension. So we have the
following cases:

• dimU = 0. In this case U = {~0} is the trivial subspace.

• dimU = 1. Then U is of the form U = span{~v1} with some vector ~v1 ∈ R2 \ {~0}. Then U is
a line parallel to ~v1 passing through the origin.

• dimU = 2. In this case dimU = dimR2. Hence it follows that U = R2 by Theorem 4.47 (ii).

• dimU ≥ 3 is not possible.

In conclusion, the only subspaces of R2 are {~0}, lines passing through the origin and R2 itself.

Subspaces of R3. Let U be a subspace of R3. Then U must have a dimension. So we have the
following cases:

• dimU = 0. In this case U = {~0} is the trivial subspace.

• dimU = 1. Then U is of the form U = span{~v1} with some vector ~v1 ∈ R3 \ {~0}. Then U is
a line parallel to ~v1 passing through the origin.

• dimU = 2. Then U is of the form U = span{~v1, ~v2} with linearly independent vectors
~v1, ~v2 ∈ R3. Hence U is a plane parallel to the vectors ~v1 and ~v2 which passes through the
origin.

• dimU = 3. In this case dimU = dimR3. Hence it follows that U = R3 by Theorem 4.47 (ii).

• dimU ≥ 4 is not possible.

In conclusion, the only subspaces of R3 are {~0}, lines passing through the origin, planes passing
through the origin and R3 itself.
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Chapter 5

Linear transformations and change
of bases

In the first section of this chapter we will define linear maps between vector spaces and discuss
their properties. These are fuctions which “behave well” with respect to the vector space structure.
For example, m× n matrices can be viewed as linear maps from Rm to Rn. We will prove the so-
called dimension formula for linear maps. In Section 5.2 we will study the special case of matrices.
One of the main results will be the dimension formula (5.7). In Section 5.4 we will see that, after
choice of a basis, every linear map between finite dimensional vector spaces, can be represented as
a matrix. This will allow us to carry over results on matrices to the case of linear transformations.
In partiuclar the dimension formula (??) holds.

5.1 Linear maps

Definition 5.1. Let U, V be vector spaces. A function A : U → V is called a linear map (or linear
function or linear operator) if for all x, y ∈ U and λ ∈ K the following is true:

A(x+ y) = Ax+Ay, A(λx) = λAx. (5.1)

Remark. Note that very often one writes Ax instead of A(x) when A is a linear function.

Remark 5.2. (i) Clearly, (5.1) is equivalent to

A(x+ λy) = Ax+ λAy for all x, y ∈ U and λ ∈ K.

(ii) It follows immediately from the definition that

A(λ1v1 + · · ·+ λkvk) = λ1Av1 + · · ·+ λkAvk

for all v1, . . . , vk ∈ V and λ1, . . . , λk ∈ K.

(iii) The condition (5.1) says that a linear map respects the vector space structures of its
domain and its target space.
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Examples 5.3 (Linear maps). (i) Every matrix A ∈M(m×n) can be identified with a linear
map Rn → Rm.

(ii) Differentiation is a linear map, for example

(a) T : C1(R) → C(R), T f = f ′, where C1(R) is the space of continuously differentiable
functions.

Proof. First of all note that f ′ ∈ C(R) if f ∈ C1(R), so the map T is well-defined. Now
want to see that it is linear. So we take f, g ∈ C1(R) and λ ∈ R. We find

T (λf + g) = (λf + g)′ = (λf)′ + g′ = λf ′ + g′ = λTf + Tg.

(b) T : Pn → Pn−1, T f = f ′.

(iii) Integration is a linear map. For example:

I : C([0, 1])→ C([0, 1]), f 7→ If where (If)(x) =

∫ x

0

f(t) dt.

Proof. Clearly I is well-defined since the integral of a continuous function is again continuous.
In order to show that I is linear, we fix f, g ∈ C(R) and λ ∈ R. We find for every x ∈ R:

(I(λf + g)(t) =

∫ x

0

(λf + g)(t) dt =

∫ x

0

λf(t) + g(t) dt = λ

∫ t

0

f(t) dt+

∫ x

0

g(t) dt

= λ(If)(x) + (Ig)(x).

Since this is true for every x, it follows that I(λf + g) = λ(If) + (Ig).

Lemma 5.4. If A is a linear map, then A0 = 0.

Proof. 0 = A0−A0 = A(0− 0) = A0.

Definition 5.5. Let A : U → V be a linear map.

(i) A is called injective (or one-to-one) if

x, y ∈ U, x 6= y =⇒ Ax 6= Ay.

(ii) A is called surjective if for all v ∈ V exists at least one x ∈ U such that Ax = v.

(iii) A is called bijective if it is injective and surjective.

(iv) The kernel of A (or null space of A, espacio nulo de A) is

ker(A) := {x ∈ U : Ax = 0}.

Sometimes the notations N(A) or NA instead of ker(A) are used.
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(v) The image of A (or range of A, imagen de A) is

Im(A) := {v ∈ V : y = Ax for some y ∈ U}.

Sometimes the notations Rg(A) or R(A) instead of Im(A) are used.

Remark 5.6. (i) Observe that ker(A) is a subset of U , Im(A) is a subset of V . In Proposition 5.9
we will show that they are even subspaces.

(ii) It follows immediately from the definition that A is surjective if and only if Im(A) = V .

(iii) Clearly, A is injective if and only if for all x, y ∈ U the following is true:

Ax = Ay =⇒ x = y.

(iv) If A is a linear injective map, then its inverse A−1 : Im(A)→ U exists and is linear too.

The following lemma is very useful.

Lemma 5.7. A linear map A is injective if and only if ker(A) = {0}.

Proof. By Lemma 5.4, we always have 0 ∈ ker(A). Assume that A is injective, then ker(A) cannot
contain any other element, hence ker(A) = {0}.
Now assume that ker(A) = {0} and let x, y ∈ U with Ax = Ay. By Remark 5.6 it is sufficient to
show that x = y. By assumption, 0 = Ax−Ay = A(x− y), hence x− y ∈ ker(A) = {0}. Therefore
x− y = 0, which means that x = y.

Examples 5.8. (i) Let A ∈M(m× n) with m < n. Then A cannot be injective.

(ii) Let T : C1(R) → C(R), Tf = f ′ the operator of differentiation from Example 5.3. Then it
is easy to see that the kernel of T consists exactly of the constant functions and that T is
surjective.

Proposition 5.9. Let A : U → V be a linear map. Then

(i) ker(A) is a subspace of U .

(ii) Im(A) is a subspace of V .

Proof. (i) Let x, y ∈ ker(A) and λ ∈ K. Then

A(x+ λy) = Ax+ λAy = 0 + λ0 = 0,

hence x+ λy ∈ ker(A).

(ii) Let v, w ∈ Im(A) and λ ∈ K. Then there exist Let x, y ∈ U such that Ax = v and Ay = y.
Then v + λw = Ax+ λAy = A(x+ λy) ∈ Im(A). hence v + λw ∈ Im(A).

Since we now know that ker(A) and Im(A) are subspaces, the following definition makes sense.
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Definition 5.10. Let A : U → V be a linear map. We define

dim(ker(A)) = nullity of A, dim(Im(A)) = rank of A.

Sometimes the notations ν(A) = dim(ker(A)) and ρ(A) = dim(Im(A)) are used.

Let us pause for a moment and see an example.

Example. Let T : P4 → P4 be defined by Tp = p′.

• Im(T ) = {q ∈ P3 : deg q ≤ 2} We know that differentiation lowers the degree of a polynomial

by 1. Hence Im(T ) ⊆ {q ∈ P3 : deg q ≤ 2}. On the other hand, we know that every polynomial
of degree ≤ 2 is the derivative of a polynomial of degree ≤ 3. So the claim follows.

• ker(T ) = {q ∈ P3 : deg q = 0} Recall that ker(T) = {p ∈ P3 : Tp = 0}. So the kernel of

T are exactly those polynomials whose first derivative is 0. These are exactly the constant
polynomials, i.e., the polynomials of degree 0.

Proposition 5.11. Let U, V be K-vector spaces, A : U → V a linear map. Let x1, . . . , xk ∈ U and
set y1 := Ax1, . . . , yk := Axk. Then the following is true.

(i) If the x1, . . . , xk are linearly dependent, then y1, . . . , yk are linearly dependent too.

(ii) If the y1, . . . , yk are linearly independent, then x1, . . . , xk are linearly independent too.

(iii) Suppose additionally that A invertible. Then x1, . . . , xk are linearly independent if and only
if y1, . . . , yk are linearly independent.

Remark. In general the implication “If x1, . . . , xk are linearly independent, then y1, . . . , yk are
linearly independent.” is false. Can you give an example?

Proof of Proposition 5.11. (i) Assume that x1, . . . , xk are linearly dependent. Then there exist
λ1, . . . , λk ∈ K such that λ1x1 + · · ·+ λkxk = 0 and at least one λj 6= 0. But then

0 = A0 = A(λ1x1 + · · ·+ λkxk) = λ1Ax1 + · · ·+ λkAxk

= λ1y1 + · · ·+ λkyk,

hence y1, . . . , yk are linearly dependent.

(ii) follows directly from (i).

(iii) Suppose that y1, . . . , yk are linearly independent. Then so are the x1, . . . , xk by (i). Now
suppose that x1, . . . , xk are linearly independent. Note that A is invertible, so A−1 exists and in
invertible too. Therefore we can apply (i) to A−1 in order to conclude that the system y1, . . . , yk is
linearly independent. (Note that xj = A−1yj .)

Exercise 5.12. Assume that A : U → V is an injective linear map and suppose that {u1, . . . , u`}
is a set of are linearly independent vectors in U . Show that {Au1, . . . , Au`} is a set of are linearly
independent vectors in V .
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The following lemma is very useful and it is used in the proof of Theorem 5.14.

Lemma 5.13. (i) If T : U → V is a bijective linear transformation, then dimU = dimV .

(ii) If T : U → V is an injective linear transformation, then dimU = dim Im(T ).

Proof. (i) Let k = dimU and n = dimV . Choose a basis {w1, . . . , wk} of U and set v1 :=
Tw1, . . . , vk := Twk. Then the vectors v1, . . . , vk are linearly independent in V by Propo-
sition 5.11 (iii). Therefore dimV ≥ k = dimU . Now choose a basis z1, . . . , zn of V and set
u1 := T−1z1, . . . , u` := T−1zn. Then, again by Proposition 5.11 (iii), the vectors u1, . . . , un
are linearly independent in U and it follows that dimW ≥ n = dimV .

In summary, both dimV ≥ dimU and dimU ≥ dimV must be true. This is possible only if
dimV = dimU .

(ii) Assume that T is injective. Then the map T : U → ImT is bijective (it is injective by assump-
tion and surjective by construction). Therefore, by (i), it follows that dimU = dim(ImT ).

Theorem 5.14. Let U, V be finite-dimensional K-vector spaces and let A : U → V a linear map.
Moreover, let E : U → U , F : V → V be linear bijective maps. Then the following is true:

(i) Im(A) = Im(AE), in particular dim(Im(A)) = dim(Im(AE)).

(ii) ker(AE) = E−1(ker(A)) and dim(ker(A)) = dim(ker(AE)).

(iii) ker(A) = ker(FA), in particular dim(ker(A)) = dim(ker(FA)).

(iv) Im(FA) = F (Im(A)) and dim(Im(A)) = dim(Im(FA)).

In summary we have

ker(FA) = ker(A), ker(AE) = E−1(ker(A)),

Im(FA) = F (Im(A)), Im(AE) = Im(A).
(5.2)

and

dim ker(A) = dim ker(FA) = dim ker(AE) = dim ker(FAE),

dim Im(A) = dim Im(FA) = dim Im(AE) = dim Im(FAE).
(5.3)

Remark 5.15. In general, ker(A) = ker(AE) and ker(A) = ker(FA) is false. Take for example
U = V = R2, A = ( 1 0

0 0 ) and E = F = ( 0 1
1 0 ). Then clearly the hypotheses of the theorem are

satisfied and

ker(A) = gen

{(
0
1

)}
, Im(A) = gen

{(
1
0

)}
,

but

ker(AE) = gen

{(
1
0

)}
, Im(FA) = gen

{(
0
1

)}
.
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Remark 5.16. The theorem is also true for infinite dimensional vector spaces, but the proofs of
(ii) and (iv) must be changed a little bit.

Proof of Theorem 5.14. (i) Let v ∈ V . If v ∈ Im(A), then there exists x ∈ U such that Ax = v.
Set y = E−1x. Then v = Ax = AEE−1x = AEy ∈ Im(AE). On the other hand, if v ∈ Im(AE),
then there exists y ∈ U such that AEy = v. Set x = E. Then v = AEy = Ax ∈ Im(A).

(ii) To show ker(AE) = E−1 ker(A) observe that

ker(AE) = {x ∈ U : Ex ∈ ker(A)} = {E−1u : u ∈ ker(A)} = E−1(ker(A)).

The claim on the dimensions follows from Lemma 5.13 with E−1 as T and ker(A) as W .

(iii) Let x ∈ U . Then x ∈ ker(FA) if and only if FAx = 0. Since F is injective, we know that
ker(F ) = {0}, hence it follows that Ax = 0. But this is equivalent to x ∈ ker(A).

(iv) To show Im(FA) = F Im(A) observe that

Im(FA) = {y ∈ V : y = FAx for some x ∈ U} = {Fv : v ∈ Im(A)}
= F (Im(A)),

The claim on the dimensions follows from Lemma 5.13 with F as T and Im(A) as W .

5.2 Matrices as linear maps

Let ∈ M(m × n). We already know that we can view A as a linear map from Rn to Rm. Hence
ker(A) and Im(A) and the terms injectivity and surjectivity are defined.

If we view the matrix A at the same time as a linear system of equations, then we obtain the
following.

Remark 5.17.

(i) ker(A) = all solutions of the homogeneous system A~x = ~0.

(ii) A is injective
⇐⇒ ker(A) = {~0}
⇐⇒ the homogenous system A~x = ~0 has only the trivial solution ~x = ~0.

(iii) Im(A) = all vectors ~b such that the system A~x = ~b has a solution.

(iv) A is surjective
⇐⇒ Im(A) = Rm

⇐⇒ for every ~b ∈ Rm, the system A~x = ~b has at least one solution.

Definition 5.18. Let A ∈M(m× n) and let ~c1, . . . ,~cn be the columns of A and ~r1, . . . , ~rm be the
rows of A. We define

(i) CA := gen{~c1, . . . ,~cm} =: column space of A.
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(ii) RA := gen{~r1, . . . , ~rn} =: row space of A,

Observe that ~c1, . . . ,~cn ∈ Rm and ~r1, . . . , ~rm ∈ Rn.

It follows immediately from the definition above that

RA = CAt and CA = RAt . (5.4)

Proposition 5.19. CA = Im(A), RA = Im(At).

Proof. Let ~y ∈ Rm. Then:

~y ∈ Im(A) ⇐⇒ exists ~x ∈ Rn such that ~y = A~x = (~c1| . . . |~cn)

x1

...
xn


= x1~c1 + . . . xn~cn

⇐⇒ ~y ∈ gen{~c1, . . . ,~cn} = CA.

This shows CA = Im(A). From this it follows that RA = CAt = Im(At).

The next theorem follows easily from the general theory in Section 5.1. We will give another proof
at the end of this section.

Proposition 5.20. Let A ∈ M(m × n), E ∈ M(n × n), F ∈ M(m ×m) and assume that E and
F are invertible. Then

(i) CA = CAE.

(ii) RA = RFA.

Proof. (i) Note that CA = Im(A) = Im(AE) = CAE , where in the first and third equality we
used Proposition 5.19, and in the second equality we used Theorem 5.14.

(ii) Recall that, if F is invertible, then F t is invertible too. With (5.4) and what we already
proved in (i), we obtain RFA = C(FA)t = CAtF t = CAt = RA.

This proposition implies immediately the following proposition.

Proposition 5.21. Let A,B ∈M(m× n).

(i) If A and B are row equivalent, then

dim(ker(A)) = dim(ker(B)), dim(Im(A)) = dim(Im(B)), Im(At) = Im(Bt), RA = RB .

(ii) If A and B are column equivalent, then

dim(ker(A)) = dim(ker(B)), dim(Im(A)) = dim(Im(B)), Im(A) = Im(B), CA = CB .
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Proof. We will only prove (i). The claim (ii) can be proved similar (or can be deduced easily
from (i) by applying (i) to the transposed matrices). If A and B are row equivalent, then there
are elementary matrices F1, . . . , Fk ∈ M(m ×m) such that A = F1 . . . FkB. Note that all Fj are
invertible. Let F := F1 . . . Fk. Then F is invertible and A = FB. Hence all the claims in (i) follow
from Theorem 5.14 and Proposition 5.20.

The proposition above is very useful to calculate the kernel of a matrix A: Let A′ be the reduced
row-echelon form of A. Then the proposition can be applied to A and A′ (for B), and we find that
ker(A) = ker(A′). We know this actually since the first chapter of this course. This says nothing
else then the solutions of a homogenous system do not change if we apply row transformations.
We will calculate the kernel and range of a matrix later in Examples 5.29 and 5.30.
Now we will prove to technical lemmas.

Lemma 5.22. Let A ∈ M(m× n). Then there exist elementary matrices E1, . . . , Ek ∈ M(n× n)
and F1, . . . , F` ∈M(m×m) such that

F1 · · ·F`AE1 · · ·Ek = A′′

where A′′ is of the form

A′′ =

1

1




0 0

0

r n− r

r

m− r

(5.5)

Proof. Let A′ be the reduced row-echelon form of A. Then there exist F1, . . . , F` ∈M(m×m) such
that F1 · · ·F`A = A′ and A′ is of the form

A′ =

1 ∗ ∗ 0 ∗ ∗ 0 ∗
1 ∗ ∗ 0 ∗

1 ∗



 . (5.6)

Now clearly we can find “allowed” column transformations such that A′ is transformed into the
form A′′. If we observe that applying row transformations is equivalent to multiply A′ from the
right by elementary matrices.

Lemma 5.23. Let A′′ be as in (5.5). Then

(i) dim(ker(A)) = m− r = number of zero rows of A′′,

(ii) dim(Im(A)) = r = number of pivots A′′,

(iii) dim(CA′′) = dim(RA′′) = r.
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Proof. All assertions are clear if we note that

ker(A′′) = gen{~er+1, . . . , ~en}, Im(A′′) = gen{~e1, . . . , ~er},

where the ~ej are the standard unit vectors (that is, their jth component is 1 and all other components
are 0).

Proposition 5.24. Let A ∈M(m× n) and let A′ be its reduced row-echelon form. Then

dim(Im(A)) = number of pivots of A′.

Proof. Let F1, . . . , F`, E1, . . . , Ek and A′′ be as in (5.22) and set F := F1 · · ·F` and E := E1 · · ·Ek.
It follows that A′ = FA and A′′ = FAE. Clearly, the number of pivots of A′ and A′′ coincide.
Therefore, with the help of Theorem 5.14 we obtain

dim(Im(A)) = dim(Im(FAE))

= number of pivots of A′′

= number of pivots of A′.

Proposition 5.25. Let A ∈M(m× n). Then

dim(Im(A)) = dimCA = dimRA.

That means: (rank of row space) = (rank of column space).

Proof. Since CA = Im(A) by Proposition 5.19, the first equality is clear.

Now let F1, . . . , F`, E1, . . . , Ek and A′, A′′ be as in Lemma 5.22 and set F := F1 · · ·F` and E :=
E1 · · ·Ek. Then

dim(RA) = dim(RFAE) = dim(RA′′) = r = dim(CA′′) = dim(CFAE)

= dim(CA).

As an immediate consequence we obtain

Theorem 5.26. Let A ∈M(m× n). Then

dim(ker(A)) + dim(Im(A)) = n. (5.7)

Proof. With the notation a above, we obtain

dim(ker(A)) = dim(ker(A′′)) = n− r,
dim(Im(A)) = dim(Im(A′′)) = r

and the desired formula follows.

We will give a different proof of a more general version in theorem in Theorem 5.34.
For the calculation of a basis of Im(A), the following theorem is useful.
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Theorem 5.27. Let A ∈ M(m × n) and let A′ be its reduced row-echelon form with columns
~c1, . . . ,~cn and ~c1

′, . . . ,~cn
′ respectively. Assume that the pivot columns of A′ are the columns j1 <

· · · < jk. Then dim(Im(A)) = k and a basis of Im(A) is given by the columns ~cj1 , . . . ,~cjk of A.

Proof. Let E be an invertible matrix such that A = EA′. By assumption on the pivot columns of
A′, we know that dim(Im(A′)) = k and that a basis of Im(A′) is given by the columns ~cj1

′, . . . ,~cjk
′.

By Theorem 5.14, it follows that dim(Im(A)) = dim(Im(A′)) = k. Now observe that by definition of
E we have that E~c`

′ = ~c` for every ` = 1, . . . , n and in particular this is true for the pivot columns of
A′. Moreover, since E in invertible and the vectors ~cj1

′, . . . ,~cjk
′ are linearly independent, it follows

from Theorem 5.11 that the vectors ~cj1 , . . . ,~cjk are linearly independent. Clearly they belong to
Im(A), so we have gen{~cj1 , . . . ,~cjk} ⊆ Im(A). Since both spaces have the same dimension, they
must be equal.

Remark 5.28. The theorem above can be used to determine a basis of a subspace given in the form
U = gen{~v1, . . . , ~vk} ⊆ Rm as follows: Define the matrix A = (~v1| . . . |~vk). Then clearly U = ImA
and we can apply Theorem 5.27 to find a basis of U .

Example 5.29. Find ker(A), Im(A), dim(ker(A)), dim(Im(A)) and RA for

A =


1 1 5 1
3 2 13 1
0 2 4 −1
4 5 22 1

 .

Solution. First, let us row-reduce the matrix A:

A =


1 1 5 1
3 2 13 1
0 2 4 −1
4 5 22 1


Q21(−1)
Q41(−4)
−−−−−→


1 1 5 1
0 −1 −2 −2
0 2 4 −1
0 1 2 −3


Q32(2)
Q42(1)
−−−−→


1 1 5 1
0 −1 −2 −2
0 0 0 −5
0 0 0 −5


S2(−1)
Q43(−1)
−−−−−→


1 1 5 1
0 1 2 2
0 0 0 5
0 0 0 0


S4(1/5)
Q12(−1)
−−−−−→


1 0 3 −1
0 1 2 2
0 0 0 1
0 0 0 0


Q14(1)
Q24(−2)
−−−−−→


1 0 3 0
0 1 2 0
0 0 0 1
0 0 0 0

 =: A′.

Now it follows immediately that dimRA = dimCA = 3 and

dim(Im(A)) = #non-zero rows of A′ = 3,

dim(ker(A)) = 4− dim(Im(A)) = 1

(or: dim(Im(A)) = #pivot columns A′ = 3, or: dim(Im(A)) = dim(RA) = 3 or: dim(ker(A)) =
#non-pivot columns A′ = 1).

Kernel of A: We know that ker(A) = ker(A′) by Theorem 5.14 or Proposition 5.21. From the
explicit form of A′, it is clear that A~x = 0 if and only if x4 = 0, x3 arbitrary, x2 = −2x3 and
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x1 = −3x3. Therefore

ker(A) = ker(A′) =



−3x3

−2x3

x3

0

 : x3 ∈ R

 = gen



−3
−2

1
0


 .

Image of A: The pivot columns of A′ are the columns 1, 2 and 4. Therefore, by Theorem 5.27 a
basis of Im(A) are the columns 1, 2 and 4 of A:

Im(A) = gen




1
3
0
4

 ,


1
2
2
5

 ,


1
1
−1

1


 .

Example 5.30. Find a basis of gen{p1, p2, p3, p4} ⊆ P3 and its dimension for

p1 = x3 − x2 + 2x+ 2, p2 = x3 + 2x2 + 8x+ 13,

p3 = 3x3 − 6x2 − 5, p3 = 5x3 + 4x2 + 26x− 9.

Solution. First we identify P3 with R4 by ax3 + bx2 + cx + d =̂ (a, b, c, d)t. The polynomials
p1, p2, p3, p4 correspond to the vectors

~v1 =


1
−1

2
2

 , ~v2 =


1
2
8
13

 , ~v3 =


3
−6

0
−5

 , ~v4 =


5
4

26
−9

 .

Now we use Remark 5.28 to find a basis of gen{v1, v2, v3, v4}. To this end we consider the A whose
columns are the vectors ~v1, . . . , ~v4:

A =


1 1 3 5
−1 2 −6 4

2 8 0 26
2 13 −5 −9

 .

Clearly, gen{v1, v2, v3, v4} = Im(A), so it suffices to find a basis of Im(A). Applying row transfor-
mation to A, we obtain

A =


1 1 3 5
−1 2 −6 4

2 8 0 26
2 13 −5 −9

 −→ · · · −→


1 0 4 5
0 1 2 3
0 0 0 0
0 0 0 0

 = A′.

The pivot columns of A′ are the first and the second column, hence by Theorem 5.27, a basis of
Im(A) are its first and second columns, i.e. the vectors ~v1 and ~v2.
It follows that {p1, p2} is a basis of gen{p1, p2, p3, p4} ⊆ P3 and consequently dim(gen{p1, p2, p3, p4}) =
2.

Last Change: Do 9. Apr 02:27:03 CEST 2020



D
R
A
F
T

90 5.2. Matrices as linear maps

Remark 5.31. Let us use the abbreviation π = gen{p1, p2, p3, p4}. The calculation above actually
shows that any two vectors of p1, p2, p3, p4 form a basis of π. To see this, observe that clearly any
two of them are linearly independent, hence the dimension of their generated space is 2. On the
other hand, this generated space is a subspace of π which has the same dimension 2. Therefore
they must be equal.

Remark 5.32. If we wanted to complete p1, p2 to a basis of P3, we have (at least) the two following
options:

(i) Find two linearly independent vectors which are orthogonal to ~v1 an ~v2. This leads to a
homogenous system of two equations for four unknowns, namely

x1− x2+2x3+2x4 = 0,

x1+2x2−6x3+4x4 = 0

or, in matrix notation, P~x = 0 where P is the 2× 4 matrix whose rows are p1 and p2. Since
clearly Im(P ) ⊆ R2, it follows that dim(Im(P )) ≤ 2 and therefore dim(ker(P )) ≥ 4− 2 = 2.

(ii) Another way to find q3, q4 ∈ P3 such that p1, p2, q3, q4 forms a basis of P3 is to use the
reduction process that was employed to find A′. Assume that E is an invertible matrix such
that A = EA′. Such an E can be found by keeping track of the row operations that transform
A into A′. Let ~ej be the standard unit vectors of R4. Then we already know that ~v1 = E~e1

and ~v2 = E~e2. If we set ~w3 = E~e3 and ~w4 = E~e4, then ~v1, ~v2, ~w3, ~w4 form a basis of R4.
This is because ~e1, . . . , ~e4 are linearly independent and E is injective. Hence E~e1, . . . , E~e4 are
linearly independent too (by Proposition 5.11).

Sometimes useful is the following theorem.

Theorem 5.33. Let A ∈M(m× n). Then ker(A) = (RA)⊥.

Proof. Let ~r1, . . . , ~rn be the rows of A. Since RA = gen{~r1, . . . , ~rn}, it suffices to show that
~x ∈ ker(A) if and only if ~x ⊥ ~rj for all j = 1, . . . ,m.
By definition ~x ∈ ker(A) if and only if

~0 = A~x =

~r1

...
~rm


x1

...
xm

 =

 〈~r1 , ~x〉
...

〈~rm , ~x〉


This is the case if and only if 〈~rj , ~x〉 for all j = 1, . . . ,m, that is, if and only if ~x ⊥~~rj for all
j = 1, . . . ,m. (〈· , ·〉 denotes the inner product on Rn.)

Alternative proof of Theorem 5.33. Observe that RA = CAt = Im(At). So we have to show that
ker(A) = (Im(At))⊥. Recall that 〈Ax , y〉 = 〈x ,Aty〉. Therefore

x ∈ ker(A) ⇐⇒ Ax = 0 ⇐⇒ Ax ⊥ Rm

⇐⇒ 〈Ax , y〉 = 0 for all y ∈ Rm

⇐⇒ 〈x ,Aty〉 = 0 for all y ∈ Rm ⇐⇒ x ∈ (Im(A))t.
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Finally we want to give an alternative (coordinate free!) proof of Theorem 5.26.

Theorem 5.34. Let U, V be vector spaces, T : U → V a linear map and set n = dimU . Then

dim(ker(T )) + dim(Im(T )) = n. (5.7)

Proof. Let k = dim(ker(T )) and let {u1, . . . , uk} be a basis of ker(T ). We complete it to a basis
{u1, . . . , uk, wk+1, . . . , wn} to a basis of U . We set W := span{wk+1, . . . , wn} and we consider

T̃ = T |W the restriction of T to W .

T̃ is injective because T̃ x = 0 for some x ∈ W if and only if x ∈ ker(T ) ∩ W = {0}, hence

ker(T̃ ) = {0}. Therefore we know that T̃wk+1, . . . , T̃wn are linearly independent by Exercise 5.12.

On the other hand, Im(T̃ ) = span{T̃wk+1, . . . , T̃wn}, therefore dim(Im T̃ ) = n− k. It follows that

n = dim(kerT ) + dim(Im T̃ ). (5.8)

To complete the proof, it suffices to show that Im T̃ = ImT . First note that Im T̃ ⊆ ImT since
T̃ is a restriction of T . On the other hand, let v ∈ Im(T ). Then there exists an x ∈ U with
Tx = v. Now we write x as a linear combination of the basis {u1, . . . , uk, wk+1, . . . , wn}: x =
α1u1 + · · ·+ αkuk + αk+1wk+1 + · · ·+ αnwn. Therefore

v = Tx = T (α1u1 + · · ·+ αkuk + αk+1wk+1 + · · ·+ αnwn)

= T (α1u1 + · · ·+ αkuk) + T (αk+1wk+1 + · · ·+ αnwn)

= T (αk+1wk+1 + · · ·+ αnwn)

= T̃ (αk+1wk+1 + · · ·+ αnwn) ∈ Im(T̃ ).

Here we used that α1u1+· · ·+αkuk ∈ ker(T ) so that T (α1u1+· · ·+αkuk) = 0 and that αk+1wk+1+

· · ·+ αnwn ∈ W , therefore T (αk+1wk+1 + · · ·+ αnwn) = T̃ (αk+1wk+1 + · · ·+ αnwn). So we have

showed that Im T̃ = ImT , in particular their dimensions are equal and the claim follows from
(5.8).

5.3 Change of bases

Usually we represent vectors in Rn as column of numbers, for example

~v =

 3
2
−1

 , or more generally, ~w =

xy
z.

 , (5.9)

Such columns of numbers are usually interpreted as the Cartesian coordinates of the tip of the
vector if its initial point is in the origin. So for example, we can visualise ~v as a vector which we
obtain when we move 3 units along the x-axis, 4 units along the y-axis and −1 unit along the z-axis.
If we set ~e1, ~e2, ~e3 the unit vectors which are parallel to the x-, y- and z-axis, respectively, then we
can write ~v as a weighted sum of them:

~v =

 3
2
−1

 = 3~e1 + 2~e2 −~e3. (5.10)
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Figure 5.1: The pictures shows the point (3, 5) in “bishop” and “knight” coordinates. The vectors

for the bishop are ~b1 = ( 1
1 ), ~b2 =

(−1
1

)
and ~xB = ( 3

1 ). The vectors for the knight are ~k1 =

( 2
1 ), ~k2 = ( 1

2 )B and ~xK =
(

1
3
7
3

)
K

.

So the column of numbers which we use to describe ~v in (5.9) can be seen as a convenient way to
abbreviate the sum in (5.10).

Sometimes it makes sense to describe a certain vector not by its Cartesian coordinates. For instance,
think of an infinitely big chess field (this is R2). Then the rock is moving a along the Cartesian axis

while the bishop moves a along the diagonals, that is along ~b1 = ( 1
1 ), ~b2 =

(−1
1

)
and the knight

moves in directions parallel to ~k1 = ( 2
1 ), ~k2 = ( 1

2 ). We suppose that in our imaginary chess game
the rock, the bishop and the knight may move in arbitrary multiples of their directions. Suppose
all three of them are situated in the origin of the field and we want to move them to the field (3, 5).
For the rock, this is very easy. It only has to move 3 steps to the right and then 5 steps up. He
would denote his movement as ~vr = ( 3

5 ). The bishop cannot do this. He can move only along

the diagonals. So what does he have to do? We has to move 4 steps in direction of ~b1 and 1 step
indirection ~b2. So he would denote his movement with respect to his bishop coordinate system as
~vB = ( 4

2 )B . Finally the knight has to move 1
3 steps in direction ~k1 and 7

3 steps in direction ~k2

to reach the point (3, 5). So he would denote his movement with respect to his knight coordinate

system as ~vK =
(

1/3
7/3

)
K

.

Exercise. Check that ~vB = ( 4
2 )b = 4~b1 +2~b2 = ( 3

5 ) and that ~vK =
(

1/3
7/3

)
k

= 1/3~k1 +7/3~k2 = ( 3
5 ).

So the three vectors ~v, ~vB and ~vK look very differently but they describe the same vector if we
remember that the have to be interpreted as linear combinations of the vectors that describe their
movements.
What we just did was to perform a change of bases in R2: Instead of describing a point in the plane
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in Cartesian coordinates, we used “bishop”- and “knight”-coordinates.

We can also go in the other direction and transform from “bishop”- or “knight”-coordinates to
Cartesian coordinates. Assume that we know that the bishop moves 3 steps in his direction ~b1 and
−2 steps in his direction ~b2, where does he end up? In his coordinate system, he is displaced by the
vector ~uB =

(
3
−2

)
. In Cartesian coordinates this would be ~uB = 3~b1 − 2~b2 = ( 3

3 ) +
(−2
−2

)
= ( 1

1 ).

If we move the knight 2 steps in his direction ~k1 and 3 step in his direction ~k2, that is, we move
him along ~wK = ( 2

3 ) according to his coordinate system. In Cartesian coordinates this would be

~wK = 4~b1 + 3~b2 = ( 8
4 ) + ( 3

6 ) = ( 11
10 ).

Can the bishop and the knight reach every point in the plane? If so, in how many ways? The
answer is yes, and they can do so in exactly on way. The reason is that for the bishop and for the
knight, their set of direction vectors each form a basis of R2 (verify this!).

Let us formalise what we just did. Assume we are given an ordered basis B = {~b1, . . . ,~bn} of Rn.
If we write

~xB =

x1

...
xn


B

(5.11)

then we interprete it a vector which is expressed with respect to the basis B. If there in no
index attached to the vector, then we interprete it as an vector with respect to the canonical basis
~e1, . . . , ~en of Rn. Now we want to find a way to calculate the Cartesian coordinates (that is, those
with respect to the canonical basis) if we are given a vector in B-coordinates and the other way
around.
It will turn out that the following matrix will be very useful: AB→can = (~v1| . . . |~vn) = matrix whose
columns are the vectors of the basis B. We will explain the index “B → can” in a moment.

• Suppose we are given a vector as in (5.11). How do we obtain its Cartesian coordinates?

This is quite straightforward. We only need to remember what the notation (
...)B means. We will

denote by ~xB the representation of the vector with respect to the basis B and by ~x its representation
with respect to the standard basis of Rn.

~x =

x1

...
xn


B

= x1
~b1 + x2

~b2 + · · ·+ xn~bn = (~b1|~b2| · · · |~bn)

x1

...
xn

 = AB→can

x1

...
xn

 = AB→can~xB ,

that is

~x = AB→can~xB , (5.12)

The last vector (the one with the y1, . . . , yn in it) describes the same vector as ~xB , but it does so
with respect to the standard basis of Rn). The matrix is called the transition matrix from the basis
B to the canonical basis (which explains the subscript “B → can”). The matrix is also called the
change-of-coordinates matrix

• Suppose we are given a vector ~x in Cartesian coordinates. How do we calculate its coordinates
~xB with respect to the basis B?
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We only need to remember the relation between ~x and ~xB which according to (5.12) is

~x = AB→can~xB .

In this case, we know the entries of the vector ~xB . So we only need to invert the matrix AB→can
in order to obtain the entries of ~xB :

~xB = A−1
B→can~x.

This requires of course to know that AB→can invertible. But this is guaranteed by Theorem 4.33
since we know that its columns are linearly independent. So it follows that the transitions matrix
from the canonical basis to the basis B is given by

Acan→B = A−1
B→can.

Note that we could do this also “by hand”: We are given ~x = (y1, . . . , yn) and we want to find
the entries x1, . . . , xn of the vector ~xB which describes the same vector. That is, we need numbers
x1, . . . , xn such that

~x = x1
~b1 + · · ·+~bnxn.

If we know the vectors ~b1, . . . , ~bn, then we can write this as a n× n system of linear equations and
then solve it for x1, . . . , xn which of course in reality is the same as inverting the matrix AB→can.

Now assume that we have two ordered bases B = {~b1, . . . ,~bn} and C = {~c1, . . . ,~cn} of Rn and we
are given a vector ~xB with respect to the basis B. How can we calculate its representation ~xC with
respect to the basis C? The easiest way is to use the canonical basis of Rn as an auxiliary basis.
So we first calculate the given vector ~xB with respect to the canonical basis, we call this vector ~x.
Then we go from ~x to ~xC . According to the formulas above, this is

~xC = ~Acan→C~x = Acan→CAB→can~xB

Hence the transition matrix from the basis B to the basis C is

AB→C = Acan→CAB→can.

Example 5.35. Let us go back to our example of our imaginary chess board. We have the “bishop
basis” B = {~b1, ~b2} where~b1 = ( 1

1 ), ~b2 =
(−1

1

)
and the “knight basis” K = {~k1, ~k2} ~k1 = ( 2

1 ), ~k2 =
( 1

2 ). Then the transition matrices to the canonical basis are

AB→can =

(
1 −1
1 1

)
, AK→can =

(
2 1
1 2

)
,

their inverses are

Acan→B =
1

2

(
1 1
−1 1

)
, Acan→K =

1

3

(
2 −1
−1 2

)
and the transition matrices from C to K and from K to C are

AB→K =
1

3

(
3 −3
1 1

)
, AK→C =

1

2

(
1 3
−1 3

)
.

• Given a vector ~xB = ( 2
7 )B in bishop coordinates, how does it look like in knight coordinates?
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Solution. ~xK = AB→K~xB = 1
3

(
3 −3
1 1

)
( 2

7 ) =
(−5

3

)
. �

• Given a vector ~yK = ( 5
1 )K in knight coordinates, how does it look like in bishop coordinates?

Solution. ~yB = AK→B~yK = 1
2

(
1 3
−1 3

)
( 5

1 ) =
(

3
−1

)
. �

• Given a vector ~z = ( 1
3 ) in standard coordinates, how does it look like in bishop coordinates?

Solution. ~zB = Acan→B~z = 1
2

(
1 1
−1 1

)
( 1

3 ) = ( 2
1 ). �

Example 5.36. Recall the example where we had a shop that sold different types of packages of
food. Package type A contains 4 sausages and 3 potatoes and package type B contains 1 sausage
and 2 potatoes and we wanted to know how many packages of each type we had to buy if we want to
have 7 sausages and 9 potatoes. This can be viewed a as a change-of-bases problem. If we view all
every point in the xy-plane as representing a configuration (sausage, potato), then what we wanted
to do is to write a given sausage-potato vector as a (package A)-(package B)-vector.

In the rest of this section we will apply these ideas to introduce coordinates in abstract (finitely
generated) vector spaces V given a basis. This allows us to identify in a certain sense V with an
appropriate Rn or Cn.
Assume we are given a real vector space V with an ordered basis B = {v1, . . . , vn}. (Everything
works the same if V is a complex vector space; we only need to replace R by C and the word “real”
by “complex” everywhere). Given a vector w ∈ V , we know that there are uniquely determined
real numbers α1, . . . , αn such that

w = α1v1 + · · ·+ αnvn.

So, if we are given w, we can find the numbers α1, . . . , αn. On the other hand, if we are given the
numbers α1, . . . , αn, we can easily reconstruct the vector w (just replace in the right hand side of
the above equation). Therefore it makes sense to write

w =

α1

...
αn


B

where again the index B reminds us that the column of numbers has to be understood at the
coefficients with respect to the basis B. In this way, we identify V with Rn since every column
vector gives on vector w in V and every vector w gives one column vector in Rn. Note that if we
start with some w in V , calculate its coordinates in Rn and then go back to V , we end up again
with the original vector w.

Example 5.37. In P2, consider the bases B = {p1, p2, p3}, C = {q1, q2, q3}, D = {r1, r2, r3}
where

p1 = 1, p2 = X, p3 = X2, q1 = X2, q2 = X, q3 = 1, r1 = X2 + 2X, r2 = 5X + 2, r3 = 1.

We want to write the polynomial t(X) = aX2 + bX + c with respect to the given basis.
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• Basis B: Clearly, t = cp1 + bp2 + ap3, therefore

t =

cb
a


B

.

• Basis C: Clearly, t = aq1 + bq2 + cq3, therefore

t =

ab
c


C

.

• Basis D: This requires some calculations. Recall that we need numbers α, β, γ ∈ R such that

t =

αβ
γ


D

= αr1 + r2β + r3γ.

This leads to the following equation

aX2 + bX + c = α(X2 + 2X) + β(5X + 2) + γ = αX2 + (2α+ 5β)X + 2β + γ.

Comparing coefficients we obtain

α = a
2α + 5β = b

2β + γ = c.

 in matrix form:

1 0 0
2 5 0
0 2 1

αβ
γ

 =

ab
c

 . (5.13)

Note that the columns of the matrix appearing on the right hand side are exactly are exactly

the vector representations with respect to the basis C and the column vector
(
a
b
c

)
is exactly

the vector representation of t with respect to the basis C! The solution of the system is

α = a, β = − 1
5a+ 1

5b, γ = 4
5a−

2
5b+ c,

therefore

t =

 a
− 1

5a+ 1
5b

4
5a−

2
5b+ c


D

.

We could have found the solution also by doing a detour through R3 as follows: We identify the
vectors q1, q2, q3 with the canonical basis vectors e1, ~e2,~e3 of R3. Then the vectors r1, r2, r3

and t correspond to

~r′1 =

1
2
0

 , ~r′2 =

0
5
2

 , ~r′3 =

0
0
1

 , ~t′ =

ab
c

 .
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Let R = {~r′1, ~r′2, ~r′3}. In order to find the coordinates of ~t′ with respect to the basis ~r′1, ~r
′
2, ~r
′
3,

we note that
~t′ = AR→can~t

′
R

where AR→can is the transition matrix from the basis R to the canonical basis of R whose
columns consist of the vectors ~r′1, ~r

′
2, ~r
′
3. So we see that this is exactly the same equation as

the one in (5.13).

We give a final example in a space of matrices.

Example 5.38. Consider the matrices

R =

(
1 1
1 1

)
, S =

(
1 0
0 3

)
, T =

(
0 1
1 0

)
, Z =

(
2 3
3 0

)
.

(i) Show that B = {R,S, T} is a basis of Msym(2×2) (the space of all symmetric 2×2 matrices).

(ii) Write Z in terms of the basis B.

Solution. (i) Clearly, R,S, T ∈Msym(2× 2). Since we already now that dimMsym(2× 2) = 3,
it suffices to show that R,S, T are linearly independent. So let us consider the equation

0 = αR+ βS + γT =

(
α+ β α+ γ
α+ γ α+ 3β

)
.

We obtain the system of equations

α + β = 0
α + + γ = 0
α + 3β + = 0

 in matrix form:

1 1 0
1 0 1
1 3 0


︸ ︷︷ ︸

=A

αβ
γ

 =

0
0
0

 . (5.14)

Doing some calculations, if follows that α = β = γ = 0. Hence we showed that R,S, T are
linearly independent and therefore they are a basis of Msym(2× 2).

(ii) In order to write Z in terms of the basis B, we need to find α, β, γ ∈ R such that

Z = αR+ βS + γT =

(
α+ β α+ γ
α+ γ α+ 3β

)
.

We obtain the system of equations

α + β = 2
α + + γ = 3
α + 3β + = 0

 in matrix form:

1 1 0
1 0 1
1 3 0


︸ ︷︷ ︸

=A

αβ
γ

 =

2
3
0

 . (5.15)

Therefore αβ
γ

 = A−1

2
3
0

 =
1

2

 3 0 −1
−1 0 1
−3 2 1

2
3
0

 =

 3
−1

0

 ,
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therefore Z = 3R− S =
(

3
−1

0

)
B

. �
Now we give an alternative solution (which is essentially the same as the above) doing a detour

through R3. Let C = {A1, A2, A3} where A1 =

(
1 0
0 0

)
, A2 =

(
0 0
0 1

)
, A3 =

(
1 1
1 0

)
. This is

clearly a basis of Msym(2 × 2). We identify it with the standard basis ~e1, ~e2, ~e3 of R3. Then the
vectors R,S, T in this basis look like

R′ =

1
1
1

 , S′ =

1
0
3

 , T ′ =

0
1
0

 and Z ′ =

2
3
0

 .

(i) In order to show that R,S, T are linearly independent, we only have to show that the vectors
R′, S′ and T ′ are linearly independent in R. To this end, we consider the matrix A whose
columns are these vectors. Note that his is the same matrix that appeared in (5.15). It is
easy to show that this matrix is invertible (we already calculated its inverse!). Therefore the
vectors R′, S′, T ′ are linearly independent in R3, hence R,S, T are linearly independent in
Msym(2× 2).

(ii) Now in order to find the representation of Z in terms of the basis B, we only need to find the
representation of Z ′ in terms of the basis B′ = {R′, S′, T ′}. This is done as follows:

Z ′B′ = Acan→B′Z
′ = A−1Z ′ =

2
3
0

 .

5.4 Matrix representation of linear maps

Let U, V be K-vector spaces and let T : U → V be a linear map. Recall that T satisfies

T (λ1x1 + · · ·+ λkxk) = λ1T (x1) + · · ·+ λkT (xk)

for all x1, . . . , xk ∈ U and λ1, . . . , λk ∈ K. This shows that in order to know T , it is in reality
enough to know how a T acts on a basis of U . Suppose that we are given a basis B = {u1, . . . , un} ∈
U and let w ∈ U arbitrary. Then there exist uniquely determined λ1, . . . , λk ∈ K such that
w = λ1u1 + · · ·+ λnun. Hence

Tw = T (λ1u1 + · · ·+ λnun) = λ1Tu1 + · · ·+ λnTun. (5.16)

So Tw is a linear combination of the vectors Tu1, . . . , Tun ∈ V , and the coefficients are exactly
the λ1, . . . , λn.
Suppose we are given a basis C = {v1, . . . , vk} of V . Then we know that for every j = 1, . . . , n, the
vector Tuj is a linear combination of the basis vectors v1, . . . , vm of V . Therefore there exist uniquely
determined numbers aij ∈ K (i = 1, . . . ,m, j = 1, . . . n) such that Tuj = aj1v1 + · · ·+ajmvm, that
is

Tu1 = a11v1 + a21v2 + · · ·+ am1vm,

Tu2 = a12v1 + a22v2 + · · ·+ am2vm,

...
...

...
...

Tun = a1nv1 + a2nv2 + · · ·+ amnvm.

(5.17)
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Let us define the matrix AT and the vector ~λ by

AT =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn

 ∈M(m× n), ~λ =


λ1

λ2

...
λn

 ∈ Rn.

Recall that AT represents a linear map from Rn to Rm.

Now let us come back to the calculation of Tw and its connection with the matrix AT . From (5.16)
and (5.17) we obtain

Tw = λ1Tu1 + λ2Tu2 + · · ·+ λnTun

= λ1(a11v1 + a21v2 + · · ·+ am1vm)

+ λ2(a12v1 + a22v2 + · · ·+ am2vm)

+ · · ·
+ λn(a1nv1 + a2nv2 + · · ·+ amnvm)

= (a11λ1 + a12λ2 + · · ·+ a1nλn)v1

+ (a21λ1 + a22λ2 + · · ·+ a2nλn)v2

+ · · ·
+ (am1λ1 + am2λ2 + · · ·+ amnλn)vm.

The calculation shows that for every k the coefficient of vk is the kth component of the vector AT~λ!
Now we can go one step further. Recall the choice of the basis B of U and the basis C of V lets us
write w and Tw as a column vectors:

w = ~wB


λ1

λ2

...
λ1


B

, Tw =


a11λ1 + a12λ2 + · · ·+ a1nλn
a21λ1 + a22λ2 + · · ·+ a2nλn

...
am1λ1 + am2λ2 + · · ·+ amnλn


C

.

This shows that
(Tw)C = AT ~wB.

For obvious reasons, the matrix AT is called the matrix representation of T with respect to the
bases B and C.
So every linear transformation T : U → V can be represented as a matrix AT ∈M(m×n). On the
other hand, every a matrix A(m× n) induces a linear transformation TA : U → V .

Very important remark. This identification of m×n-matrices with linear maps U → V depends
on the choice of the basis! See Example 5.40.

Let us summarise what we have found so far.

Theorem 5.39. Let U, V be vector spaces and let B = {u1, . . . , un} be a basis of U and C =
{v1, . . . , vn} be a basis of V . Then the following is true:
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(i) Every linear map T : U → V can be represented as a matrix AT ∈M(m× n) such that

(Tw)C = AT ~wB

where (Tw)C is the representation of Tw ∈ V with respect to the basis C and ~wB is the
representation of w ∈ U with respect to the basis B. The entries aij of AT can be calculated
as in (5.17).

(ii) Every matrix A = (aij)i=1,...,m
j=1,...,n

∈ M(mt × n induces a linear transformation T : U → V

defined by
T (uj) = a1jv1 + . . . amjvm, j = 1, . . . , n.

(iii) T = TAT
and A = ATA

. , That means: If we start with a linear map T : U → V , calculate its
matrix representation AT and then the linear map TAT

: U → V induced by AT , then we get
back our original map T . If on the other hand we start with a matrix A ∈M(m×n), calculate
the linear map TA : U → V induced by A and then calculate its matrix representation ATA

,
then we get back our original matrix A.

Proof. We already show (i) and (ii) in the text before the theorem. To see ??, let us start with a
linear transformation T : U → V and let AT = (aij) be the matrix representation of T with respect
to the bases B and C. For TAT

, the linear map induced by AT , it follows that

TATuj = a1jv1 + . . . amjvm = Tuj , j = 1, . . . , n

Since this is true for all basis vectors and both T and TAT
are linear, they must be equal.

If on the other hand we are given a matrix A = (aij)i=1,...,m
j=1,...,n

∈ M(mt × n then we have that the

linear transformation TA induced by A acts on the basis vectors u1, . . . , un as follows:

TAuj = TATuj = a1jv1 + . . . amjvm.

But then, by definition of the matrix representation ATA
of TA, it follows that ATA

= A.

Let us see this “identifications” of matrices with linear transformations a bit more formally. By
choosing a basis B = {u1, . . . , un} in U and thereby identifying U with Rn, we are in reality defining
a linear bijection

Ψ : U → Rn, Ψ(λu1 + · · ·+ λnun) =

λ1

...
λn

 .

Recall that we denoted the vector on the right hand side by ~wB.
The same happens if we choose a basis C = {v1, . . . , vm} of V . We obtain a linear bijection

Φ : V → Rm, Φ(µv1 + · · ·+ µmvm) =

µ1

...
µm

 .

With these linear maps, we find that

AT = Φ ◦ T ◦Ψ−1 and TA = Φ−1 ◦A ◦Ψ.
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The maps Ψ and Φ “translate” the spaces U and V in Rn and Rm where the chosen bases serve
as “dictionary”. Thereby they “translate” linear maps U : U → V to matrices A ∈M(m× n) and
vice versa. In a diagram this looks likes this:

U V

Rn Rm

T

Ψ Φ

AT

So in order to go from U to V , we can take the detour through Rn and Rm. One say that the
diagram above commutes. That means that it does not matter which path we take to go from on
corner of the diagram to another one as long as we move in the directions of the arrows. Note that
in this case we are even allowed to go in the opposite directions of the arrows representing Ψ and
Φ because they are bijections.

What is the use of a matrix representation of a linear map? Sometimes calculations are easier in
the world of matrices. For example, we know how to calculate the range and the kernel of a matrix.
Therefore:

• If we want to calculate ImT , we only need to calculate ImAT and then use Φ to “translate
back” to the range of T . In formula: ImT = Im(ΦAT ) = Φ(ImAT ).

• If we want to calculate kerT , we only need to calculate kerAT and then use Ψ to “translate
back” to the kernel of T . In formula: kerT = ker(ATΨ) = Ψ−1(kerAT ).

• If dimU = dimV , i.e., if n = m, then T is invertible if and only if AT is invertible. This is
the case if and only if detAT 6= 0.

In particular, we obtain the following formula for a linear transformation T : U → V :

dimU = dim(kerT ) + dim(ImT ) (5.18)

Let us see some examples.

Example 5.40. We consider the operator of differentiation

T : P3 → P3, Tp = p′.

Note that in this case the vector spaces U and V are both equal to P3.

(i) Represent T with respect to the basis B = {p1, p2, p3, p4} and find its kernel where p1 =
1, p2 = X, p3 = X2, p4 = X3.

Solution. We only need to evaluate T in the elements of the basis and the write the re-
sult again as linear combination of the basis. Since in this case, the bases are “easy”, the
calculations are fairly easy:

Tp1 = 0, Tp2 = 1 = p1, Tp3 = 2X = 2p2, Tp4 = 3X2 = 3p3.
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Therefore the matrix representation of T is

ABT =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 .

The kernel of AT is clearly span{~e1}, hence kerT = span{p1} = span{1}. �

(ii) Represent T with respect to the basis C = {q1, q2, q3, q4} and find its kernel where q1 =
X3, q2 = X2, q3 = X, q4 = 1.

Solution. Again we only need to evaluate T in the elements of the basis and the write the
result again as linear combination of the basis.

Tq1 = 3X2 = 3q2, T q2 = 2X = 2q3, T q3 = X = q4, T q4 = 0.

Therefore the matrix representation of T is

ACT =


0 0 0 0
3 0 0 0
0 2 0 0
0 0 1 0

 .

The kernel of AT is clearly span{~e4}, hence kerT = span{q4} = span{1}. �

(iii) Represent T with respect to the basis B in the domain of T (in the “left” P3) and the basis
C in the target space (in the “right” P3).

Solution. We calculate

Tp1 = 0, Tp2 = 1 = q4, Tp3 = 2X = 2q3, Tp4 = 3X2 = 3q2.

Therefore the matrix representation of T is

AB,CT =


0 0 0 0
0 0 0 3
0 0 2 0
0 1 0 0

 .

The kernel of AT is clearly span{~e1}, hence kerT = span{p1} = span{1}. �

(iv) Represent T with respect to the basis D = {r1, r2, r3, r4} and find its kernel where

r1 = X3 +X, r2 = 2X2 +X2 + 2X, r3 = 3X3 +X2 + 4X + 1, r4 = 4X3 +X2 + 4X + 1.
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Solution 1. Again we only need to evaluate T in the elements of the basis and the write
the result again as linear combination of the basis. This time the calculations are a bit more
tedious.

Tr1 = 3X2 + 1 =− 8r1 + 2r2 + r4,

T r2 = 6X2 + 2X + 2 =− 14r1 + 4r2 + r3,

T r3 = 9X2 + 2X + 4 =− 24r1 + 5r2 + 2r3 + 2r4,

T r4 = 12X2 + 2X + 4 = 30r1 + 8r2 + 2r3 + 2r4.

Therefore the matrix representation of T is

ADT =


‘− 8 −14 −24 −30

2 4 5 8
0 2 2 2
1 0 2 2

 .

In order to calculate the kernel of AT , we apply the Gauß-Jordan process and obtain

ADT =


−8 −14 −24 −30

2 4 5 8
0 2 2 2
1 0 2 2

 −→ · · · −→


1 0 0 2
0 1 0 1
0 0 1 0
0 0 0 0


The kernel of AT is clearly span{−2~e1 − ~e2 + ~e4}, hence kerT = span{−2r1 − r2 + r4} =
span{1}. �

Solution 2. We already have the matrix representation ACT and we can use it to calculate
ADT . To this end define the vectors

~ρ1 =


1
0
1
0

 , ~ρ2 =


2
1
2
0

 , ~ρ3 =


3
1
4
1

 , ~ρ4 =


4
1
4
1

 .

Note that these vectors are the representations of our basis vectors r1, . . . , r4 in the basis C.
The change-of-bases matrix from C to D and its inverse are, in coordinates,

SD→C =


1 2 3 4
0 1 1 1
1 2 4 4
0 0 1 1

 , SC→D = S−1
D→C =


0 −2 1 −2
0 1 0 −1
−1 0 1 0

1 0 −1 1

 .

It follows that

ADT = SC→DA
C
TSD→C

=


0 −2 1 −2
0 1 0 −1
−1 0 1 0

1 0 −1 1




0 0 0 0
3 0 0 0
0 2 0 0
0 0 1 0




1 2 3 4
0 1 1 1
1 2 4 4
0 0 1 1

 =


−8 −14 −24 −30

2 4 5 8
0 2 2 2
1 0 2 2

 .
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Let us see how this looks in diagrams. We define the two bijections of P3 with R4 which are
given by choosing the bases C and D by ΨC and ΨD

ΨC : P3 → R4, ΨC(q1) = ~e1, ΨC(q2) = ~e2, ΨC(q3) = ~e3, ΨC(q4) = ~e4,

ΨD : P3 → R4, ΨD(r1) = ~e1, ΨD(r2) = ~e2, ΨD(r3) = ~e3, ΨD(r4) = ~e4.

Then we have the following diagrams:

P3 P3

R4 R4

T

ΨC ΨC

ACT

P3 P3

R4 R4

T

ΨD ΨD

ADT

We already know everything in the diagram on the left and we want to calculate ADT in the
diagram on the right. We can put the diagrams together as follows:

P3 P3

R4 R4 R4 R4

T

ΨD
ΨC

ΨD
ΨC

SD→C

ADT

ACT SC→D

We can also see that the change-of-basis maps SD→C and SC→D are

SD→C = ΨC ◦Ψ−1
D , SC→D = ΨD ◦Ψ−1

C .

For ADT we obtain

ADT = ΨD ◦ T ◦Ψ−1
D = SD→C ◦ACT ◦ SC→D.

Another way to draw the diagram above is

P3 P3

R4 R4

R4 R4

T

ΨD

ΨC

ΨD

ΨC

ACT

S
C→
DSD

→
C

ADT

�
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Note that the matrices ABT , ACT , ADT and AB,CT all look different but they describe the same linear
transformation. The reason why they look different is that in each case we used different bases to
describe them.

Example 5.41. The next example is not very applied but it serves to practice a bit more. We
consider the operator given

T : M(2× 2)→ P2, T (
(
a b
c d

)
) = (a+ c)X2 + (a− b)X + a− b+ d.

Show that T is a linear transformation and represent T with respect to the bases B = {B1, B2, B3, B4}
of M(2× 2) and C = {p1, p2, p3} of P2 where

B1 =

(
1 0
0 0

)
, B2 =

(
0 1
0 0

)
, B3 =

(
0 0
1 0

)
, B4 =

(
0 0
0 1

)
,

and
p1 = 1, p2 = X, p3 = X2.

Find based for kerT and ImT and their dimensions.

Solution. First we verify that T is indeed a linear map. To this end, we take matrices A1 =
(
a1 b1
c1 d1

)
and A2 =

(
a2 b2
c2 d2

)
and λ ∈ R. Then

T (λA1 +A2) = T

(
λ

(
a1 b1
c1 d1

)
+

(
a2 b2
c2 d2

))
= T

(
λ

(
λa1 + a2 λb1 + b2
λc1 + c2 λd1 + d2

))
= (λa1 + a2 + λc1 + c2)X2 + (λa1 + a2 − λb1 − b2)X + λa1 + a2 − (λb1 + b2) + λd1 + d2

= λ(a1 + c1)X2 + (a1 − b1)X + a1 − b1 + d1)

+
[
(a2 + c2)X2 + (a2 − b2)X + a2 − b2 + d2)

]
= λT (A1) + T (A2).

This shows that T is a linear transformation.
Now we calculate its matrix representation with respect to the given bases.

TB1 = X2 +X + 1 = p1 + p2 + p3,

TB2 = −X = −p2,

TB3 = X2 = p3,

TB4 = 1 = p1.

Therefore the matrix representation of T is

AT =

1 0 0 1
1 −1 0 0
1 0 1 0


In order to determine the kernel and range of AT , we apply the Gauß-Jordan process:

AT =

1 0 0 1
1 −1 0 0
1 0 1 0

 −→
1 0 0 1

0 −1 0 −1
0 0 1 −1

 −→
1 0 0 1

0 1 0 1
0 0 1 −1

 .
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So the range of AT is R3 and its kernel is kerAT = span{~e1 +~e2−~e3−~e3}. Therefore ImT = P2 and
kerT = span{B1 +B2 −B3 −B4}. For their dimensions we find dim(ImT ) = 3 and dim(kerT ) =
1. �

Example 5.42 (Reflection in R2). In R2, consider the line L : 3x − 2y = 0. Let R : R2 → R2

which takes a vector in R2 and reflects it on the line L. Find the matrix representation of R with
respect to the standard basis of R2.
Observation. Note that L is the line which passes through the origin and is parallel to the vector
~v = ( 2

3 ).

Solution 1 (use coordinates adapted to the problem). Clearly, there are two directions which
are special in this problem: the direction parallel and the direction orthogonal to the line. So a
basis which is adapted to the exercise, is B = {~v, ~w} where ~v = ( 2

3 ) and ~w =
(−3

2

)
. Clearly, R~v = ~v

and R~w = −~w. Therefore the matrix representation of R with respect to the basis B is

ABR =

(
1 0
0 −1

)
.

In order to obtain the representation AR with respect to the standard basis, we only need to perform
a change of basis. Recall that change-of-bases matrices are given by

SB→can = (~v|~w) =

(
2 −3
3 2

)
, Scan→B = S−1

B→can =
1

13

(
2 3
−3 2

)
.

Therefore

AR = SB→canA
B
RScan→B =

1

13

(
2 −3
3 2

)(
1 0
0 −1

)(
2 3
−3 2

)
=

1

13

(
−5 12
12 5

)
. �

Solution 2 (reduce the problem to a known reflection). The problem would be easy if we
were asked to calculate the matrix representation of the reflection on the x-axis. This would simply

be A0 =

(
1 0
0 −1

)
. Now we can proceed as follows: First we rotate R2 about the origin such that

the line L is parallel to the x-axis, then we reflect on the x-axis and then we rotate back. The result
is the same as reflecting on L. Assume that Rot is the rotation matrix. Then

AT = Rot−1 ◦A0 ◦ Rot. (5.19)

How can we calculate Rot? We know that Rot~v = ~e1 and that Rot~w = ~e2. It follows that
Rot−1 = (~v|~w) =

(
2 3
−3 2

)
. Note that up to a numerical factor, this is SB→can. We can calculate

easily that Rot = (Rot−1)−1 = 1
13

(
2 −3
3 2

)
. If we insert this in (5.19), we find again AR =

(−5 12
12 5

)
. �

Solution 3 (straight forward calculation). Lastly, we can form a system of linear equations in
order to find AT . We write AR =

(
a b
c d

)
with unknown numbers a, b, c, d. Again, we use that we

know that AT~v = ~v and AT ~w = −~w. This gives the following equations:(
2
3

)
= ~v = AT~v =

(
a b
c d

)(
2
3

)
=

(
2a+ 3b
2c+ 3d

)
,(

−3
2

)
= ~w = −AT ~w = −

(
a b
c d

)(
−3

2

)
=

(
3a− 2b
3c− 2d

)
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which gives the system

2a+ 3b = 2, 2c+ 3d = 3, 3a− 2b = −3, 3c− 2d = 2,

Its unique solution is a = − 5
13 , b = c = 12

13 , d = 5
13 , hence AR =

(−5 12
12 5

)
. �

Example 5.43 (Reflection and orthogonal projection in R3). In R3, consider the plane
E : x− 2y+ 3z = 0. Let R : R3 → R3 which takes a vector in R3 and reflects it on the plane E and
let P : R3 → R3 be the orthogonal projection onto E. Find the matrix representation of R with
respect to the standard basis of RE .
Observation. Note that E is the line which passes through the origin and is orthogonal to the

vector ~n =
(

1
−2

3

)
. Moreover, if we set ~v =

(
2
1
0

)
and ~w =

(
0
3
2

)
, then it is easy to see that {~v, ~w} is

a basis of E.

Solution 1 (use coordinates adapted to the problem). Clearly, a basis which is adapted to
the exercise, is B = {~n, ~v, ~w} because for these vectors we have R~v = ~v, R~w = ~w and P~v = ~v,
P ~w = ~w and P~n = ~0. Therefore the matrix representation of R with respect to the basis B is

ABR =

1 0 0
0 1 0
0 0 −1


and the one of P is

ABR =

1 0 0
0 1 0
0 0 0


In order to obtain the representations AR and AP with respect to the standard basis, we only need
to perform a change of basis. Recall that change-of-bases matrices are given by

SB→can = (~v|~w|~n) =

2 0 1
1 3 −2
0 2 3

 , Scan→B = S−1
B→can =

1

28

 13 2 −3
−3 6 5

2 −4 6

 .

Therefore

AR = SB→canA
B
RScan→B =

1

28

2 0 1
1 3 −2
0 2 3

1 0 0
0 1 0
0 0 −1

 13 2 −3
−3 6 5

2 −4 6


=

1

7

 6 2 −3
2 3 6
−3 6 −2


and

AP = SB→canA
B
PScan→B =

1

28

2 0 2
1 3 −1
0 2 3

1 0 0
0 1 0
0 0 0

 13 2 −3
−3 6 5

2 −4 6


=

1

14

 13 2 −3
2 10 6
−3 6 5

 �
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Solution 2 (reduce the problem to a known reflection). The problem would be easy if we
were asked to calculate the matrix representation of the reflection on the xy-plane. This would

simply be A0 =

1 0 0
0 1 0
0 0 −1

. Now we can proceed as follows: First we rotate R3 about the origin

such that the plane E is parallel to the xy-axis, then we reflect on the xy-plane and then we rotate
back. The result is the same as reflecting on the plane E. We leave the details to the reader. An
analogous procedure works for the orthogonal projection. �

Solution 3 (straight forward calculation). Lastly, we can form a system of linear equations in

order to find AR. We write AR =
(
a11 a12 a13
a21 a22 a23
a31 a32 a33

)
with unknowns aij . Again, we use that we know

that AR~v = ~v, AR ~w = ~w and AR~n = −~n. This gives a system of 9 linear equations for the nine
unknowns aij which can be solved. �

Remark 5.44. Yet another solution is the following. Let Q be the orthogonal projection onto ~n.
We already know how to calculate its representing matrix:

Q~x =
〈~x , ~n〉
‖~n‖2

~n =
x− 2y + 3z

14
~n =

1

14

 1 −2 3
−2 4 −6

3 −6 9

xy
z

 .

Hence AQ = 1
14

(
1 −2 3
−2 4 −6

3 −6 9

)
. Geometrically, it is clear that P = id−Q and R = id−2Q. Hence it

follows that

AP = id−AQ =

1 0 0
0 1 0
0 0 1

− 1

14

 1 −2 3
−2 4 −6

3 −6 9

 =
1

14

 13 2 −3
2 10 6
−3 6 5


and

AR = id−2AQ =

1 0 0
0 1 0
0 0 1

− 1

7

 1 −2 3
−2 4 −6

3 −6 9

 =
1

7

 6 2 −3
2 3 6
−3 6 −2

 .
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image of a linear map, 81
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linear map, 79
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matrix representation, 98
linear span, 61

linear transformation
matrix representation, 99

linearly independent, 63

matrix
change-of-coordinates, 93
transition, 93

matrix representation of a linear transformation,
99

null space, 80

one-to-one, 80
orthogonal projection to a plane in R3, 107

proper subspace, 54

range, 81
reflection in R2, 106
reflection in R3, 107
row space, 85

span, 61
standard basis in Rn, 70
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