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Chapter 1. Systems of Linear Equations 5

Chapter 1

Systems of Linear Equations

Bla bla bla

1.1 Examples of systems of linear equations

Let us start with a few examples of linear systems of linear equations.

Example 1.1. Assume that a zoo has birds and cats. All of their animals combined, they have 60
heads and 200 legs. How many birds and cats are in the zoo?

Solution. First, we give names to the quantities we want to calculate. So let B = number of birds,
C = number of cats in the zoo. If we write the information given in the exercise in formulas, we
obtain

1 b + c = 60, (total number of heads)
2 2b + 4c = 200, (total number of legs)

since each bird has 1 head and 2 legs and each cat has 1 head and legs. Equation 1 tells us that
B = 60− C. If we insert this into equation 2 , we find

200 = 2(60− C) + 4C = 120− 2C + 4C = 120 + 2C =⇒ 2c = 80 =⇒ c = 40.

This implies that B = 60 − C = 60 = 40 = 20. Note that in our calculations and arguments, all
the arrow all go “from left to right”, so we found that the only possible solution is B = 40, C = 20.
Inserting this in the original equation shows that this is indeed a solution. So there are 40 birds
and 20 cats. �

Let us put one more equation into the zoo.

Example 1.2. Assume that a zoo has birds and cats. All of their animals combined, they have
60 heads and 200 legs. Moreover, there are 140 cage and in every cage there are either 2 birds or 3
cats. How many birds and cats are in the zoo?
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6 1.1. Examples of systems of linear equations

Solution. Again, let B = number of birds, C = number of cats in the zoo. The information of the
exercise gives the following equations:

1 B+ C = 60, (total number of heads)

2 2B + 4C = 200, (total number of legs)

3 2B + 3C = 140. (total number of cages)

As in the previous exercise, we obtain from that B = 40, C = 20. Clearly, this also satisfies equation
3 . �

Example 1.3. Assume that a zoo has birds and cats. All of their animals combined, they have
60 heads and 200 legs. Moreover, there are 100 cage and in every cage there are either 2 birds or 3
cats. How many birds and cats are in the zoo?

Solution. Again, let B = number of birds, C = number of cats in the zoo. The information of the
exercise gives the following equations:

1 B+ C = 60, (total number of heads)

2 2B + 4C = 200, (total number of legs)

3 2B + 3C = 100. (total number of cages)

As in the previous exercise, we obtain from that B = 40, C = 20. However, this does not satisfy
equation 3 ; so there is no way to choose B and C such that all three equations are satisfied
simultaneously. Therefore, a zoo as in this example does not exist. �

We give a few more examples.

Example 1.4. Find a polynomial P of degree at most 3 with

P (0) = 1, P (1) = 7, P ′(0) = 3, P ′(2) = 23. (1.1)

Solution. A polynomial of degree at most 3 is known, if we know its 4 coefficients. In this exercise,
the unknowns are the coefficients of the polynomial P . We can write P (x) = αx3 + βx2 + γx + δ
and we have to find α, β, γ, δ such that (1.1) is satisfied. Note that P ′(x) = 3αx2 + 2βx+ γ. Hence
(1.1) is equivalent to the following system of equations:

P (0) = 1,

P (1) = 7,

P ′(0) = 3,

P ′(2) = 23.

 ⇐⇒


1 δ = 1,

2 α+ β+ γ+δ = 7,

3 γ = 3,

4 24α+ 8β + 2γ+δ = 23.

Clearly, δ = 1 and γ = 3. If we insert this in the remaining equations, we obtain a system of two
equations for the two unknowns α, β:

2’ α+ β = 3,

4’ 24α+ 8β = 16.
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Chapter 1. Systems of Linear Equations 7

From 2’ we obtain β = 4−α. If we insert this into 4’ , we get that 16 = 24α+8(4−α) = 16α+32,
that is, α = (32− 16)/16 = 1. So the only possible solution is

α = 1, β = 2, γ = 3, δ = 1.

It is easy to verify that the polynomial P (x) = x3 + 2x2 + 3x+ 1 has all the desired properties. �

Example 1.5. A pole is 5 metres long and shall be coated with varnish. There are two types of
varnish available: The green one adds 3 g per 50 cm to the pole, the red one adds 6 g per meter to
the pole. Is it possible to coat the pole in a combination of the varnishes so that the total weight
added is

(a) 35 g? (b) 30 g?

Solution. (a) We call g the length of the pole which will be covered in green and r the length of
the pole which will be covered in red. Then we obtain the system of equations

1 g+ r = 5 (total length)

2 6g+6r = 35 (total weight)

The first equation gives r = 5−g. Inserting into the second equation yields 35 = 6g+ 6(5−g) = 30
which is a contradiction. This shows that there is no solution.

(b) As in (a), we obtain the system of equations

1 g+ r = 5 (total length)

2 6g+6r = 30 (total weight)

Again, the first equation gives r = 5−g. Inserting into the second equation yields 30 = 6g+6(5−g) =
30 which is always true, independently of how we choose g and r as long as 1 is satisfied. This
means that in order to solve the system of equations, it is sufficient to solve only the first equation
since then the second one is automatically satisfied. So we have infinitely many solutions. Any pair
g, r such that g+ r = 5 gives a solution. So for any g that we choose, we only have to set r = 5− g
and we have a solution of the problem. Of course, we could also fix r and then choose g = 5− r to
obtain a solution.
For example, we could choose g = 1, then r = 4, or g = 0.00001, then r = 4.99999, or r = −2 then
g = 7. Clearly, the last example does not make sense for the problem at hand, but it still does
satisfy our system of equations. �

All the examples were so-called linear systems of linear equations. Let us define what we mean by
this,

Definition 1.6. Am×n system of linear equations is a system ofm linear equations for n unknowns
of the form

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...
...

...

am1x1 + am2x2 + · · ·+ amnxn = bm.
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8 1.1. Examples of systems of linear equations

The unknowns are x1, . . . , xn. The numbers aij and bi (i = 1, . . . ,m, j = 1, . . . , n) are given. The
numbers aij are called the coefficients of the linear system and numbers b1, . . . , bn are called the
right side of the linear system.

In the special case when all bi are equal to 0, the system is called a homogeneous; otherwise it is
called inhomogeneous.

The coefficient matrix A of the system is the collection of all coefficients aij

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
am1 am2 . . . amn


The coefficient matrix is nothing else than the collection of the coefficients aij ordered in some sort
of table or rectangle such that the place of the coefficient aij is in the ith row of the jth column.

Let us come back to our examples.

Example 1.1: This is a 2× 2 system with coefficients a11 = 1, a11 = 1, a21 = 2, a22 = 4 and right
hand side b1 = 60, b2 = 200. The system has a unique solution. The coefficient matrix is

A =

(
1 1
2 4

)
.

Example 1.2: This is a 3× 2 system with coefficients a11 = 1, a11 = 1, a21 = 2, a22 = 4, a31 = 2,
a32 = 3, and right hand side b1 = 60, b2 = 200, b3 = 140. The system has a unique solution. The
coefficient matrix is

A =

1 1
2 4
2 3

 .

Example 1.3: This is a 3× 2 system with coefficients a11 = 1, a11 = 1, a21 = 2, a22 = 4, a31 = 2,
a32 = 3, and right hand side b1 = 60, b2 = 200, b3 = 100. The system has no solution. The
coefficient matrix is the same as in Example 1.2.

Example 1.4: This is a 4× 4 system with coefficients a11 = 0, a12 = 0, a13 = 0, a14 = 1, a21 = 1,
a22 = 1, a23 = 1, a24 = 1, a31 = 0, a32 = 0, a33 = 1, a34 = 0, a41 = 24, a42 = 8, a43 = 2, a44 = 1,
and right hand side b1 = 1, b2 = 7, b3 = 3, b4 = 23. The system has a unique solution. The
coefficient matrix is

A =


0 0 0 1
1 1 1 1
0 0 1 0
24 8 2 1

 .

Example 1.5: This is a 2× 2 system with coefficients a11 = 1, a11 = 6, a21 = 1, a22 = 6. In case
(a) the right hand side is b1 = 5, b2 = 35 and the system has no solution.
In case (b) the right hand side is b1 = 5, b2 = 30 and the system has infinite solutions.
In both cases, the coefficient matrix is

A =

(
1 6
1 6

)
.
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Chapter 1. Systems of Linear Equations 9

Given an m× n system of linear equations, two important solutions arise:

• Existence: Does the system have a solution?

• Uniqueness: If the system has a solution, is it unique?

As we saw, in Examples 1.1, 1.2, 1.4, 1.5 (b) solutions do exist. In Example 1.5 (b) the solution
is not unique (on the contrary: it has infinite solutions!). Examples 1.3 and 1.5(a) do not admit
solutions.

More generally, we would like to be able so say something about the structure of solutions of linear
systems. For example, is it possible that there is only one solution? That there are exactly two
solutions? That there are infinite solutions? That there is is no solution? Can we give criteria for
existence and/or uniqueness of solutions? Can we give criteria for existence of infinite solutions?

(Spoiler alert: A system of linear equations has either no or exactly one or infinite solutions. It is
not possible that it has, e.g., exactly 7 solutions.)

Before answering these questions for general m × n systems, we will have a closer look at 2 × 2
systems in the next section.

1.2 Linear 2× 2 systems of equations

Let us come back to the equation from Example 1.1. For convenience, we write now x instead of B
and y instead of C. Recall that the system of equations that we are interested in solving is

1 x+ y = 60,

2 2x+ 4y = 200.
(1.2)

We want to give a geometric meaning to this system of equations. To this end we think of pairs
x, y as points (x, y) in the plane. Let’s forget about equation 2 for a moment and concentrate only
on 1 . Clearly, there are infinitely many solutions. If we choose an arbitrary x, we can always find
y such that 1 satisfied (just take y = 60− x). Similarly, if we choose any y, then we only have to
take x = 60− y and we obtain a solution of 1 .
Now, where in the xy-plane lie all solutions of 1 ? Clearly, 1 is equivalent to y = 60− x which we
easily identify of the equation of the line L1 in the xy-plane which passes through (0, 60) and has
slope −1. In summary, a pair (x, y) is a solution of 1 if and only if it lies on the line L1.

If we apply the same reasoning to 2 , we find that a pair (x, y) satisfies 2 if and only if (x, y) lies
on the line L2 in the xy-plane given by y = 1

4 (200 − 2x) (this is the line in the xy-plane passing
through (9, 50) with slope − 1

2 ).

Now it is clear that a pair (x, y) satisfies both 1 and 2 if and only if it lies both on L1 and L2.
So finding the solution of our system (1.2) is the same as finding the intersection of the two lines
L1 and L2. From elementary geometry we know that there are exactly three possibilities:

(i) L1 and L2 are not parallel. Then they intersect in exactly one point.
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10 1.2. Linear 2× 2 systems of equations

Figure 1.1: Example 1.1. Graphs of L1, L2 and their intersection.

(ii) L1 and L2 are parallel and not equal. Then they do not intersect.

(iii) L1 and L2 are parallel and equal. Then L1 = L2 and they intersect in infinite points (they
intersect in every point of L1 = L2).

In our example we know that the slope of L1 is −1 and that the slope of L2 is − 1
2 , so they are not

parallel and therefore intersect in exactly one point. Consequently, the system (1.2) has exactly
one solution, see Figure 1.1

If we look again at Example 1.5, we see that in Case (a) we look for the intersection of the lines

L1 : y = 5− x, L2 : y =
35

6
− x.

Both lines have slope −1 so they are parallel. Since the constant terms in both lines are not equal,
they never intersect, showing that the system of equations has no solution, see Figure 1.2.
In Case (b), the two lines that we have to intersect are

G1 : y = 5− x, G2 : y = 5− x.
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Chapter 1. Systems of Linear Equations 11

Figure 1.2: Example 1.5. Graphs of G1, G2.

We see that G1 = G2, so every point on G1 (or G2) is solution of the system and therefore we have
infinite solutions.

Now let us consider the general case.

One linear equation with two unknowns

The general form of one linear equation with two unknowns is

αx+ βy = γ. (1.3)

For the set of solutions, there are three possibilities:

(i) The set of solutions forms a line. This happens if at least one of the coefficients α or β is
different from 0. If β 6= 0, then set of all solutions is equal to the line L : y = −αβ x+ γ

β which

is a line with slope −αγ . If β = 0 and α 6= 0, then the set of solutions of (1.3) is a line parallel

to the y-axis passing through ( γα ).

(ii) The set of solutions is all of the plane. This happens if α = β = γ = 0. In this case, clearly
every pair (x, y) is a solution of (1.3).

(iii) The set of solutions is empty. This happens if α = β = 0 and γ 6= 0. In this case, no pair
(x, y) can be a solution of (1.3) since the left hand side is always 0.

Two linear equations with two unknowns

The general form of one linear equation with two unknowns is

1 Ax+By = U

2 Cx+Dy = V.
(1.4)

Last Change: Wed 23 Jan 19:59:01 -05 2019
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12 1.2. Linear 2× 2 systems of equations

We are using the letters A,B,C,D instead of a11, a12, a21, a22 in order to make the calculations
more readable. If we interprete the system of equations as intersection of two geometrical objects,
we already know how the possible solutions will be:

• A point if 1 and 2 describe two non-parallel lines.

• A line if 1 and 2 describe the same line; or if one of the equations is a plane and the other
one is a line.

• A plane if both equations describe a plane.

• The empty set if the two equations describe parallel but different lines; or if one of the
equations has no solution.

In summary, we have:

Remark 1.7. The system (1.4) has either exactly 1 solution or infinite solutions or no solution.

Exercise. How is the situation if we had a system of 3 linear equations for 2 unknowns?

Proof of Remark 1.7. Now we want proof the Remark 1.7 algebraically and we want to find a
criteria on a, b, c, d which allows us to decide easily how many solutions there are. Let’s look at the
different cases.

Case 1. B 6= 0. In this case we can solve 1 for y and obtain y = 1
B (U − Ax). In 2 this gives

Cx+ D
B (U −Ax) = V . If we put all terms with x on one side and all other terms on the other side,

we obtain

2’ (AD −BC)x = DU −BV

(i) If AD − BC 6= 0 then there is at most one solution, namely x = DU−BV
AD−BC and consequently

y = 1
B (U−Ax) = AV−CU

AD−BC . Inserting these expressions for x and y in our system of equations,
we see that they indeed solve the system (1.4), so that we have exactly one solution.

(ii) If AD − BC = 0, then equation 2’ reduces to 0 = DU − BV . This equation has either no
solution (if DU − BV 6= 0) or infinite solutions (if DU − BV = 0). Since 1 has infinite
solutions, it follows that the system (1.4) has either no solution or infinite solutions.

Case 2. D 6= 0. In this case we can solve 2 for y and obtain y = 1
D (V − Cx). In 2 this gives

Ax+ B
D (V −Cx) = U . If we put all terms with x on one side and all other terms on the other side,

we obtain

2’ (AD −BC)x = DU −BV

We have the same subcases as before:

(i) If AD − BC 6= 0 then there is exactly one solution, namely x = DU−BV
AD−BC and consequently

y = 1
B (U −Ax) = AV−CU

AD−BC .

Last Change: Wed 23 Jan 19:59:01 -05 2019
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Chapter 1. Systems of Linear Equations 13

(ii) If AD − BC = 0, then equation 2’ reduces to 0 = DU − BV . This equation has either no
solution (if DU − BV 6= 0) or infinite solutions (if DU − BV = 0). Since 2 has infinite
solutions, it follows that the system (1.4) has either no solution or infinite solutions.

Case 3. B = 0 and D = 0. Observe that in this case AD − BC = 0. In this case the system (1.4)
reduces to

Ax = U, Cx = V. (1.5)

We see that the system no longer depends on y. So, if the system (1.5) has at least one solution,
then we automatically have infinite solutions since we can choose y freely. If the system (1.5) has
no solution, then the original system (1.4) cannot have a solution either.

Note that there are no other cases for the coefficients than these three cases.

Summing up, we find the following theorem:

Theorem 1.8. The system of linear equations

1 Ax+By = U

2 Cx+Dy = V.
(1.6)

has

(i) exactly one solution if and only if AD −BC 6= 0. In this case, the solution is

x =
DU −BV
AD −BC

, y =
AV − CU
AD −BC

. (1.7)

(ii) no solution or infinite solutions if AB −BC = 0.

Definition 1.9. The number d := AD −BC is called the determinant of the system (1.6).

Later we will generalise this concept to systems with more equations and more variables.

Remark 1.10. Let us see how this connects to our geometric interpretation of the system of
equations. Assume that B 6= 0 and D 6= 0. Then we can solve 1 and 2 for y obtain equations for
lines

L1 : y= −A
B
x+

1

B
U, L2 : y= −C

D
x+

1

D
V.

The two lines intersect in exactly one point if and only if they have different slopes, i.e., if−A
B 6= −

C
D .

After multiplication by −BD we see that this is the same as AD 6= BC, or AD −BC 6= 0.
On the other hand, the lines are parallel (and hence have either no intersection or are equal) if
−A
B 6= −

C
D . This is the case if and only if AD = BC, or in other word, if AD −BC = 0.

Exercise. Consider the cases when B = 0 or D = 0 and make the connection between Theorem 1.8
and the geometric interpretation of the system of equations.
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14 1.2. Linear 2× 2 systems of equations

Figure 1.3: Example 1.11(a). Graphs of L1, L2 and their intersection (5, 3).

Let us consider same examples.

Examples 1.11. (a)

1 x+ 2y = 11

2 3x+ 4y = 27.

Clearly, the determinant is d = 4− 6 = −2 6= 0. So we expect exactly one solution.

We can check this easily: The first equation gives x = 11− 2y. Inserting this into the second
equations leads to

3(11− 2y) + 4y = 27 =⇒ −2y = −6 =⇒ y = 3 =⇒ x = 11− 2 · 3 = 5.

So the solution is x = 5, y = 3. (If we did not have Theorem 1.8, we would have to check that
this is not only a candidate for a solution, but indeed is one.)

Exercise. Check that the formula (1.7) is satisfied.

(b)

1 x+ 2y = 1

2 2x+ 4y = 5.

Here, the determinant is d = 4− 4 = 0, so we expect either no solution or infinite solutions.
The first equations gives x = 1−2y. Inserting into the second equations gives 2(1−2y)+4y = 5.
We see that the terms with y cancel and we obtain 2 = 5 which is a contradiction. Therefore,
the system of equations has no solution.

(c)

1 x+ 2y = 1

2 3x+ 6y = 3.

Last Change: Wed 23 Jan 19:59:01 -05 2019
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Figure 1.4: Example 1.11(b). The lines L1, L2 are parallel and do not intersect.

Figure 1.5: Example 1.11(c). The lines L1, L2 are equal.

The determinant is d = 6− 6 = 0, so again we expect either no solution or infinite solutions.
The first equations gives x = 1−2y. Inserting into the second equations gives 3(1−2y)+6y = 3.
We see that the terms with y cancel and we obtain 3 = 3 which is true. Therefore, the system
of equations has infinite solutions given by x = 1− 2y.

Remark. This was somewhat clear since we can obtain the second equation from the first one
by multiplying both sides by 3 which shows that both equations carry the same information
and we loose nothing if we simply forget about one of them.

Example 1.12. Find all k ∈ R such that the system

1 kx+(15/2− k)y= 1

2 4x+ 2ky= 3

has exactly one solution.

Solution. We only need to calculate the determinant and find all k such that it is different from

Last Change: Wed 23 Jan 19:59:01 -05 2019
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16 1.3. Summary

zero. So let’s start by calculating

d = k · 2k − (15/2− k) · 4 = 2k2 + 4k − 30 = 2(k2 + 2k − 15) = 2[(k + 1)2 − 16].

So we see that there are exactly two values for k where d = 0, namely k = −1± 4, that is k1 = 3,
k2 = −5. For all other k, we have that d 6= 0.
So the answer is: The system has exactly one solution if and only if k ∈ R \ {−5, 3}. �

Remark 1.13. 1. Note that the answer does not depend on the right hand side of the system
of the equation. Only the coefficients on the left hand side determine if there is exactly one
solution or not.

2. If we wanted, we could also calculate the solution x, y in the case k ∈ R \ {−3, 1}. We could
do it by hand or use (1.7). Either way, we find

x =
1

d
[2k − 3(15/2− k)] =

5k − 45/2

2k2 + 4k − 30
, y =

1

d
[6k − 4] =

6k − 4

2k2 + 4k − 30
.

Note that the denominators would become 0 if k = −5 or k = 3.

3. What happens if k = −3 or k = 1? In both cases, d = 0, so we will either have no solution or
infinite solutions.

If k = −3, then the system becomes

3x+ 9/2y = 1, 4x+ 6y = 3.

Multiplying the first equation by 4/3, we obtain

4x− 6y =
4

9
, 4x− 6y = 3

which clearly cannot be satisfied simultaneously.

If k = 5, then the system becomes

5x+ 5/2y = 1, 4x+ 10y = 3.

Multiplying the first equation by 4/5, we obtain

4x−+10 =
4

5
, 4x+ 10y = 3

which clearly cannot be satisfied simultaneously.

1.3 Summary

1.4 Exercises
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Chapter 2

R2 and R3

2.1 Vectors in R2

Recall that the xy-plane is the set of all pairs (x, y) with x, y ∈ R. We will denote it by R2.

Maybe you already encountered vectors in a physics lecture. For instance velocities and forces are
described by vectors. The velocity of a particle says how fast and in which direction the particle
moves. Usually, a velocity are represented by an arrow which points in the direction in which the
particle moves and whose length is proportional to the magnitude of the velocity.

A force has strength and a direction so it is represented by an arrow which point in the direction
in which it acts and with length proportional to its strength.

Observe that it is not important where in the space R2 or R3 we put the arrow. As long it points
in the same direction and has the same length, it is considered the same vector. We call two arrows
equivalent if they have the same direction and the same length. A vector is the set of all arrows
which are equivalent to a given arrow. Each specific arrow in this set is called a representation of
the vector. A special representation is the arrow that starts in the origin (0, 0).

Given two points P,Q in the xy-plane, we write
#    –

PQ for the vector which is represented by the
arrow that starts in P and ends in Q.

Example 2.1.
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18 2.1. Vectors in R2

Let P (1, 1) and Q(3, 4) be points in the xy-

plane. The arrow from P to Q is
#    –

PQ =

(
2
3

)
.

Figure 2.1: The vector
#    –

PQ and several of
its representations. The green arrow is the
special representation whose initial point in
is in the origin.

We can identify a point P (p1, p2) in the xy-plane with the vector starting in (0, 0) and ending in

P . We denote this vector by
#  –

0P or

(
p1
p2

)
or sometimes by (p1, p2)t in order to save space (the

subscript t stands for “transposed”). p1 is called the x-coordinate or the x-component of ~v and p2
is called the y-coordinate or the y-component of ~v.
On the other hand, given a vector (a, b), then it describes a unique point in the xy-plane, namely
the tip of the arrow which represents the given vector and starts in the origin.
So we can identify the set of all vectors in R2 with R2 itself.
Observe that the slope of the arrow ~v = (a, b) is b

a if a 6= 0. If a = 0, then we obtain a vector which
is parallel to the y-axis. Vectors are usually denoted by a small letter with an arrow on top.
If a vector is given, e.g., as ~v = (2, 5)t, then this is an arrow whose tip would be at the point (2, 5)
if its initial point is in the origin. If it is anywhere else, then we find the tip if we move 2 units to
the right parallel to the x-axis and 5 units up parallel to the y-axis.

A very special vector is the zero vector (0, 0)t. Is is usually denoted by ~0.

In order to distinguish numbers in R from vectors, we call them scalars.

Now we want to do algebra with vectors. If we think of a force and we double its strength then
the corresponding vector should be twice as long. If we multiply the force by 5, then the length
of the corresponding vector should be 5 times as long, that is, if for instance a force ~F = (3, 4) is

given, then 5~F should be (5 · 3, 5 · 4) = (15, 20). In general, if a vector ~v = (a, b) is given, then
c~v = (ca, cb). Note that the resulting vector is always parallel to the original one. If c > 0, then
the resulting vector points in the same direction as the original one, if c < 0, then it points in the
opposite direction, see Figure 2.2

How should we sum two vectors? Again, let us think of forces. Assume we have two forces ~F1

and ~F2 both acting on the same particle. Then we get the resulting force by drawing the arrow
representing ~F1 and at its tip put the initial point of the arrow representing ~F2. The total force is
then represented by the arrow starting in the initial point of ~F1 and ending in the tip of ~F2.
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Figure 2.2: Multiplication of a vector by a scalar.

Exercise. Convince yourself that we obtain the same result if we start with ~F2 and put the initial
point of ~F1 at the tip of ~F2.

We could also think of the sum of velocities. For example, if the have a train with velocity ~vt and
on the train a passenger is moving with relative velocity ~vp, then the total velocity is the vector
sum of the two.
Now assume that ~F1 = (a, b)t and ~F2 = (p, q)t. Algebraically, we obtain the components of their

sum by summing the components: ~F1 + ~F2 = (a + p, b + q), see Figure 2.3. When you do vector
sums, you should always think in triangles (or polygons if you sum more than two vectors).

Exercise. Given two points P (p1, p2), Q(q1, q2) in the xy-plane. Convince yourself that
#  –

0P+
#    –

PQ =
#  –

0Q and consequently
#    –

PQ =
#  –

0Q− #  –

0P .
How could you write

#    –

QP in terms of
#  –

0P and
#  –

0Q? What is its relation with
#    –

PQ?

We sum up:

Definition 2.2. Let ~v =

(
a
b

)
, ~w =

(
p
q

)
, c ∈ R. Then:

Vector sum: ~v + ~w =

(
a
b

)
+

(
p
q

)
=

(
a+ p
b+ q

)
,

Product with a scalar: c~v = c

(
a
b

)
=

(
ca
cb

)
,

With this definition, it is easy to see that for arbitrary vectors ~u,~v, ~w ∈ R2 and scalars α, β ∈ R
the so-called vector space axioms hold:

Vector Space Axioms.

(a) Associativity: ~u+ ~v) + ~w = ~u+ (~v + ~w)
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Figure 2.3: Sum of two vectors.

(b) Commutativity: ~v + ~w = ~v + ~w.

(c) Identity element of addition: For every ~v ∈ R2, we have ~0 + vecv = ~v +~0 = ~v.

(d) Inverse element: For every ~v ∈ R2, we have an inverse element
#–

v′ such that ~v +
#–

v′) = ~0,

namely
#–

v′ = −~v.

(e) Identity element of multiplication by scalar: For every ~v ∈ R2, we have that 1~v = ~v.

(f) Compatibility: For every ~v ∈ R2 and a, b ∈ R,, we have that (ab)~v = a(b~v).

(g) Distributivity laws: For all ~v, ~w ∈ R2 and a, b ∈ R, we have

(a+ b)~v = a~v + b~v and a(~v + ~w) = a~v + a~w.

These axioms are fundamental for linear algebra. We will come back to them later when we deal
with abstract vector spaces in XXX.

Let us look at some more geometric properties of vectors. Clearly a vector is known if we know its
length and its angle with the x-axis.

From the Pythagoras theorem it is clear that the length of a vector ~v = (a, b)t is
√
a2 + b2.

Definition 2.3 (Norm of a vector in R2). The length ~v =

(
a
b

)
∈ R2 is denoted by ‖~‖. It is

given by

‖~v‖ =
√
a2 + b2 .

Other names for the length of ~v are magnitude of ~v or norm of ~v.
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Figure 2.4: Length and angle of a vector.

As already mentioned earlier, the slope of vector ~v is b
a if a 6= 0. If ϕ is the angle of the vector ~v

with the x-axis then tanϕ = b
a if a 6= 0. If a = 0, then ϕ = 0 or ϕ = π. Recall that the range

of arctan is (−π/2, π/2), so we cannot simply take arctan of the fraction a
b in order to obtain ϕ.

Observe that arctan b
a = arctan−b−a, however the angles of the vectors (a, b)t and (−a,−b)t are

parallel but point in opposite directions, so they do not have the same angle with the x-axis. From
geometry, we find

ϕ =


arctan b

a if a > 0,

π − arctan b
a if a < 0,

π/2 if a = 0, b > 0,

−π/2 if a = 0, b < 0.

Note that this formula gives angles with values [−π/2, 3π/2).

Proposition 2.4 (Properties of the norm). Let λ ∈ R and ~v, ~w ∈ R2. Then the following is
true:

(i) ‖λ~v‖ = |λ|‖~v‖,

(ii) ‖~v + ~w‖ ≤ ‖~v‖+ ‖~w‖,

(iii) ‖~v‖ = 0 if and only if ~v = ~0.

Proof. Let ~v = (a, b)t, ~w = (c, d)t ∈ R2 and λ ∈ R.

(i) ‖λ~v‖ = ‖λ(a, b)t‖ = ‖(λa, λb)t‖ =
√

(λa)2 + (λb)2 =
√
λ2(a2 + b2) = |λ|

√
a2 + b2

= |λ|‖~v‖.
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(ii) This will be shown later in XXX.

(iii) Since ‖~v‖ =
√
a2 + b2 it follows that ‖~‖ = 0 if and only if a = 0 and b = 0. This is the case if

and only if ~v = ~0.

Definition 2.5. A vector ~v ∈ R2 is called a unit vector if ‖~v‖ = 1.

Note that every vector ~v 6= ~0 defines a unit vector pointing in the same direction as itself by ‖~v‖−1~v.

Remark 2.6. (i) The tip of every unit vector lies on the unit circle, and every vector whose
initial point is the origin and whose tip lies on the unit circle is a unit vector.

(ii) Every unit vector is of the from

(
cosϕ
sinϕ

)
where ϕ is its angle with the positive x-axis.

Figure 2.5: Unit vectors.
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Finally, we define two very special unit vectors:

~e1 =

(
1
0

)
, ~e2 =

(
0
1

)
.

Clearly, #–e1 is parallel to the x-axis, #–e2 is parallel to the y-axis and ‖~e1‖ = ‖~e2‖ = 1.

Remark 2.7. Every vector ~v =

(
a
b

)
can be written as

~v =

(
a
b

)
=

(
a
0

)
+

(
0
b

)
= a~e1 + b~e2.

Remark 2.8. Another notation for ~e1 and ~e2 is ı̂ and ̂.

2.2 Inner product and orthogonal projections

Let us start with a definition.

Definition 2.9. Sean ~v =

(
v1
v2

)
, ~w =

(
w1

w2

)
vectors in R2. The inner product of ~v and ~w is

〈~v , ~w〉 := v1w1 + v2w2.

The inner product is also called scalar product or dot product and it can also be denoted by ~v · ~w.

We usually prefer the notation 〈~v , ~w〉 since this notation is used frequently in physics and extends
naturally to abstract vector spaces with an inner product. Moreover, the the notation with the dot
seems to suggest that the dot product behaves like a usual product, but it does not, see Remark 2.12.

Before we give properties of the inner product, we want to calculate a few examples.

Examples 2.10.

(i)

〈(
2
3

)
,

(
−1
5

)〉
= 2 · (−1) + 3 · 5 = −2 + 15 = 13.

(ii)

〈(
2
3

)
,

(
2
3

)〉
= 22 + 32 = 4 + 9 = 13. Note that this is equal to

∥∥∥∥(2
3

)∥∥∥∥2.

(iii)

〈(
2
3

)
,

(
1
0

)〉
= 2,

〈(
2
3

)
,

(
0
1

)〉
= 3,

(iv)

〈(
2
3

)
,

(
−3
2

)〉
= 0.

Proposition 2.11 (Properties of the inner product). Let ~u, vecv, ~w ∈ R2 and λ ∈ R. Then
the following holds.
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(i) 〈~v ,~v〉 = ‖~v‖2. In dot notation: ~v · ~v = ‖~v‖2.

(ii) 〈~u ,~v〉 = 〈~v , ~u〉. In dot notation: ~u · ~v = ~v · ~u.

(iii) 〈~u ,~v + ~w〉 = 〈~u ,~v〉+ 〈~u , ~w〉. In dot notation: ~u · (~v + ~w) = ~u · ~v + ~u · · · ~w).

(iv) 〈λ~u ,~v〉 = λ〈~u ,~v〉. In dot notation: (λ~u) · ~v = λ(~u · ~v) .

Proof. Let ~u =

(
u1
u2

)
,~v =

(
v1
v2

)
and ~w =

(
w1

w2

)
.

(i) 〈~v ,~v〉 = v11 + v22 = ‖~v‖2.

(ii) 〈~u ,~v〉 = u1v1 + u2v2 = v1u1 + v2u2 = 〈~v , ~u〉.

(iii)

〈~u ,~v + ~w〉 =

〈(
u1
u2

)
,

(
v1 + w1

v2 + w2

)〉
= u1(v1 + w1) + u2(v2 + w2) = u1v1 + u2v2 + u1w1 + u2w2

=

〈(
u1
u2

)
,

(
v1
v2

)〉
+

〈(
u1
u2

)
,

(
w1

w2

)〉
= 〈~u ,~v〉+ 〈~u , ~w〉.

(iv) 〈λ~u ,~v〉 = 〈
(
λu1
λu2

)
,

(
v1
v2

)
〉 = λu1v1 + λu2v2 = λ(u1v1 + u2v2) = λ〈~u ,~v〉.

Remark 2.12. Observe that the proposition says that the inner product is commutative and
distributive, so has some properties of “usual multiplication” that we are used to from the product
in R or C, but there are some properties that show that the inner product is NOT a product:

(a) The inner products takes to vectors and gives back a number, so it gives back an object which
is not of the same type as the two things we put in.

(b) In Example 2.10(iv) we saw that it may happen that ~v 6= ~0 and ~w 6= ~0 but still 〈~v , ~w〉 = 0,
something that is impossible for a “decent” product.

(c) Given a vector ~v 6= 0 and a number c ∈ R, there are many solutions of the equation 〈~v , ~x〉 = c
for the vector ~x, in stark contrast to the usual product in R or C. As an example, look at
Example 2.10(i) and (ii). Therefore it makes NO sense to write something like ~v−1.

(d) There is no such thing as a neutral element for scalar multiplication.

Now let us see what the inner product is good for. We will see that inner product between two
vectors is connected to the angle between them and it will help us to define orthogonal projections
of one vector onto another.
Let us start with a definition.

Definition 2.13. Let ~v, ~w be vectors in R2. The angle between ~v and ~w is the smallest nonnegative
angle between them, see Figure 2.6. It is denoted by ^(~v, ~w).
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Figure 2.6: Angle between two vectors. XXXXXX Faltan π y 0.

The following properties of the angle are easy to see.

Proposition 2.14. (i) Note that by definition, ^(~v, ~w) ∈ [0, π].

(ii) ^(~v, ~w) = ^(~w,~v).

(iii) If λ > 0, then ^(λ~v, ~w) = ^(~v, ~w).

(iv) If λ < 0, then ^(λ~v, ~w) = π − ^(~v, ~w).

Figure 2.7: Angle between vectors ~v and ~w.
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Definition 2.15. (a) Two vectors ~v and ~w are called parallel if ^(~v, ~w) = 0 or π. In this case
we use the notation ~v ‖ ~w.

(b) Two vectors ~v and ~w are called orthogonal or perpendicular if ^(~v, ~w) = π/2. In this case we
use the notation ~v ⊥ ~w.

The following properties should be known from geometry. We will proof them after Theorem 2.19.

Proposition 2.16. Let ~v, ~w be vectors in R2. Then:

(i) ~v ‖ ~w and ~v 6= ~0, then there exists λ ∈ R such that ~w = λ~v.

(ii) If ~v ‖ ~w and λ, µ ∈ R, then also λ~v ‖ µ~w.

(iii) If ~v ⊥ ~w and λ, µ ∈ R, then also λ~v ⊥ µ~w.

Remark 2.17. Observe that (i) is wrong if we do not assume that ~v 6= ~0 because if ~v = ~0, then it
is parallel to every vector ~w in R2, but there is no λ ∈ R such that λ~v could ever become different
from ~0.

Further observe that the reverse direction in (ii) is true only if λ 6= 0 and µ 6= 0.

Without proof, we state the following theorem which should be known.

Theorem 2.18 (Cosine Theorem). Let a, b, c be the sides or a triangle and let ϕ be the angle
between the sides a and b. Then

c2 = a2 + b2 − 2ab cosϕ. (2.1)

Theorem 2.19. Let ~v, ~w ∈ R2 and let ϕ = ^(~v, ~w). Then

〈~v , ~w〉 = ‖~v‖‖~w‖ cosϕ.

Proof. The vectors ~v and ~w define a triangle in R2, see Figure 2.8
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Figure 2.8: Triangle given by ~v and ~w.

Now we apply the cosine theorem with a = ‖~v‖, b = ‖~w‖, c = ‖~v − w‖. We obtain

‖~v − ~w‖2 = ‖~v‖2 + ‖~w‖2 − 2‖~v‖‖~w‖ cosϕ. (2.2)

On the other hand,

‖~v − ~w‖2 = 〈~v − ~w ,~v − ~w〉 = 〈~v ,~v〉 − 〈~v , ~w〉 − 〈~w ,~v〉+ 〈~w , ~w〉 = 〈~v ,~v〉 − 2〈~v , ~w〉+ 〈~w , ~w〉
= ‖~v‖2 − 2〈~v , ~w〉+ ‖~w‖2. (2.3)

Comparison of (2.2) and (2.3) show that

‖~v‖2 + ‖~w‖2 − 2‖~v‖‖~w‖ cosϕ = ‖~v‖2 − 2〈~v , ~w〉+ ‖~w‖2,

which gives the claimed formula.

A very important consequence of this theorem is that we can now determine if two vectors ara
parallel or perpendicular to each other by simply calculating their inner product as can be seen
from the following corollary.

Corollary 2.20. Let ~v, ~w ∈ R2 and ϕ = ^(~v, ~w). Then:

(i) |〈~v , ~w〉| ≤ ‖~v‖ ‖~w‖.

(ii) ~v ‖ ~w ⇐⇒ ‖~v‖ ‖~w‖ = |〈~v , ~w〉|.

(iii) ~v ⊥ ~w ⇐⇒ 〈~v , ~w〉 = 0.

Proof. (i) From Theorem ?? we have that |〈~v , ~w〉| = ‖~v‖ ‖~w‖ cosϕ ≤ ‖~v‖ ‖~w‖ since 0 ≤ cosϕ ≤ 1.
The claims in (ii) and (iii) are clear if one of the vectors is equal to ~0 since the zero vector is parallel
and orthogonal to every vector in ′R2. So let us assume now that ~v 6= ~0 and ~w 6= ~0.

(ii) From Theorem ?? we have that |〈~v , ~w〉| = ‖~v‖ ‖~w‖ if and only if cosϕ = 1. This is the case
if and only if ϕ = 0 or π, that is, if and only if ~v and ~w are parallel.
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(iii) From Theorem ?? we have that |〈~v , ~w〉| = 0 if and only if cosϕ = 0. This is the case if and
only if ϕ = π/2, that is, if and only if ~v and ~w are perpendicular.

With this corollary, the proof of Proposition 2.16(ii) and (iii) is now easy and left to the reader.

Example 2.21. Theorem ?? lets us calculate the angle of a given vector with the x-axis easily (see
Figure 2.9):

cosϕx =
〈~v ,~e1〉
‖~v‖‖~e1‖

, cosϕy =
〈~v ,~e2〉
‖~v‖‖~e2‖

.

If we now use that ‖~e1‖ = ‖~e2‖ = 1 and that 〈~v ,~e1〉 = v1 and 〈~v ,~e2〉 = v2, then

cosϕx =
v1
‖~v‖

, cosϕy =
v2
‖~v‖

.

Figure 2.9: Angle of ~v with the axes.

Orthogonal Projections in R2.

Let ~v and ~w be vectors in R2 and ~w 6= ~0. We want to find the orthogonal projection of ~v onto ~w.
Geometrically, we find it as follows: We move ~v such that its initial point coincides with that of ~w.
Then we extend ~w to a line and construct a line that passes through the tip of ~v. The vector from
the initial point to the intersection of the two lines is the see Figure 2.10
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Figure 2.10: Orthogonal projections in R2.

We denote the orthogonal projection of ~v onto ~w by proj~w ~v, or sometimes by ~v‖ it is clear on which
vector we are projecting. By construction of proj~w ~v it is clear that

• proj~w ~v is parallel to ~w,

• ~v − proj~w ~v is orthogonal to ~w. Therefore, we sometimes write ~v⊥ = ~v − proj~w ~v.

This procedure allows us to write ~v as sum of a vector parallel to ~w and one orthogonal to ~w. How
we can calculate these two vectors, is the content of the next theorem.

Theorem 2.22. Let ~v and ~w be vectors in R2 and ~w 6= ~0. Then

proj~w ~v =
〈~v , ~w〉
‖~w‖2

~w. (2.4)

Before we prove the formula, note that it seems to make sense. The right hand side is a multiple
of ~w, so it is parallel to ~w as it should be. Moreover, it does not depend on ‖w‖ as it should be
because it should not matter if we project on ~w or on 5~w or on −0.4~w; only the direction of ~w
matters, not its length.

Proof. Let ~v‖ = proj~w ~v and ~v⊥ = ~v − ~v‖. Then ~v = ~v‖ + ~v⊥. Since ~v‖ ‖ ~w, there exists a λ ∈ R
such that ~v‖ = λ~w, so we only need to determine λ. For this, we write

~v = λ~w + ~v⊥

=⇒ 〈~v , ~w〉 = 〈λ~w + ~v⊥ , ~w〉 = 〈λ~w , ~w〉+ 〈~v⊥ , ~w〉︸ ︷︷ ︸
=0 since ~v⊥⊥~w

= 〈λ~w , ~w〉 = λ〈~w , ~w〉 = λ‖~w‖2

=⇒ λ =
〈~v , ~w〉
‖~w‖2
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So it follows that

proj~w ~v = ~v‖ = λ~w =
〈~v , ~w〉
‖~w‖2

~w.

Remark 2.23. (i) proj~w ~v depends only of the direction of ~w. It does not depend on its length.

Proof. By our geometric intuition, this should be clear. But we can see this also from the
formula. Suppose we want to project on c~w for some c ∈ R \ {0}. Then

projc~w ~v =
〈~v , c~w〉
‖c~w‖2

(c~w) =
c〈~v , ~w〉
c2‖~w‖2

(c~w) =
〈~v , ~w〉
‖~w‖2

~w = proj~w ~v.

(ii) For every c ∈ R, we have that proj~w(c~v) = cproj~w ~v.

Proof. Again, by geometric considerations, this should be clear. The corresponding calculus
is

proj~w(c~v) =
〈c~v , ~w〉
‖~w‖2

~w =
c〈~v , ~w〉
‖~w‖2

~w = cproj~w ~v.

(iii) As special cases of the above, we find proj~w(−~v) = proj~w ~v and proj−~w ~v = −proj~w ~v.

(iv) ~v ‖ ~w =⇒ proj~w ~v = ~v.

(v) ~v ⊥ ~w =⇒ proj~w ~v = ~0.

(vi) proj~w ~v is the unique vector in R2 such that

~v − proj~w ~v ⊥ ~v and proj~w ~v ‖ ~w.

We end this section with some examples.

Example 2.24. Let ~u = 2~e1 + 3~e2, ~v = 4~e1 −~e2.

(i) proj~e1 ~u = 〈~u ,~e1〉
‖~e1‖2 ~e1 = 2

12~e1 = 2~e1.

(ii) proj~e2 ~u = 〈~u ,~e2〉
‖~e2‖2 ~e2 = 3

12~e2 = 3~e2.

(iii) Similarly, we can calculate proj~e1 ~v = 4~e1, proj~e2 ~v = −~e2.

(iv) proj~u ~v = 〈~u ,~v〉
‖~u‖2 ~u =

〈2
3

 ,

 5
−1

〉
‖~u‖2 ~u = 8−3

22+32 ~u = 5
13~u = 5

13

(
2
3

)
.

(v) proj~v ~u = 〈~v ,~u〉
‖~v‖2 ~v =

〈 4
−1

 ,

2
3

〉
‖~u‖2 ~u = 8−3

42+(−1)2~v = 5
17~v = 5

17

(
4
−1

)
.
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Example 2.25 (Angle with coordinate axes). Let ~v =

(
a
b

)
∈ R2 \ {~0}.

Then cos^(~v,~e1) = a
‖~v‖ , cos^(~v,~e2) = b

‖~v‖ , hence

~v =

(
a
b

)
= ‖~v‖

(
cos^(~v,~e1)
cos^(~v,~e2)

)
.

2.3 Vectors in R3

In this section we extend our calculations from R2 to R3. Recall that R3 is the space of all points
P (a, b, c) with a, b, c ∈ R. This is a model for our usual physical everyday space. Recall that the dis-
tance between two points P (p1, p2, p3) andQ(q1, q2, q3) is PQ =

√
(q1 − p1)2 + (q2 − p2)2 + (q3 − p3)2.

As in R2, we can identify every point in R3 with the arrow that starts in the origin of coordinate
system and ends in the given point. The set of all arrows with the same length and the same
direction is called a vector in R3. Again, we denote a vector in R3 as a column

~v =

ab
c

 .

In order to save space, we will also use the notation (a, b, c)t, where, as in R2, the superscript t
stands for transposed.

Definition 2.26. Let ~v =

v1v2
v3

 , ~w =

w1

w2

w3

 ∈ R3 and c ∈ R. We define the sum of ~v and ~w and

the product of the scalar c with the vector ~v as follows:

~v + ~w =

v1v2
v3

+

w1

w2

w3

 =

v1 + w1

v2 + w2

v3 + w3

 , c~v =

cv1cv2
cv3

 .

It is easy to see that R3 with this sum and product satisfies the vector space axioms on page 19.

As in R2, we define an inner product

〈~v , ~w〉 =

〈v1v2
v3

 ,

w1

w2

w3

〉 = v1w1 + v2w2 + v3 + w3

and a norm

‖~v‖ =

∥∥∥∥∥∥
v1v2
v3

∥∥∥∥∥∥ :=
√
v21 + v22 + v23 .

We also use the words magnitude or length of ~w. .
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Two vectors in R3 which are not parallel generate a plane. Then we can measure the angle between
the two vectors in this plane as if it was R2 and we call it the angle between the two vectors.
As in R2, we have the following properties:

(i) Symmetry of the inner product: For all vectors ~v, ~w ∈ R3, we have that 〈~v , ~w〉 = 〈~w ,~v〉.

(ii) Bilinearity of the inner product: For all vectors ~u,~v, ~w ∈ R3 and all c ∈ R, we have that
〈~u ,~v + ~w〉 = 〈~u ,~v〉+ c〈~u , ~w〉.

(iii) Relation of the inner product with the angle between vectors: Let ~v, ~w ∈ R3 and let ϕ =
^(~v, ~w). Then

〈~v , ~w〉 = ‖~v‖ ‖~w‖ cosϕ.

Remark 2.27. Actually, the inner product usually is used to define the angle between two
vectors by the formula above.

In particular, we have (cf. Proposition 2.16):

(a) ~v ‖ ~w ⇐⇒ ^(~v, ~w) ∈ {0, π} ⇐⇒ |〈~v , ~w〉| = ‖~v‖ ‖~w‖
(b) ~v ⊥ ~w ⇐⇒ ^(~v, ~w) = π/2 ⇐⇒ 〈~v , ~w〉 = 0.

(iv) Relation of norm and inner product: For all vectors ~v ∈ R3, we have that ‖~v‖2 = 〈~v ,~v〉.

(v) Properties of the norm: For all vectors ~v, ~w ∈ R3 and scalars c ∈ R, we have that ‖c~v‖ = |c|‖~v‖
and ‖~v + ~w‖ ≤ ‖~v‖+ ‖~w‖.

(vi) Orthogonal projections of one vector onto another: For all vectors ~v, ~w ∈ R3 the orthogonal
projection of ~v onto ~w is

proj~w ~v =
〈~v , ~w〉
‖~w‖2

~w.

As in R3, we have three sort of special vectors which are parallel to the coordinate system:

~e1 :=

1
0
0

 , ~e2 :=

0
1
0

 , ~e3 :=

0
0
1

 .

Another notation for them is ı̂, ̂, k̂.
For a given vector ~v 6= ~0, we can now easily determine its angle with the coordinate axes:

ϕx = ^(~v,~e1) =⇒ cosϕx =
〈~v ,~e1〉
‖~v‖ ‖~e1‖

=
v1
‖~v‖

,

ϕy = ^(~v,~e2) =⇒ cosϕx =
〈~v ,~e2〉
‖~v‖ ‖~e2‖

=
v2
‖~v‖

,

ϕz = ^(~v,~e3) =⇒ cosϕx =
〈~v ,~e3〉
‖~v‖ ‖~e3‖

=
v3
‖~v‖

.
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Esto nos dice que

~v = ‖~v‖

cosϕx
cosϕy
cosϕz

 .

If we take the norm both sides of the equation, we find

(cosϕx)2 + (cosϕy)2 + (cosϕz)
2 = 1.

2.4 Cross product

In this section we define the so-called cross product. Another name for it its vector product. It takes
two vectors and gives back two vectors. It does have several properties which makes it look like a
product, however we will see that it is NOT a product. Here is the definition.

Definition 2.28 (Cross product). Let ~v =

v1v2
v3

 , ~w =

w1

w2

w3

 ∈ R3. Their cross product or

vector product is

~v × ~w =

v1v2
v3

×
w1

w2

w3

 :=

v2w3 − v3w2

v3w1 − v1w3

v1w2 − v2w1

 .

Remark 2.29. The cross product exists only in R3!

Before we collect some easy properties of the cross product, let us calculate a few examples.

Examples 2.30. Let ~u =

1
2
3

, ~v =

5
6
7

.

• ~u× ~v =

1
2
3

×
5

6
7

 =

2 · 7− 3 · 6
3 · 5− 1 · 7
1 · 6− 2 · 5

 =

14− 18
15− 7
6− 10

 =

−4
8
−4

.

• ~v × ~u =

5
6
7

×
1

2
3

 =

6 · 3− 7 · 2
7 · 1− 3 · 5
5 · 2− 6 · 1

 =

18− 14
7− 15
10− 6

 =

 4
−8
4

.

• ~v ×~e1 =

5
6
7

×
1

0
0

 =

6 · 0− 7 · 0
7 · 0− 7 · 1
5 · 0− 6 · 1

 =

 0
−7
−6

.

Proposition 2.31 (Properties of the cross product). Let ~u,~v, ~w ∈ R3 and let c ∈ R. Then:

(i) ~u×~0 = ~0× ~u = ~0.

(ii) ~u× ~v = −~v × ~u.
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(iii) ~u× (~v + ~w) = (~u× ~v) + (~u× ~w).

(iv) (c~u)× ~v = c(~u× ~v).

(v) ~u ‖ ~v =⇒ ~u× ~v = ~0. In particular, ~v × ~v = ~0.

(vi) 〈~u ,~v × ~w〉 = 〈~u× ~v , ~w〉.

(vii) 〈~u , ~u× ~v〉 = 0 and 〈~v , ~u× ~v〉 = 0, in particular

~v ⊥ ~v × ~u, ~u ⊥ ~v × ~u

that means that the vector ~v × ~w is orthogonal to both ~v and ~w.

Proof. The proofs of the formulas (i) to (v) are easy calculations (you should do them!).

(vi) The proof is a long but straightforward calculation:

〈~u ,~v × ~w〉 =

〈u1u2
u3

 ,

v1v2
v3

×
w1

w2

w3

〉 =

〈u1u2
u3

 ,

v2w3 − v3w2

v3w1 − w3v1
v1w2 − v2w1

〉
= u1(v2w3 − v3w2) + u2(v3w1 − v1w3) + u3(v1w2 − v2w1)

= u1v2w3 − u1v3w2 + u2v3w1 − u2v1w3 + u3v1w2 − u3v2w1

= u2v3w1 − u3v2w1 + u3v1w2 − u1v3w2 + u1v2w3 − u2v1w3

= (u2v3 − u3v2)w1 + (u3v1 − u1v3)w2 + (u1v2 − u2v1)w3

= 〈~u× ~v , ~w〉.

(vii) It follows from (vi) and (v) that

〈~u , ~u× ~v〉 = 〈~u× ~u ,~v〉 = 〈~0 , ~v〉 = 0.

Note that the cross product is distributive but it is not commutative nor associative.

Recall that for the inner product we proved the formula 〈~v , ~w〉 = ‖~v‖ ‖~w‖ cosϕ where ϕ is the angle
between the two vectors, see Theorem 2.19. In the next theorem we will prove a similar relation
for the cross product.

Theorem 2.32. Let ~v, ~w be vectors in R3 and let ϕ be the angle between them. Then

‖~v × ~w‖ = ‖~v‖ ‖~w‖ sinϕ

Proof. A long, but straightforward calculations shows that ‖~v × ~w‖2 = ‖~u‖2‖~w‖2 − 〈~v , ~w〉2. Now
it follows from Theorem 2.19 that

‖~v × ~w‖2 = ‖~u‖2‖~w‖2 − 〈~v , ~w〉2 = ‖~u‖2‖~w‖2 − ‖~v‖2‖~w‖2(cosϕ)2

= ‖~u‖2‖~w‖2(1− (cosϕ)2) = ‖~u‖2‖~w‖2(sinϕ)2.

Observe that sinϕ ≥ 0 because ϕ ∈ [0, π]. So if we take the square root we we do not need to take
the absolute value and we arrive at the claimed formula.
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Application: Area of a parallelogram and volume of a parelellepiped

Area of a parallelogram

Let ~v and ~w be two vectors in R3. Then they define a parallelogram (if the vectors are parallel or
one of them is equal to ~0, it is a degenerate parallelogram).

Figure 2.11: Parallelogram spanned by ~v and ~w.

Proposition 2.33 (Area of a parallelogram). The area of the parallelogram spanned by the
vectors ~v and ~w is

A = ‖~v × ~w‖. (2.5)

Proof. The area of a parallelogram is the product of the length of its base with the height. We
can take ~w as base. Let ϕ be the angle between ~w and ~v. Then we obtain that h = ‖~v‖ sinϕ and
therefore, with the help of Theorem 2.32

A = ‖~w‖h = ‖~w‖‖~v‖ sinϕ = ‖~v × ~w‖.

Note that in the case when ~v and ~w are parallel, this gives the right answer A = 0.

Any three vectors in R3 define a parallelepiped.
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Figure 2.12: Parallelepiped spanned by ~u,~v, ~w.

Proposition 2.34 (Volume of a parallelepiped). The volume of the parallelepiped spanned by
the vectors ~u, ~v and ~w is

V = ‖~u(~v × ~w)‖. (2.6)

Proof. The volume of a parallelepiped is the product of the area of its base with the height. Let us
take the parallelogram spanned by ~v, ~w as base. If ~v and ~w are parallel or one or them is equal to
~0, then (2.6) is true because V = 0 and ~v × ~w = ~0 in this case.
Now let us assume that they are not parallel. By Proposition 2.33 we already know that its base
has area A = ‖~v × ~w‖. The height is the length of the orthogonal projection of ~u onto the normal
vector of the plane spanned by ~v and ~w. We already know that ~v × ~w is such a normal vector.
Hence we obtain that

h = ‖ proj~v×~w ~u‖ =

∥∥∥∥ 〈~u ,~v × ~w〉
‖~v × ~w‖2

~v × ~w

∥∥∥∥ =
|〈~u ,~v × ~w〉|
‖~v × ~w‖2

‖~v × ~w‖ =
|〈~u ,~v × ~w〉|
‖~v × ~w‖

.

We can take ~w as base. Let ϕ be the angle between ~w and ~v. Then we obtain that h = ‖~v‖ sinϕ
and therefore, with the help of Theorem 2.32

A = ‖~w‖h = ‖~w‖‖~v‖ sinϕ = ‖~v × ~w‖.

Therefore, the volume of the parallelepiped is

V = Ah = ‖~v × ~w‖ |〈~u ,~v × ~w〉|
‖~v × ~w‖

= |〈~u ,~v × ~w〉|.

Corollary 2.35. Let ~u,~v, ~w ∈ R3. Then

|〈~u ,~v × ~w〉| = |〈~v , ~w × ~u〉| = |〈~w , ~u× ~v〉|.
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Proof. The formula holds because each of the expressions describes the volume of the parallelepiped
spanned by the three given vectors since we can take any of the sides of the parallelogram as its
base.

2.5 Lines and planes in R3

Lines

In order to know a line in R3 completely, it is not necessary to know all its points. It is sufficient
to know either

(a) two different points P,Q on the line

or

(b) one point P on the line and the direction of the line.

Figure 2.13: Line L given (a) by two points P,Q on L, (b) by a point P on L and the direction
of L.

Clearly, both descriptions are equivalent. If we have two different points P,Q on the line L, then
its direction is given by the vector

#    –

PQ. If on the other hand we are given a point P on L and a
vector ~v which is parallel to L, then we easily get another point Q on L by

#    –

OQ =
#  –

0P + ~v.
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Now we want to give formulas for the line.

Vector equation

Given two points P (p1, p2, p3) and Q(q1, q2, q3) with P 6= Q, there is exactly one line L which passes
through both points. In formulas, this line is described as

L =
{

#  –

0P + t
#    –

PQ : t ∈ R
}

=


p1 + (q1 − p1)t
p2 + (q2 − p2)t
p3 + (q3 − p3)t

 : t ∈ R

 (2.7)

If we are given a point P (p1, p2, p3) on L and a vector ~v =

v1v2
v3

 6= ~0 parallel to L, then

L =
{

#  –

0P + t~v : t ∈ R
}

=


p1 + v1t
p2 + v2t
p3 + v3t

 : t ∈ R

 (2.8)

The formulas (2.7) and (2.8) are called vector equation for the line L. Note that they are the same
if we set v1 = q1− p1, v2 = q2− p2, v3 = q3− p3. We will mostly use the notation with the v’s since
it is shorter. The vector ~v is called directional vector of the line L. Observe that if ~v is a directional
vector for L, then c~v is so too for every c ∈ R \ {0}.

Parametric equation

From the formula (2.8) it is clear that a point (x, y, z) belongs to L if and only if there exists t ∈ R
such that

x = p1 + tv1,

y = p2 + tv2,

z = p3 + tv3.

(2.9)

If we had started with (2.7), then had obtained

x = p1 + t(q1 − p1),

y = p2 + t(q2 − p2),

z = p3 + t(q3 − p3)

(2.10)

The system of equations (2.9) or (2.10) are called the parametric equations of L. Here, t is the
parameter.

Symmetric equation

Observe that for (x, y, z) ∈ L, the three equations in (2.9) must hold for the same t. So if we assume
that v1, v2, v3 6= 0, then we can solve for t and we obtain that

x− p1
v1

=
y − p2
v2

=
z − p3
v3

(2.11)
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If we use (2.10) then we obtain

x− p1
q1 − p1

=
y − p2
q2 − p2

=
z − p3
q3 − p3

. (2.12)

The system of equations (2.11) or (2.12) is called the symmetric equation of L.
If for instance, v1 = 0 and v2, v3 6= 0, then the symmetric equation would be

x = p1,
y − p2
v2

=
z − p3
v3

.

This is a line which is parallel to the yz-plane.
If v1 = v2 = 0 and v3 6= 0, then the symmetric equation would be

x = p1, y = p2, z ∈ R.

This is a line which is parallel to the z-axis.

Remark 2.36. It is important to observe that a given line has many different parametrizations.
For example, the vector equation that we write down depends on the points we choose on L. Clearly,
we have infinitely many possibilities to do so.

Example 2.37. The following equations describe the same line:

L =


1

2
3

+ t

4
5
6

 : t ∈ R

 =


1

2
3

+ t

 8
10
12

 : t ∈ R

 =


1

2
3

+ t

−4
−5
−6

 : t ∈ R


=


5

7
9

+ t

4
5
6

 : t ∈ R


Two lines G and L in ′R3 are parallel if and only if their directional vectors are parallel.

Planes

In order to know a plane in R3 completely, it is sufficient to

(a) three points P,Q on the plane that do not lie on a line,

or

(b) one point P on the plane and two non-parallel vectors ~v, ~w which are both parallel the plane,

or

(c) one point P on the plane and a vector ~n which is perpendicular to the plane,

Figure 2.14: Plane π given (a) by three points P,Q,R on π, (b) by a point P on L and two vectors
~v, ~w parallel to π. (c) by a point P on L and a vector ~n perpendicular to π.
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First, let us see how we can pass from one description to another. Clearly, the descriptions ((a))
and ((b)) are equivalent because given three points P,Q,R on π which do not lie on a line, we can

form the vectors
#    –

PQ and
#    –

PR. Theses vectors are then parallel to the plane π but are not parallel
with each other. (Of course, we also could have taken

#    –

QR and
#    –

QP or
#    –

RP and
#    –

RQ.) If, on the
other hand, we have one point P on π and two vectors ~v and ~w, parallel to π and ~v 6‖ ~w, then we

can easily get two other points on π, for instance by
#  –

0Q =
#  –

0P + ~v and
#  –

0R =
#  –

0P + ~w. Then the
three points P,Q,R lie on π and do not lie on a plane.

In formulas, we can now describe our plane π as

π =

(x, y, z) :

xy
z

 =
#  –

0P + s~v + t~w for some s, t ∈ R


Now we want to use the normal vector of the plane to describe it. Assume that we are given a point
P on π and a normal vector ~n perpendicular to the plane. This means that every vector which is
parallel to the plane π must be perpendicular to ~n. If we take an arbitrary point Q(x, y, z) ∈ R3,

then Q ∈ π if and only if
#    –

PQ is parallel to π, that means that
#    –

PQ is orthogonal to ~n. Recall that
two vectors are perpendicular if and only if their inner product is 0, so Q ∈ π if and only if

0 = 〈n , #    –

PQ〉 =

〈n1n2
n3

 ,

x− p1y − p2
z − p3

〉 = n1(x− p1) + n2(y − p2) + n3(z − p3)

= n1x+ n2y + n3z − (n1p1 + n2p2 + n3 − p3)

If we set d = n1p1 + n2p2 + n3 − p3, then it follows that a point Q(x, y, z) belongs to π if and only
if its coordinates satisfy

n1x+ n2y + n3z = d. (2.13)

Equation (2.13) is called the normal equation for the plane π.

Remark 2.38. As before, note that the normal equation for a plane is not unique. For instance,

x+ 2y + 3z = 5 and 2x+ 4y + 6z = 10

describe the same plane. The reason is that “the” normal vector of a plane is not unique. Given
one normal vector ~n, than every c~n with c ∈ R \ {0} is also a normal vector to the plane.

Definition 2.39. The angle between two planes is the angle between their normal vectors.

Note that this definition is consistent with the fact that two planes are parallel if and only if their
normal vectors are parallel.

Remark 2.40. • Assume a plane is given as in ((b)) (that is, we know a point P on π and two
vectors ~v and ~w parallel to π but with ~v 6‖ ~w). In order to have description as in ((c)) (that is
one point on ı and a normal vector), we only have to find a vector ~n that is perpendicular to
both ~v and ~w. Proposition 2.31(vii) tells us how to do this: we only need to calculate ~v × ~w.
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• Assume a plane is given as in ((c)) (that is, we know a point P on π and its normal vector).
In order to find vectors ~v and ~w as in ((b)), we can guess either find two solutions of ~x×~n = 0
which are not parallel. Or we find only one solution ~v which usually is easy to guess and then
calculate ~w = ~v×~n. This vector is perpendicular to ~n and therefore it is parallel to the plane.
It is also perpendicular to ~v and therefore it is not parallel to ~v. In total, this vector ~w does
what we need.

2.6 Intersections of lines and planes in R3

Intersection of lines

Given two lines G and L in R3, there are three possibilities:

(a) The lines intersect in exactly one point. In this case, they cannot be parallel.

(b) The lines intersect in infinitely many points. In this case, the lines have to be equal. In
particular the have to be parallel.

(c) The lines do not intersect. Not that in contrast to the case in R2, the lines do not have to be
parallel for this to happen. For example, the line L : x = y = 1 is a line parallel to the z-axis
passing through (1, 1, 0), and G : x = z = 0 is a line parallel to the y-axis passing through
(0, 0, 0), The lines do not intersect and they are not parallel.

Example 2.41. We consider four lines Lj = {~pj + t~vj : t ∈ R} with

(i) ~v1 =

1
2
3

 , ~p1 =

0
0
1

 , (ii) ~v2 =

2
4
6

 , ~p2 =

2
4
7

 ,

(iii) ~v3 =

1
1
2

 , ~p3 =

−1
0
0

 , (iv) ~v4 =

1
1
2

 , ~p4 =

3
0
5

 .

We will calculate their mutual intersections.

L1 ∩ L2 = L1

Proof. A point Q(x, y, z) belongs to L1∩L2 if and only if it belongs both to L1 and L2. This means

that there must exist an s ∈ R such that
#  –

0Q = ~p1 + s~v1 and there must exist a t ∈ R such that
#  –

0Q = ~p2 + t~v2. Note the s and t are different parameters. So we are looking for s and t such that

~p1 + s~v1 = ~p2 + t~v2, that is

0
0
1

+ s

1
2
3

 =

2
4
7

+ t

2
4
6

 (2.14)

Once we have solved this for s and t, we insert the into the equation for L1 and L2 respectively,
and obtain Q. Note that (2.14) in reality is a system of three equations: one equation for each
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component of the vector equation. Writing it out, and solving each equation for s, we obtain

0 + s = 2 + 2t
0 + 2s = 4 + 4t
1 + 3s = 7 + 6t

⇐⇒
s = 2 + 2t
s = 2 + 2t
s = 2 + 2t.

This means that we have infinitely many solutions: Given any point R on L1, there is a correspond-
ing s ∈ R such that

#  –

0R = ~p1 + s~v1. Now if we choose t = (s−2)/2, then
#  –

0R = ~p2 + t~v2 holds, hence
R ∈ L2 too. If on the other hand we have a point R′ ∈ L2, then there is a corresponding t ∈ R
such that

#    –

0R′ = ~p2 + t~v2. Now if we choose s = 2 + 2t, then
#    –

0R′ = ~p1 + t~v1 holds, hence R′ ∈ L2

too. In summary, we showed that L1 = L2.

Remark 2.42. We could also have seen that the directional vectors of L1 and L2 are parallel. In
fact, ~v2 = 2~v1. It then suffices to show that L1 and L2 have at least one point in common in order
to conclude that the lines are equal.

L1 ∩ L3 = {(1, 2, 4)}

Proof. As before, we need to find s, t ∈ R such that

~p1 + s~v1 = ~p3 + t~v3, that is

0
0
1

+ s

1
2
3

 =

−1
0
0

+ t

1
1
2

 . (2.15)

We write this as a system of equations, we get

1 0 + s = −1 + t
2 0 + 2s = 0 + t
3 1 + 3s = 0 + 2t

⇐⇒
1 s − t = −1
2 2s − t = 0
3 3s − 2t = −1

From 1 it follows that s = t− 1. Inserting in 2 gives 0 = 2(t− 1)− t = t− 2, hence t = 2. From
1 we then obtain that s = 2 − 1 = 1. Observe that so far we used only equations 1 and 2 . In

order to see if we really found a solution, we must check if it is consistent with 3 . Inserting our
candidates for s and t, we find that 3 · 1− 2 · 2 = −1 which is consistent with 3 .
So we have exactly one point of intersection. In order to find it, we put s = 1 in the equation for
L1:

#  –

0Q = ~p1 + 1 · ~v1 =

0
0
1

+

1
2
3

 =

1
2
4

 ,

hence the intersection point is Q(1, 2, 4).

In order to check if this result is correct, we can put t = 2 in the equation for L3. The result must
be the same. The corresponding calculation is:

#  –

0Q = ~p3 + 2 · ~v3 =

−1
0
0

+

2
2
4

 =

1
2
4

 ,

which confirms that the intersection point is Q(1, 2, 4).
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L1 ∩ L4 = ∅

Proof. As before, we need to find s, t ∈ R such that

~p1 + s~v1 = ~p4 + t~v4, that is

0
0
1

+ s

1
2
3

 =

3
0
5

+ t

1
1
2

 . (2.16)

We write this as a system of equations, we get

1 s = 3 + t
2 2s = t
3 1 + 3s = 5 + 2t

⇐⇒
1 s − t = 3
2 2s − t = 0
3 3s − 2t = 5

From 1 it follows that s = t + 3. Inserting in 2 gives 0 = 2(t + 3) − t = t + 6, hence t = −6.
From 1 we then obtain that s = −6 + 3 = −3. Observe that so far we used only equations 1 and
2 . In order to see if we really found a solution, we must check if it is consistent with 3 . Inserting

our candidates for s and t, we find that 3 · (−3) − 2 · (−6) = 3 which is inconsistent with 3 .
Therefore we conclude that there is no pair of real numbers s, t which satisfies all three equations
1 – 3 simultaneously, so the two lines do not intersect.

Exercise. Show that L3 ∩ L4 = ∅.

Intersection of planes

Given two planes π1 and π2 in R3, there are two possibilities:

(a) The planes intersect. In this case, they necessarily intersect in infinitely many points. The
intersection is either a line. In this case π1 and π2 are not parallel. Or the intersection is a
plane. In this case π1 = π2.

(b) The planes do not intersect. In this case, the planes must be parallel and not equal.

Example 2.43. We consider the following four planes:

π1 : x+ y + 2z = 3, π2 : 2x+ 2y + 4z = 3, π3 : 2x+ 2y + 4z = 6, π4 : x+ y − 2z = 5.

We will calculate their mutual intersections.

π1 ∩ π2 = ∅

Proof. The set of all points Q(x, y, z) which belong both to π1 and π2 is the set of all x, y, z which
simultaneously satisfy

1 x + y + 2z = 3,
2 2x + 2y + 4z = 3.

Now clearly, if x, y, z satisfies 1 , then it cannot satisfy 2 (the right side would be 6). We can
see this more formally if we solve 1 , e.g., for x and then insert into 2 . We obtain from 1 :
x = 3− y − 2z. Inserting into 2 leads to

3 = 2(3− y − 2z) + 2y + 4z = 6,
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which is absurd.

Geometrically, this was to be expected. The normal vectors of the planes are ~n1 =

1
1
2

 and

~n2 =

2
2
4

 respectively. Since they are parallel, the planes are parallel and therefore they either are

equal or they have empty intersection. Now we see that for instance (3, 0, 0) ∈ π1 but (3, 0, 0) /∈ π2,
so the planes cannot be equal. Therefore they have empty intersection.

π1 ∩ π3 = π1

Proof. The set of all points Q(x, y, z) which belong both to π1 and π3 is the set of all x, y, z which
simultaneously satisfy

1 x + y + 2z = 3,
2 2x + 2y + 4z = 6.

Clearly, both equations are equivalent: if x, y, z satisfies 1 , then it also satisfies 2 and vice versa.
Therefore, π1 = π3.

π1 ∩ π4 =


 4

0
− 1

2

+ t

−1
1
0

 : t ∈ R

 .

Proof. First, we notice that the normal vectors ~n1 =

1
1
2

 and ~n4 =

 1
1
−2

 are not parallel, so we

expect that the solution is a line in R3.
The set of all points Q(x, y, z) which belong both to π1 and π4 is the set of all x, y, z which
simultaneously satisfy

1 x + y + 2z = 3,
2 x + y − 2z = 5.

Equation 1 shows that x = 3− y− 2z. Inserting into 2 leads to 5 = 3− y− 2z+ y− 2z = 3− 4z,
hence z = − 1

2 . Putting this into 1 , we find that x+y = 3−2z = 4. So in summary, the intersection
consists of all points (x, y, z) which satisfy

z = −1

2
, x = 4− y with y ∈ R arbitrary,

in other words,xy
z

 =

4− y
y
− 1

2

 =

 4
0
− 1

2

+

−yy
0

 =

 4
0
− 1

2

+ y

−1
1
0

 with y ∈ R arbitrary.
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Intersection of several lines and planes

If we wanted to intersect for instance, 5 planes in R3, then we would have to solve a system of
5 equations for 3 unknowns. Or if we wanted to intersect 7 lines in R3, then we had to solve a
system of 3 equations for 7 unknowns. If we do it like here, this could become quite messy. So the
next chapter is devoted to find a systematic way how to solve a system of m linear equations for n
unknowns.

2.7 Summary

x − 2y − 4z = 1
3x − y − z = −1
x − 11y + 22z = 110

Faltan Figures 11, 12.
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Chapter 3

Linear Systems and Matrices
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