Álgebra lineal

Taller 13

Complemento ortogonal.

Fecha de entrega: 4 de mayo de 2018

1. Sean
$$\vec{v} = \begin{pmatrix} 0 \\ 2 \\ 2 \\ 1 \end{pmatrix}$$
, $\vec{w} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 5 \end{pmatrix}$, $\vec{a} = \begin{pmatrix} 0 \\ 3 \\ 4 \\ 0 \\ 0 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \\ 3 \end{pmatrix}$, $\vec{c} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$, $\vec{d} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$.

- (a) Demuestre que \vec{v} y \vec{w} son linealmente independientes y encuentre una base ortonormal de $U = \operatorname{span}\{\vec{v}, \vec{w}\} \subseteq \mathbb{R}^4$.
- (b) Demuestre que \vec{a} , \vec{b} , \vec{c} y \vec{d} son linealmente independientes. Use el proceso de Gram-Schmidt para encontrar una base ortonormal de $U = \operatorname{span}\{\vec{a}, \vec{b}, \vec{c}, \vec{d}\} \subseteq \mathbb{R}^5$. Encuentre una base de U^{\perp} .
- 2. (a) Sea $U = \{(x, y, z)^t \in \mathbb{R}^3 : x + 2y + 3z = 0\} \subseteq \mathbb{R}^3$.
 - (i) Sea $\vec{v} = (0, 2, 5)^t$. Ecuentre el punto $\vec{x} \in U$ que esté más cercano a \vec{v} y calcule la distancia entre \vec{v} y \vec{x} .
 - (ii) Hay un punto $\vec{y} \in U$ que esté a una distancia máximal de \vec{v} ?
 - (iii) * Encuentre la matriz que representa la proyección ortogonal sobre U (en la base estandar).
 - (b) Sea $W = \text{gen}\{(1, 1, 1, 1)^t, (2, 1, 1, 0)^t\} \subseteq \mathbb{R}^4$.
 - (i) Encuentre una base ortogonal de W.
 - (ii) Sean $\vec{a}_1 = (1, 2, 0, 1)^t$, $\vec{a}_2 = (11, 4, 4, -3)^t$, $\vec{a}_3 = (0, -1, -1, 0)^t$. Para cada j = 1, 2, 3 encuentre el punto $\vec{w}_j \in W$ que esté más cercano a \vec{a}_j y calcule la distancia entre \vec{a}_j y \vec{w}_j .
 - (iii) * Encuentre la matriz que representa la proyección ortogonal sobre W (en la base estandar).
- 3. Encuentre una base ortonormal de U^{\perp} donde $U = \text{gen}\{(1,0,2,4)^t\} \subseteq \mathbb{R}^4$.
- 4. (a) Demuestre que lo siguiente define un producto interno en \mathbb{C}^n :

$$\langle \vec{x}, \vec{y} \rangle = \sum_{j=1}^{n} x_j \overline{y_j},$$
 para $\vec{x} = (x_1, \dots, x_n)^t, \ \vec{y} = (y_1, \dots, y_n)^t \in \mathbb{C}^n.$

(b) Sea V el espacio de todas la funciones continuas $[0,1] \to \mathbb{R}$. Claramente V es un espacio vectorial. Demuestre que lo siguiente define un producto interno en V:

$$\langle \vec{f}, \vec{g} \rangle = \int_0^1 f(x)g(x) \, \mathrm{d}x,$$
 para $f, g \in V$.

(c) Demuestre que el sistema de las funciones

$$v_0(x) = 1, \ v_n(x) = \sin(n\pi x), \ w_n(x) = \cos(n\pi x), \qquad n \in \mathbb{N},$$

es un sistema ortogonal en C[0,1] con el product interno definido en Problema 13.4.

- (d) Aplique el proceso de Gram-Schmidt a $p_0 = 1$, $p_1 = x$, $p_2 = x^2$, $p_3 = x^3$ para obtener una base ortonormal $\{q_0, \ldots, q_3\}$ de P_3 con el product interno definido en Problema 13.4. Observación. Salvo constantes multiplicativos, el polinomio q_j es el poliniomo j-ésimo de Legendre.
- 5. Sea $A \in M(n \times n, \mathbb{C})$. Demuestre que A^* es la única matriz con

$$\langle Ax, y \rangle = \langle x, A^*y \rangle$$
 para todo $x, y \in \mathbb{R}^n$.

- 6. Sea $n \in \mathbb{N}$ y sean $Q, T \in M(n \times n)$.
 - (a) Demuestre que T es una isometría si y solo si $\langle T\vec{x}, T\vec{y} \rangle = \langle \vec{x}, \vec{y} \rangle$ para todo $\vec{x}, \vec{y} \in \mathbb{R}^n$ (es decir: una isometría mantiene ángulos).
 - (b) Demuestre que Q es una matriz ortogonal si y solo si Q es una isometría.

Definición. Sea V un espacio vectorial sobre \mathbb{K} (con $\mathbb{K} = \mathbb{R}$ o $\mathbb{K} = \mathbb{C}$). Un *producto interno* es una función $\langle \cdot, \cdot \rangle : V \times V \to V$ tal que para todo $x, y, z \in V$ y $\lambda \in \mathbb{K}$:

- (i) $\langle x + \lambda y, z \rangle = \langle x, z \rangle + \lambda \langle y, z \rangle$, (Linealidad en la primera componente)
- (ii) $\langle x, z \rangle = \overline{\langle x, z \rangle}$ (Simetría; la barra significa conjugación compleja.)
- (iii) $\langle x, x \rangle \ge 0$,
- (iv) $\langle x, x \rangle = 0 \iff x = 0,$

Observe:

- (i) y (iii) implican $\langle x, \lambda y + z \rangle = \overline{\lambda} \langle x, y \rangle + \langle x, z \rangle$,
- (ii) implica que $\langle x, x \rangle \in \mathbb{R}$

Definición. Sea V un espacio vectorial con producto interno $\langle \cdot, \cdot \rangle$ y sean $x, y \in V$. Entonces x es ortogonal a y si y solo si $\langle x, y \rangle = 0$. Notación en este caso: $x \perp y$.

Ejemplos. El producto punto en \mathbb{R}^n es un producto interno. Más ejemplos hay en Ejercio 13.4.

Definición. Sean U, V espacios vectoriales con normas $\|\cdot\|_U$ y $\|\cdot\|_V$. Una función lineal $T: U \to V$ se llama *isometría* si para todo $u \in U$

$$||Tu||_V = ||u||_U.$$

Es claro que isometrías son inyectivas (porque si Tu = 0, entonces $||u||_U = ||Tu||_V = 0$, por tanto u = 0).

Ejemplos.

- Rotaciones en \mathbb{R}^n .
- Reflexiones en \mathbb{R}^n .