Linear Algebra

Analysis Series
M. Winklmeier

Chigüiro Collection

Work in progress. Use at your own risk.

Contents

4 Vector spaces and linear maps 5
4.6 Linear maps . 5
4.7 Matrices as linear maps . 10

$$
0^{a^{2}}
$$

Chapter 4

Vector spaces and linear maps

In the following, \mathbb{K} always denotes a field. You may always think of $\mathbb{K}=\mathbb{R}$, though almost everything is true also for other fields, like \mathbb{C} or \mathbb{F}_{p} where p is a prime number.

4.6 Linear maps

Definition 4.1. Let U, V be vector spaces. A function $A: U \rightarrow V$ is called a linear map (or linear function or linear operator) if for all $x, y \in U$ and $\lambda \in \mathbb{K}$ the following is true:

$$
\begin{equation*}
A(x+y)=A x+A y, \quad A(\lambda x)=\lambda A x \tag{4.1}
\end{equation*}
$$

Remark 4.2. (i) Clearly, (4.1) is equivalent to

$$
A(x+\lambda y)=A x+\lambda A y
$$

for all $x, y \in U$ and $\lambda \in \mathbb{K}$.
(ii) It follows immediately from the definition that

$$
A\left(\lambda_{1} v_{1}+\cdots+\lambda_{k} v_{k}\right)=\lambda_{1} A v_{1}+\cdots+\lambda_{k} A v_{k}
$$

for all $v_{1}, \ldots, v_{k} \in V$ and $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{K}$.
(iii) The condition (4.1) says that a linear map respects the vector space structures of its domain and its target space.

Examples 4.3 (linear maps). (i) Every matrix $A \in M(m \times n)$ can be identified with a linear map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
(ii) Differentiation is a linear map, for example
(a) $T: C^{1}(\mathbb{R}) \rightarrow C(\mathbb{R}), T f=f^{\prime}$, where $C^{1}(\mathbb{R})$ is the space of continuously differentiable functions.
(b) $T: P_{n} \rightarrow P_{n-1}, T f=f^{\prime}$.
(iii) Integration is a linear map. For example:

$$
I: C([0,1]) \rightarrow C([0,1]), f \mapsto I f \quad \text { where }(I f)(t)=\int_{0}^{t} f(s) \mathrm{d} s
$$

Lemma 4.4. If A is a linear map, then $A 0=0$.
Proof. $0=A 0-A 0=A(0-0)=A 0$.
Definition 4.5. Let $A: U \rightarrow V$ be a linear map.
(i) A is called injective (or one-to-one) if

$$
x, y \in U, x \neq y \quad \Longrightarrow \quad A x \neq A y
$$

(ii) A is called surjective if for all $v \in V$ exists at least one $x \in U$ such that $A x=v$.
(iii) A is called bijective if it is injective and surjective.
(iv) The kernel of A (or null space of A, espacio nulo de A) is

$$
\operatorname{ker}(A):=\{x \in U: A x=0\}
$$

Sometimes the notations $N(A)$ or N_{A} instead of $\operatorname{ker}(A)$ are used.
(v) The image of A (or range of A, imagen de A) is

$$
\operatorname{Im}(A):=\{v \in V: y=A x \text { for some } y \in U\}
$$

Sometimes the notations $\operatorname{Rg}(A)$ or $\mathrm{R}(A)$ instead of $\operatorname{Im}(A)$ are used.
Remark 4.6. (i) Observe that $\operatorname{ker}(A)$ is a subset of $U, \operatorname{Im}(A)$ is a subset of V. In Proposition 4.9 we will show that they are even subspaces.
(ii) It follows immediately from the definition that A is surjective if and only if $\operatorname{Im}(A)=V$.
(iii) Clearly, A is injective if and only if for all $x, y \in U$ the following is true:

$$
A x=A y \quad \Longrightarrow \quad x=y
$$

(iv) If A is a linear injective map, then its inverse $A^{-1}: \operatorname{Im}(A) \rightarrow U$ exists and is linear too.

The following lemma is very useful.
Lemma 4.7. A linear map A is injective if and only if $\operatorname{ker}(A)=\{0\}$.
Proof. By Lemma 4.4, we always have $0 \in \operatorname{ker}(A)$. Assume that A is injective, then $\operatorname{ker}(A)$ cannot contain any other element, hence $\operatorname{ker}(A)=\{0\}$.
Now assume that $\operatorname{ker})(A)=\{0\}$ and let $x, y \in U$ with $A x=A y$. By Remark 4.6 it is sufficient to show that $x=y$. By assumption, $0=A x-A y=A(x-y)$, hence $x-y \in \operatorname{ker}(A)=\{0\}$. Therefore $x-y=0$, which means that $x=y$.

Examples 4.8. (i) Let $A \in M(m \times n)$ with $m<n$. Then A cannot be injective.
(ii) Let $T: C^{1}(\mathbb{R}) \rightarrow C(\mathbb{R}), T f=f^{\prime}$ the operator of differentiation from Example 4.3. Then it is easy to see that the kernel of T consists exactly of the constant functions and the T is surjective.

Proposition 4.9. Let $A: U \rightarrow V$ be a linear map. Then
(i) $\operatorname{ker}(A)$ is a subspace of U.
(ii) $\operatorname{Im}(A)$ is a subspace of V.

Proof. (i) Let $x, y \in \operatorname{ker}(A)$ and $\lambda \in \mathbb{K}$. Then

$$
A(x+\lambda y)=A x+\lambda A y=0+\lambda 0=0
$$

hence $x+\lambda y \in \operatorname{ker}(A)$.
(ii) Let $v, w \in \operatorname{Im}(A)$ and $\lambda \in \mathbb{K}$. Then there exist Let $x, y \in U$ such that $A x=v$ and $A y=y$. Then $v+\lambda w=A x+\lambda A y=A(x+\lambda y) \in \operatorname{Im}(A)$. hence $v+\lambda w \in \operatorname{Im}(A)$.

Since we now know that $\operatorname{ker}(A)$ and $\operatorname{Im}(A)$ are subspaces, the following definition makes sense.

Definition 4.10. Let $A: U \rightarrow V$ be a linear map. We define

$$
\operatorname{dim}(\operatorname{ker}(A))=\text { nullity of } A, \quad \operatorname{dim}(\operatorname{Im}(A))=\text { rank of } A
$$

Sometimes the notations $\nu(A)=\operatorname{dim}(\operatorname{ker}(A))$ and $\rho(A)=\operatorname{dim}(\operatorname{Im}(A))$ are used.
Proposition 4.11. Let U, V be \mathbb{K}-vector spaces, $A: U \rightarrow V$ a linear map. Let $x_{1}, \ldots, x_{k} \in U$ and set $y_{1}:=A x_{1}, \ldots, y_{k}:=A x_{k}$. Then the following is true.
(i) If the x_{1}, \ldots, x_{k} are linearly dependent, then y_{1}, \ldots, y_{k} are linearly dependent too.
(ii) If the y_{1}, \ldots, y_{k} are linearly independent, then x_{1}, \ldots, x_{k} are linearly independent too.
(iii) Suppose additionally that A invertible. Then x_{1}, \ldots, x_{k} are linearly independent if and only if y_{1}, \ldots, y_{k} are linearly independent.

Remark 4.12. In general the implication "If x_{1}, \ldots, x_{k} are linearly independent, then y_{1}, \ldots, y_{k} are linearly independent." is false.

Proof of Proposition 4.11. (i) Assume that x_{1}, \ldots, x_{k} are linearly dependent. Then there exist $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{K}$ such that $\lambda_{1} x_{1}+\cdots+\lambda_{k} x_{k}=0$ and at least one $\lambda_{j} \neq 0$. But then

$$
\begin{aligned}
0 & =A 0=A\left(\lambda_{1} x_{1}+\cdots+\lambda_{k} x_{k}\right)=\lambda_{1} A x_{1}+\cdots+\lambda_{k} A x_{k} \\
& =\lambda_{1} y_{1}+\cdots+\lambda_{k} y_{k}
\end{aligned}
$$

hence y_{1}, \ldots, y_{k} are linearly dependent.
(ii) follows directly from (i).
(iii) follows from (i) and (ii).

Theorem 4.13. Let U, V be finite-dimensional \mathbb{K}-vector spaces and let $A: U \rightarrow$ V a linear map. Moreover, let $E: U \rightarrow U, F: V \rightarrow V$ be linear bijective maps. Then the following is true:
(i) $\operatorname{Im}(A)=\operatorname{Im}(A E)$, in particular $\operatorname{dim}(\operatorname{Im}(A))=\operatorname{dim}(\operatorname{Im}(A E))$.
(ii) $\operatorname{ker}(A E)=E^{-1}(\operatorname{ker}(A))$ and $\operatorname{dim}(\operatorname{ker}(A))=\operatorname{dim}(\operatorname{ker}(A E))$.
(iii) $\operatorname{ker}(A)=\operatorname{ker}(F A)$, in particular $\operatorname{dim}(\operatorname{ker}(A))=\operatorname{dim}(\operatorname{ker}(F A))$.
(iv) $\operatorname{Im}(F A)=F(\operatorname{Im}(A))$ and $\operatorname{dim}(\operatorname{Im}(A))=\operatorname{dim}(\operatorname{Im}(F A))$.

In summary we have

$$
\begin{align*}
& \operatorname{ker}(F A)=\operatorname{ker}(A), \quad \operatorname{ker}(A E)=E^{-1}(\operatorname{ker}(A)) \text {, } \\
& \operatorname{Im}(F A)=F(\operatorname{Im}(A)), \quad \operatorname{Im}(A E)=\operatorname{Im}(A) . \tag{4.2}
\end{align*}
$$

and

$$
\begin{align*}
\operatorname{dim} \operatorname{ker}(A) & =\operatorname{dim} \operatorname{ker}(F A)=\operatorname{dim} \operatorname{ker}(A E)=\operatorname{dim} \operatorname{ker}(F A E) \\
\operatorname{dim} \operatorname{Im}(A) & =\operatorname{dim} \operatorname{Im}(F A)=\operatorname{dim} \operatorname{Im}(A E)=\operatorname{dim} \operatorname{Im}(F A E) \tag{4.3}
\end{align*}
$$

Remark 4.14. In general, $\operatorname{ker}(A)=\operatorname{ker}(A E)$ and $\operatorname{ker}(A)=\operatorname{ker}(F A)$ is false. Take for example $U=V=\mathbb{R}^{2}, A=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and $E=F=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Then clearly the hypotheses of the theorem are satisfied and

$$
\operatorname{ker}(A)=\operatorname{gen}\left\{\binom{0}{1}\right\}, \quad \operatorname{Im}(A)=\operatorname{gen}\left\{\binom{1}{0}\right\}
$$

but

$$
\operatorname{ker}(A E)=\operatorname{gen}\left\{\binom{1}{0}\right\}, \quad \operatorname{Im}(F A)=\operatorname{gen}\left\{\binom{0}{1}\right\} .
$$

Remark 4.15. The theorem is also true for infinite dimensional vector spaces, but the proofs of (ii) and (iv) must be changed a little bit.

Proof of Theorem 4.13. (i) Let $v \in V$. If $v \in \operatorname{Im}(A)$, then there exists $x \in U$ such that $A x=v$. Set $y=E^{-1} x$. Then $v=A x=A E E^{-1} x=A E y \in \operatorname{Im}(A E)$. On the other hand, if $v \in \operatorname{Im}(A E)$, then there exists $y \in U$ such that $A E y=v$. Set $x=E$. Then $v=A E y=A x \in \operatorname{Im}(A)$.
(ii) To show $\operatorname{ker}(A E)=E^{-1} \operatorname{ker}(A)$ observe that

$$
\operatorname{ker}(A E)=\{x \in U: E x \in \operatorname{ker}(A)\}=\left\{E^{-1} u: u \in \operatorname{ker}(A)\right\}=E^{-1}(\operatorname{ker}(A)) .
$$

Now let $k=\operatorname{dim}(\operatorname{ker}(A))$ and $\ell=\operatorname{dim}(\operatorname{ker}(A E))$.
Choose a basis u_{1}, \ldots, u_{k} of $\operatorname{ker}(A)$ and set $w_{1}:=E^{-1} u_{1}, \ldots, w_{k}:=E^{-1} u_{k}$. Then the u_{1}, \ldots, u_{k} are linearly independent and for every $j=1, \ldots, k$ we have that $A E w_{j}=A E\left(E^{-1} u_{j}\right)=A u_{j}=0$, hence all w_{j} belong to $\operatorname{ker}(A E)$. They are also linearly independent by Proposition 4.11 , so we must have that $\ell=\operatorname{dim}(\operatorname{ker}(A E)) \geq \operatorname{dim}(\operatorname{ker}(A))=k$.
Now choose a basis w_{1}, \ldots, w_{k} of $\operatorname{ker}(A E)$ and set $u_{1}:=w_{1}, \ldots, u_{k}:=w_{k}$. Then the w_{1}, \ldots, w_{k} are linearly independent and for every $j=1, \ldots, k$ we have that $A u_{j}=A E E^{-1} u_{j}=A E w_{j}=0$, hence all u_{j} belong to $\operatorname{ker}(A)$. They are also linearly independent by Proposition 4.11, so we must have that $k=\operatorname{dim}(\operatorname{ker}(A)) \geq \operatorname{dim}(\operatorname{ker}(A E))=\ell$.
In conclusion, we found that $\ell \geq k$ and $k \geq \ell$, so we must have $k=\ell$ as we wanted to prove.
(iii) Let $x \in U$. Then $x \in \operatorname{ker}(F A)$ if and only if $F A x=0$. Since F is injective, we know that $\operatorname{ker}(F)=\{0\}$, hence it follows that $A x=0$. But this is equivalent to $x \in \operatorname{ker}(A)$.
(iv) To show $\operatorname{Im}(F A)=F \operatorname{Im}(A)$ observe that

$$
\begin{aligned}
\operatorname{Im}(F A) & =\{y \in V: y=F A x \text { for some } x \in U\}=\{F v: v \in \operatorname{Im}(A)\} \\
& =F(\operatorname{Im}(A)),
\end{aligned}
$$

Now let $k=\operatorname{dim}(\operatorname{ker}(A))$ and $\ell=\operatorname{dim}(\operatorname{ker}(A E))$. In order to prove $k=\ell$, we will show that $\ell \geq k$ and $k \geq \ell$.
Choose a basis v_{1}, \ldots, v_{k} of $\operatorname{Im}(F A)$ and choose $x_{1}, \ldots, x_{k} \in U$ such that $v_{1}=$ $F A x_{1}, \ldots, v_{k}:=F A x_{k}$. Set $z_{1}:=F^{-1} v_{1}, \ldots, z_{k}:=F^{-1} v_{k}$. Then for every $j=1, \ldots, k$ we have that $z_{j}=F^{-1} v_{j}=F^{-1} F A x_{j}=A x_{j} \in \operatorname{Im}(A)$, hence all z_{j} belong to $\operatorname{Im}(A)$. They are also linearly independent by Proposition 4.11 because the v_{1}, \ldots, v_{k} are so. Therefore we must have that $\ell=\operatorname{dim}(\operatorname{Im}(A)) \geq$ $\operatorname{dim}(\operatorname{Im}(F A))=k$.

Now choose a basis z_{1}, \ldots, z_{k} of $\operatorname{Im}(A)$ and choose $x_{1}, \ldots, x_{k} \in U$ such that $z_{1}=$ $A x_{1}, \ldots, z_{k}:=A x_{k}$. Set $v_{1}:=F z_{1}, \ldots, v_{k}:=F z_{k}$. Then for every $j=1, \ldots, k$ we have that $v_{j}=F z_{j}=F A x_{j}=\in \operatorname{Im}(F A)$, hence all v_{j} belong to $\operatorname{Im}(F A)$. They are also linearly independent by Proposition 4.11 because the z_{1}, \ldots, z_{k} are so. Therefore we must have that $k=\operatorname{dim}(\operatorname{Im}(F A)) \geq \operatorname{dim}(\operatorname{Im}(A))=\ell$.

In conclusion, we found that $\ell \geq k$ and $k \geq \ell$, so we must have $k=\ell$ as we wanted to prove.

4.7 Matrices as linear maps

Let $\in M(m \times n)$. We already know that we can view A as a linear map from \mathbb{R}^{n} to \mathbb{R}^{m}. Hence $\operatorname{ker}(A)$ and $\operatorname{Im}(A)$ and the terms injectivity and surjectivity are defined.
If we view the matrix A at the same time as a linear system of equations, then we obtain the following.

Remark 4.16.

(i) $\operatorname{ker}(A)=$ all solutions of the homogeneous system $A \vec{x}=\overrightarrow{0}$.
(ii) A is injective
$\Longleftrightarrow \quad \operatorname{ker}(A)=\{0\}$
$\Longleftrightarrow \quad$ the homogenous system $A \vec{x}=\overrightarrow{0}$ has only the trivial solution $\vec{x}=\overrightarrow{0}$.
(iii) $\operatorname{Im}(A)=$ all vectors \vec{b} such that the system $A \vec{x}=\vec{b}$ has a solution.
(iv) A is surjective
$\Longleftrightarrow \quad \operatorname{Im}(A)=\mathbb{R}^{m}$
$\Longleftrightarrow \quad$ for every $\vec{b} \in \mathbb{R}^{m}$, the system $A \vec{x}=\vec{b}$ has at least one solution.
Definition 4.17. Let $A \in M(m \times n)$ and let $\vec{c}_{1}, \ldots, \vec{c}_{n}$ be the columns of A and $\vec{r}_{1}, \ldots, \vec{r}_{m}$ be the rows of A. We define
(i) $C_{A}:=\operatorname{gen}\left\{\vec{c}_{1}, \ldots, \vec{c}_{m}\right\}=$: column space of A.
(ii) $R_{A}:=\operatorname{gen}\left\{\vec{r}_{1}, \ldots, \vec{r}_{n}\right\}=$: row space of A,

Observe that $\vec{c}_{1}, \ldots, \vec{c}_{n} \in \mathbb{R}^{m}$ and $\vec{r}_{1}, \ldots, \vec{r}_{m} \in \mathbb{R}^{n}$.
It follows immediately from the definition above that

$$
\begin{equation*}
R_{A}=C_{A^{t}} \quad \text { and } \quad C_{A}=R_{A^{t}} \tag{4.4}
\end{equation*}
$$

Proposition 4.18. $C_{A}=\operatorname{Im}(A), R_{A}=\operatorname{Im}\left(A^{t}\right)$.

Proof. Let $\vec{y} \in \mathbb{R}^{m}$. Then:

$$
\begin{aligned}
\vec{y} \in \operatorname{Im}(A) & \Longleftrightarrow \text { exists } \vec{x} \in \mathbb{R}^{n} \text { such that } \vec{y}=A \vec{x}=\left(\vec{c}_{1}|\ldots| \vec{c}_{n}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \\
& \Longleftrightarrow \vec{y} \in \operatorname{gen}\left\{\vec{c}_{1}, \ldots, \vec{c}_{n}\right\}=C_{A} .
\end{aligned}
$$

This shows $C_{A}=\operatorname{Im}(A)$. From this is follows that $R_{A}=C_{A^{t}}=\operatorname{Im}\left(A^{t}\right)$.
The next theorem follows easily from the general theory in Section 4.6. We will give another proof at the end of this section.

Proposition 4.19. Let $A \in M(m \times n), E \in M(n \times n), F \in M(m \times m)$ and assume that E and F are invertible. Then
(i) $C_{A}=C_{A E}$.
(ii) $R_{A}=R_{F A}$.

Proof. (i) Note that $C_{A}=\operatorname{Im}(A)=\operatorname{Im}(A E)=C_{A E}$, where in the first and third equality we used Proposition 4.18, and in the second equality we used Theorem 4.13.
(ii) Recall that, if F is invertible, then F^{t} is invertible too. With (4.4) and what we already proved in (i), we obtain $R_{F A}=C_{(F A)^{t}}=C_{A^{t} F^{t}}=C_{A^{t}}=$ R_{A}.

This theorem implies immediately the following proposition.
Proposition 4.20. Let $A, B \in M(m \times n)$.
(i) If A and B are row equivalent, then

$$
\begin{gathered}
\operatorname{dim}(\operatorname{ker}(A))=\operatorname{dim}(\operatorname{ker}(B)), \quad \operatorname{dim}(\operatorname{Im}(A))=\operatorname{dim}(\operatorname{Im}(B)), \\
\operatorname{Im}\left(A^{t}\right)=\operatorname{Im}\left(B^{t}\right), \quad R_{A}=R_{B}
\end{gathered}
$$

(ii) If A and B are column equivalent, then

$$
\begin{aligned}
\operatorname{dim}(\operatorname{ker}(A))= & \operatorname{dim}(\operatorname{ker}(B)), \quad \operatorname{dim}(\operatorname{Im}(A))=\operatorname{dim}(\operatorname{Im}(B)) \\
& \operatorname{Im}(A)=\operatorname{Im}(B), \quad C_{A}=C_{B}
\end{aligned}
$$

Proof. We will only prove (i). The claim (ii) can be proved similar (or can be deduced easily from (i) by applying (i) to the transposed matrices). If A and A are row equivalent, then there are elementary matrices $F_{1}, \ldots, F_{k} \in M(m \times m)$ such that $A=F_{1} \ldots F_{k} B$. Not that all F_{j} are invertible. Let $F:=F_{1} \ldots F_{k}$. Then F is invertible and $A=F B$. Hence all the claims in (i) follow from Theorem 4.13 and Proposition 4.19.

The proposition above is very useful to calculate the kernel of a matrix A : Let \widetilde{A} be the reduced row-echelon form of A. Then the proposition can be applied to A and $\widetilde{A}($ for B), and we find that $\operatorname{ker}(A)=\operatorname{ker}(\widetilde{A})$. Note that determining the kernel of a matrix in reduces row-echelon form is in general very easy.
Now we will prove to technical lemmas.

Lemma 4.21. Let $A \in M(m \times n)$. Then there exist elementary matrices $E_{1}, \ldots, E_{k} \in M(n \times n)$ and $F_{1}, \ldots, F_{\ell} \in M(m \times m)$ such that

$$
F_{1} \cdots F_{\ell} A E_{1} \cdots E_{k}=A^{\prime \prime}
$$

where $A^{\prime \prime}$ is of the form

Proof. Let A^{\prime} be the reduced row-echelon form of A. Then there exist $F_{1}, \ldots, F_{\ell} \in$ $M(m \times m)$ such that $F_{1} \cdots F_{\ell} A=A^{\prime}$ and A^{\prime} is of the form

Now clearly we can find "allowed" column transformations such that A^{\prime} is transformed into the form $A^{\prime \prime}$. If we observe that applying row transformations is equivalent to multiply A^{\prime} from the right by elementary matrices.

Lemma 4.22. Let $A^{\prime \prime}$ be as in (4.5). Then
(i) $\operatorname{dim}(\operatorname{ker}(A))=m-r=$ number of zero rows of $A^{\prime \prime}$,
(ii) $\operatorname{dim}(\operatorname{Im}(A))=r=$ number of pivots $A^{\prime \prime}$,
(iii) $\operatorname{dim}\left(C_{A^{\prime \prime}}\right)=\operatorname{dim}\left(R_{A^{\prime \prime}}\right)=r$.

Proof. All assertions are clear if we note that

$$
\operatorname{ker}\left(A^{\prime \prime}\right)=\operatorname{gen}\left\{e_{r+1}, \ldots, e_{n}\right\}, \quad \operatorname{Im}\left(A^{\prime \prime}\right)=\operatorname{gen}\left\{e_{1}, \ldots, e_{r}\right\}
$$

where the e_{j} are the standard unit vectors (that is, their j th component is 1 and all other components are 0).

Proposition 4.23. Let $A \in M(m \times n)$ and let A^{\prime} be its reduced row-echelon form. Then

$$
\operatorname{dim}(\operatorname{Im}(A))=\text { number of pivots of } A^{\prime} .
$$

Proof. Let $F_{1}, \ldots, F_{\ell}, E_{1}, \ldots, E_{k}$ and $A^{\prime \prime}$ be as in (4.21) and set $F:=F_{1} \cdots F_{\ell}$ and $E:=E_{1} \cdots E_{k}$. It follows that $A^{\prime}=F A$ and $A^{\prime \prime}=F A E$. Clearly, the number of pivots of A^{\prime} and $A^{\prime \prime}$ coincide. Therefore, with the help of Theorem 4.13 we obtain

$$
\begin{aligned}
\operatorname{dim}(\operatorname{Im}(A)) & =\operatorname{dim}(\operatorname{Im}(F A E)) \\
& =\text { number of pivots of } A^{\prime \prime} \\
& =\text { number of pivots of } A^{\prime}
\end{aligned}
$$

Proposition 4.24. Let $A \in M(m \times n)$. Then

$$
\operatorname{dim}(\operatorname{Im}(A))=\operatorname{dim} C_{A}=\operatorname{dim} R_{A}
$$

That means: (rank of row space $)=($ rank of column space $)$.
Proof. Since $C_{A}=\operatorname{Im}(A)$ by Proposition 4.18, the first equality is clear.
Now let $F_{1}, \ldots, F_{\ell}, E_{1}, \ldots, E_{k}$ and $A^{\prime}, A^{\prime \prime}$ be as in Lemma 4.21 and set $F:=$ $F_{1} \cdots F_{\ell}$ and $E:=E_{1} \cdots E_{k}$. Then

$$
\begin{aligned}
\operatorname{dim}\left(R_{A}\right) & =\operatorname{dim}\left(R_{F A E}\right)=\operatorname{dim}\left(R_{A^{\prime \prime}}\right)=r=\operatorname{dim}\left(C_{A^{\prime \prime}}\right)=\operatorname{dim}\left(C_{F A E}\right) \\
& =\operatorname{dim}\left(C_{A}\right)
\end{aligned}
$$

As an immediate consequence we obtain
Theorem 4.25. Let $A \in M(m \times n)$. Then

$$
\begin{equation*}
\operatorname{dim}(\operatorname{ker}(A))+\operatorname{dim}(\operatorname{Im}(A))=n \tag{4.7}
\end{equation*}
$$

Proof. With the notation a above, we obtain

$$
\begin{aligned}
\operatorname{dim}(\operatorname{ker}(A)) & =\operatorname{dim}\left(\operatorname{ker}\left(A^{\prime \prime}\right)\right)=n-r \\
\operatorname{dim}(\operatorname{Im}(A)) & =\operatorname{dim}\left(\operatorname{Im}\left(A^{\prime \prime}\right)\right)=r
\end{aligned}
$$

and the desired formula follows.
For the calculation of a basis of $\operatorname{Im}(A)$, the following theorem is useful.
Theorem 4.26. Let $A \in M(m \times n)$ and let A^{\prime} be its reduced row-echelon form with columns $\vec{c}_{1}, \ldots, \vec{c}_{n}$ and $\vec{c}_{1}{ }^{\prime}, \ldots, \vec{c}_{n}{ }^{\prime}$ respectively. Assume that the pivot columns of A^{\prime} are the columns $j_{1}<\cdots<j_{k}$. Then $\operatorname{dim}(\operatorname{Im}(A))=k$ and a basis of $\operatorname{Im}(A)$ is given by the columns $\vec{c}_{j_{1}}, \ldots, \vec{c}_{j_{k}}$ of A.

Proof. Let E be an invertible matrix such that $A=E A^{\prime}$. By assumption on the pivot columns of A^{\prime}, we know that $\operatorname{dim}\left(\operatorname{Im}\left(A^{\prime}\right)\right)=k$ and that a basis of $\operatorname{Im}\left(A^{\prime}\right)$ is given by the columns $\vec{c}_{j_{1}}{ }^{\prime}, \ldots, \vec{c}_{j_{k}}{ }^{\prime}$. By Theorem 4.13, it follows that $\operatorname{dim}(\operatorname{Im}(A))=\operatorname{dim}\left(\operatorname{Im}\left(A^{\prime}\right)\right)=k$. Now observe that definition of E we have that $E \vec{c}_{\ell}{ }^{\prime}=\vec{c}_{\ell}$ for every $\ell=1, \ldots, n$ and in particular this is true for the pivot columns of A^{\prime}. Moreover, since E in invertible and the vectors $\vec{c}_{j_{1}}{ }^{\prime}, \ldots, \vec{c}_{j_{k}}{ }^{\prime}$ are linearly independent, it follows from Theorem 4.11 that the vectors $\vec{c}_{j_{1}}, \ldots, \vec{c}_{j_{k}}$ are linearly independent. Clearly they belong to $\operatorname{Im}(A)$, so we have gen $\left\{\vec{c}_{j_{1}}, \ldots, \vec{c}_{j_{k}}\right\} \subseteq \operatorname{Im}(A)$. Since both spaces have the same dimension, they must be equal.

Remark 4.27. The theorem above can be used to determine a basis of a subspace given in the form $U=\operatorname{gen}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\} \subseteq \mathbb{R}^{m}$ as follows: Define the matrix $A=\left(\vec{v}_{1}|\ldots| \vec{v}_{k}\right)$. Then clearly $U=\operatorname{Im} A$ and we can apply Theorem 4.25 to find a basis of U.

Example 4.28. Find $\operatorname{ker}(A), \operatorname{Im}(A), \operatorname{dim}(\operatorname{ker}(A)), \operatorname{dim}(\operatorname{Im}(A))$ and R_{A} for

$$
A=\left(\begin{array}{cccc}
1 & 1 & 5 & 1 \\
3 & 2 & 13 & 1 \\
0 & 2 & 4 & -1 \\
4 & 5 & 22 & 1
\end{array}\right)
$$

Solution. First, let us row-reduce the matrix A :

$$
\begin{aligned}
& A=\left(\begin{array}{llcc}
1 & 1 & 5 & 1 \\
3 & 2 & 13 & 1 \\
0 & 2 & 4 & -1 \\
4 & 5 & 22 & 1
\end{array}\right) \xrightarrow{\substack{Q_{21}(-1) \\
Q_{41}(-4)}}\left(\begin{array}{rrrr}
1 & 1 & 5 & 1 \\
0 & -1 & -2 & -2 \\
0 & 2 & 4 & -1 \\
0 & 1 & 2 & -3
\end{array}\right) \\
& \xrightarrow{Q_{32}(2)}\left(\begin{array}{rrrr}
1 & 1 & 5 & 1 \\
0 & -1 & -2 & -2 \\
0 & 0 & 0 & -5 \\
0 & 0 & 0 & -5
\end{array}\right) \xrightarrow{\substack{S_{2}(-1) \\
Q_{43}(-1)}}\left(\begin{array}{llll}
1 & 1 & 5 & 1 \\
0 & 1 & 2 & 2 \\
0 & 0 & 0 & 5 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \xrightarrow{S_{42}(1 / 5)}\left(\begin{array}{rrrr}
1 & 0 & 3 & -1 \\
0 & 1 & 2 & 2 \\
Q_{12}(-1) \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) \xrightarrow{\substack{Q_{14}(1) \\
Q_{24}(-2)}}\left(\begin{array}{llll}
1 & 0 & 3 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)=: A^{\prime} .
\end{aligned}
$$

Now it follows immediately that $\operatorname{dim} R_{A}=\operatorname{dim} C_{A}=3$ and

$$
\begin{aligned}
\operatorname{dim}(\operatorname{Im}(A)) & =\# \text { non-zero rows of } A^{\prime}=3 \\
\operatorname{dim}(\operatorname{ker}(A)) & =4-\operatorname{dim}(\operatorname{Im}(A))=1
\end{aligned}
$$

(or: $\operatorname{dim}(\operatorname{Im}(A))=\#$ pivot columns $A^{\prime}=3$, or: $\operatorname{dim}(\operatorname{Im}(A))=\operatorname{dim}\left(R_{A}\right)=3$ or: $\operatorname{dim}(\operatorname{ker}(A))=\#$ non-pivot columns $\left.A^{\prime}=1\right)$.

Kernel of A : We know that $\operatorname{ker}(A)=\operatorname{ker}\left(A^{\prime}\right)$ by Theorem 4.13 or Proposition 4.20. From the explicit form of A^{\prime}, it is clear that $A \vec{x}=0$ if and only if $x_{4}=0, x_{3}$ arbitrary, $x_{2}=-2 x_{3}$ and $x_{1}=-3 x_{3}$. Therefore

$$
\operatorname{ker}(A)=\operatorname{ker}\left(A^{\prime}\right)=\left\{\left(\begin{array}{c}
-3 x_{3} \\
-2 x_{3} \\
x_{3} \\
0
\end{array}\right): x_{3} \in \mathbb{R}\right\}=\operatorname{gen}\left\{\left(\begin{array}{r}
-3 \\
-2 \\
1 \\
0
\end{array}\right)\right\}
$$

Image of A : The pivot columns of A^{\prime} are the columns 1,2 and 4. Therefore, by Theorem 4.26 a basis of $\operatorname{Im}(A)$ are the columns 1,2 and 4 of A :

$$
\operatorname{Im}(A)=\operatorname{gen}\left\{\left(\begin{array}{l}
1 \\
3 \\
0 \\
4
\end{array}\right),\left(\begin{array}{l}
1 \\
2 \\
2 \\
5
\end{array}\right),\left(\begin{array}{r}
1 \\
1 \\
-1 \\
1
\end{array}\right)\right\}
$$

Example 4.29. Find a basis of gen $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\} \subseteq P_{3}$ and its dimension for

$$
\begin{array}{ll}
p_{1}=x^{3}-x^{2}+2 x+2, & p_{2}=x^{3}+2 x^{2}+8 x+13 \\
p_{3}=3 x^{3}-6 x^{2}-5, & p_{3}=5 x^{3}+4 x^{2}+26 x-9
\end{array}
$$

Solution. First we identify P_{3} with \mathbb{R}^{4} by $a x^{3}+b x^{2}+c x+d \widehat{=}(a, b, c, d)^{t}$. The polynomials $p_{1}, p_{2}, p_{3}, p_{4}$ correspond to the vectors

$$
\vec{v}_{1}=\left(\begin{array}{r}
1 \\
-1 \\
2 \\
2
\end{array}\right), \vec{v}_{2}=\left(\begin{array}{c}
1 \\
2 \\
8 \\
13
\end{array}\right), \vec{v}_{3}=\left(\begin{array}{r}
3 \\
-6 \\
0 \\
-5
\end{array}\right), \vec{v}_{1}=\left(\begin{array}{r}
5 \\
4 \\
26 \\
-9
\end{array}\right) .
$$

Now we use Remark 4.27 to find a basis of $\operatorname{gen}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. To this end we consider the A whose columns are the vectors $\vec{v}_{1}, \ldots, \vec{v}_{4}$:

$$
A=\left(\begin{array}{rrrr}
1 & 1 & 3 & 5 \\
-1 & 2 & -6 & 4 \\
2 & 8 & 0 & 26 \\
2 & 13 & -5 & -9
\end{array}\right)
$$

Clearly, gen $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}=\operatorname{Im}(A)$, so it suffices to find a basis of $\operatorname{Im}(A)$. Applying row transformation to A, we obtain

$$
A=\left(\begin{array}{rrrr}
1 & 1 & 3 & 5 \\
-1 & 2 & -6 & 4 \\
2 & 8 & 0 & 26 \\
2 & 13 & -5 & -9
\end{array}\right) \longrightarrow \quad \cdots \quad \longrightarrow\left(\begin{array}{llll}
1 & 0 & 4 & 5 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)=A^{\prime}
$$

The pivot columns of A^{\prime} are the first and the second column, hence by Theorem 4.26, a basis of $\operatorname{Im}(A)$ are its first and second columns, i.e. the vectors \vec{v}_{1} and \vec{v}_{2}.
It follows that p_{1}, p_{2} form a basis of gen $\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\} \subseteq P_{3}$ and consequently $\operatorname{dim}\left(\operatorname{gen}\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}\right)=2$.

Remark 4.30. Let us use the abbreviation $\pi=\operatorname{gen}\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$. The calculation above actually shows that any two vectors of $p_{1}, p_{2}, p_{3}, p_{4}$ form a basis of π. To see this, observe that clearly any two of them are linearly independent, hence the dimension of their generated space is 2 . On the other hand, this generated space is a subspace of π which has the same dimension. Therefore they must be equal.

Remark 4.31. If we wanted to complete p_{1}, p_{2} to a basis of P_{3}, we have (at least) the two following options:
(i) Find two linearly independent vectors which are orthogonal to p_{1} an p_{2}. This leads to a homogenous system of two equations for four unknowns, namely

$$
\begin{aligned}
& x_{1}-x_{2}+2 x_{3}+2 x_{4}=0, \\
& x_{1}+2 x_{2}-6 x_{3}+4 x_{4}=0
\end{aligned}
$$

or, in matrix notation, $P \vec{x}=0$ where P is the 2×4 matrix whose rows are p_{1} and p_{2}. Since clearly $\operatorname{Im}(P) \subseteq \mathbb{R}^{2}$, it follows that $\operatorname{dim}(\operatorname{Im}(P)) \leq 2$ and therefore $\operatorname{dim}(\operatorname{ker}(P)) \geq 4-2=2$.
(ii) Another way to find $q_{3}, q_{4} \in P_{3}$ such that $p_{1}, p_{2}, q_{3}, q_{4}$ forms a basis of P_{3} is to use reduction process that was employed to find A^{\prime}. Assume that E is an invertible matrix such that $A=E A^{\prime}$. Such an E can be found by keeping track of the row operations that transform A into A^{\prime}. Let e_{j} be the standard unit vectors of \mathbb{R}^{4}. Then we already know that $\vec{v}_{1}=E e_{1}$ and $\vec{v}_{2}=E e_{2}$. If we set $\vec{w}_{3}=E e_{3}$ and $\vec{w}_{4}=E e_{4}$, then $\vec{v}_{1}, \vec{v}_{2}, \vec{w}_{3}, \vec{w}_{4}$ form a basis of \mathbb{R}^{4}. This is because e_{1}, \ldots, e_{4} are linearly independent and E in injective. Hence $E e_{1}, \ldots, E e_{4}$ are linearly independent too (by Proposition 4.11).

Sometimes useful is the following theorem.
Theorem 4.32. Let $A \in M(m \times n)$. Then $\operatorname{ker}(A)=\left(R_{A}\right)^{\perp}$.
Proof. Let $\vec{r}_{1}, \ldots, \vec{r}_{n}$ be the rows of A. Since $R_{A}=\operatorname{gen}\left\{\vec{r}_{1}, \ldots, \vec{r}_{n}\right\}$, it suffices to show that $\vec{x} \in \operatorname{ker}(A)$ if and only if $\vec{x} \perp \vec{r}_{j}$ for all $j=1, \ldots, m$.
By definition $\vec{x} \in \operatorname{ker}(A)$ if and only if

$$
\overrightarrow{0}=A \vec{x}=\left(\begin{array}{c}
\vec{r}_{1} \\
\vdots \\
\vec{r}_{m}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{m}
\end{array}\right)=\left(\begin{array}{c}
\left\langle\vec{r}_{1}, \vec{x}\right\rangle \\
\vdots \\
\left\langle\vec{r}_{m}, \vec{x}\right\rangle
\end{array}\right)
$$

This is the case if and only if $\left\langle\vec{r}_{j}, \vec{x}\right\rangle$ for all $j=1, \ldots, m$, that is, if and only if $\vec{x} \perp \vec{r}_{j}$ for all $j=1, \ldots, m .\left(\langle\cdot, \cdot\rangle\right.$ denotes the inner product on \mathbb{R}^{n}.)

Alternative proof of Theorem 4.32. Observe that $R_{A}=C_{A^{t}}=\operatorname{Im}\left(A^{t}\right)$. So we have to show that $\operatorname{ker}(A)=\left(\operatorname{Im}\left(A^{t}\right)\right)^{\perp}$. Recall that $\langle A x, y\rangle=\left\langle x, A^{t} y\right\rangle$. Therefore

$$
\begin{aligned}
x \in \operatorname{ker}(A) & \Longleftrightarrow A x=0 \Longleftrightarrow A x \perp \mathbb{R}^{m} \\
& \Longleftrightarrow\langle A x, y\rangle=0 \text { for all } y \in \mathbb{R}^{m} \\
& \Longleftrightarrow\left\langle x, A^{t} y\right\rangle=0 \text { for all } y \in \mathbb{R}^{m} \Longleftrightarrow x \in(\operatorname{Im}(A))^{t} .
\end{aligned}
$$

Finally we want to give an alternative (coordinate free!) proof of Theorem 4.25

$$
0^{a^{2}}
$$

