Functional Analysis

Problem Sheet 14

Compact operators (II).

Hand in: May 7, 2010

1. Let X = C[0,1] and $k \in C[0,1]^2$. Show that the following operator is compact:

$$T: X \to X,$$
 $(Tx)(t) = \int_0^t k(s, t)x(s) \,\mathrm{d}s$

- 2. Let X and T as in the previous exercise. Show that $\sigma(T) \setminus \{0\} = \emptyset$. Show that for every $\lambda \in \mathbb{C} \setminus \{0\}$ and every $y \in X$ there exists exactly one $x \in X$ such that $(T \lambda)x = y$.
- 3. Let H_1, H_2 be Hilbert spaces and $T \in L(H_1, H_2)$. Then the following is equivalent:
 - (a) T is compact.
 - (b) T^* is compact.
 - (c) T^*T is compact.
- 4. Let H_1, H_2 be Hilbert spaces and $T \in L(H_1, H_2)$ a compact operator. Let $(P_n)_{n \in \mathbb{N}}$ be a monotonically increasing sequence of projections with $P \xrightarrow{s} \text{id}$. Then $||K KP_n|| \to 0$.