# Functional Analysis 

1. Let $X=C[0,1]$ and $k \in C[0,1]^{2}$. Show that the following operator is compact:

$$
T: X \rightarrow X, \quad(T x)(t)=\int_{0}^{t} k(s, t) x(s) \mathrm{d} s
$$

2. Let $X$ and $T$ as in the previous exercise. Show that $\sigma(T) \backslash\{0\}=\emptyset$. Show that for every $\lambda \in \mathbb{C} \backslash\{0\}$ and every $y \in X$ there exists exactly one $x \in X$ such that $(T-\lambda) x=y$.
3. Let $H_{1}, H_{2}$ be Hilbert spaces and $T \in L\left(H_{1}, H_{2}\right)$. Then the following is equivalent:
(a) $T$ is compact.
(b) $T^{*}$ is compact.
(c) $T^{*} T$ is compact.
4. Let $H_{1}, H_{2}$ be Hilbert spaces and $T \in L\left(H_{1}, H_{2}\right)$ a compact operator. Let $\left(P_{n}\right)_{n \in \mathbb{N}}$ be a monotonically increasing sequence of projections with $P \xrightarrow{s}$ id. Then $\left\|K-K P_{n}\right\| \rightarrow 0$.
