Functional Analysis

Problem Sheet 13

Compact operators.

Hand in: April 30, 2010

- 1. Let $X = \ell_2(\mathbb{N})$.
 - (a) Let $\lambda_0 \in \mathbb{C}$ and $(\lambda_n)_{n \in \mathbb{N}} \subseteq \mathbb{C}$ such that $\lim_{n \to \infty} \lambda_n = \lambda_0$ and define

 $T: X \to X, \quad Tx = (\lambda_n x_n)_{n \in \mathbb{N}} \quad \text{for } x = (x_n)_{n \in \mathbb{N}}.$

Find $\sigma_{\rm p}(T)$, $\sigma_{\rm c}(T)$ and $\sigma_{\rm r}(T)$.

- (b) Show that for every compact set $K \subseteq \mathbb{C}$ there exists an operator $T \in L(X)$ such that $\sigma(T) = K$.
- 2. Let X be an infinite dimensional Banach space and $K \in L(X)$ a compact operator, $K \neq 0$. Show that there exists a non-trivial closed subspace U of X such that $B(U) \subseteq U$ for every $B \in L(X)$ which commutes with K (that is: BK = KB).
- 3. Let X be a reflexive Banach space, Y a Banach space and $T \in L(X, Y)$. Show that the following is equivalent:
 - (a) T is compact.
 - (b) $w_n \lim_{n \to \infty} x_n = 0$ implies $\lim_{n \to \infty} Tx_n = 0$ for every sequence $(x_n)_{n \in \mathbb{N}} \subseteq X$.
- 4. Let $\tau : [0,1] \rightarrow [0,1]$ be continuous and

$$A: C[0,1] \to C[0,1], \qquad Af := f \circ \tau.$$

For which τ is A compact?