1. Find the point spectrum, continuous spectrum and the residual spectrum of the left shift and the right shift:

$$
\begin{array}{ll}
R: \ell_{2}(\mathbb{N}) \rightarrow \ell_{2}(\mathbb{N}), & R\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(0, x_{1}, x_{2}, x_{3}, \ldots\right) \\
L: \ell_{2}(\mathbb{N}) \rightarrow \ell_{2}(\mathbb{N}), & L\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\left(x_{2}, x_{3}, x_{4}, \ldots\right)
\end{array}
$$

2. Let X be a Banach space and $S, T \in L(X)$. Show $\sigma(S T) \backslash\{0\}=\sigma(T S) \backslash\{0\}$.

Hint. Show: if id $-S T$ is invertible, then $\mathrm{id}+T(\mathrm{id}-S T)^{-1} S$ is the inverse of id $-T S$.
3. Let X be a Banach space and $T \in L(X) . \lambda \in \mathbb{C}$ is called approximate eigenvalue if there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq X$ such that $\left\|x_{n}\right\|=1$ for all $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty}(T-\lambda) x_{n}=0$.
(a) Every approximate eigenvalue belongs to $\sigma(T)$.
(b) Every boundary point of $\sigma(T) \subseteq \mathbb{C}$ is an approximate eigenvalue of T.
(c) If X is a Hilbert space and if T is selfadjoint, then every $\lambda \in \sigma(T)$ is an approximate eigenvalue of T.
4. Let X be a complex Banach space. For $T \in L(X)$ and $\lambda \in \mathbb{C}$ let

$$
\mathcal{A}_{\lambda}(T):=\left\{x \in X: x \in \operatorname{ker}(T-\lambda)^{n} \text { for some } n \in \mathbb{N}\right\}
$$

be the algebraic eigenspace of T in $\lambda \in \sigma_{p}(T)$.
(a) Let $\lambda_{0} \in \sigma_{p}(T), x_{0} \in \mathcal{A}_{\lambda_{0}}(T) \backslash\{0\}$ and $\mathcal{D}:=\{\lambda \in \mathbb{C}:|\lambda| \geq\|T\|\}$. Define

$$
\begin{array}{ll}
f: \mathcal{D} \rightarrow X, & f(\lambda):=(\lambda-T)^{-1} x_{0}, \\
g: \mathbb{C} \backslash\left\{\lambda_{0}\right\} \rightarrow X, & g(\lambda):=\frac{1}{\lambda-\lambda_{0}} \sum_{n=0}^{\infty}\left(\frac{\lambda_{0}-T}{\lambda_{0}-\lambda}\right)^{n} x_{0} .
\end{array}
$$

Show that g is a holomorphic extension of f.
(b) Let $\lambda_{1}, \ldots, \lambda_{n}$ pairwise distinct eigenvalues of T and $\mathcal{A}_{\lambda_{j}}(T)$ the corresponding algebraic eigenspaces. Choose $x_{j} \in \mathcal{A}_{\lambda_{j}}(T), x_{j} \neq 0, j=1, \ldots, n$. Then the vectors x_{1}, \ldots, x_{n} are linearly independent.

