Functional Analysis

Problem Sheet 11

Adjoint operators; spectrum of linear operators.

Hand in: April 16, 2010

- 1. Let H_1, H_2, H_3 be Hilbert spaces and $S(H_1 \to H_2)$ and $T(H_2 \to H_3)$ be densely defined linear operators.
 - (a) If $T \in L(H_2, H_3)$, then TS is densely defined and $(TS)^* = S^*T^*$.
 - (b) If S is injective and $S^{-1} \in L(H_2, H_1)$, then TS is densely defined and $(TS)^* = S^*T^*$.
 - (c) If R is injective and $R^{-1} \in L(H_2, H_1)$, then R^* is injective and $(R^*)^{-1} = (R^{-1})^*$.
- 2. Let X = C([0, 1]) and $a \in C([0, 1])$. Show that

$$A: X \to X,$$
 $(Ax)(t) = a(t)x(t)$

is a bounded linear operator. Find ||A||, $\sigma(A)$, $\sigma_{p}(A)$, $\sigma_{c}(A)$ and $\sigma_{r}(A)$.

3. (a) Let H = C([0, 1]) and

$$T: H \to H,$$
 $(Tx)(t) = \int_0^t x(s) \mathrm{d}s.$

Find $\sigma(T)$, $\sigma_{\rm p}(T)$, $\sigma_{\rm c}(T)$ and $\sigma_{\rm r}(T)$.

(b) Let $H = \{f \in C([0,1]) : x(0) = 0\}$ and

$$S: H \to H,$$
 $(Sx)(t) = \int_0^t x(s) \mathrm{d}s.$

Find $\sigma(S)$, $\sigma_{\rm p}(S)$, $\sigma_{\rm c}(S)$ and $\sigma_{\rm r}(S)$.

4. Let X be a Banach space, $T \in L(X)$ and $P \in \mathbb{C}[X]$ a polynomial. Then

$$\sigma(P(T)) = P(\sigma(T)).$$