# Functional Analysis 

## Problem Sheet 10

Projections; positive operators.
Hand in: April 9, 2010

1. Let $H$ be a Hilbert space and $P_{1}, P_{2}$ orthogonal projections on $H_{0}, H_{1} \subseteq H$. Then the following is equivalent.
(i) $H_{0} \subseteq H_{1}$,
(ii) $\left\|P_{0} x\right\| \leq\left\|P_{1} x\right\|, \quad x \in H$.
(iii) $\left\langle P_{0} x, x\right\rangle \leq\left\langle P_{1} x, x\right\rangle, \quad x \in H$.
(iv) $P_{0} P_{1}=P_{0}$.

Let $H$ be a Hilbert space. For bounded selfadjoint operators $S, T \in L(H)$ we write $T \geq 0$ if $\langle T x, x\rangle \geq 0$ for all $x \in H$ and $T \leq S$ if $S-T \geq 0$. A sequence $\left(T_{n}\right)_{n \in \mathbb{N}} \in L(H)$ is increasing if and only $T_{n} \leq T_{n+1}, n \in \mathbb{N}$. A sequence $\left(T_{n}\right)_{n \in \mathbb{N}} \in L(H)$ is decreasing if and only $\left(-T_{n}\right)_{n \in \mathbb{N}} \in L(H)$ is increasing.
2. Let $H$ be a Hilbert space and $\left(T_{n}\right)_{n \in \mathbb{N}}$ a bounded, monotonically increasing sequence of selfadjoint operators. Show that the sequence converges strongly to an selfadjoint operator.
Hint. If $S$ is a non-negative operator, then $s: H \times H \rightarrow H, s(x, y)=\langle S x, y\rangle$ is a non-negative sesquilinear form.
3. Let $\left(P_{n}\right)_{n \in \mathbb{N}}$ be a monotonic sequence of orthogonal projections in a Hilbert space $H$. Then $\left(P_{n}\right)_{n \in \mathbb{N}}$ converges strongly to an orthogonal projection $P$ and
(a) $\operatorname{rg} P=\overline{\bigcup_{n \in \mathbb{N}} \operatorname{rg} P_{n}}$ if $\left(P_{n}\right)_{n \in \mathbb{N}}$ is increasing,
(b) $\quad \operatorname{rg} P=\bigcap_{n \in \mathbb{N}} \operatorname{rg} P_{n}$ if $\left(P_{n}\right)_{n \in \mathbb{N}}$ is decreasing.
4. Let $X$ and $Y$ be Banach spaces, $Y \neq\{0\}$, and $T: X \supseteq \mathcal{D}(T) \rightarrow Y$ a densely defined linear operator. Show:
(a) If $T$ is closed, then for every $y \in Y, y \neq 0$, there exists a $\varphi \in \mathcal{D}\left(T^{\prime}\right)$ such that $\varphi(y) \neq 0$. In particular, $\mathcal{D}\left(T^{\prime}\right) \neq\{0\}$.
(b) There exists a linear operator $T$ such that $\mathcal{D}\left(T^{\prime}\right)=0$.

