Functional Analysis

Problem Sheet 10

Projections; positive operators.

Hand in: April 9, 2010

- 1. Let H be a Hilbert space and P_1 , P_2 orthogonal projections on H_0 , $H_1 \subseteq H$. Then the following is equivalent.
 - (i) $H_0 \subseteq H_1$, (ii) $\|P_0 x\| \le \|P_1 x\|$, $x \in H$. (iii) $\langle P_0 x, x \rangle \le \langle P_1 x, x \rangle$, $x \in H$. (iv) $P_0 P_1 = P_0$.

Let *H* be a Hilbert space. For bounded selfadjoint operators $S, T \in L(H)$ we write $T \ge 0$ if $\langle Tx, x \rangle \ge 0$ for all $x \in H$ and $T \le S$ if $S - T \ge 0$. A sequence $(T_n)_{n \in \mathbb{N}} \in L(H)$ is increasing if and only $T_n \le T_{n+1}, n \in \mathbb{N}$. A sequence $(T_n)_{n \in \mathbb{N}} \in L(H)$ is decreasing if and only $(-T_n)_{n \in \mathbb{N}} \in L(H)$ is increasing.

2. Let *H* be a Hilbert space and $(T_n)_{n \in \mathbb{N}}$ a bounded, monotonically increasing sequence of selfadjoint operators. Show that the sequence converges strongly to an selfadjoint operator.

Hint. If S is a non-negative operator, then $s : H \times H \to H$, $s(x,y) = \langle Sx, y \rangle$ is a non-negative sesquilinear form.

- 3. Let $(P_n)_{n \in \mathbb{N}}$ be a monotonic sequence of orthogonal projections in a Hilbert space H. Then $(P_n)_{n \in \mathbb{N}}$ converges strongly to an orthogonal projection P and
 - (a) $\operatorname{rg} P = \overline{\bigcup_{n \in \mathbb{N}} \operatorname{rg} P_n}$ if $(P_n)_{n \in \mathbb{N}}$ is increasing,
 - (b) $\operatorname{rg} P = \bigcap_{n \in \mathbb{N}} \operatorname{rg} P_n$ if $(P_n)_{n \in \mathbb{N}}$ is decreasing.
- 4. Let X and Y be Banach spaces, $Y \neq \{0\}$, and $T : X \supseteq \mathcal{D}(T) \to Y$ a densely defined linear operator. Show:
 - (a) If T is closed, then for every $y \in Y$, $y \neq 0$, there exists a $\varphi \in \mathcal{D}(T')$ such that $\varphi(y) \neq 0$. In particular, $\mathcal{D}(T') \neq \{0\}$.
 - (b) There exists a linear operator T such that $\mathcal{D}(T') = 0$.