Functional Analysis

Problem Sheet 9

Orthogonality.

Hand in: March 26, 2010

- 1. Let *H* be a Hilbert space, $Y \subseteq H$ a subspace and $\varphi_0 \in Y'$. Show that there exists exactly one extension $\varphi \in H'$ of φ_0 with $\|\varphi_0\| = \|\varphi\|$.
- 2. Let X be a normed space, $(x_n)_{n \in \mathbb{N}} \subseteq X$ and $x \in X$. Then the following is equivalent:
 - (a) $\sum_{n \in \mathbb{N}} x_n$ converges unconditionally to x.
 - (b) For every $\varepsilon > 0$ there exists a finite subset $A \subseteq \mathbb{N}$ such that for every finite set B with $A \subseteq B \subseteq \mathbb{N}$

$$\left\|\sum_{b\in B}x_b-x\right\|<\varepsilon.$$

- 3. Let H be a Hilbert space. For a linear operator $P: H \to H$ the following is equivalent:
 - (a) P is an orthogonal projection.
 - (b) $P^2 = P$ and $\langle Px, y \rangle = \langle x, Py \rangle$.
- 4. Haar functions. Let $\psi = \chi_{[0, 1/2)} \chi_{[1/2, 1)}$. For $n, k \in \mathbb{Z}$ define

$$\psi_{n,k} : \mathbb{R} \to \mathbb{R}, \qquad \psi_{n,k}(t) = 2^{k/2} \psi(2^k t - n).$$

For $k \in \mathbb{N}_0$ and $n \in \{1, 2, \ldots, 2^k - 1\}$ let

$$h_{2^{k}+n}:[0,1] \to \mathbb{R}, \qquad \begin{cases} h_{2^{k}+n}(t) = \psi_{k,n}(t), & \text{for } t \in [0,1) \\ \\ h_{2^{k}+n}(1) = \lim_{t \to 1^{-}} \psi_{k,n}(t). \end{cases}$$

and $h_0(t) = 1, t \in [0, 1].$

- (a) $(h_j)_{j \in \mathbb{N}_0}$ is a orthonormal system in $L_2[0, 1]$ and $(\psi_{n,k})_{n,k \in \mathbb{Z}}$ is a orthonormal system in $L_2(\mathbb{R})$.
- (b) $T: L_2[0,1] \to L_2[0,1], Tf = \sum_{j=0}^{2^k-1} \langle f, h_j \rangle h_j$ is a orthonormal projection on the subspace

 $U = \{ f \in L_2[0,1] : f \text{ const. in intervals } [r2^{-k}, (r+1)2^{-k}) \text{ with } r \in \mathbb{N}_0 \}.$

- (c) For $f \in C[0,1]$, the series $\sum_{j=0}^{\infty} \langle f, h_j \rangle h_j$ converges uniformly to f.
- (d) $(h_j)_{j \in \mathbb{N}_0}$ is an orthonormal basis of $L_2[0, 1]$.
- (e) $(\psi_{k,n})_{k,n\in\mathbb{Z}}$ is an orthonormal basis of $L_2(\mathbb{R})$.