Functional Analysis

Problem Sheet 8

Hilbert spaces.

Hand in: March 19, 2010

- 1. Let H be Hilbert space, $(x_n)_{n \in \mathbb{N}} \subseteq H$ and $x_0 \in H$. Then the following is equivalent:
 - (a) $x_n \to x_0$.
 - (b) $||x_n|| \to ||x_0||$ and $x_n \xrightarrow{w} x_0$.
- 2. Let H be a Hilbert space, $V, W \subseteq H$ closed subspaces and P_V , P_W the corresponding orthogonal projections. Show

$$V \subseteq W \iff P_V = P_V P_W = P_W P_V$$

- 3. Let *H* be a Hilbert space, $V, W \subseteq H$ closed subspaces and P_V , P_W the corresponding orthogonal projections. Show that the following is equivalent:
 - (a) $P_V P_W = 0.$
 - (b) $V \perp W$.
 - (c) $P_V + P_W$ is a orthogonal projection.

Show that $R(P_V + P_W) = V \oplus W$ if one of the equivalent conditions above hold.

- 4. Let *H* be a Hilbert space and $B: H \times H \to \mathbb{K}$ sesquilinear. On $H \times H$ consider the norm $||(x,y)|| := \sqrt{||x||^2 + ||y||^2}$.
 - (a) Show that the following is equivalent:
 - (i) B is continuous.
 - (ii) B is partially continuous, that is, for every fixed $x_0, y \mapsto B(x_0, y)$ is continuous and for every fixed $y_0, x \mapsto B(x, y_0)$ is continuous.
 - (iii) B is bounded, that is, there exists an $M \in \mathbb{R}$ such that $||B(x, y)|| \le M ||x|| ||y||$ for all $x, y \in H$.
 - (b) If B is continuous, then there exists a $T \in L(H)$ such that

$$B(x,y) = \langle Tx, y \rangle, \qquad x, y \in H.$$

(c) If in addition there exists an m > 0 such that $B(x, x) \ge m ||x||^2$, $x \in H$, then T is invertible and $||T^{-1}|| \le m^{-1}$.