# Functional Analysis 

## Problem Sheet 8

1. Let $H$ be Hilbert space, $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq H$ and $x_{0} \in H$. Then the following is equivalent:
(a) $x_{n} \rightarrow x_{0}$.
(b) $\left\|x_{n}\right\| \rightarrow\left\|x_{0}\right\|$ and $x_{n} \xrightarrow{w} x_{0}$.
2. Let $H$ be a Hilbert space, $V, W \subseteq H$ closed subspaces and $P_{V}, P_{W}$ the corresponding orthogonal projections. Show

$$
V \subseteq W \quad \Longleftrightarrow \quad P_{V}=P_{V} P_{W}=P_{W} P_{V}
$$

3. Let $H$ be a Hilbert space, $V, W \subseteq H$ closed subspaces and $P_{V}, P_{W}$ the corresponding orthogonal projections. Show that the following is equivalent:
(a) $P_{V} P_{W}=0$.
(b) $V \perp W$.
(c) $P_{V}+P_{W}$ is a orthogonal projection.

Show that $\mathrm{R}\left(P_{V}+P_{W}\right)=V \oplus W$ if one of the equivalent conditions above hold.
4. Let $H$ be a Hilbert space and $B: H \times H \rightarrow \mathbb{K}$ sesquilinear. On $H \times H$ consider the norm $\|(x, y)\|:=\sqrt{\|x\|^{2}+\|y\|^{2}}$.
(a) Show that the following is equivalent:
(i) $B$ is continuous.
(ii) $B$ is partially continuous, that is, for every fixed $x_{0}, y \mapsto B\left(x_{0}, y\right)$ is continuous and for every fixed $y_{0}, x \mapsto B\left(x, y_{0}\right)$ is continuous.
(iii) $\quad B$ is bounded, that is, there exists an $M \in \mathbb{R}$ such that $\|B(x, y)\| \leq M\|x\|\|y\|$ for all $x, y \in H$.
(b) If $B$ is continuous, then there exists a $T \in L(H)$ such that

$$
B(x, y)=\langle T x, y\rangle, \quad x, y \in H
$$

(c) If in addition there exists an $m>0$ such that $B(x, x) \geq m\|x\|^{2}, x \in H$, then $T$ is invertible and $\left\|T^{-1}\right\| \leq m^{-1}$.

