Functional Analysis

Problem Sheet 7

Hilbert spaces.

Hand in: March 12, 2010

- 1. Let X be a pre-Hilbert space, $U \subseteq H$ a dense subspace and $x_0 \in X$ such that $\langle x_0, u \rangle = 0$ for all $u \in U$. Show that $x_0 = 0$.
- 2. Let $w \in C([0,1], \mathbb{R})$. For $x, y \in C([0,1])$ let

$$\langle x, y \rangle_w := \int_0^1 x(t) \overline{y(t)} w(t) \, \mathrm{d}t.$$

Find a necessary and sufficient condition for w such that $\langle \cdot, \cdot \rangle_w$ is an inner product. When is the norm induced by $\langle \cdot, \cdot \rangle_w$ equivalent to the usual L_2 norm?

- 3. Let $1 \leq p \leq \infty$. For $f \in L_p(\mathbb{R})$ and $s \in \mathbb{R}$ let define $T_s : L_p(\mathbb{R}) \to L_p(\mathbb{R})$ by $(T_s f)(t) := f(t-s)$. Obviously the T_s are linear isometries.
 - (a) Let $1 \le p < \infty$. Show that $T_s \xrightarrow{s} \text{id for } s \to 0$. Do the T_s converge in norm?
 - (b) Do the T_s converge in norm or strongly in the case $p = \infty$?

4. Show that $W^m(\Omega)$, $H^m(\Omega)$ and $H^m_0(\Omega)$ are Hilbert spaces.

For problem 4:

For $\Omega \subseteq \mathbb{R}$ define the set of *test functions*

$$\mathscr{D}(\Omega) := \{ \varphi \in C^{\infty}(\Omega) : \operatorname{supp}(\varphi) \subseteq \Omega \text{ is compact} \}.$$

For a multiindex $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$ let $|\alpha| = \alpha_1 + \cdots + \alpha_n$ and $D^{\alpha}\varphi = \partial_1^{\alpha_1} \ldots \partial_n^{\alpha_n}\varphi$ if the derivative exists.

Let $f \in L_2(\Omega)$. A function $g \in L_2(\Omega)$ is called the α th weak derivative of f if

$$\langle g, \varphi \rangle = (-)^{|\alpha|} \langle f, D^{\alpha} \varphi \rangle, \qquad \varphi \in \mathscr{D}(\Omega).$$

Note that g is uniquely defined; we denote the weak derivative g by $D^{(\alpha)}f$. For $m \in \mathbb{N}$ we define the *Sobolev space*

$$W^m(\Omega) := \{ f \in L_2(\Omega) : D^{(\alpha)} f \in L_2(\Omega), |\alpha| \le m \}.$$

 $W^m(\Omega)$ is an inner product space with

$$\langle f, g \rangle_{W^m} := \sum_{|\alpha| \le m} \langle D^{(\alpha)} f, D^{(\alpha)} g \rangle_2$$

Further, we define the spaces

$$H^m(\Omega) := \overline{C^m(\Omega) \cap W^m(\Omega)}$$
 and $H^m_0(\Omega) := \overline{\mathscr{D}(\Omega)}$

where the closure is taken with respect to the norm induced by $\langle \cdot, \cdot \rangle_{W^m}$.