Functional Analysis

Problem Sheet 6

Voluntary problem sheet

- 1. Let X be a normed space. A sequence $(x_n)_{n \in \mathbb{N}} \subseteq X$ is a weak Cauchy sequence if for every $\varphi \in X'$ the sequence $(\varphi(x_n))_{n \in \mathbb{N}}$ is a Cauchy sequence in \mathbb{K} .
 - (a) Let $x = (x_n)_{n \in \mathbb{N}}$ be a bounded sequence in X. Show that x is a weak Cauchy sequence if and only if there exists as dense subset U' of X' such that $(\varphi(x_n))_{n \in \mathbb{N}}$ is a Cauchy sequence for every $\varphi \in U'$.
 - (b) Every weak Cauchy sequence in X is bounded.
- 2. Let X be a Banach space, $(x_n)_{n \in \mathbb{N}} \subseteq X$, $(\varphi_n)_{n \in \mathbb{N}} \subseteq X'$, and $x_0 \in X$, $\varphi_0 \in X'$ such that $x_n \xrightarrow{\|\cdot\|} x_0$ and $\varphi_n \xrightarrow{w*} \varphi_0$. Show that $\lim_{n \to \infty} \varphi_n(x_n) = \varphi_0(x_0)$.
- 3. For $\lambda \in \mathbb{R}$ define $f_{\lambda} : \mathbb{R} \to \mathbb{C}, f_{\lambda}(s) = e^{i\lambda s}$ and let $X = \operatorname{span}\{f_{\lambda} : \lambda \in \mathbb{R}\}$. Show that

$$\langle f,g \rangle := \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} f(s) \overline{g(s)} \, \mathrm{d}s$$

defines an inner product on X. Show that the completion of X is not separable. $(||f_{\lambda} - f_{\lambda'}|| = ?)$

Elements in the closure of X are called *almost periodic functions*.

4. Let X be a vector space with a semidefinite sesquilinear form $\langle \cdot, \cdot \rangle$. Show that the Cauchy-Schwarz inequality

$$|\langle x, y \rangle|^2 \le \langle x, x \rangle \langle y, y \rangle, \qquad x, y \in X, \tag{(*)}$$

holds. Does equality in (*) imply that x and y are linearly dependent?