Functional Analysis

Problem Sheet 4

Baire's theorem; uniform boundedness principle.

Hand in: February 19, 2010

- 1. (a) Let (M, d) be a complete metric space with infinitely many elements and no isolated points Then M is not countable.
 - (b) Every algebraic basis of an infinite dimensional Banach space is uncountable.
- 2. (a) Let X be a Banach space, Y be a normed space and (T_n)_{n∈N} ⊆ L(X, Y). Assume that for all x ∈ X the limit Tx := lim_{n∈N} r exists. Then T ∈ L(X, Y).
 (b) L ∈ V V(1 = D = 1) = V = 0 = [n∈N] = [n∈N
 - (b) Let X, Y be Banach spaces, Y reflexive, and $(T_n)_{n \in \mathbb{N}} \subseteq L(X, Y)$ such that $(\varphi(T_n x))_{n \in \mathbb{N}}$ converges for every $x \in X$ and $\varphi \in Y'$. Then there exists an $T \in L(X, Y)$ such that $T_n \xrightarrow{w} T$.
- 3. For a sequence $(s_n)_{n \in \mathbb{N}} \subseteq \mathbb{K} = \mathbb{R}$ or \mathbb{C} the following is equivalent:
 - (a) ∑_{n=1}[∞] s_n converges absolutely.
 (b) ∑_{n=1}[∞] s_nt_n converges for every sequence (t_n)_{n∈N} ⊆ K that converges to 0.
- 4. Let $[a,b] \subseteq \mathbb{R}$, $n \in \mathbb{N}$ and choose $a \leq t_1^{(n)} < \cdots < t_n^{(n)} \leq b$ and $\alpha_k^{(n)} \in \mathbb{K}$, $k = 1, \ldots, n$. For $f \in C([a,b])$ define

$$Q_n(f) := \sum_{k=1}^n \alpha_k^{(n)} f(t_k^{(n)}).$$

Show that the following is equivalent:

(a)
$$Q_n(f) \to \int_a^b f(t) dt, \ n \to \infty$$
, for all $f \in C[a, b]$.
(b) $Q_n(p) \to \int_a^b p(t) dt, \ n \to \infty$, for every polynomial $p : [a, b] \to \mathbb{K}$ and $\sup_{n \in \mathbb{N}} \sum_{k=1}^n |\alpha_k^{(n)}| < \infty$.