Functional Analysis

Problem Sheet 2

Hand in: February 5, 2010

Bounded linear operators; Hahn-Banach theorem.

1. Let X be a normed space with dim $X \ge 1$ and S, T linear operators on X such that ST - TS = id. Show that at least one of the operators S and T is unbounded.

Hint. Show that $ST^{n+1} - T^{n+1}S = (n+1)T^n$.

- 2. Let $1 \leq p < \infty$. For $z = (z_n)_{n \in \mathbb{N}} \in \ell_\infty$ let $T : \ell_p \to \ell_p$ defined by $(Tx)_n = x_n z_n$ for $x = (x_n)_{n \in \mathbb{N}} \in \ell_p$. Show that $T \in L(\ell_p)$ and find ||T||.
- 3. Let X be a normed space. Show that X is separable if X' is separable.
- 4. Show the Hahn-Banach theorem for a complex vector space.

Suggestion: For a complex vector space X show:

(a) Let $\varphi: X \to \mathbb{R}$ be an \mathbb{R} -linear functional. Then

$$V_{\varphi}: X \to \mathbb{C}, \quad V_{\varphi}(x) := \varphi(x) - \mathrm{i}\varphi(\mathrm{i}x),$$

is a \mathbb{C} -linear functional on X with $\operatorname{Re}V_{\varphi} = \varphi$.

- (b) Let $\lambda : X \to \mathbb{C}$ a \mathbb{C} -linear functional with $\operatorname{Re}\lambda = \varphi$. Then $V_{\varphi} = \lambda$.
- (c) Let p be a sublinear functional on X and $\varphi,\,V_\varphi$ as above. Then

$$|\varphi(x)| \le p(x) \iff |V_{\varphi}(x)| \le p(x), \qquad x \in X.$$

(d) $\|\varphi\| = \|V_{\varphi}\|$ for φ and V_{φ} as above.