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Notation

The letter K usually denotes either the real field R or the complex field C. The
positive real numbers are denoted by Ry := (0, 00).



Chapter 1. Banach spaces 7

Chapter 1

Banach spaces

1.1 Metric spaces
We repeat the definition of a metric space.

Definition 1.1. A metric space (M,d) is a non-empty set M together with a
map

d:MxM-—R
such that for all z,y,z € M:

(i) d(z,y) =0 = =y,
(ii) d(z,y) = d(y,2),
(iil) d(z,y) < d(z,z) + d(z,y).

The last inequality is called triangle inequality. Usually the metric space (M, d)
is denoted simply by M.

Note that the triangle inequality together with the symmetry of d implies
d(z,y) >0, z,y € M,

since 0 = d(z,z) < d(z,y) + d(y, ) = 2d(z,y).

It is easy to check that

ld(z,y) —d(y,2)| < d(z,2),  z,y,2€ M.

A subset N C M is called bounded if

diam N := sup{d(z,y) : ¢,y € N} < o0.
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Let 7> 0 and 2 € M. Then

B, (z) :={y € M : d(z,y) <r} =: open ball with centre z and radius r,
K, (z) :={y € M : d(z,y) <r} =: closed ball with centre z and radius r,
Sr(z) :={y € M : d(z,y) =r} =: sphere with centre  and radius r.

Examples. o R with the d(z,y) = |z — y| is a metric space.
e Let X be a set and define d : X x X — R by d(z,y) =0 forz =y
and d(z,y) = 1 for x # y. Then (X,d) is a metric space. d is called the
discrete metric on X.

Let (M, d) be a metric space. Recall that the metric d induces a topology on
M: aset U C M is open if and only if for every p € U there exists an ¢ > 0
such that Be(p) C U. In particular, the open balls are open and closed balls are
closed subsets of M. Let x € M. A subset U C M is called a neighbourhood of
x if there exists an open set U, such that z € U, C U.

It is easy to see that the topology generated by d has the Hausdorff property,
that is, for every x # y € M there exist neighbourhoods U, of 2 and U, of y
with U, N U, = 0.

Recall that a set N C M is called dense in M if N = M, where N denotes the
closure of N.

Definition 1.2. A sequence (2, )nen € M converges to x € M if and only if
lim d(zy,z) =0, that is,
n—o0

Ve>0 INeN: n>N = d(z,,z)<e.

The limit 2 is unique. A sequence (2, )nen is a Cauchy sequence in M if and
only if

Ve>0 INeN: mn>N = dxn, &m) <e.

Definition 1.3. A metric space in which every Cauchy sequence is convergent,
is called a complete metric space.
Definition 1.4. Let (X,Ox) and (Y, Oy) be topological spaces.

(i) A function f: X — Y is called continuous if and only if f~(U) is open
in X for every U open in Y.

(ii) An bijective function f: X — Y is called a homeomorphism if and only
if f and f~! are contiunous.

The following lemma is often useful.

Lemma 1.5. Let (M,d) be a complete metric space and N C M. Then N is
closed in M if and only if (N,d|nr) is complete.
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Remarks. e Every convergent sequence is a Cauchy sequence.

e Every Cauchy sequence is bounded. Recall that a sequence (z,)nen is
bounded if the set {x, : n € N} is bounded.

Not every metric space is complete, but every metric space can be completed in
the following sense.

Definition 1.6. Let (M, dy) and (N, dy) be metric spaces. Amap f: M — N
is called an isometry if and only if dy(f(z), f(y)) = dum(z,y) for all z,y € M.
The spaces M and N are called isometric if there exists a bijective isometry
f:M— N.

Note that an isometry is necessarily injective since x # y implies f(z) # f(y)
because d(f(z), f(y)) = d(z,y) # 0, and that every isometry is continuous.

Theorem 1.7. Let (M,d) be a metric space. Then there exists a complete
metric space (M,d) and an isometry ¢ : M — M such that o(M) = M. M is
called completion of M ; it is unique up to isometry.

Proof. Let
Car := {(zn)nen € M : (zn)nen is a Cauchy sequence in M}

be the set of all Cauchy sequences in M. We define the equivalence relation ~
on C}\,{ by

z~y = d(@n,yn) > 0, n— 00

for all = (zp)nen, ¥ = (Yn)nen € Car. It is easy to check that ~ is indeed a
equivalence relation (reflexivity and symmetry follow directly from properties (i)
and (ii) of the definition of a metric and transitivity of ~ is a consequence of
the triangle inequality).

Let M := Ca/ ~ the set of all equivalence classes. The equivalence class
containing = (2, )nen is denoted by [z]. On M we define

$:Mx MR, el [y) = lim d@a,yn)- (L1)
n—oo
We have to show that d is well-defined.
Let (@n)nen € [z] and (yn)nen € [y]. Then

(@, yn) = d(@m; Ym)| < |d(@n, Yn) — d(@m, yn)| + |d(@m, yn) — d(@n, ym)]
< d(@n, Tm) + d(Yn, Ym) — 0, m,n — 0o.

Since (d(zn,Yn))nen is a Cauchy sequence in the complete space R, the limit in
(1.1) exists.
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Moreover, for (Z,)nen € [2] and (§n)nen € [y] it follows that

[d(@n, yn) — d(@n, Gn)| < [d(@nsyn) — d(Ens yn)| + (@, yn) — d(@n, Gn)|
< d(Tp, Tn) + d(Yn, Gn) — 0, n — 00.

Hence d is well-defined.

Let
©:M— M, p(z) = [(#)nen]-

We will show that (H dA) is a complete metric space, that ¢ is an isometry and
that (M) = M in several steps.

Step 1: (ﬁ,(i) is a metric space.
Proof. Let [z],[y], [2] € M. Then

e 0= J([Tlv [yD = nlgrolo d(xn-,yn) Aaad T~y hand [z] = [y]

)

U

([2], W) = lim d(zp, yn) = lim d(yn, zn) = d(ly], [z]).
n—oo n—o00
(] ) = Y d(@yn) < lim (a2 + dzp) = ]2 +
(2] [y)-
Step 2: ¢ is an isometry.
Proof. This follows immediately from the definition.
Step 3: p(M) = M.
Proof. Let (zn)nen € [z] € M and € > 0. Then there exists an N € N such that
d(wy,xm) < 5, m,n > N. Let z:= xy € M. Then

)

)

=9

d(p(z), [z]) = nlingo dzn,z,) < = <e.

DO |

Next we show that (J/VZE) is complete. Let (£,)nen be a Cauchy sequence in
M. Since p(M) is dense in M there exists a sequence z = (zp)nen € M such
that

1
d(Tp, 2n) < —, neN.
n

The sequence z is a Cauchy sequence in M because

d(zn, Zm) = A(‘P(Zn)v ‘P(ZM)) < ‘?(W(Zn)-, in) + dA(im i?ﬂ) + dA(imv ‘P(Zm))

1 -~ 1
< —+4d(&n, &) +— —0, m,n — oo.
n m

The sequence (2, )nen converges to [z] because

(Zn,2) < d(&n, p(2n)) + d(p(zn), 2) < ! + lim d(zy, zm) =0, n — 00.
n m—o0

)
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We have shown that ¢(M) is a dense subset of the complete metric space (ﬁ , dA)
and that ¢ is an isometry.

Finally, we have to show that Mis unique (up to isometry). Let (N,dy) be
complete metric space and ¢ : M — N an isometry such that ¢(M) = N. Then
the map

T:p(M) = (M), T(p(x)) =(z)
can be extended to a surjective isometry T : (M) = M- N by

Tz =T( lim Zy) := lim Ta,
n—o0 n—o0

for x = lim x, with 2, € (M), n € N. O
n—r 00
Examples. o C" with d(z,y) = max{|z; —y;|: j = 1,...,n} is a complete

metric space.

o C" with d(z,y) = /[z1 — 1>+ + |2y — yn|? is a complete metric
space.

o Let C([a,b]) be the set of all continuous functions on the interval [a, b].
For f,g € C([a,b]) let

di(f,9) := max{|f(z) — g(2)| : = € [a, b]},

b
dy(f.g) = / 1 (2) - g(2)|dz.

Then dq and dy are metrics on C([a, b]). (C([a,b]), d1) is complete, (C([a, b]), d2)

is not complete.

Remark. The completion of (C([a,b]),d2) is Li(a,b) (the set of all Lebesgue
integrable functions on (a,b)).

Definition 1.8. A metric space is called separable if it contains a countable
dense subset.

Proposition 1.9. Let (M,d) be a separable metric space and N C M. Then
N is separable.

Proof. We have to show that there exists a countable set B C N such that B D
N where the closure is taken with respect to the metric on M. By assumption
on M there exists a countable set A := {x, : n € N} C M such that 4 = M.
Let J := {(n,m) € Nx N: Jy € N with d(z,,y) < %} For every (n,m) € J
choose a yn,m € N and define B := {y,,m : (n,m) € J}. Obviously, B is a
countable subset of N. To show that B is dense in N it suffices to show that for
every y € N and k € N there exists a b € B such that d(b,y) < % By definition
of A there exists a x,, € A such that d(zy,y) < 5%. In particular, (n,2k) € J.
It follows that d(yn,2k,Y) < d(Yn.2k, Tn) + d(Tn,y) < % O
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1.2 Normed spaces

Definition 1.10. Let X be a vector space over K. A norm on X is a map

-1:X—-R
such that for all z,y € X, a € K
() ol =0 > =0,
(ii) [loz|| = |a {2,
(iif) [l +yll < [l + [yl
Remarks. o Note that the implication < in (i) follows from (ii) because

lo[F = 12 - 0 = 2[[o]|.

o Note that |[2]| > 0 for all z € X because 0 = ||z — z|| < 2|jz||. The last
inequality follows from the triangle inequality (iii) and (ii) with o = —1.

Remark. A function [-] : X — R which satisfies only (ii) and (iii) of Defi-
nition 1.10 is called a seminorm. As seen in the remark above for norms, a
seminorm is non-negative and satisfies [0] = 0.
Remark. A norm on X induces a metric on X by setting

d(z,y) =z —yl, zyeX

Hence a norm induces a topology on X via the metric and we have the concept
of convergence etc. on a normed space.

Definition 1.11. A complete normed space is called a Banach space.
Obviously, every subspace of a normed space is a normed space by restriction
of the norm. A subspace of a Banach space is a Banach space if and only if it
is closed.

Proposition 1.12. Let X be a normed space. Then the following is equivalent:

(i) X is complete.

(ii) Ewvery absolutely convergent series in X converges in X.
Proof. Exercise 1.2. O

Example 1.13 (Quotient space). Let X be a Banach space and M C X a
closed subspace. On X we have the equivalence relation

T~y = w—-yEM.
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For € X we denote the equivalence class of X/M containing z by [2]. Then
X/M is a vector space if we set
2]+ [y =z +y], aofz]:=az], z,ye X, aeK
For z € X let dist(x, M) := inf{|lx —m|| : m € M}.
e (X/M,| -||~) is a normed space with
[[“ll~:X/M =R, |[z]]~:= dist(z, M).
Proof. First we show that || - ||~ is well-defined. For z,y € X withz—y €

M we find
eM
~
dist(z, M) = inf{||lz —m|| : m € M} = inf{|ly — (y —z+m)| : m € M}
=inf{|ly —m| : m € M} = dist(y, M).
Property (ii) in the definition of a norm is easily checked. For property
(iii) let [2], [y] € X/M. Then
=] + Wlll~ = lllz + ylll~ = inf{[lx +y —ml| : m € M}

= inf{|lx —m, +y — my| : my,m, € M}
inf{||z — mg| : my € M} +inf{|jly — my|| : my, € M}
lz]ll~ + Nl ~-
It is clear that [2] = 0 implies ||[z][|~ = 0. Now assume that [|[z]||~ = 0.
‘We have to show that € M. By definition of dist there exists a sequence

(M )nen such that ||z — my,|| — 0, that is, (my)nen converges to z. Since
M is closed, it follows that = € M. O

IN

e Let X be a Banach space and M a closed subspace. Then X/M is Banach
space with the norm defined in Example 1.13.

Proof. We already saw that X/M is normed space. It remains to prove
completeness. Let ([2,])nen be a Cauchy sequence.

First we show that we can assume ||[z,] — [zp]||~ < 27" for all m >
n: Choose N1 € N such that ||[zn,] — [zm][|~ < 271 for all m > Nj.
Next choose No > Nj such that ||[zn,] — [#m][|~ < 272 for all m >
Ny. Continuing this process, we obtain a subsequence with the desired
property. Since a Cauchy sequence converges if and only if it contains a
convergent subsequence, it suffices to prove convergence of the subsequence
constructed above.

By definition of the quotient norm we can assume that ||z, — zp41] <
[#n = @nta]l|~ +27™ < 217" Then (zn)nen is Cauchy sequence in X
because for all n > m

n—1
l#n — zmll = H > g1 —
j=m

n—1 n—1
<D lwng —wall <2 27
Jj=m Jj=m
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Therefore x := lim x,, exists and
n—o0
2] = [#]ll~ = llzn = 2]~ < [l2n — 2| =0, n— oo O

Remark 1.14. (i) In the proof above we used that, by definition of || - ||,
for every 2 € X and every ¢ > 0 there exists an Z € [z] such that ||Z|| <
[[[z]ll~ + &. Equivalently, there exists an m € M such that ||z + m| <
=]~ +e.

(i) Obviously, ||z|| > ||[z]||~ for every z € X.

Examples 1.15. (i) Finite dimensional normed spaces. C™ and R™ are com-
plete normed spaces with

Il K" 5 R, [alloc = max{ja;] :j = 1,....n}.

Let 1 < p < oco. Then C™ and R™ are complete normed spaces with
n 1
?
o€ =Ryl = (3 lel?) "
j=1

The triangle inequality ||z+yll, < ||z, +||y||, is called the Minkowski inequality
(see Section 1.3).

(ii) Let T be a set and define
lo(T) :={x : T — K bounded map}.
Obviously, (T is a vector space. Let
[|#]|oo := sup{|z(t)| : t € T}, € Lo,
be the supremum norm. Then ((x(T'), || - ||s) is a Banach space.

Proof. Exercise 1.4. O

(iii) Sequence spaces.

o (o = {(N) is a Banach space.

e For 1 <p<oolet
Ly = Lp(N) = {(In)neN CK: Z |z, [P < oo}
n=1
and
ad E
el = (3 laal?)”, @ ety
n=1

With the usual component-by-component addition and multiplication with
a scalar, £, is a vector space and (£, || - ||,) is a Banach space.
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Proof. First we show that /), is a vector space. For o € K and z,y € £, we

have
o0 o0
3 Jazal? = faf Y faal? < 0
n=1 n=1
and
o0 o0 o0
3 len +unl” <3 @max{jzal yal})” = 20 (max{|za. [yal})’
n=1 n=1 n=1

[o<]
<22 fwal” + fyal” = 27 (2[5 + lylI3) < oo

n=1
Hence ¢, is a K-vector space. Properties (i) and (ii) in the definition of a
norm are easily verified. The triangle inequality is the Minkowski inequality
(see Section 1.3).
To show that (¢, - ||,) is complete, let (25, )nen be a Cauchy sequence in
L. Set T = (Tpn,m)men- Then the sequence of the m-th components is a
Cauchy sequence in K because

[Zn,m = Tkm| < llen —2klp,  meN.
Since K is complete, the limit y,, := lim @, ,, exists. Let y := (Ym)men.
n—r0o0

We will show that y € ¢, and that x, JH—’) y. Let ¢ > 0 and N € N such

that ||z, — z|| < e for all k,n > N. For every M € N

M
Z [2n,j — T < Jlon — kaZ <eP.
=1

Taking the limit & — oo on the left hand side yields
M
Z [2n,; — yil" < "
j=1

Taking the limit M — oo on the left hand side finally gives
[o<]
Z [z, — y; |7 < € < o0,
j=1

in particular, x, —y € {,. Since {, is a vector space, we obtain y =
Tn+ (y—xn) € p and ||z, —y||p, < €. That (2, )nen converges to y follows
from the inequality above since ¢ can be chosen arbitrarily. O

(iv) &, spaces: See measure theory.
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(v) Subspaces of los. Let
d:={z = (zp)neny CK : x, #0 for at most finitely many n},
co:={zx=(p)pen CK: lim z, =0},
n—oo
c:={z=(zy)nen CK : lim z, exists},

n—oo

Obviously, the inclusions d C ¢y C ¢ C £ hold. Moreover, it can be shown that

co and ¢ are closed subspaces of £, and that d is a non-closed subspace of £,.

In particular, (co, || - |loo) and (¢, - ||) are Banach spaces, (d, || - || ) is not a
Banach space (see Exercise 1.5).

(vi) Spaces of continuous functions. For metric space T (e.g. an interval in R)
let

C(T):={f:T — K: f is continuous},
B(T):={f:T —K: f is bounded},
BC(T):=C(T)NnB(T).
For f € B(T) let
[[flloo := sup{[f(2)

In Analysis 1 it was shown that (B(T), || - ||oo) and (BC(T'), || - [|) are Banach
spaces. Note that C(T)) = BC(T) for a compact metric space T'.

1te T}

(vii) Spaces of differentiable functions. Let [a,b] a real interval. We can define
several norms on the vector space

CY([a,b]) := {f : [a,b] = K : f is continuously differentiable}.
o (CY([a,b]), ]| - |lso) is not a Banach space.

Proof. For n € Nlet f, : [-1,1] = K, fu(t) := (2 + n~2)2. Then
the f, converge to g : [-1,1] = K, g(t) = [t in the || - [[oc-norm. But
g ¢ C'([a,b]). Hence C'([a,b]) is not closed as a subspace of the Banach
space C([a, b]), so it is not a Banach space. O

For f € C*([a,b]) let

1ty = £ lloo + 11f lloo-

Then (C*([a,b]), || - l1)) is a Banach space. Note that the right hand side
is finite because by assumption f’ is continuous.

Proof. Let (2n)nen be a Cauchy sequence in (C*([a,b]), | - [l1)). Then
there exist z,y € C([a, b]) such that z,, — z and z/, — y in the supremum
norm. A well-known theorem in analysis implies #’ = y, hence z,, — x in

-l o
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In the following, C([a,b]) will always be considered to be equipped with
the norm || - [|1) unless stated otherwise.

Theorem 1.16. Let X be a Banach space, Y a closed subspace and N a finite
dimensional subspace of X. Then'Y + N is a closed subspace. In particular,
every finite-dimensional subspace is closed.

Proof. Obviously, Y + N is a subspace of X. To proof that it is closed, we pro-
ceed by induction. Therefore we can assume without restriction that dim N = 1.
Let z € X such that N = {Az: XA € K} and (@ )nen = (Yn + an2)nen a Cauchy
sequence in Y + N.

Case 1. (anp)nen is bounded. Then it contains a convergent subsequence
(an, )ken. Then the sequence (Yn,)ken = (Tn, — an,2)ken converges because
it is the sum of two convergent sequences.

Case 2. (an)nen is unbounded. Then there exists a subsequence (ay, )ken with
klim |@p, | = 00. Since (2, )ren is bounded, it follows that
—»00

Hz+ !
. Yny

Nk

1
= H—an — 0, n — 00.
A,

Hence d(z,Y) = 0. Since Y is closed, this implies z € Y, therefore N +Y =Y

is closed in X.

Finally, choosing Y = {0} shows that every finite-dimensional subspace is closed.
O

Note that the sum of two closed subspaces is not necessarily closed, see as the
following example shows. Another example can be found in [Hal98, §15].

Example. In ¢; consider the subspaces

U :={(%n)nen € 1 : T2 =0, n € N}
V= {(zn)nen € 1 : T2p—1 = nT2y,, n € N}.

Obvioulsy, U and V are closed subspaces of £1. Let e, be the nth unit vector
in ¢;. Let m € N. Then ey,—1 € U CV 4+ U and eq,, = (engr% €am—1) —
% eam—1 € V + U. Since span{e, : n € N} is a dense subset of ¢y, it follows
that V + U = ¢;.

Now we will show that V 4+ U # ¢;. Let

1
=5, TN even,

% = (Tn)nen, Tn = {O’, n odd.

Clearly = € ¢1. Suppose that there exist v = (vp)nen € V, 4 = (un)neny € U
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such that @ = v + u. It follows for all m € N

1

S5 = T2m = U2m + U2m = V2m
(2m)? ’

1
0= 2Zom—1 = Vom—1 + U2m—1 = MU2m + U2m—1 = e + uzm-1,

impliying that ugm—1 = — 5z, m € N, hence u # £1. Therefore z # V + U.

Definition 1.17. Let X be a normed space and || - ||; and || - |2 be norms on
X. They are called equivalent norms if there exist m, M > 0 such that

mllally < llzle < Mz, @€ X. (1.2)

Theorem 1.18. Let || - ||y and || - |2 be norms on a vector space X. The the
following are equivalent:

(i) [|-|lx and || - ||2 are equivalent.
(ii) A sequence (zn)nen € X converges with respect to || - |1 if and only if
it converges with respect to || - |2 and in this case the || - ||1-limit and the

|| - [l2-timit are equal.

(iii) A sequence (xn)nen € X converges to 0 with respect to || - ||1 if and only
if it converges with respect to || - ||2.

Proof. (i) = (ii) = (iii) is clear.
“(iii) = (i)”: Obviously it suffices to show the existence of M € R such
that (1.2) is true. Assume no such M exists. Then there exists a sequence

(zn)nen C X such that ||lz,|[1 = 1 and ||z, [l2 > n|za|li = n. Let y, :=n"'a,.

Then y, ﬁ) 0, so by assumption also yy, M 0. This contradicts ||y,|l2 > 1

for all n € N.

The theorem above implies in particular, that the topologies generated by equiv-
alent norms coincide. Moreover, the identity map id : (X, |- [|1) = (X, || [|2) is
uniformly continuous for equivalent norms.

Example 1.19. On C'([a,b]) define the norm

' ()|} : t € [a,b]}.

[/ ll2) := sup{max{|z(t)],

and let || - [|(1) be as in Example 1.15 (7). It is not hard to see that

Izl < llzlle) < 2lellqy, =€ C'([a,b]).
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Theorem 1.20. All norms on K" are equivalent.
Proof. Let {eq,...,e,} be a basis of K". For z = Y""_| a, e, define

lella == (3 o)

1
2

j=1
Obviously, || - ||2 is a norm on X and it suffices to show that every norm on X
is equivalent to || - [[2. Let || - || be a norm on X and z = Z;.L:l oy ey, Using
triangle inequality for || - || and Hélder’s inequality, we obtain
n n n L on 1
2 2
ol = [ Y asei| <D lasllles I < (3 hesl?)* (Do les 17) = C e
j=1 j=1 j=1 j=1
(13)
%
with constant C' := (Z?’:l |lej Hz) independent of .
Note that || - [l : X — R is continuous, hence S := {z € X : |jz|]s = 1} is

closed being the preimage of the closed set {1} in R. In addition, S is bounded,
therefore S is compact by the theorem of Heine-Borel. Now consider the map
T: (X, ]l2) = R, Tz = |lz||. By (1.3), T is uniformly continuous, so its
restriction to the compact set S has a minimum m and a maximum M. Since
|| -]l is a norm, m > 0 (otherwise there would exist an z € S with ||z|| = 0, thus
2 =0but 0 ¢ S). Therefore

mljz]e =m < ||z|| < M = M||z]|2, zeS,
and by the homogeneity of the norms
mlzl2 < [lz|| < M||z||2, zeX. O

The theorem above implies that all norms a a finite-dimensional K-vector space
are equivalent. Moreover, it follows that every finite normed space is complete
because K" with the Euclidean norm is complete and that a subset of a finite
dimensional normed space is compact if and only if it is bounded and closed
(Theorem of Heine-Borel for K™ with the Euclidean metric). In particular, the
unit ball in a finite dimensional space is compact.

This is no longer true in infinite dimensional normed spaces. In fact, the unit
ball is compact if and only if the dimensions of the space is finite. For the
proof we use the following theorem which is also of independent interest, as it
shows that in a certain sense quotient spaces can work as a substitute for the
orthogonal complement in inner product spaces (see 4.2).

Theorem 1.21 (Riesz’s lemma). Let X be a normed space, Y C X a closed
subspace with Y # X and e > 0. Then there exists an x € X such with ||z|| =1
and dist(z,Y) >1—¢.
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Proof. If Y = {0} or £ > 1, the assertion is clear. Now assume 0 < £ < 1. Note
that in this case l—is > 1. Since Y is closed and different from X, the quotient
space X /Y is not trivial. Hence there exists an £ € X such that ||[{][|~ = 1. By
Remark 1.14 there exists y € Y such that

Ty

Let @ = || + y||~*(£ +y). Obviously, ||z|| = 1 and for every z € Y/

o = 2l = llg + ol = [J¢ +y = g + wllz| 2 e+ o~ NiEll~ = g + w7 > 1 -
————
2%
Hence d(z,Y) =inf{|lz —z||: 2€ Y} >1—¢. O

Theorem 1.22. For a normed space X the following are equivalent:
(i) dim X < oo,
(ii) Bx :={z € X :|z| <1} is compact.

(iii) Pvery bounded sequence in X contains a convergent subsequence.

Proof. “(i) = (ii)” follows from Theorem 1.20.

“(iil) = (i)™ Assume that By is compact. Then there are z1, ..., 2, € X
with ||z;|| < 1,7 =1, ..., n, such that

n

j=1
Let U = span{x1, ..., z,}. If U # X, then, by Riesz’s lemma, there exists

an 2 € X such that [|z]| = 1 and dist(z,U) > 1, in contradiction to (1.4).
Therefore dim X = dim U < n.

“(ii) = (iii)™ If Bx is compact, then obviously for every a > 0 also aBx :=
{ax : € Bx} is compact. Since every bounded sequence is a subset of some
aBx, it must contain a convergent subsequence.

“(iii) = (i)”: Assume that dim X = oo. Choose z; € X with [lz1]| = 1
and set U; := span{z1} # X. By Riesz’s lemma there exists an zo € X
with ||zo|| = 1 and dist(z2,Uy) > 3, in particular [lz; — 22 > 5. Set Uz ==
span{z1, z2} # X. Continuing this way, we obtain a sequence z = (2,)nen € X
with ||z, — zpm| > % for all n,m € N with n # m. Therefore, the sequence z
does not contain a convergent subsequence, hence By is not compact (Recall
that a compact metric space is sequentially compact).

Let X be a vector space and A a set. A family (z))rea C X is called linearly
independent if every finite subset is linearly independent. A Hamel basis (or an

o
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elgebraic basis) of X is a family (zx)xea C X that is linearly independent and
such that every element 2 € X is a (finite!) linear combination of the zy. The
existence of a Hamel basis can be shown with Zorn’s lemma.

Definition 1.23. Let X be a normed space. A family (z,,)nen is a Schauder
basis of X if every x € X can be written uniquely as

oo
Z Ty, with a, € K.
n=1

Definition 1.24. Let (X, | - ||) be a normed space over K. A subset Y C X is
said to be a total subset of X if

span(Y) = X,
that is, if the set of all linear combinations of elements of Y is dense in X.

Theorem 1.25. A normed space (X, || -||) is separable if and only if it contains
a countable total subset.

Proof. Let A be a dense countable subset of X. Then obviously span A = X,
that is, A is a total subset of X.

Now assume that A is countable total subset of X. Let B := {\a,, :n € N, A €
@} where @ = Q if X is a R-vector space and @ = Q +1iQ if X is a C-vector
space. In both cases B is countable. We will show that B = X. Let z € X
and € > 0. Since A is a total subset of X, there exist a1, ..., a, € A and
A1y ooy Ap € K such that

n

€

|z — Z/\JQJH < 3
j=1

Since @ is dense in K, there exist u1, ..., y € @ such that

£ [ -1 )
=Xl <5 (Xlasll) =1 n
j=1

Then y := E;”:l pja; € span A and

" n n
£
o=l $aml el Sl <5 15w
Jj=1 j=1 =1
5 n € ~
n e
S§+I§1:af{‘“’j7)‘j|z“an“<§+§:E. O

Jj=1

Note that every normed space with a Schauder basis is separable, but not every
separable normed space has a Schauder basis.
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Examples 1.26. (i) £, is separable for 1 < p < co.

Proof. Let e, :=(0,...,0,1,0...) be the nth unit vector in £,. We will show
that {e, : n € N} is a total subset of £,. Let = (2 )nen C £p. Then

n oo
fo E zjeju = H E x]'e]H —0, n—oo. O
=1 P j=n+1 P

(ii) £ is not separable.

Proof. Recall that the set A := {(@n)nen : @, € {0,1}} i s not countable.
Obviously, A C {. Let B be a dense subset of £o,. Then for every x € A there
exists an b, € B such that ||z —bylsc < 3. Since [z —ylloo = 1 forz £y € 4, it
follows that B has at least the cardinality of A, that is, there exists no countable
dense subset of £,,. O

(iii) Cla, b] is separable since by the theorem of Weierstrafl the set of polyno-
mials

{la,b] > R, z+— 2™ : n € N}

is a total subset of C'la, b].

1.3 Holder and Minkowski inequality

In this section we prove Holder’s inequality and Minkowski’s inequality. For the
proof we use Young’s inequality.

Theorem 1.27. Let p,q € (1,00) such that

Then for all a,b > 0:
1 1
ab < —af 4+ - b9, (1.5)
p q

Proof. If ab = 0, then inequality (1.5) is clear. Now assume ab > 0. Since the
logarithm is concave and i + % =1 is follows that

ln(l aP + 1b") > l In(a?) + 1 In(b?) = In(a) 4 In(b) = In(ab).
p q p q

Application of the monotonically increasing function exp : R — R yields (1.5).
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Theorem 1.28 (Hélder’s inequality). Let 1 <p < oo and ¢ = ;25 i.e,

1

1
- =1
P g

(setting £ =0). Ifx € £, and y € Ly, then z = (TpYn)nen € {1 and

2l < Ny [[yllg- (1.6)
Proof. If z =0 or y = 0 then the inequality (1.6) clearly holds. Also the cases
p=1and p = oo are clear.

Now assume z,y # 0 and 1 < p < co. The Young inequality (1.6) with

_ |51 _ |y
llzll,’ llllg

yields

gl lysl o 1 Jsl” 1yl
lllpllylla = p llzlm  q llvlld

Taking the sum over gives

1 ad 11 & 11 & 1
e bl < o Sl o Sl = o
p =zl p

- = 1.0
el Toll, 2 Tl 2

Q=

=l=lI7 =lvlg

=1 =1
In the special case p = g = 2 we obtain the Cauchy-Schwarz inequality.
Corollary 1.29 (Cauchy-Schwarz inequality). For @ = (n)nen, ¥y =
(Yn)nen € Lo the Holder inequality implies

oo

@)=Y 2i75] < lalle Iyl

j=1
Theorem 1.30 (Minkowski inequality). For 1 < p < oo and 2,y € {,
Minkowski’s inequality holds:

lz+ylly < llllp+ llyllp (1.7)

Proof. If x +y = 0 then (1.7) clearly holds. Also the cases p =1 and p = oo
are easy to check.

Now assume z +y # 0 and 1 < p < co. Let ¢ € (1,00) such that %Jr% =1
The triangle inequality in K and Holder’s inequality (1.6) yield for all M € N:
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M M
Z [z + 4P = Z |2y + ;| - | + g P
Jj=1 Jj=1

M M
> gl g 4yl 3 gl g + P
i=1 i=1

IN

» »

M LM 1 M LM 1
(Z \ﬂfj\”) ! (Z |z + Z/j\(”_l)q) T+ (Z \yj\”) ! (Z |z + Z/j\<”_1)q) !
=1 j=1 =1 j=1
M 1
(Nl + el (3l +w317) -
j=1

IA

IN

1
Note that (Eﬁl |z + yﬂ”) ? % 0 for M large enough. Hence the above
inequality yields

M

1
(Xl +5l?) < lly +

Jj=1

using p — % =p(1— 5) = 1. Taking the limit M — oo finally proves (1.7). O
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Chapter 2

Bounded maps; the dual
space

2.1 Bounded linear maps

Definition 2.1. Let X,Y be normed spaces over the same field K. The set of
all linear continuous maps X — Y is denoted by L(X,Y), i.e.,

L(X,Y)={T:X — Y : T linear and continuous}
and L(X) := L(X, X).
Recall that the following is equivalent:

(i) T: X — Y is continuous
lim Tz, = Tlim, e x, for every convergent sequence (z,)neny € X

)
(11) n—o00
(iii) Voo € X Ve>030>0: |z —xo|| <6 = [Tz —Txol| <e
(iv) UCY open = T-Y(U)={z€ X: f(z) €U} openin X.

Definition 2.2. Let X,Y be normed spaces over the same field K. For a linear
map T : X — Y define the operator norm

7| := sup{|[Ta] : 2 € X, [la]] = 1}.

If ||T|| < oo then T is called a bounded linear operator and ||T'|| is the operator
norm of ||T]|.

Remark 2.3. (i) For a continuous linear map 7 : X — Y

1Tzl < T {|=ll, =€ X.
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Proof. The inequality is obvious for = 0 or ||z|| = 1. For 2 € X \ {0} let
7 = ||z||~z. By definition of || T we find |Tz|| = ||z|| |TZ| < ||| [|T]|-
Note that the inequality is also true if 7" is unbounded and z # 0. O

(if) The following is easy to check:

1Tl = sup{[[T|| : € X, [l=] =1}
=sup{|[Tz| : z € X, [lz] <1}
T
:sup{M :xeX,z#O}
[l
=inf{M eR:Vz e X|Tz|| < M|z}

Remark 2.4. (i) For S, T € L(X,Y) and A € K we define
ANT+S): X =Y, (\T+S)x:=\z+ Sx.
Since the sum and composition of continuous functions is continuous, and

(AT + S obviously is linear, L(X,Y) is a vector space.

It will be shown in Theorem 2.6 that | - || is indeed a norm. Note the the
operator norm depends on the norms on X and Y. This is can be made
explicit using the notation ||T||(x,y), or similar notation.

(i) Let X,Y,Z be normed spaces and T' € L(X,Y), S € L(Y, Z). Then
ST:X —Z, STxz:=STux).

Obviously, ST € L(X,Z) as composition of continuous linear functions
and ||ST|| < ||S|| |T|| because by Remark 2.3

STzl < [SIITl < ISIHTIHl=l, =€ X.
In particular, L(X) is an algebra.

Theorem 2.5. Let X, Y be normed spaces, T : X — Y linear. The following
is equivalent:

(i) T is continuous.

(if) T is continuous in 0.

(iii) T is bounded.

(iv) T is uniformly continuous.

Proof. The implications (iii) = (iv) == (i) == (ii) are obvious.

“ (i) = (iil)”:  Assume that T is not bounded. Then there exists a sequence
(Tn)nen C X such that ||z, || = 1 and || Tx,|| > nforalln € N. Let y, := n"'x,.
Then y,, — 0 but | Ty,|| > 1 for all n € N in contradiction to the continuity of
T in 0. O
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Theorem 2.6. Let X,Y be normed spaces.
(i) L(X,Y) is a normed space.
(ii) If'Y is Banach space, then L(X,Y) is a Banach space.

Proof. (i) In Remark 2.4 we have seen that L(X,Y) is a vector space. From
definition of the operator norm it is clear that || T'|| = 0 if and only if T = 0
and that [|[AT|| = |A|||T]| for all A\ € K. To prove the triangle inequality let
S, T e L(X,Y)and z € X.

(S + Tzl = |9z + Tx|| < |[Sz|| + | T=]| < |S] + I T]-
Taking the supremum over all x € X with ||z|| = 1 yields |S+T| < ||S|| + ||T]|-

(i) Let (T )nen be a Cauchy sequence in L(X,Y). For z € X, the sequence
(T 2)nen is a Cauchy sequence in Y because

”an - me“ < HTn - Tm“ H‘”H
Since Y is complete, we can define
T:X—=Y, Tz:= lim T,x.
n—o0

It is easy to check that T is linear. That 7" is bounded and 7, — T follows as
in Example 1.13(2): For ¢ > 0 exists an N € N such that

|1 T — Tl < g, n,m > N.
In particular, for all z € X it follows for n > N that
T — Tl < T ~ Tl + [T — T < T~ T + 5, meN.
1)

Taking the limit 7n — oo on the right hand side yields || Tz — Thz|| < § <e. It
follows that 7' — T, is a bounded linear map. Since L(X,Y) is a vector space,
also T' =T, + (T — Ty) is a bounded linear map. In addition, (2.1) shows that
T, —T,n— . O

Examples 2.7. In the following examples, the linearity of the operator under
consideration is easy to check.

(i) Let X be a normed space. Then the identity id : X — X is bounded and
lid|| = 1.

(ii) Let 1 < p < co. The left shift and the right shift on £, are defined by

Rty =Ly, (x1,22,23.. Jnen = (0,21, 22,...),

L:tly =y, (21,%2,73... Jnen +> (T2, 23,...).
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Obviously, R and L are well-defined and linear. Moreover, R is an isome-
try because ||Rz||, = ||z||,; in particular || R[] = 1.

The left shift is not an isometry because, e.g., [[L(1,0,0,...)|l, = [|0], =
0 <1=|(1,0,0,...)[|p. It is easy to see that ||Lz|, < [z, = € £p,
implying that ||L|| < 1. Since ||L(0,1,0,0...)|, = [[(1,0,0...)|, =
[1(0,1,0,0...)||, we also have ||L|| > 1, so that altogether ||L| = 1.

Note that LR = idg, but RL # idy,.

(i

=

T: ([0, 1], [ - ler) = C(la, 8], || - lloo), Tz = 2" with ||z]lcr = [l +
[|#'||oo- The operator T" is bounded and ||T|| = 1.

Proof. The operator T is bounded with ||T| < 1 because [|Tz|e =
12/l < 12l + &' < llzlcr for all @ € X.

To proof that ||T|| > 1 let @, : [0,1] = R, z,,(t) := Lexp(—nt). Ob-
viously, 2, € C([0,1]), llznllcr = 2 + 1 and ||[T2nllee = 1. It follows
that

17 = sup { ks < & € CH(0, 1)) \ {03} > sup { {5l - m € N}

llzllo1 [EXPE

:sup{q.neN}:l. O

T:CH[0,1], ] - [loo) = C([a,b], || - |loc), Tz =2’ is not bounded.

=
<
-

Proof. As in the example above let @, : [0,1] = R, 2 (t) := L exp(—nt).
It follows that

sup {1 < € € (0.1 \ (03} 2 sup (1= ey

ISUP{I.ILGN}:OC O

Lemma 2.8. let X,Y be normed spaces, X finite-dimensional. Then every
linear map T : X — 'Y is bounded.

Proof. Let ey, ..., e, be a basis of X. Since on X all norms are equivalent, we
can assume that

n n
1> ases]| =Y lagl:
j=1 j=1

Let M := max{|T¢;| : j = 1,...,n}. Then T is bounded with |T|| < M
because for x = 27:1 aje; € X

ITally = || D aiTe; |, < Z o3l Ty < MY oyl = Mlallx. D
j=1

Jj=1

Chapter 2. Bounded maps; the dual space 29

Theorem 2.9. Let X, Y be normed spaces, Y a Banach space. Let D C X be a
dense subspace of X and T € L(D,Y). Then there exists exactly one continuous
extension T : X =Y of T. The extension is bounded with |T|| = ||T||.

Proof. For x € X choose a sequence (2, )nen € D which converges to x. The
sequence is a Cauchy sequence in D, hence, by the uniform continuity of T,
(Tzy)nen is a Cauchy sequence in Y, and therefore it converges in Y because YV’
is complete. Let (&, )nen be another Cauchy sequence in D which converges to
2. By what was said before, (T°¢,,) converges in Y. Then hm Tz, — T =
lim ([T, — &) < lim 70| @a — &)l = |7 tim [[(@n — &) = 0, the
n—0o0 n—oo n—o00

following operator is well defined:

T:X — Y, Tz = lim T, for any (z,)nen € D which converges to z.
n—oo

It is not hard to see that 7" is a lincar extension of T and that ||T| > || 7. To
see that indeed equality holds, we only need to observe that by definition of T'

{(ITal 2 € D, J2l = 1y = {|Ta| : 2 € X, |l2]| = 1},

hence the suprema of both sets without the closure are equal (and equal to
the supremum of the closed sets). Since T is linear and bounded by ||, it is
continuous.

Assume that S is an arbitrary continuous extension of 7. For € X and a
sequence (T )nen € D which converges to = we find

Sz = lim Sz, = lim Tz, = lim Tx, = Tx.
n—oo n—00 n—00

Therefore, T is the unique continuous extension of 7. O

Finally we give a criterion for the invertibility of a bounded linear operator.

Theorem 2.10 (Neumann series). Let X be a normed space and T € E(X)
such that 307 T™ converges. Then id =T is invertible in L(X) and

(d-T)"'=> 1" (2.2)
n=0
In particular, if X is a Banach space and ||T|| < 1, then id =T is invertible and

llGd=1)~" < (1= |7~

Proof. The proof is analogous to the proof for the convergence of the geometric
series. We define the partial sums S, :== Y  T", m € Np. Then

(id =T)S,, = Sy (id =T) = id =T™F!, m € Np. (2.3)

Note that:
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(i) T™ — 0 for m — oo because > -, T™ converges.
(i) Sm — D opeoT™ for m — oo by assumption.

(ili) For fixed R € L(X) the maps L(X) — L(X), S +— RS and S — SR
respectively are continuous.

Hence taking the limit m — oo in (2.3) gives

(id-T) i ™ = ( i T”) (id—T) = id
n=0 n=0

implying that id —7 is invertible and that (2.2) holds.
Now assume that X is a Banach space and that ||T| < 1. Then Y o2 T"

converges in norm because |77 < ||T||". In particular, (Z;":U T]) is
meN
a Cauchy sequence in L(X). Since L(X) is complete by assumption on X

and Theorem 2.6 the series converges. By the first part of the proof, id =T is
invertible and formula (2.2) holds. O

Application 2.11 (Volterra integral equation). Let k € C([0,1]?) and
y € C([0,1]). We ask if the equation

x(s) — /05 k(s,t)z(t) dt = y(s), s €0,1]. (2.4)

has solution z € C([0,1]). If a solution exists, is it unique? Can the norm of
the solution be estimated in terms of y?

Solution. Note that equation (2.4) can be written as an equation in the Banach
space C([0,1]):

r—Kz=y
where
K:0(0,1)) = C([0,1]), (Kz)(s) := /0 k(s, )x(t) dt, s € [0,1].
Obviously, K is a well-defined linear operator and for all z € C([0,1], s € [0, 1]
|Ka(s)] = \ / (s, () dz\ <[ (s, O e (0)] dt < 5 [Kllo 170
|K2a(s)| = ‘/0 k(s,1) /Ot k(t, t1)a(t:) di dt‘ < IR lllloo /0 /Ot dt, dt

2
s
= [kl% llzlloe %
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Repeating this process, it follows that
[K"a(s)| < %, 5% Iz, s €[0,1], € C([0,1]), n €N,

which shows that [|[K"|| < Hﬂll"’. In particular, > o K™ converges so that
id —K is invertible by Theorem 2.10. Hence equation (2.4) has exactly one

solution z € C([0,1]), given by

T = i K"y.
n=0

y . _ 3 klloo _
Moreover, [lofloe = | oo K7y < X0 IK™ Iyl < $2520 L=yl =
e l[kllo 1l O

2.2 The dual space and the Hahn-Banach theo-
rem

Definition 2.12. Let X be a normed space. X' := L(X,K) is the dual space
of X; elements in the dual space are called functionals.

Note that in general the algebraic dual space, i.e., the space of all linear maps
X — K in general is larger than the topological dual space defined above.
Theorem 2.6 implies immediately:

Proposition 2.13. The dual space of a normed space X with the norm
||| = sup{|2’(z)| : = € X, ||z|| <1}, e X,
is a Banach space.
Definition 2.14. Let X be normed space. p: X — R is a a seminorm if
() pOA) = [Ap(@), AeK, zeX,
(i) p(z +y) <p(@) +py), zyeX.
A seminorm p is called bounded if there exists an M € R such that
p(x) < M||z||, xz e X.
If p satisfies
(i) p(Az) = Ap(z), A>0, zeX

instead of (i), then it is called a sublinear functional.
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For example, every norm on X is sublinear. If ¢ : X — K is linear, then
X >R, z > |p(x)|

is sublinear.

Remark. Observe that p(z) > 0 for every x € X and every sublinear functional
p. Moreover, note that every seminorm is a sublinear functional.

The next fundamental theorem shows that every normed space admits non-
trivial functionals (except when X = {0}).

Theorem 2.15 (Hahn-Banach theorem). Let X be normed space and p :
X — R a seminorm. Let Y C X a subspace and ¢o a linear functional on'Y
(that is, po : Y — K linear) with

eo(y) <ply), yeY.
Then o has an extension to a functional ¢ on X which satisfies
le(@)| <pz), ze€X. (2.5)

Proof. For Y = X there is nothing to show. Now assume Y # X. We dis-
tinguish between the real and the complex case. First assume that X is a real
vector space.

We divide the proof in two steps.

Step 1. Let zop € X \' Y and Z := span{zo, Y'}. We will show that ¢y can be
extended to some ¢ € Z’ such that (2.5) holds for all z € Z.
Obviously, every linear extension of ¢ must be of the form

Ye(y+A20) = po(y) +Ae,  AER, yeY
for some ¢ € R. We have to find ¢ such that |¢.(z)| < p(z),z € Z, that is,
[Ye(y + Az0)| < ply +Az), yE€Y, A€R. (2.6)
By assumption on ¢q
po(x) = ¢o(y) = po(w —y) <ple—y) <p(z+2) +py+20), yzeY,
implying
—po(y) —p(y +20) < —po(@) +plz +20),  y,x €Y,

so that

a = sup{—po(z) —p(x+20) : v € Y} <inf{—po(x) +plx+ 20) :x € Y} :=b.

Chapter 2. Bounded maps; the dual space 33

Now let ¢ € [a,b] arbitrary. We show that then v, is an extension of ¢q as
desired. Let z = y+ Azp € Z with y € Y and A € R. Obviously 1. is continuous
in 0, hence 1. € Z'.

We have to show (2.6). For A = 0 equation (2.6) clearly holds. For A # 0:

A>0: )\cg)\bgA(*¢g(§y)+p(§y+zo)) = —po(y) + p(y + Az0),
A<0: AcSAaSA(fsou(iy)*ﬁ(%y+20)):fWo(pr(er)\zU)»

In both cases we obtain .(z) = ¥:(y + Xz0) = wo(y) + Ac < p(y + Az0) = p(2).
Application to —z yields —t).(2) = 1e(—2) < p(—z) = p(z). In summary, we
have [¢(2)| < p(z), z € Z.

Step 2. Let @ be the set of all proper extensions of ¢y such that |¢o(z)| < p(z)
for all x € D(p) (the domain of ). By Step 1, ® is not empty and partially
ordered by

@1 < 2 <= o is an extension of ;.
Every totally ordered subset @y has the upper bound
D(f)= |J D),  f@)=u(z) for x € D(¥).
PeDg

By Zorn’s lemma, ® contains a maximal element . This ¢ is defined on X
because otherwise, by Step 1, it would not be maximal.

Now we assume that X is a complex vector space. Consider X as a vector space
over R and define the functional

VoY =R, Voly) = Re(p(y)).
It is R-linear because for all z,y € Y and a € R

Vo(az +y) = Re(po(az +y)) = Re(apo(z) + ¢o(y)) = aRe(po(z)) + Re(vo(y))
= aVo(z) + Vo(y).

In addition, Vj is bounded by the sublinear functional p
[Vo(y)l = [Re(eo(®))] < lpo@)l <p(y), ye Y.

By what we have already shown, there exists an R-linear extension V' € L(X,R)
of Vp with |V (z)| < p(z), 2 € X. Now define

p: X =C, @) =V(r)-iV(a)
 has the following properties:
(i) ¢ is an extension of @o. To see this, let y € Y.

e(y) = Voly) — iVo(iy) = Re(po(y)) — iRe(po(iy)) = Re(po(y)) — iRe(ivo(y))
= Re(po(y)) +1iIm(po(y)) = ¢o(y)-
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(i) ¢ is C-linear. To show this, let z,y € X and ¢ = a + ib with a,b € R.
oz + y) Viz+y) —iV(z +y) =V(z) + V(y) —iV(iz) — iV (iy)
o(x) + w(y)
o(Cx) = plaz) + p(ibx) = V(az) — iV (iazx) + V (ibx) — iV (i2bz)
= a[V(z) =1V (iz)] + b[V (iz) + iV (z)]
= (a+10)[V(z) — iV (iz)] = Cp(x).
(iil) ¢ is bounded by p. To prove this, let z € X and a € R such that

lp(@)] = ¢ plx) = Re (p(e 2)) = V() < p((c™ x)) = p(a).

In conclusion, ¢ is a C-linear continuous extension of ¢ which is bounded by p
as desired. O

Remark. If in the Hahn-Banach theorem we consider only real normed spaces
and replace the seminorm p by a sublinear functional such that oo (y) < q(y)
for all y € Y, then ¢y can be extented to a functional ¢ : X — K such that
—q(z) < p(x) < g(x) for all z € X, see [Rud91, Theorem 3.2].

The Hahn-Banach theorem has some important corollaries.

Corollary 2.16. Let X be a normed space, Y C X a subspace and pg € Y.
Then there exists an extension ¢ € X' of ¢g such that ||¢|l = ||¢ol|-

Proof. Themapp: X = R, p(z) = is a sublinear functional on X and
leo()] < lleo@)l lyll = p(y) for all y € Y. By the Hahn-Banach theorem, ¢q
can be extended to a p € X’ with |p(z)| < p(z) = ||¢o ||z, so that ||| < ||ol|-
On other hand ||¢|| > ||¢o]| holds because g is a restriction of ¢. O

The next corollary shows that X’ does not consist only of the trivial functional

and that it separates points in X.

Corollary 2.17. Let X be a normed space, x € X, v # 0. Then there exists a
p € X' such that o(z) = ||z||. In particular for all z,y € X :

(i) 2=0 <= VYo e X' p(x)=0,

(i) 2 £y = 3pe X' ox) # oY)
Proof. Let Y := span{z} and ¢¢ € Y’ defined by ¢o(Az) = A||z||. Then ¢o(z) =
[lz]| and [l¢o| = 1. By Corollary 2.16 there exists an extension ¢ € X' of ¢g

with the desired properties. Statement (i) is clear; (ii) follows when (i) is applied
toxr —y. O

Corollary 2.18. Let X,Y be a normed spaces.
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(0) [lzl = sup{p(z) : p € X', [lp| =1}, = € X.
(ii) ForT: X —Y linear

IT] = sup{e(T2) :z € X, |zl =1, o €Y, [loll =1}.

Proof. (i) For all ¢ € X' with |l = 1: |z = lolllzll 2 le(z)], hence
|lz]| > sup{e(z) : ¢ € X', ||¢|| = 1}. To show that in fact we have equality, we
recall that by Corollary 2.17 there exists a ¢ € X' with |¢| = 1 and ¢(z) = ||z]|.
Hence the formula in (i) is proved. Note the the supremum is in fact a maximum.

(ii) Let M :=sup{p(Tz):z € X, ||z|| =1, ¢ € Y, ||¢|| = 1}. We have to show
M = ||T||. Obviously, M = oo if and only if |T|| = co. Now assume ||T'|| < oco.
Let € > 0. Then there exists an € X with |z|| = 1 and ||Tz|| > ||T|| —e.
Choose a ¢ € X’ such that ||| = 1 and ¢(Tx) = ||Tz||. Then M > o(Tz) =
|IT|| — e. Since ¢ is arbitrary, it follows that M > ||T||. The revers inequality
follows from

o(Tz) < lell I T2l < llel 1Tl = TN, =€ X, |z =1, ¢ € X", |l¢| =1.0

Corollary 2.19. Let X be a normed space, Y C X a closed subspace. For
every xo € X \'Y exists ¢ € X' such that ply =0 and p(zo) = 1.

Proof. Let m : X — X/Y be the canonical projection. Then n(y) =0,y €Y,
and 7(zg) # 0. Since X is a normed space by Example 1.13, there exists a
¥ € (X/Y) such that p(m(zg)) # 0 and (7 (z¢)) = 1. Obviously ¢ = Yor € X’
and has the desired properties. O

Corollary 2.20. Let X be a normed space, Y C X a subspace. Then the
following are equivalent:

() ¥ =X,
(ii) (<p|y:0 = <p:0), peX.

Theorem 2.21. Let X be a normed space.
X' separable = X separable.

Proof. By Proposition 1.9 the unit sphere Sxs := {2/ € X' : ||2/|| = 1} is
separable. Choose dense iubsct {z},:n €N} of Sxr. and 2, € Sx :={zr e X :

|lz|| = 1} with |2}, (2,)[| > 3. Let U = span{z,, : n € N}. We will show U = X.
Assume this is not true. By Corollary 2.19 there exists an 2’ € Sy such that
2’ # 0 and 2/|[y = 0. Let n € N such that |2, — 2’| < }. This leads to the
contradiction

1 1
S Ja (@)l < fal(wn) — @' (za)] + o' (20)| < |2, — ]| + |2' ()] < . O
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2.3 Examples of dual spaces

Theorem 2.22. (i) Let 1 < p < oo and q such that
1 1
S+ =1

P q

with the convention é = 0. q is called the Holder conjugate of p.

The following map is an isometric isomorphism:
oo
Tty — (), (Ta)y= Zmnyn forx = (zq) € lg, y = (yn) € b
n=0
(if) The following map is an isometric isomorphism:

oo
T:l = (c), (Tx)y= Zznyn for x = (z,) € l1, y = (yn) € co.
n=0

Proof. (i) Let 1< p < oo. T is well-defined by Holder’s inequality and

.
T2yl = | D wugal < l2llgllyll-
n=0

Linearity and injectivity of T" is clear. The inequality above gives
1Tzl < llzllqy = €L (2.7)

It remains to show surjectivity of T" and that ||Tz| > ||z|, z € £4. To this end,
let y' € (£,)" and set z,, == y'(en), n € N, where e, is the nth unit vector in £,.
We will show that 2 := (2,)nen € ¢ and that Tz = y'. For y’ = 0 this is clear.
Now assume that y’ # 0. For n € N define

bl #£0,
bn =4 7"

0, z, = 0.

Using pg — p = ¢ we find

N N
Z [tnl” = Z ‘x71|p(q71)~, NeN.
n=1

n=1

Hence, for all N € N,

N N N N N
Z |xn‘q = Z Tpln = Ztny’(en) = yl( Ztn en) < HUIHH Z tnen Hp

n=1 n=1 n=1 n=1 n=1
N

N

1 1

=11 [8al?)? < 1D leal?) ™
n=1

n=1
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For N large enough, the last factor in the line above is not zero, so, using
1-— % = é, we obtain

N 1
(2l <
n=1
implying that z € £;. Since (Tz)e, = zne, =y e, n € N, and {e, : n € N}
a total subset of ¢, it follows that Tx = y’. In particular, with the inequality
above, ||z]lq < ||¥/|] = ||Tz||. Together with (2.7) it follows that ||Tz| = ||«]],
that is, T" is an isometry.

The proof for p = 1 is similar.
(ii) Well-definedness and injectivity of T are clear. Moreover ||Tz| < ||z for
every x € {1 because

[o<] o<}
IS 2nyn| < lWlloo D l2nl = [¥llcllzlli, v € co, 2 € 1.

n=0 n=0

To show that T is surjective, let y' € (¢o)’ and let x,, := y,(e,) where e, is
the nth unit vector in ¢y. For n € N choose o, € R such that [y'(en)| =
exp(ion, )y’ (en). It follows that

)

Z |Tn‘ = Z |y/(0n>‘ = Z CXP(ian> '!//(Cn) = y/( Z CXp(iO‘n) Cn)
n=0 n=0 n=0 n=0

o
<IYND_ explian) e ||, = I1y/Il
n=0

Hence z € ¢1 and ||z||; < [|y/[|. As before, since {e, : n € N} is a total subset
of cp, it follows that Tz = y" and the proof is complete. (Note however, that
{en : n € N} is not dense in () O

The theorem above shows that

Remark. Note that (€)" 2 ¢1. To see this, assume that ({)" = ¢;. Since £y is
separable, Theorem 2.21 would imply that also ¢ is separable, in contradiction
to Example 1.26.

Other important examples are given without proof in the following theorems.

Theorem 2.23. Let (2,3, i) be a o-finite measure space. Let 1 < p < oo and
q such that % + % =1. Then

T:2,(Q) > (L), (Tflg)= /Q fgdu,  feZy(Q), geZ,(Q),



38 2.4. The Banach space adjoint and the bidual

is an isometric isomorphism.

Theorem 2.24 (Riesz’s representation theorem). Let K be a compact
metric space and M(K) the set of all reqular Borel measures with finite varia-
tion, that is ||p|| < oo with

|l == sup{ Z |e(V)] : Z partition of K in pairwise disjoint measurable sets}.

vez

Let 1 <p < oo and q such that%Jr%:l. Then
M) S (O, (To) = [ gdu e M), g€ ),
Ja

is an isometric isomorphism.

For a proof, see [Rud87, Theorem 6.19].
The theorems above show that

12

Zy, 1<p<oo,

(&)
' M(K).

(C(K))

IR

2.4 The Banach space adjoint and the bidual

Definition 2.25. Let X,Y be normed spaces and T' € L(X,Y). The Banach
space adjoint of T' is

T:Y = X', (T'y)e =9/ (Tx), ¥ €Y' zeX.

Obviously, T” is linear and continuous as composition of continuous functions,
hence T € L(Y’, X") and the following diagram commutes

x—T vy
w'y& /
K

Theorem 2.26. Let X,Y,Z be normed spaces.

(i) The map L(X,Y) — L(Y', X"), T — T, is linear and isometric, that is,
|77l = IT|l. In general, it is not surjective.

(i) (ST) =T'S’ for S € L(Y, Z) and T € L(X,Y).
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Proof. (i) Linearity of T'+— T" is clear. Immediately by the definition of 7" we
have that

1Tl = lly o T| < Iy IITI, ¢ €Y

hence || T”|| < ||T'||. By Corollary 2.18 ||T|| is
7] =sup{y'(Tz) s 2 € X, o] =1, y" € V', |ly/|| = 1}.
For every € > 0 there exist € X, ||z|| = 1, 3 € Y’ such that [|T|| —¢ <
y'(Tz) = (T"y) (&) < [T 1 I| 1<l = 117" , so [T < [|77]|-
(ii) For all 2’ € Z’ and = € X we have ((ST)'2")(z) = /(ST (z)) = 2/ (S(Tx)) =
(8"2")(Tx) =T'(S"2")x = (T"S’)(2')(x), hence (ST) =T"S". O
Example 2.27. Let 1 < p < co. The adjoint of the left shift
L:t, —(, L(zy,z2,23,...) = (z2,23,...)

is the right shift.

Proof. Let % + % =1and y = (yn)nen € lg = (I,). Then for all x = (zn)nen €
lp:

oo ) oo 0
(Lly>x = y(LI) = Zyn(l’x)n = Zyn$7z+1 = Zyn—ll'n = Z(Ry)nwn
n=1 n=1 n=2 n=2
= Z(anzn = (Ry)a. O
n=1

Definition 2.28. Let X be a normed space. X" := (X') is the bidual of X.

For every € X the linear map
Jx(z): X' = K, Jx ()7 =2z
is linear and bounded by ||z||, hence Jx (z) € X"
Theorem 2.29. The map
Jx X = X", Jx(z)r =2'z, 2’ €X'
is a linear isometry. In general, it is not surjective.

Proof. We have seen above that Jx is well-defined, linear and ||Jx ()| < |=|,
z € X. Now let € X and choose ¢, € X’ such that ¢,(x) = [[z] (Corol-
lary 2.17). It follows that ||Jx (z)¢s|| = |¢z(x)| = ||z|, hence || Jx ()| > 1. O

The preceding theorem gives another easy proof that every normed space X can
be completed (see Theorem 1.7).
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Corollary 2.30. Every normed space is isometrically isomorphic to a dense
subspace of a Banach space.

Proof. By the theorem above, X is isometrically isomorphic to Jx(X) C X”.
Since X" is complete (Theorem 2.6), the closure Jx (X) is a Banach space. [

Definition 2.31. A Banach space is called reflezive if Jy is surjective.

Examples 2.32. (i) Every finite-dimensional normed space is reflexive.
(ii) £, is reflexive for 1 < p < oo by Theorem 2.22.

(ili) ¢ and ¢4 are not reflexive.

Note that there are non-reflexive Banach spaces X such that X = X” (but Jx
is not surjective).

Lemma 2.33. Let X,Y be normed spaces and T € L(X,Y). Then T" o Jx =
Jy o T, that is, the following diagram commutes:

T
X — Y
Jx Jy

" "
X — Y

Proof. For x € X and ¢y’ € Y’

[T"(Ix(@)]() = (Ux@)(T'Y) =T'y'z =y (Tz) = (Jy (T2))y' = [(Jy o T)(@)]y'.

O

If X and Y are identified with subspaces of X” and Y via the canonical maps

Jx and Jy, then T” is an extension of T. Note that with this identification

S € L(Y', X") is adjoint operator of some T € L(X,Y) if and only if $"(X) C Y.

Lemma 2.34. Let X be a normed space. Then J% o Jx: =idx’.

Proof. Note that Jx/ : X’ — X" and J5 : X" — X'. Forz € X, 2’ € X'
[(Jx o Jx)a')(x) = [Ixa'](Jx () = [Ixa]2’ = 2'x. o

Theorem 2.35. (i) Every closed subspace of a reflexive normed space is re-
flezive.

ii) A Banach space X is reflexive if and only if X' is reflexive.
(if) i y

Chapter 2. Bounded maps; the dual space 41

Proof. (i) Let U be a closed subspace of a reflexive normed space X and let
uw’ € U”. We have to find a u € U such that Jx(u) = u”. Let zf : X' —
K, x§(2') = u"(2'|v). Obviously, z{ is linear and bounded because

|26 ()] = " (@' |o)] < "l ]| < [l [ll2"],

hence 2 € X”. Since X is reflexive there exists an 2o € X such that Jx (zo) =
z(. Assume that 29 ¢ U. Since U is closed, there exists a ¢ € X’ such that
plv = 0and ¢(x9) =1 (Corollary 2.19). On the other hand ¢(z) = 0 by choice
of 2y because

¥ (o) = (') = Jx (w0’ = (), € X,
Therefore zy € U. It remains to be shown that Jy(z¢) = u”, that is
u’(u') = ' (w0), u el

Let v’ € U’ and choose an arbitrary extension ¢ € X’ (Corollary 2.16). By
definition of z it follows that

u () = u"(¢lu) = 26 (p) = ¢(ao) = ' (z0).

(ii) Let X be reflexive. We have to show that Jx/ : X’ — X" is surjective. Let
zy’ € X', The map zj : X — K, z{(z) = z{'(Jx(z)) is linear and bounded,
hence z, € X’. We will show that Jy/(z() = z’. Let 2" € X”. Since X is
reflexive, there exists an « € X such that Jx(z) = &”. Therefore

Txo(wh)a” = ' (wh) = Jx () (wh) = whe = (Jx (x)) = o (@),

hence indeed Jx/(zf) = z('.

Now assume that X’ is reflexive. By what was is already proved, X" is reflexive.
Since X is a closed subspace of X" via the canonical map Jx, X is reflexive by
part (i) of the theorem. O

Corollary 2.36. A reflevive normed space X is separable if and only if X' is
separable.

Proof. That separability of X’ implies separability of X was shown in The-
orem 2.21. If X is separable and reflexive, then also X" is separable. By
Theorem 2.35 X' is reflexive, so we can again apply Theorem 2.21 to obtain
that X’ is separable. O

Definition 2.37. Let X be a normed space. A sequence (z,)nen converges
weakly to o € X if and only if

lim 2'(z,) = 2'(20), 2 e X',
n—oo

. w .
Notation: z,, — z or w-lim x,, = x.
n — oo
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If it should be emphasised that a sequence converges with respect to the norm
in the given Banach space, then the sequence is called norm convergent. Some-
times the notion strongly convergent is used. Note, however, that in spaces
of linear operators the term “strong convergence” has another meaning (see
Defintion 3.12).

The next remark shows that strong convergence is indeed stronger than weak
convergence.

Remarks 2.38. (i) If the weak limit of a sequence exists, then it is unique,
because, by the Hahn-Banach theorem, the dual space separates points (Corol-
lary 2.17).

(ii) Every convergent sequence is weakly convergent with the same limit.

(iii) A weakly convergent sequence is not necessarily convergent. Consider for
example the sequence of the unit vectors (e, )nen in co. Let ¢ € ¢ = £1. Then
lir%I (en) = 0 but the sequence of the unit vectors does not converge in norm.
ne

Example 2.39. Let (2,)nen be a bounded sequence in C([0,1]). Then the
following is equivalent:

(i) (@n)nen converges weakly to y € C[(0,1)].

(ii) (@n)nen converges pointwise to y € C[(0,1)].
Proof. “(i) = (ii)” It is easy to see that for every t, € [0,1] the point
evaluation z — 2(tp) is a bounded linear functional. Hence for all ¢ € [0, 1] the
sequence (z,, (t)nen converges to some y(t). By assumption, [0,1] — K, ¢ — y(t)
belongs to C([0, 1]).

“(ii) = (1)? follows from Riesz’s representation theorem (Theorem 2.24) and
the Lebesgue convergence theorem (see A.19). ]

Theorem 2.40. Every bounded sequence in a reflexive normed space contains
a weakly convergent subsequence.

Proof. Let X be a reflexive normed space and z = (z,)nen € X be a bounded
sequence.

First we assume that X is separable. By theorem 2.36, also X’ is separable.
Let {¢n : n € N} be a dense subset of X’. We will construct a subsequence
Y = (Yn)nen of z such that for every j € N the sequence (;(yn))nen converges.
The sequence (1(2y))nen is bounded, so it contains a convergent subsequence

(o1(@n1.1)s 01(2ny,2)s ©1(Tny3)s -+ )

Now the sequence (p2(xn,,j))jen is bounded, so it contains a convergent subse-
quence

(p2(@nz,1)s P2(2n5,2)s ©2(Tny3)s -+ )
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Continuing like this, we obtain a sequence of subsequences ,,,, = (2n,,,j)jen,
m € N such that (¢, (2n,, ;))jen converges. Now the “diagonal sequence” y
with 4, = @n,,.m has the desired property.

Now we will show that y is weakly convergent. Let 2/ € X’ and € > 0. Choose
an k € N such that |2’ — ¢i|| < ;57 where M := sup{||z.| : n € N} < co. Let
N € N such that |¢x(yn) — 0&(Ym)| < 5, m,n > N. It follows for m,n > N:

[ (yn) — 2" ()] < 12" (Yn) — ern)| + 0 (yn) — 06 Wm)| + [0k Ym) — &' (ym)|
< 2M 2" — @i|| + [0k (Yn) — r(ym)]

<E+E*5
2 2 7

This implies that (2 (y,))nen is a Cauchy sequence in K, hence it converges. To
show that (y,)nen converges weakly, define the map

¥ X' —K, Mﬂ) = lim (L',(yn)'
n—oo

By what is already shown, v is well-defined and linear. It is also bounded
because

()| = | lim a'(ya)| = lim o' (yn)] < lim 2’| [|(ya)]| < M.

Hence ¢ € X”. Since X is reflexive, there exists a yo € X such that 2/(yo) =
P(2') = liln 2'(yn). Hence (yn)nen converges weakly to yo.
n-ro0

Now assume that X is not separable. Let Y := span{z,, : n € N} where (), )nen
is the bounded sequence in X chosen at the beginning of the proof. Y is sep-
arable (Theorem 1.25) and reflexive (Theorem 2.35). Hence, by the first step
of the proof, there exists a subsequence (yn)nen C Y of (2,)nen and a yo such
that 3, — yo in Y. Let 2’ € X’. Then 2'lys € Y, hence nlingoz’(yn) =

nlggo 2y (yn) = @'y (o) = 2'(yo). Therefore we also have y, — yo in X. O
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Chapter 3

Linear operators in Banach
spaces

3.1 Baire’s theorem

Theorem 3.1 (Baire-Hausdorff). Let (X, d) be a complete metric space and
(An)nen be a family of open dense subsets of X. Then (), Ay is dense in X.

Taking complements, it is easily seen that the theorem above implies

Theorem. Let (X,d) be a complete metric space and (Bp)nen be a family of
closed subsets of X such that \J5—, B, contains an open subset. Then at least
one of the sets B,, contains a non-empty open subset.

Proof of Theorem 3.1. Forr > 0andz € X let B(z,r) :={{ € X : ||[z—=¢|| <r}.
We have to show that any open ball in X has non-empty intersection with
MNyen An- Let € > 0 and zo € X.

A; is open and dense in X, hence Ay N B(zg,¢) is open and not empty. Hence
there exist e; € (0,271¢) and x; € Ay such that B(z1,e1) € A1 N B(zo,¢),
hence

B(xz1,%) C B(x1,e1) € A1 N B(wo, €).

Ay is open and dense in X, hence Ay N B(z1, 5-) is open and not empty. Hence
there exist g2 € (0,272¢) and @2 € Ay such that B(z2,e2) C Az N B(zy, ),
hence

B(x2,%) C B(22,62) € A2 N B(x1, %) € A2 N A1 N B(xo, €1)-
In this way we obtain sequences (g,,)nen and (25, )nen with 0 < &, < 27" and

B(zn, %) € B(tn,en) C An N B(@p-1,6n-1) € Ap_1 N ... A2 N A1 N B(xo,€1).
(3.1)
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Observe that z,, € B(zy, ) for N € Nand n > N. This implies that (5 )nen

is a Cauchy sequence in X because, for fixed N € N and all n,m > N we obtain
d(Ty, 2n) < d(@m, 2N)+d(2n, o5) < 27VFL Since X is complete, y := lim z,,
n—o0

exists and zg € B(xzn,en) for every N € N because for fixed N, we have that
xp € B(zn, %) if n > N. Hence (3.1) implies

y € Blan, %) C Blan-1,en-1) S An-1N... A2 N A; N B(zo,€1), N >2,
S0y € nnEN A, N B(zo,e). O

Definition 3.2. Let (X, d) be a metric space.

e A C X is called nowhere dense in X, if A does not contain an open set.

e A C X is of first category if it is the countable union of nowhere dense
sets.

e A C X is of second category if it is not of first category.

Note that A is nowhere dense if and only if X \ A is dense in X.
An equivalent formulation of

Theorem 3.3 (Baire’s category theorem). A complete metric space is of
second category in itself.

Examples 3.4. Q is of first category in R. R is of second category in R.

3.2 Uniform boundedness principle

Definition 3.5. Let (X, d) be a metric space. A family F = (fx)rea of maps
X — R is called uniformly bounded if there exists an M € R such that

A (@) <M, zeX, AeA.

The next theorem shows that a family of pointwise bounded continuous func-
tions on a complete metric space is necessarily uniformly continuous on a certain
ball.

Theorem 3.6 (Uniform boundedness principle). Let X be a complete met-
ric space, Y a normed space and F C C(X,Y) a family of continuous functions
which is pointwise bounded, i. e.,

VeeX 3C,>0 VfeF |f(x)]<Cs.
Then there exists an M € R, xg € X and r > 0 such that

Yz e Bu(m) VfEF |f(z)] <M. (3.2)
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Proof. For n € N let

Api= (e e X f @) <n}.

feF

Note that for every n € N the set {x € X : || f(z)|| < n} is closed because f and
|||l are continuous. Since all A,, are intersections of closed sets, they are closed.
Let x € X. Since F is pointwise bounded, there exists an n, € N such that
z € A,,, hence X C U,enA,. By Baire’s theorem exists an N € N, 29 € X,
r > 0 such that B, (z¢) C Ay, that is, (3.2) is satisfied with M = N. O

The Banach-Steinhaus theorem is obtained in the special case of linear bounded
functions.

Theorem 3.7 (Banach-Steinhaus theorem). Let X be a Banach space, Y
a normed space and F C L(X,Y) a family of continuous linear functions which
is pointwise bounded, i. e.,

VeeX 3C,>0 VfeF |f(x)]<Cq.
Then there exists an M € R such that

Ifll <M, feF.

Proof. By the uniform boundedness principle there exists an open ball B, (zg) C
X and an M’ € R such that || f(z)|| < M’ for all z € B,(x9) and f € F. For
z € X with [|z]| =1 and f € F we find

1 1
IF @)=~ r2)ll = ~ 1/ (xo) = f(zo = ra)]
1 2M'
< SOl + 1 (2o —ra)l) < =M,
€B,.(z0)
showing that F is uniformly bounded by M. O

Corollary 3.8. Let X be a normed space and A C X. Then the following are
equivalent:

(i) A is bounded.
(ii) For every &’ € X' the set {2(a) : a € A} is bounded.
Proof. “(i) = (ii)” is clear.

“(ii) = (i)” The family (Jx(a))sea € X" is pointwise bounded by assump-
tion. By the Banach-Steinhaus theorem there exists a M € R such that

lall = Ix (@)l < M, ac A

Hence A is bounded. O



48 3.2. Uniform boundedness principle

Corollary 3.9. Every weakly convergent sequence in a normed space is bounded.

Proof. Let X be a normed space and (z,,)nen be a weakly convergent sequence
in X. By hypothesis, for every 2’ € X’ the set {z/(x,) : n € N} is bounded.
Therefore, by Corollary 3.8, the set {2, : n € N} is bounded. O

The following theorem follows directly from Theorem 2.40 and Corollary 3.9.

Theorem 3.10. Let (X, | - ||) be a normed space, (xn)nen and xg € X. Then
the following is equivalent:

(i) zo = w;lgmoérn,.
(ii) (@n)nen is bounded and there exists a total subset M' C X' such that

lim fan) = flwo),  fe M

Corollary 3.11. Let X be Banach space and A" C X'. Then the following is
equivalent:

(i) A’ is bounded.

(ii) For all z € X the set {d/(z) : a’ € A’} is bounded.

Proof. The implication “(i) = (ii)” is clear. The other direction follows di-
rectly from the Banach-Steinhaus theorem. O

Note that for “(ii) = (i)” the assumption that X is a Banach space is necessary.
For example, let d = {z = (n)nen : Tn # 0 for at most finitely many n} C l.
d is a non-complete normed space (see Example 1.15 (5)). For m € N define the
linear function ¢, : d = K by ¢, (en) = mdm,, where 8y, , is the Kronecker
delta. Obviously ¢y, € d' and ||¢n,|| = m, hence the family (¢,,) is not bounded
in d’, but for every fixed z € d the set {¢,,(z) : m € M} is.

Definition 3.12. Let X,Y be normed spaces, (T,,)nen € L(X,Y) a sequence
of bounded linear operators and T' € L(X,Y).

(i) (Tn)nen converges to T, denoted by ILm T, =T, if and only if

lim ||T;, — T = 0.
n—oo

(i) (Th)nen converges strongly to T, denoted by s-lim T, =T or T), 5T, if
n — oo
and only if

lim | T,z —Tz| =0, zeX.
n—o0
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(iit) (Tn)nen converges weakly to T, denoted by w- le T, =Tor T, =T, if
and only if

lim |p(Thz) — o(Tx)| =0, zeX, peY’.
n—oo

Remark. (i) The limits are unique if they exist.

(ii) Convergence in norm implies strong convergence and the limits are equal.
Strong convergence implies weak convergence and the limits are equal.

The reverse implications are not true:

o Let X =0(N), T, : X = X, Tho = (1, ..., Tn, 0, ...) for z = (Tm)men.
Then T' converges strongly to id but |7, —id | =1 for all n € N, so that
(T )nen does not converge to id in norm.

e Let X = 06(N), 75, : X —» X, Tpx = (0,...,0, 21, 22, ...) (n leading
zeros) for @ = (@, )men. Then T converges weakly to 0 but | T,,z|| =1 for
all n € N, so that (T, )nen does not converge strongly to 0.

Proposition 3.13. Let X be a Banach space, Y be a normed space and (T,,)nen C
L(X,Y) such that for all x € X the limit Tx := limT,x exists. Then T €
L(X,Y). nen

Proof. Tt is clear that T is well-defined and linear. By the uniform boundedness
principle, there exists an C' € R such that ||7,,]| < C for all n € N. Now let
z € X with ||z|| = 1. Then ||Tz| = lim ||T,z| < sup||T,| ||z|| < C which
implies that 7' e L(X,Y). nee neN ]

We finish this section with a result on strong convergence of positive operators
on a space of continuous functions. An operator T on a function space is called
positivity preserving if T f > 0 for every f > 0 in the domain of T'.

Theorem 3.14 (Korovkin). Let X = C[0,2n] the space of the continuous
functions on [0,27] and let x; € X with xo(t) = 1, 21(t) = cos(t), z2(t) = sin(t)
for t € [0,2n]. Let (Tn)nen C L(X) be a sequence of positivity preserving
operators such that Thx; — x; for n — oo and j = 0,1,2. Then (Ty)nen
converges strongly to id, that is, Tp,x —  for all z € X.

Proof. We define the auxiliary functions

yi(s) = sin® 3 S, t,s € [0,27].

Note that 7:(s) = 1(1—cos(s) cos(t) —sin(s) sin(t)), hence y; € span{zo, 1,22},
in particular T,y — y; for n — oco.
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Now fix z € X and € > 0. Since x is uniformly continuous there exists a § > 0
such that for all s,¢ € [0, 2]

y(s) = sin? t’T‘* <6 = elt) - a(s)] <e.

Setting o = % we obtain that
lz(t) — z(s)| < e+ ay(s), s, t €10, 27],

because either s,¢ are such that y:(s) < 0, then |z(t) — 2(s)| < § by definition
of §; or y;(s) > 9, then |z(t) — z(s)| < 2||z[c = ad < ay(s). Hence we have
that

z(t) —z(s) < e+ ay(s), s, t € [0,2m]

— —ay(s) <
z(t)zo —x < exo + ay, t €0, 2n]

=  —ex0— QY

IN A

and since T}, is positive and y; is a positive function
—eThxo — Ty < x(t)Thwo — Tnr < eThzo + aThye, t €0, 2x).

Since Tp,zo — zo and Ty — %(1 — cos(t)z1 —sin(t)zy) for n — oo, we can find
N € N large enough such that eT,z¢ + aTpy; < exg + ay + ¢ for all n > N,
hence

lx(t)Thxo — Thx| < exo+ ay + &, te€[0,2n], n > N.

Hence aT,,x9 — T,z converges to 0 in norm in X because by the inequality
above

[ (t)(Thmo)(t) — (Thx)(t)| < e+ ay(t) +e = 2, te€[0,27], n > N.
That T,z — z follows now from
|z — 2Thzoll0o + [|[2Thao — Thlleo < |2 |20 — Thwollco + |2Tnzo — Thlloo. O
Fourier Series
Definition 3.15. Let # : R — R a 2m-periodic integrable function. The Fourier

series of x is

S(z,t) = “2—0 + i(ak cos(kt) + by sin(kt)),

k=1
where
1
ay == 7/ x(s) cos(ks) ds, k € No,
™ =7
1 [" .
by, = 7/ z(s)sin(ks) ds, keN.
™ —T
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Note that the Fourier series is a formal series only. In the following we will
prove theorems on convergence of the Fourier series.

First we will use methods from Analysis 1 to show that for a continuously differ-
entiable periodic function its Fourier series converges uniformly to the function.
Next we will use the uniform boundedness principle to show that there exist
continuous functions whose Fourier series does not converge pointwise every-
where. Finally, the Korovkin theorem implies that the arithmetic means of the
partial sums of the Fourier series of a periodic function converges uniformly to
the function.

For a given 27m-periodic function and n € N we define the nth partial sum

sn(x,t) = a?—o + i(ak cos(kt) + by, sin(kt)). (3.3)
k=1

Lemma 3.16.

1T sin((TH»—é)s) 540
sp(z,t) = —/ (s +1t)Dp(s) ds  with Dp(s)=<¢ 253 7 ’

Jo= n+ % s=0.
(3.4)
D,, is called Dirichlet kernel. D,, is continuous and
1o
- D, (s) ds=1. (3.5)
™

—

Proof. Using the trigonometric identity cos(a) cos(b) 4 sin(a) sin(b) = cos(a — b)
and that x is 27-periodic we obtain

n
sn(z,t) = (%D + Z(”k cos(kt) + by, sin(kt))
k=1

. /_7r w(s)(% + i(cos(ks) cos(kt) + sin(ks) sin(kt))) ds

™
k=1

= % /w z(s)(% + icos(k(s - t))) ds
- k=1

RS R

Now we calculate for s # 0

RS e VR | : ~ .
5 + ZCOS(’CS) _ 5 + 5 Z(els +e—1ks) _ 5 Z otks — € 5 Zelka
k=1 k=1

k=-n k=

emins @2ns 1 1 ent3)s _emntd)s  gin((n +

2 ev—1 2 @s/2—em1s/2 2sin

Wl o
N
@
N
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Note that 1111(1) Dy(s) =n+ % =3+ 3, cos(0). For the proof of (3.5) let
S
2 =1 a constant function on R. Then, by (3.3),

717 " Dus) ds = s ) = a(t) = 1. 0

—m

Theorem 3.17. Let x : R — R be a 2mw-periodic continuously differentiable
function. Then the Fourier series of x converges uniformly to x.

Proof. Let x : R — R a 27-periodic continuously differentiable function. Let
e>0and h € (0,7) such that h < . Using (3.4) and (3.5) it follows that

e
B

|w<s)fsn<w,t)|=\— / (a5 +1) — 2(t))Da(s) ds |

‘/4 ds|+/ \da+|/

= An(f) = Bn(f) = C (t)

We have to show that A, (t), B,(t) and C,(t) tend to 0 for n — oo uniformly
in t. Using the mean value theorem and that §o < sin(o) for o € [0,7/2] we
obtain

h 2(: _x h ! s
Bu(1) :/ s 48 2O | 1 + 1)) dsg/ Jllsl g

—h 2sin |3 _p, 2sin 5]
<1
< 2hljz’ w5 <3
Il < 5.
Define the auxiliary function
(s +t) — x(t)
=" h t e [0,7].
) = TG selh) te o]
The functions f; are continuously differentiable and || fi||oc < 2—1‘%]5—2) =: M,
£l < 2s||g;()‘l/2) =: Mj. Note that the bounds do not depend on ¢. Integrating
by parts, we find
us
(1) = | / Jus)sin((n -+ 3)s) ds|
Jh
cos((n + 1)s) ™ /" cos((n+3)s) ,
= |- ——F"fi(s)| + —— = fi(s) d
|- ) T ) ds
M
< 2My + (7 — h)My) =1 —.
7n+%( 1t JMz) n+%

Note that M’ does not depend on t. When we choose N such that Ml < 5 we
obtain finally |z(s) — s, (z,t)| < e for all ¢ € R, that is, ||z — s, (z, - HoO <e. O
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Theorem 3.18. There exists a 2w-periodic continuous function x whose Fourier
series does not converge everywhere pointwise to x.

Proof. We identify the 2m-periodic functions on R with
X :={zeC(-mn]) : z(-7) =a(r)}.
Clearly (X, || - |l) is a Banach space.
Note that for fixed t € [-7, 7] and n € N
sn(+,t): X - K

is linear and bounded, hence an element in X’.

Assume that for every x € X its Fourier series converges pointwise to 2. Then
for every € X and t € [—m, 7 the sequence (s, (z,t))nen is bounded (because
it converges to z(t)). By the uniform boundedness principle there exists Cy such
that |[sn(-,t)|| < C; for all n € N. In particular, we have

llsn(-.0)| <Co, meN.

It is easy to see that

1 =
|sn(z,0)]] = = Dy(s)ds| < =[|z]loo |Dy(s)|ds
™

hence ||s,(-,0)[ < [ s)|ds. On the other hand, the function y(s) =
sign(D,,(s)) can be approxlmated by continuous functions y,, with [|y,| = 1
such that

™ 1 17
lsntom 0 = = [ a)Du(9)as =+ [ sign(Du()Du(s) ds = 1 [ |D(s)las

so that finally we obtain

1T
lsn-. 0=+ [ IDas)ds < Co men,
However |[|s,,(+,0)|| = oo for n — oo because

/j’ IDus)|ds = 2/0"' |sin((n + 5)5)| ds > 2/07r | sin((n + 5)5)\ ds

2sin§ s
B /7' ntz |>1na|d > 2"21/("“7' \sma\
0

n—1 1 (k+1)m n—1
) YL do = 4 .
= Zw(k+1)/,m |sino] do WZ k+1

k=0

1
= 425.

k=1

Hence the theorem is proved. O
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Finally we show that the arithmetic mean of the partial sums of the Fourier
series of a continuous function converge.

Theorem 3.19 (Fejér). As before let
X = {zeC([-m7]) : a(-7) =x()}
and let T,, € L(X) defined by

Then (T, )nen converges strongly to id (i.e. T,z — x forn — oo, z € X).

Proof. Note that the T}, are well-defined and that for all z € X and t € [—7, 7]

T a(s+1t))
Z/ﬂrZSth ) Di(s )dsfﬁ 25111— Zsm k+ ) ds.

—m

We simplify the sum in the integrand:

n-1 n-1 . n-l eins _1
Z sin((k + 3)s) = Im Z elF+3)s — T (c‘% Z c’ks) =Im (c‘% — 1 )

ols —
k=0 k=0

eins 1 mG/Z( ins/2 _ ms/?)
=Im ois/2 _o—is/z Im ois/2 _ o—is/2
2i(cos(ns/2) + isin(ns/2))sin(ns/2)  sin®(ns/2)

=Im 2isin(s/2) - sin(s/2) ~

If we define the Fejér kernel

1 sin®(ns/2)
Fu(s) = {2n Sty 0 870
] T 0
2n s )

we can write T,z as

1

T,x(t) = — / —n"Fy(s)z(s 4+ t) ds.
™

Note that all F), are positive functions, hence the T,, are positive operators. To
show the theorem, it suffices to show that T,x; — x; for zo(t) = 1, x1(t) =
cos(t), z2(t) = sin(t) (Korovkin theorem). Using (3.3) it follows that si(zo, ) =
xzo for all k € Ny and that

so(x1, -) = so(x2, ) =0,
sk(w2, -) =21, sk, ) = @2, keN.

: -1
Since Tpxo = xo, Tpx; = &

j for j = 1,2 and n € N the theorem is proved.
]
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3.3 The open mapping theorem

Definition 3.20. A map f between metric spaces X and Y is called open if
the image of an open set in X is an open set in Y.

Note that an open map does not necessarily map closed sets to closed sets.
For example, the projection 7 : R x R — R, 7((s,t)) = s, is open. The set
A:={(s;,t) e RxR:5>0,st > 2} is closed in R x R but 7(A) = (0,00) is
open in R.

Lemma 3.21. Let X,Y be Banach spaces and T € L(X,Y) such that
By (0,r) € T(Bx(0,1)).
for some r > 0. Then for every e € (0,1)
By (0, (1 - €)r) € T(Bx(0,1)).

Here Bx (xo,7) :={x € X : |[z—x0|| <r} and By (yo,7) :=={y € Y : |[y—yol| <
r} are open balls in X and Y respectively.

The lemma says that if T'(Bx (0,1)) is dense in By (0,7), then, for any 0 < p < r,
the ball By (0, p) is contained in T'(Bx(0,1)).

Proof. Note that the assertion is equivalent to
By(0,r) € (1 —¢)7'T(Bx(0,1)) = T(Bx(0,(1 —¢)™")).

Fix e > 0 and yo € By (0,7). We have to show that there exists an zg € X with
[lzol| < (1 — &)~ and yo = T(x0). By assumption, By (0,7) C T(Bx(0,1)).
Hence there exists an 21 € Bx (0,1) such that |[yo — T'z1]| < er. By scaling, we
know that T'(Bx(0,¢)) is dense in By (0,er). Since yo — Tz € By (0,er), there
exists an x2 € Bx(0,¢) such that |yo — Tr1 — Taa|| < £2r. Since T(Bx(0,£2))
is dense in By (0,&2r), there exists an x3 € Bx(0,¢2) such that |jyo — Tz1 —
Txo — Tas|| < 3.

Continuing in this way, we obtain a sequence (z,)nen such that

n
leall <€ llyo— S Taxll <re”,  neN. (3.6)
k=1

It follows that zg := >, ; @), exists and lies in B(0, (1—) 1) because Y5 ; ||ak|l <
Spe bt =r(1 —e)~L. Since T is continuous, we know that

oo

= T(Zm) = kiTTk

k=1

By (3.6) it follows that ., _; Tx) converges to yo for n — co. Hence Tro = yo
and the statement is proved. O
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In the proof of the open mapping theorem we use the following fact.

Remark. Let 7' : X — Y be a linear map between normed spaces X and Y
and assume that Tx (B(0,1)) is dense in By (y,d) for some y € Y and § > 0.
Then Tx(B(0,1)) is dense in By (0, ).

Proof. Obviously it suffices to show that T'(Bx(0,2)) is dense in By (0,24).
Since T is linear, it follows immediately that T'x (B(0,1)) is dense in By (—y, d).
Let z € By(0,26) and € > 0. Note that y — 2/2 € By(y,d) and —y — 2/2 €
By (—y,0). Choose x1,z2 € Bx(0,1) such that ||[Tz; — (y — 2/2)|| < /2 and
|Txzs — (—y — 2)|| < &/2. Since 1 + x2 € Bx(0,2) and

IT(21 +x2) = 2l < T2 = (y = 2/2)| + | Tw2 — (—y — 2/2)|| <&,
it follows that z € T(Bx(0,2)) because ¢ can be chosen arbitrarily small. O

Theorem 3.22 (Open mapping theorem). Let X,Y be Banach spaces and
T € L(X,Y). Then T is open if and only if it is surjective.

Proof. If T is open, then it is obviously surjective.
Now assume that T is surjective. We use the notation of the preceding lemma.
By assumption

Y = | J T(Bx(0,k)).
k=1

Since Y is complete, by Baire’s category theorem there must exist an n € N and
y €Y and € > 0 such By(y,e) C T(Bx(0,n)), in other words, T'(Bx(0,1)) is
dense in By (y/n,e/n). By the remark above T'(Bx (0, 1)) is dense in By (0,¢/n),
so by Lemma 3.21 By (0,d) C T(Bx(0,1)) for all § < £/n.

Now let U € X be an open set and v € U. Then there exists an open ball
Bx(0,¢) such that u + Bx(0,) C U. By what was shown above, there exists
an & > 0 such that Tw + By (0,0) C Tu + T(Bx(0,¢)) = T(u + Bx(0,¢)) C
TU). O

The open mapping theorem has the following important corollaries.

Corollary 3.23 (Inverse mapping theorem). Let X,Y be Banach spaces
and T € L(X,Y) a bijection. Then T~ exists and is continuous.

Proof. By the open mapping theorem T is open, so its inverse T~ ! is continuous.
O

Corollary 3.24. Let X,Y be Banach spaces and T € L(X,Y) injective. Then
T~!:1g(T) — X is continuous if and only if rg(T) is closed.
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Proof. If rg(T) is closed in Y then it is a Banach space. So by the previous
lemma, T : X — rg(T) has a continuous inverse. On the other hand, if 77! :
rg(T) — X is continuous, then 7' is an isomorphism between X and rg(T), so
rg(T') is complete, hence closed in Y.

Corollary 3.25. Let X be a K-vector space and || - |1 and | - ||2 norms on X
such that X is complete with respect to both norms. Assume that there exists
an a > 0 such that ||z|2 < ofz||y for all x € X. Then the two norms are
equivalent.

Proof. Let T : (X, || - 1) = (X, - l|l2), T@ = x. T is surjective and bounded
by «a, so it is continuous. By the open mapping theorem, its inverse is con-
tinuous, hence bounded. The statement follows now from ||z||; = || T z||; <
1T [z, @ € X.

3.4 The closed graph theorem

Let X,Y be normed spaces. Then X x Y is a normed space with either of the
norms
[-1:XxY =R, @yl =zl +lyl

[ X xY =R, [yl =VIzl* + llyl*

Note that the two norms defined above are equivalent.

Definition 3.26. Let X, Y be normed spaces, D a subspace of X and T : D —
Y linear. T is called closed if its graph

G(T) ={(z,Tx):2 €D} C X XY
is closed in X x Y. T is closable if G(T) is the graph of an operator T. The
operator T is called the closure of T'.

D is called the domain of T, also denoted by domT. Sometimes the notations
T:X2D—Y orT(X —Y) are used.

Obviously, the graph G(T') is a subspace of X x Y.

Lemma 3.27. Let X,Y normed space and D C X a subspace. Then T : X 2
D =Y is closed if and only if for every sequence (xy)nen € D the following is
true:

(zn)nen and (Txy)nen converge

3.7

= z0:= lim x, € D and lim Tz, = Txo.
n—o0 n—oo
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Proof. Assume that T is closed and let (2, )nen such that (2, )nen and (T2, )nen

converge. Then ((z,,T2n))nen € G(T') converges in X x Y. Since G(T) is

closed, lim (2n,Tx,) = (x0,%0) € G(T). By definition of G(T) this implies
n—oo

lim z, =29 € D(T) and Tzo = yo = lim Tz,
n—o0 n—o0

Now assume that (3.7) holds and let ((zn,Tzy))nen € G(T) be a sequence
that converges in X x Y. Then both (2,)nen and (Tz,)nen converge, hence

zo := lim 2, € D and lim Tz, = Tz which shows that lim (z,,Tz,) =
n—oo n—oo n—o0
(20, Txo) € G(T), hence G(T) is closed. O

Lemma 3.28. Let X,Y normed space and D C X a subspace. ThenT : D —Y
is closable if and only if for every sequence (z)nen C D the following is true:

lim 2, =0 and (Tz,)nen converges = lim Tz, =0. (3.8)
n—o0 n—oo

The closure T of T is given by

D(T)={z € X :3 (¥n)nen C D with lgm xn = and (Txy)nen converges },
n o0

Tz = lgn (Txy) for (zn)nen C D with lgn Ty = 2.
(3.9)

Proof. Assume that T is closable. Then G(T') is the graph of a linear function.
Hence for a sequence (z,)ney € P with lim z, = 0 and lim Tz, = y for
n—o0 n—o0

some y € Y it follows that (0,y) € G(T) = G(T). Hence y = T0 = 0 because T
is linear.

Now assume that (3.8) holds and define T as in (3.9). T is well-defined because
for sequences (2 )nen and (&, )nen in D with lim z, = lim #, = z such that

n—o0 n—o00

(T2n)nen and (TZ,)nen in D converge, it follows that (,, — &, )nen converges
to 0. Since T(z" — &) = T(x, — &) converges, it follows by assumption that
7111_)11307% — T}Lnolo Ti, = nlgl;qT(acn — #,) = 0. Linearity of T is clear. By

definition, G(T) is the closure of G(T), so T is the closure of T'. O

Remarks 3.29. Let X,Y be normed spaces.
(i) Every T € L(X,Y) is closed.

(ii) If T is closed and injective, then 771 is closed.

Proof. Closedness of {(z,Tz) : v € X} C X x Y implies closeness of
{(T'yy) sy exg(T)} S X xY. o

(iii) If 7 : D O X — Y is linear and continuous, then 7' is closable and
D(T) =D(T).
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Examples 3.30. (i) A continuous operator that is not closed.
Let X be normed space, S € L(X) and D a dense subset of X with
X\ D # 0. (For example, d is dense in ¢g.) Then T := S|p is continuous
because it is the restriction of a continuous function, but is not closed. To
see this, fix an g € X \ D and choose a sequence (z,)nen € D which
converges to zg. Then (T'z,)nen converges (to Sxg). If T were closed,
this would imply that z¢ € D, contradicting the choice of .

(ii) A closed operator that is not continuous.
Let X = C(-1,1])), D = CY([-1,1]) C C([-1,1)) and T : X 2 D —
X, Tz = 2'. Then T is closed and not continuous.

Proof. Let (z)nen € D such that (z,,)nen and (Tx,,)nen converge. From
a well-known theorem in Analysis 1 it follows that xg := lim x,, is differ-
n—oo

entiable and Txg = ), = ( lim z,)" = lim 2/, = lim Ta,.

n—00 n—00 n—00
That T is not continuous was already shown in Example 2.7 (iv) (choose
@ (t) = L exp(—n(t +1))). m|

Let X = %(-1,1), D = C'([0,1]) € %([0,1]) and T : X 2 D —
X, Tx = 2'. Then T is not closed.

(iii

=

Proof. Let @, : [-1,1] = R, x,(t) = (t* + n~2)2. Then (z)neny C D
and z,, — g for n — oo where g(t) = |t], t € [~1,1]. The sequence of the
derivatives converges

. 1, t>0,

()= ———F — h(t)=4¢ -1, t<0
n 2 o)h ) )
(#2+n71) 0, t=o.

Obviously h € £(—1,1). If T were closed, it would follow that g €
C*([~1,1]), a contradiction. O

Definition 3.31. Let X,Y be Banach spaces, D C X a subspace and T : X D
D — Y a linear operator. Then

[Nl :D =R, zllr = [l + T

is called the graph norm of T.

It is easy to see that || - || is a norm on D. Moreover, the norm defined above
is equivalent to the norm ||z|> = /[|z||? + [|[Tz||? on D. Most of the time, the
graph norm defined in Definition 3.31 is easier to use in calculations. However,
the norm with the square root is sometimes more useful when operators in
Hilbert spaces are considered.

Lemma 3.32. Let X,Y be Banach spaces, D C X a subspace and T : X D
D — Y a closed linear operator. Then
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(i) (D, |- l7) is a Banach space.

(ii) T: (D, |- |r) = Y, Ta = T, is continuous.

Proof. (i) To show completeness of (D, || - ||7) let (z,)nen € D be a Cauchy
sequence with respect to || - ||. Then, by definition of the graph norm, (2, )nen
is a Cauchy sequence in X and (Tz,)nen is a Cauchy sequence in Y. Since
X and Y are complete, the sequences converge. Hence, by the closeness of T',
[ -]- im @, =: 29 € D and z,, LEEN Z0.

n—oo

(ii) The statement follows from |Ta|ly < |zl|lx + |Tz|y = ||z, x € D. O

Lemma 3.33. Let X,Y be Banach spaces, D C X a subspace and T : X D
D — Y a closed surjective operator. Then T is open. If, in addition, T is
injective, then T~ is continuous.

Proof. By Lemma 3.32 and the open mapping theorem (Theorem 3.22) the
operator i1 : (D, || - |lz) = Y, Tz = T, is open. Let U C D open with respect
to the norm in X. Then U is also open with respect to the graph norm because
obviously i : (D, |- |lr) — (D.| - |), iz = z, is bounded, hence continuous.
Hence T(U) = T(U) is open in Y.

Now assume in addition that 7' is injective. Then 7! : Y — (D, | - ||r) is
continuous by the inverse mapping theorem. Since i is continuous, also T-!=
(Toi=1)~! =io T~ is continuous. O

Lemma 3.34. Let X, Y be Banach spaces, D C X a subspace andT : X O D —
Y a closed injective linear operator such that T~ : 1g(T) — X is continuous.
Then rg(T) is closed.

Proof. Let (yn)nen be a Cauchy sequence in rg(T') with yo := ILm Yn. and
n-r00

2 =Ty, n € N. Then (z,)nen is a Cauchy sequence in D because ||z, —

Zoll = 1T 90 — T ymll < 1T |yn — ymll. Hence (2,,)nen converges in X

and its limit zo belongs to D and yo = lim y, = Tzo € rg(T) because T is
n—o0

closed. O

Theorem 3.35 (Closed graph theorem). Let X,Y be Banach spaces and
T:X =Y be a closed linear operator. Then T is bounded.

Proof. Note that the projections
m:G(T) = X, m(z,Tz) =z,
m: G(T) =Y, mo(z,Tx) =Tx
are continuous and that m is bijective. By assumption the graph G(T') is closed

in X x Y, hence a Banach space, so m; is open by the open mapping theorem
(Theorem 3.22). Hence T' = 75 o 7y ' is continuous. O
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Lemma 3.36. Let X,Y be Banach spaces, D C X a subspace and T : D —'Y
linear. Then the following are equivalent:

(i) T is closed and D(T) is closed.
(ii) T is closed and T is continuous.
(iif) D(T) is closed and T is continuous.

Proof. (i) = (ii) follows from the closed graph theorem because by assumption
D is Banach space.
(i) = (iii) and (iii) = (i) are clear. O

Example 3.37. An everywhere defined linear operator that is not closed.

Let X be an infinite dimensional Banach space and (x))xea an algebraic basis
of X. Without restriction we can assume ||z5|| = 1, A € A. Choose N = A, n
An be an injection. Then the operator

T:X =X, T(.’I;):ZTLC)\":L‘)\W for 1":20%"1')\” € X,
neN A€A
is well-defined. Assume that T" is closed. By the closed graph theorem 7" must

be bounded, but || Tz, || = [|nzy,|| = n while ||zx, || =1, n € N contradicting
the boundedness of T'.

3.5 Projections in Banach spaces

Definition 3.38. Let X be a vector space. P: X — X is called a projection
(on rg(P)) if P2 = P.

Note that if P is a projection, then also id — P is a projection because (id —P)? =
id—2P + P? =id —P.

Lemma 3.39. Let X be a normed space and P € L(X) a projection. Then the
following holds:
(i) Either P =0 or||P| > 1.
(ii) ker(P) and rg(P) are closed.
(iii) X s isomorphic to ker P @ rg(P).

Proof. (i) Note that [|[P|| = ||P?|| < | P||, hence 0 < ||P|| — [|P|* = [|P[|(1 —
121D)-

(ii) Since P is continuous, ker(P) = P~1({0}) is closed. To see that rg(P) is
closed, it suffices to show that rg(P) = ker(id —P). Indeed, = € ker(id —P)
implies © = Pz € rg(P) and y € rg(P) implies (P —id)y = Py—y=y—y =0,
hence y € ker(id —P).
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(iii) Obviously z + ((id —P)z, Pz) € ker(P) @ rg(P) is well defined, linear,
bijective and continuous because id —P and P are continuous. By the inverse
mapping theorem then also the inverse operator is continuous which shows that
X and ker(P) @ rg(P) are isomorphic. O

Theorem 3.40. Let X be a normed space, U C X a finite dimensional sub-
space. Then there exists a linear continuous projection P of X to U with
[P <dimU.

Proof. From linear algebra we know that there exist bases (uy, ..., uy,) of U and
(¢1,---,n) of U' such that ||ug| = [|¢x]| = 1 and @;(ug) = 6k, j,k=1,...,n.

By the Hahn-Banach theorem the ¢j can be extended to linear functionals iy
on X with |lok| = |[¢x]. We define

P:X— X, Pz:Zgﬁk(z)uk.
k=1

Obviously P is a linear bounded projection on U and || Pz|| < 3°1_; llekl ||z |Jukl =
O

Yk llzl = nllz]l.

Theorem 3.41. Let X be Banach space, U,V C X closed subspaces such that
X and U &'V are algebraically isomorphic. Then the following holds:
(i) X is isomorphic to V & U with ||(u,v)| = ||ul| + ||v||-
(if) There exists a continuous linear projection of X on U.
(ili) V' is isomorphic to X/U.

Proof. (i) Since U and V' are Banach spaces, their sum U@V is a Banach space.
The map U ®V — X, (u,v) — w+ v is linear, continuous and bijective. Hence
by the inverse mapping theorem, also the inverse is continuous.

(ii) P : X — U,u+ v +— u is the desired projection.

(iii) The map V — X/V, v+ [v] is linear, bijective and continuous. Since U is
closed, X/U is a Banach space. By the inverse mapping theorem it follows that
V and X/U are isomorphic. O

Definition 3.42. let X be a Banach space. A closed subspace Ui of X is called
complemented if there exists a continuous linear projection on U.

Remark 3.43. Note that not every closed subspace of a Banach space is com-
plemented in the sense of the theorem above. For example, ¢y is not comple-
mented as subspace of .

3.6 Weak convergence

Definition 3.44. Let X be a set and U = (Ux)aea a family of subsets of sets in
X. The smallest topology on X such that all Uy are open is called the topology
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generated by U, denoted by 7(U).
Obviously 7(U) exists and is the intersection of topologies containing all Ul.

Lemma 3.45. Let X be a set, U = (Ux)rea a family of subsets of X. Then
the topology generated by U consists of all sets of the form

U N U (3.10)

yer k=1

that is, of arbitrary unions of finite intersections of sets in the family U.

Proof. Let 7(U) be the topology generated by U and o(U) the system of sets
described in (3.10). It is not hard to see that () is a topology containing U,
hence containing 7(i/). On the other hand, all sets of the form (3.10) are open
in 7(U), so o(U) C 7(U). O

Definition 3.46. Let X be a set, A be an index set and for every A € A let
(Y, 7») be a topological space. Consider a family F = (fy : X — Y)) of
functions. The smallest topology on X such that all f\ are continuous, is called
the initial topology on X, denoted by o(X,F).

Note that 7(F) = T({f;l(UA) SAEA, Uyen).

Definition 3.47. Let X be a normed space. The topology o(X, X’) is called
the weak topology on X . The topology o(X’, X) is called the weak* topology on
X’ when X is identified with a subset of X" by the canonical map Jx.

Note that O'(X/,X) C U(X/,X//) C o

Lemma 3.48. Let X be a normed space. A sequence (xn)nen C X is weakly
convergent to some zo € X (in the sense of Definition 2.37) if and only if it
converges in the weak topology (X, X").

Proof. Assume that (z,,)nen is weakly convergent with z¢ := w-limz,, and let
n — oo

U be a o(X, X")-open set containing 9. Then there exist ¢1, ..., ¢, such that
n
moe (g (V) cU
k=1

with V; open subsets in R containing ¢;(zo). Since nlirgc p(an) = ¢(x0) for all
¢ € X', we can choose an N € N such that ¢;(z,) € U; for all n > N and all
j=1,..., n. Hence z, € ﬂzzl{gaj’l(V])} CUforalln>N.

Now assume that (z,)nen € X converges to zo in the weak topology. Since
by definition of o(X, X") all functionals ¢ € X’ are continuous, it follows that
(p(xn))nen converges to p(xzg) for every ¢ € X'. O
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Lemma 3.49. Let X be a normed space, (Zy)neny € X and (@n)neny € X',
(i) zo = w-limz,, = |z <liminfa,.
n — 00 n—oo
(i) o =w=-lim ¢, = |l¢o|l <liminf .
n— oo n—00

Proof. (i) For xg = 0 the assertion is clear. By the Hahn-Banach theorem there
exists an ¢ € X’ such that ¢(zg) = ||zo|| and |¢|| = 1. Hence

llwoll = I lim_o(zn)|| < liminf o]l [lon]| = lim inf [l2,].

(ii) Let € > 0. Then there exists an # € X with |[z|| = 1 such that ||| —e <
[lpo(z)]|. The statement follows as above:

llvoll =& < llpo(@)ll = lim fon(2)|| < liminf [[on ] [|2]| = liminf [, . O
n—oo n—o00 n—o00

Definition 3.50. Let X be a topological space. A function f: X — R is called
upper semicontinuous if limsup f(z,) < f(z). It is called lower semicontinuous
T T
if liminf f(z,) > f(z).
Tn—T

Hence the lemma above states that || - || is lower semicontinuous in the weak
topology.

Definition 3.51. For A € A let (X, 7)) be topological spaces. Define
X = HXA::{f:Aa U X s F) e X, AGA}.
AeA AeA

The product topology on X is the weakest topology such that for every A € A
the projection

mc X = Xy, m(f) = f0),

is continuous.

Lemma 3.52. Let X as above with the product topology. Let O C P(X) be the
family of all sets U C X such that for every u € U there exist \j € A, U; C Xy,
open, j =1, ..., n, such that

ue{seX :s(\j)eUj, j=1,...,n}= ﬂ‘/r;jl(U])gU.
=1 —~—
open in O

Then O is the product topology on X .

Proof. This is a special case of Lemma 3.48. O
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Theorem 3.53 (Banach-Alaoglu). Let X be a normed space. Then the closed
unit ball Ki :={p € X' : || <1} is weak*-compact.

Proof. For x € X define the set A, = {z € K : |z| < |lz|} and let A :=
[1.cx Az together with the product topology. By Tychonoff’s theorem A is
compact. Note that elements a € A are maps X — K with |a(z)| < ||z, z € X.
Hence K] C A because |p(z)] < ||¢|| [|z]| < ||z|| for every ¢ € K. The product
topology on A is the weakest topology on A such that for every € X the map
7z : A —= K, a+ a(z) is continuous. Hence the topology on K induced by A
is exactly the weak #-topology on K. So it suffices to show that K7 is closed in
A with the product topology.

Let ¢ € 7{ and let z,y € X and € > 0. Then
Ui={aeA: la(z+y) —plz+y)| <e, |a(@) —p@)] <e, |a(y) — )| <e}

is an open neighbourhood of . Hence there exists an g € K| € U N K. Since
g is linear, it follows that

le(z +y) —w(@) — p¥)| = le(z +y) — () — e(y) — 9(z +y) + g(z) + 9(y)|
<le@+y) —g(@+y)+ (@) —g(@)] + loy) — 9(¥)| < 3e.
Since € was arbitrary, this implies ¢(z + y) = ¢(z) + ¢(y). Similarly it can be

shown that ¢(Az) = Ap(z) for X € K and 2 € X. It follows that ¢ is linear.
Since ¢ € A, it follows that ||| <1, hence ¢ € K7. O
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Chapter 4

Hilbert spaces

4.1 Hilbert spaces

Definition 4.1. Let X be a K-vector space. A map
()X xX oK
is a sesquilinear form on X if for all z,y,z € X, A € K
(i) Az+y,2) =Mz, 2) + (Y, 2),
(ii) (x,\y+2) = XNz, y) + (z,2).
The inner product is called

o hermitian <= (x,y) = (y,x), z,z€ X,
o positive semidefinite <= (x,z) >0, reX,
o positive (definite) <= (x,z) >0, z e X\ {0}
Definition 4.2. A positive definite hermitian sesquilinear form on a K-vector

X is called an inner product on X and (X, (-, -)) is called an inner product space
(or pre-Hilbert space).

Note that (z,z) € R, 2 € X, for a hermitian sesquilinear form X because
(z,2) = (@,2).

Lemma 4.3 (Cauchy-Schwarz inequality). Let X be a K-vector space with
inner product (-,-). Then for all z,y € X

e )P < K, @) 1y, )], (4.1)

with equality if and only if x and y are linearly dependent.
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Proof. For x = 0 or y = 0 there is nothing to show. Now assume that y # 0.
For all A e K

0<(z+ Ay, +Xy) = (z,7) + My, z) + XNz, ) + [\ (y,v).

In particular, when we choose A = 7% we obtain

Ky, o) =,y N [z, 9)?
(y,y) Y, y) (Y, y)
[z, y)?
(Y, y)

0<(@+ My, z+\y) = (z,2) —
=(z,2) -

which proves (4.1). If there exist «, § € K such that ax+ 8y = 0, then obviously
equality holds in (4.1). On the other hand, if equality holds, then (x + Ay, +
Ay) = 0 with A chosen as above, so z and y are linearly dependent. O

Note that (4.1) is true also in a space X with a semidefinite hermitian sesquilin-
ear form but equality in (4.1) does not imply that 2 and y are linearly dependent.

Lemma 4.4. An inner product space (X,(-,-)) becomes a normed space by
setting ||z|| == (z,z)%, z € X.

Proof. The only property of a norm that does not follow immediately from the
definition of || - || is the triangle inequality. To prove the triangle inequality,

choose z,y € X. Using the Cauchy-Schwarz inequality, we find

ll + ylI* = all* + 2Re(z, ) + Ilyl* < 217 + 20z, )] + lyl*
< el + 20l iyl + 1yl? = Al + llyl)*. o

In the following, we will always consider inner product spaces endowed with the
topology induced by the norm.

Definition 4.5. A complete inner product space is called a Hilbert space.

Lemma 4.6. Note that the scalar product on a inner product space X is a
continuous map X x X — K when X x X is equipped with the norm ||(z,y)| =
lzllx +llyllx-

Proof. The statement follows from

[(z1,22) = (Y1, 92)| = [(21,22 — y2) — (Y1 — 21, 92)]
<zl llz2 = yall = llyr — 21l lly2l- O

The polarisation formula allows to express the inner product of two elements of
X in terms of their norms.
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Theorem 4.7 (Polarisation formula). Let X be an inner product space over
K and z,y € X. Then

1 .

@.9) = 7 (2 + )2 = o = yI1?), if K=R,
@,9) = 7(lz + ) = o = yl? +illa + iyl® ~ illo ~ 19)?), ¥ K=C.
Proof. Straightforward calculation. O
A necessary and sufficient criterion for a normed space to be an inner product

space is the following.
Theorem 4.8 (Parallelogram identity). Let X be normed space. Then the
norm on X is generated by an inner product if and only if for all z,y € X the
parallelogram identity is satisfied:

I+ yl* + llz = yI* = 2[|z)* + 2(|y]*.
In this case, the inner product is given by the polarisation formula.

Proof. Assur{le that the norm is generated by the inner product (-,-) and let
||| = (@, ). Then for all 2,y € X parallelogram identity holds:
e+ yl® + llz = yl® = ll2l* + lyI* + 2Re(w, y) + [|z]* + [yl|* — 2Re(z , y)
= 2|jal|? + 21y ||*.
Now assume that the norm on X is such that the parallelogram identity holds
and for z,y € X define (z,y) by the polarisation formula. We prove that (-, -)

is an inner product on X in the case K = C. The case K = R can be proved
analogously.

e Positivity.
Yz ,z) = ||z + a2l - o — 2] +ille +iel® — i]le —iz)?
=A4|z|? + iz +iz||® —i[liz + z||* = 4]|z|* > 0.
e Hermiticity.

Aa,y) =z +yl* = llz =yl +illz+iyl - iz - iy)?
=lly+al® = lly = 2l +ill — iz + gl — illiz + y)* = 4y, ).



70 4.1. Hilbert spaces

o Additivity.

Az, y) + (v, 2)
= o+ yll? = llr = yl® +ille + iyl il —iy)®
Fllat 2l =l = 2l® + il + iz — i o — iz]|?

— 22 — 2
y+z+y ZH _Hx_y+2_y zH

e

2 2 2 2

e - -
e I e}
e e I e |

o e e e R |
e | e ] e R |

o e I R e e |

:2-4(z,yzz>.

If we choose z = 0 we find (2,y) = 2(z, %), hence

y;Z>:(z,y+z).

(z,y) +(v,2) =z,

e Homogeneity. From the additivity we obtain (Az,y) = Az ,y) for all X €
Q. Note that (iz,y) = i(z,y), hence homogeneity is proved for A € Q+iQ.
Hence for fixed z,y € C the two continuous functions C — C, A — Az, y)
and C — C, A\ — (Az,y) must be equal because they are equal on the
dense subset Q + iQ of C. O

Theorem 4.9. The completion of an inner product space is an inner product
space.

Proof. By continuity of the norm, the parallelogram identity holds on the com-
pletion X of an inner product space X. So X is an inner product space. O

Examples 4.10. (i) R” and C" with the Euclidean inner product
n
@) =S odm o= @) v = i
k=1

are inner product spaces.
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(i) ¢2(N) with
o0
@, y) = T o= (@)rer, ¥ = Wrken,
k=1
is an inner product space.

Let R([0,1]) be the vector space of the Riemann integrable functions on
the interval [0, 1]. Then

(iii

=

(f,9) = / FOaD A, g€ R(D, 1),

defines a sesquilinear form on R([0, 1]) which is not positive definite, since,
for example, X (o} 7 0, but (x{0y,X{03) = 0.

The restriction of (-, -) to the space of the continuous functions C([0, 1]) is
an inner product which is not complete (its closure is the space %5([0, 1])).

4.2 Orthogonality

Definition 4.11. Let X be an inner product space.

(i) Elements z,y € X are called orthogonal, denoted by = L y, if and only if
(z,y)=0

(ii) Subsets A, B C X are called orthogonal, denoted by A L B, if and only if
(a,b) =0forallac A, be B.

(iii) The orthogonal complement of a set M C X is

Mt ={zeX:xLm meM}.

Remarks 4.12. (i) Pythagoras’ theorem holds: ||z + y|? = [|=|*> + |y|? if
z Ly.
(ii) For every set M C X its orthogonal complement M~ is a closed subspace
of X.
(iif) A C (A+)* for every subset A C X.
(iv) At = (span A)* for every subset A C X.

Theorem 4.13 (Projection theorem). Let H be a Hilbert space, M C H a
nonempty closed and convex subset and xo € H. Then there exists exactly one
yo € M such that ||xg — yol| = dist(zo, M).

Proof. Recall that dist(zo, M) := inf{|jzo — y|| : y € M}. If zyp € M then the
assertion is clear (choose yo = o).

Now assume that 2o ¢ M. Without restriction we may assume z¢ = 0.
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Existence of yo. Let d := dist(zo, M) = inf{||y|| : y € M}. Then there exists

a sequence (yYn)nen € M such that lim |y,|| = d. We will show that (yn)nen
n—o0

is a Cauchy sequence. Note that ||24%=||2 > d2 because “25¥= € M by the

convexity of M. Hence the parallelogram identity (Theorem 4.8) yields

’ Yn — Ym Pp

2

Yn = Ym
2

1 . .
= 5(“1/71“2 + lymll?) — d* — 0, n,m — oo.

IN

2 2
| |

Yn +Ym
2

Since X is a Banach space, (yn)nen converges to some yo € X, and since M is
closed, yo € M.

Uniqueness of yo. Assume that there are yo, go € M such that ||yl = |70l =
d = dist(zo, M). The parallelogram identity yields

Yo + 9o ||? Yo+3ol|®  ||Yo—Fo|? 1 _
T T T S

It follows that ||yo — o]l = 0, so yo = Jo. O
Lemma 4.14. Let M be a closed and convex subset of a Hilbert space H and
fix xg € H. Foryy € M the following are equivalent:

(i) [Jlzo — yol| = dist(zo, M),

(i) Re(zo —yo,y — o) <0, yeM.
Proof. (i) = (ii) For ¢ € [0,1] and y € M let y; := yo + t(y — yo). Then
y: € M by the convexity of M and by assumption on yo

II* II®

lzo — woll> < llzo — el = llzo — yo — t(y — wo)
= llzo — yoll* — 2t Re(zo — yo,, y — yo) + *[ly — volI*.
So for all t € (0,1]

2Re(ao — 4o, ¥ — yo) <ty — vol?
which implies Re{zo — yo, y — yo) < 0.
(ii) = (i) Let y € M. By assumption
lzo — yll* = [I(zo — y0) + (yo — y)II?
= llzo = ol + llyo — yll* + 2Re(wo — 4o, 50 — y) > l|lzo — wol*. O
Lemma 4.15. Let U be a closed subspace of a Hilbert space H and fix xo € H.
For yo € U the following are equivalent:

@) llwo = yoll = dist(zo, U),
(ii) ZofyoLU.
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Proof. (i) = (ii) Let y € U. If y = 0, then obviously (xo — yo,y) = 0. If
llyll = 1, let A = ||y||~*(xo — yo,y). By assumption
llzo = ol < llwo — o — Ayl®
= [lzo — wolI> = Xzo = yo, ¥) — My, 20 — y0) + M|y
= llzo — yoll* + (1 = 2[lyl =) (z0 — yo . »)I?
= [lzo — yolI” = [{wo — 4o, 9)I?
S0 (zo — Yo ,y) = 0. By linearity of U then zg —yo L y forally € U.
(ii) = (i) Let y € U. By assumption
I

llzo =yl = ll(xo — y0) + (yo = )I* = llzo = voll* + llyo — ylI* > llzo — wol*. O

Recall that a linear operator P : X — X on a Banach space X is called a
projection if and only if P? = P (see Definition 3.38).

Theorem 4.16. Let H be a Hilbert space, U C H a closed subspace with U #
{0}. Then there exists a projection Py € L(H) on U such that |Py|| =1 and
ker(Py) = Ut. Also id —Py is continuous projection with ||id —Py|| = 0 if
U=Hand |id-Py|| =1 ifU # H. IfU @ U~ is equipped with the norm

I 0)ll = (lull® + [[v]2)3, then H = U & U~
Definition 4.17. Py as in the theorem is called the orthogonal projection on
U.

Proof of Theorem 4.16. Fix xy € H and let Py(xo) := yo the unique element
yo € U such that |lzo — yo|| = dist(zo,U). Then rg(Py) = U and P} = Py,
hence Py is a projection on U.

By Lemma 4.15, Py () is the unique element in U such that xq — Py (wo) € UL,

Re(zo — Py (zo), y — Pu(wo)) <0, yeU.

We will show that Py is linear. Let z1,22 € H and A € K. Since UL is a
subspace, we obtain

Moy — 29 — (AP (1) — Pu(22)) = Mz1 — Po(21)) — (2 — Py(x2)) € UL,
Hence, by definition of Py,
Py(Ary — x2) = APy (z1) — Py(z2).
We already know that rg(Py) = U. ker(Py) = Ut because
Py(z) =0 < xyc U™,

Therefore id — Py is a projection with rg(id —Py) = U+ and ker(id —-U) = U.
By Pythagoras’ theorem we obtain

ol = [ Pr(x0) + (id = Pr)(@o)[I* = | Py (o) | + | (id — Py) (za) |-
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In particular, H = U @ U* with norm as in the statement, and ||Py| < 1 and
[lid—=Py|| < 1. Lemma 3.39 implies ||Py| =1, |[id—Py| = 1if U # H and
lid—Py||=0if U = H. O
Lemma 4.18. Let U be a subspace of a Hilbert space H. Then U = U+L.

Proof. By the projection theorem (Theorem 4.16), for every closed subspace V'
Py =id—Py. =id—(id—=Py11) = Py,
hence V = V+1L. Application to V = U shows the statement. O

Definition 4.19. Let X,Y be vector spaces. A map X — Y is called antilinear
or conjugate linear if f(Az +y) = Af(z)+ f(y) for all A € K and z,y € X.

Theorem 4.20 (Fréchet-Riesz representation theorem). Let H be a Hilbert
space. Then the map

®:H—-H, ym{(,y)
is an isometric antilinear bijection.
Proof. Obviously ®(0) = 0 € H'. The Cauchy-Schwarz inequality yields

@)@ = (.ol < l«lllyl, 2 yeH,

hence ||®(y)|| < |ly|l If y # O, then set = = |ly||~'y. Note that ||z|| = 1 and
|[2(y)z|| = |lyll, implying that ||®(y)|| = |ly||. So we have shown that @ is
well-defined and an isometry. In particular, ® is injective.

To show that ® is surjective, fix an ¢ € H'. If ¢ = 0, then ¢ = ®(0). Otherwise
we can assume that [|¢|| = 1. Since ker{e} is closed, there exists a decomposition
H =kerp @ (ker p)*. Note that rg() = K, hence dim(ker p)* = 1. Choose
yo € (ker o)t with ¢(yo) = 1. Then (ker )t = span{yo}. For = u+ Ayo €
ker o @ (ker ),

(@ [lyoll “*yo) = A = Ap(y) + w(u) = (),

hence ¢ = (-, ||yol| "'yo). Since ® is an isometry, it follows that 1 = |¢|| =
1

lyoll”

so |lyol = 1. O

Corollary 4.21. (i) Every Hilbert space is reflezive.
(ii) The dual H' of a Hilbert space H is an inner product space by
(@(z), @) = (y, 2)u

with ® : H — H’ as in Theorem 4.20.
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Proof. (ii) is clear. Let ¥ : H' — H" as in Theorem 4.20. Then it is easy to
check that W o ® = Jy, so Jy is surjective, implying that H is reflexive. O

Corollary 4.22. Let H be a Hilbert space.

(i) A sequence (xn)neny € H converges weakly to xo € H if and only if
(xn — z0,y) = 0, y € H.

(ii) Every bounded sequence (xy)nen C H contains a weakly convergent sub-
sequence.

Proof. (i) follows from the Riesz-Fréchet theorem, and (ii) follows with Theo-
rem 2.40. O

4.3 Orthonormal systems

Definition 4.23. Let H be a Hilbert space. A family S = (z))xea of vectors
in H is called an orthonormal system if (xx ,xx) = dxn. A orthonormal system
S is an orthonormal basis (or a complete orthonormal system) if and only if for
every orthonormal system T'

SCT = S=T.

Examples 4.24. (i) The unit vectors (e,)nen in l2(N) are a orthonormal
system.

(ii) Let H = Lo(—m, m). An orthonormal system in H is

1 1 1

S = {—}U{—sin n- :neN}U{—cos n- :nEN}.
vE ) YR 7o)

Lemma 4.25 (Gram-Schmidt). Let H be a Hilbert space and (Tn)nen a

family of linearly independent vectors. Then there exists a orthonormal system

S = (Sn)nen such that span S = span{x, : n € N}.

Proof. Let sy := |la1]| 'a1. Next set yo := @2 — (21,51)s1. Note that yo # 0

because z2 and z; are linearly independent. Let sy := [ly2||~'y2. Then s; L so
and |[s1]| = [|s2]| = 1. Now for k > 1 let

n

Ynt1 i= Tnss — (T s Sk)Sks Snt1 = Yngrll " Ynar-

k=1
Since z1,...,x,41 are linearly independent, s,4+1 is well-defined. By con-
struction, s,41 L s; for j = 1,...n. Note that for every n € N, s, €
span{z1, ..., &, } and x,, € span.S, hence span S = {z,, : n € N}. 0O
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Example. Let H = L3((0,1)) and z,, € H defined by z,(t) = t". Application
of the Gram-Schmidt orthogonalisation yields polynomials s, (£) = \/n + 3 P (t)
where P, (t) = 4" (#2 — 1)" is the nth Legendre polynomial.

2nnl dtn

Theorem 4.26 (Bessel inequality). Let H be a Hilbert space, {s, : n € N}
a orthonormal system in H. Then

0o

D s’ <llal,  weH.

n=1

N
n=1

Proof. For N € Nlet zy :=xz—)
Pythagoras’ theorem yields

(z,8p)sp. Sincexy L s, forn=1,...,N,

N
HzHZ = H-[NH2 + ” Z<$7Sn>sn

n=1

9 N N )
= llenl®+ ) e s 2 - [, sa)*. O
n=1 n=1

Lemma 4.27. Let H be a Hilbert space, S = (sx)xea @ orthonormal system in
H. Then for every x € H the set

Sy ={A€A:(x,s)\)#0}
is at most countable.

Proof. By the Bessel inequality, for every n € N the set
1

Sam = {/\ eA:[(z,s\)] > —}
n

is finite. Hence S, = (J-

=1 Se.n is at most countable. O

Definition 4.28. Let X be a normed space, (zx)xea € X. Then 7\, xa
converges unconditionally to x € H if and only if Ag := {X € A: z\ # 0} is at
most countable and Y07 | @, = x for every enumeration Ag = {\, : n € N}.

Recall that in finite dimensional Banach spaces unconditional convergence is
equivalent to absolute convergence. In every infinite dimensional Banach space,
however, there exists a unconditionally convergent series that does not converge
absolutely (Dvoretzky-Rogers theorem).

Corollary 4.29 (Bessel inequality). Let H be a Hilbert space and S C H a
orthonormal system. Then

Sl <lel2,  wcH

s€S
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Proof. For fixed x € H, the set S, = {s € S: (x,s) # 0} is at most countable
(Lemma 4.27), so the claim follows from the Bessel inequality for countable
orthonormal systems. O

Theorem 4.30. Let H be a Hilbert space and S C H a orthonormal system.
Then

P:H— H, Pz:Z(ac,s)s
sES

is an orthogonal projection on span S and the series is unconditionally conver-
gent.

Proof. First we proof that the series in the definition of P is unconditionally
convergent (this proves then well-definedness of P). Fix « € H. For fixed
z € H, the set S, = {s € S : (x,s) # 0} is at most countable (Lemma 4.27).
Let Sy = {sn : n € N} be an enumeration of S;. Then (37_ (x, sk)sk)
a Cauchy sequence because

neN 1s

M 9 M
|2 s = l@os)f — 0. MK o0
k=N k=N

by Bessel’s inequality. Since H is complete, y := > 7o (z,sk)sk exists. Let
7 : N — N be a permutation. Then also yr := Y.~ (x, 5x(k))sxx) exists. We
have to show that y = y,. For all z € H

oo oo

(y,z) = Z(yﬁsnﬂsn ,2) = Z<y=57r><5‘rr 12) = (Yr , 2)-

n=1 n=1

We have used that 07, (y, sn)(sn , 2) is absolute convergent and can therefore
be rearranged, because, by Holder’s inequality and Bessel’s inequality

(Sl s ) < (3B (3 Hsn ) < Pl < oc.
n=1 n=1 n=1

Since y — yr L 2z, z € H, it follows that y = y.. Therefore the series in the
definition of P is unconditionally convergent and P is well-defined.

It is clear that P is a linear and ||P|| < 1 follows from Corollary 4.29. Let

x € H. We have to show that x — Pz € span 5t (Theorem 4.16). This is clear
because

<z72<1‘,5>750>:<z7Z(z,s),so>:0, so € S. O

s€S SE€ES,

Theorem 4.31. Let H be a Hilbert space and S C H a orthonormal system.
Then the following is equivalent.
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(i) S is a complete orthonormal system.
(i) z LS = =0, zeH.
(iii) H =spanS.
(iv) z:Z(z,s)s, zeH.
seS
(v) <$ﬁy>:z<w,s><s,y>, z,y € H.
s€S

(vi) Parseval’s equality holds: ||z|* = Z [z, s)?, reH.
seS

Proof. (i) = (ii) If there exists an z € H such that z € S+ \ {0}, then
S" := SU{|lz[|'a} is a orthonormal system with S C S’, contradicting the
maximality of S.

(if) = (iii) follows from Lemma 4.18.

(iif) = (iv) By theorem 4.30, z Zses@ ,$)s is the orthogonal projection
on spanS = H.

(iv) = (v) straightforward.
(v) = (vi) Choose z = y.

(vi) = (i) Assume there exists an orthonormal system S’ 2 S. Then for
every s’ € S"\ S we get the contradiction

L=|s? =D [s' )P =0. o
s€S

Now we show that the orthonormal systems in Example 4.24 are complete.

Examples 4.32. (i) The set of the unit vectors {e, : n € N} in £5(N) are a
complete orthonormal system in ¢(N) because {e, : n € N} = (5(N).

(ii) Let I' be a set and define

(D) == {f :I' = K : f(y) # 0 for at most countably many v € I' and

> G)E < oo}

el

Then (f,g) = zwel“ f(’Y)W is a well-defined inner product (note that
only countably many terms are # 0 and the sum is absolutely convergent
by Hélder’s inequality). As in the case I' = N it can be shown that ¢5(T")
is a Hilbert space and (fa)xer where fa(y) = dry (Kronecker delta) is a
complete orthonormal system in £5(T").
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(iii) Let H = Ly(0,1) and

S:{\/%}U{%sin(n-):neN}U{%cos(nJ:nEN}.

Note that spanS is the set of all trigonometric polynomials. Without
restriction we can assume that K = R. By the theorem of Fejér, the
trigonometric polynomials are dense in Cor := {f € C([—m,7]) : f(—7) =
f(m)} with respect to || - ||oo, hence also with respect to || - [|2. Since Cor
is || - [|2-dense in Lo([—m, @1]), S is a total subset of Lo([—m, 7]).

Lemma 4.33. Let H be an infinite dimensional Hilbert space. Then the fol-
lowing is equivalent.

(i) H is separable.
(i) Every complete orthonormal system in H is countable.
(iii) There exists an countable complete orthonormal system in H.

Proof. (i) = (ii) Assume S C H is an uncountable complete orthonormal
system in H. Let e € (0,272) and s # s’ € 5. Then B.(s) N B.(s') = § because
by Pythagoras ||s — §'|| = v/|[s[2+ [|s'[2 = v/2. Let A be a dense subset of H.
For every s € S there exists an ay € A such that ay € Bc(s). In particular,
as # ag if s # s', so A cannot be countable, thus H is not separable.

(if) = (iii) The existence of a complete orthonormal system in H follows
from Zorn’s lemma. By assumption, it must be complete.

(iif) == (i) Let S be a countable orthonormal system in H. Then span S = H
by Theorem 4.31 and H is separable by Theorem 1.25. O

Lemma 4.34. Let H be Hilbert space and S and T be complete orthonormal
system in H. Then |S| = |T|.

Proof. The statement is proved in linear algebra if |S| < co. Now assume that
S is not finite. For 2 € S the set T, := {y € T': (x,y) # 0} is at most countable
by Lemma 4.27. By Theorem 4.31 (ii) T' € |J,cg Tx, hence |T| < |S|IN| = |S].
Analogously, |S| < |T|IN| = |T|. By the Schroder-Bernstein theorem then
1] = |71, O

Theorem 4.35. Let H be a Hilbert space and S an orthonormal basis of H.
Then H = {5(S) (see Example 4.32 (ii)).

Proof. Define T : H — (5(S) by Tx(s) = (x,s), z € H, s € S. T is well-defined
by Bessel’s inequality. Then T : H — £2(S) is linear and isometric by Parseval’s
equality. To show that T'is surjective, let y € £5(S) and define z := 3~ g y(s)s.
Then 2 € H (Theorem 4.30) and Tz = y. O

Note that by construction (Tz,Ty) = (x,y), z,y € H.
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Corollary 4.36. If H is a separable Hilbert space, then H = {5(N).

Corollary 4.37 (Fischer-Riesz theorem). L;[0,1] = ¢5(N).

4.4 Linear operators in Hilbert spaces

Definition 4.38. Let Hy, H> be Hilbert spaces and ®; : H; — H} the canon-
ical isomorphism in the Fréchet-Riesz representation theorem (Theorem 4.20).
Let T € L(Hi, Hs). Its (Hilbert space) adjoint operator is T* := ®7'T'®, €
L(Hs, Hy) where T” is the Banach space adjoint of T' (see Definition 2.25).

Hence T* is characterised by
(Tz,y) = (z.T"),  w€H,yeH.

Theorem 4.39. Let Hy, Hy,Hs be Hilbert spaces, S,T € L(H,Hs), R €
L(H,, Hs) and X € K.
(1) AS+T)* =XS*+T*.

(i) (RT)" = T"R".

111) T € L(Hz,Hl ) and | T*|| = ||T].

A ——

(vi) KerT = (rg(T*))", ker T* = (rg(T))*
(vii) If T is invertible, then (T~1)* = (T*)~!

Proof. (i)-(iv) are clear. For the proof of (v) note that for [|z| =1

[Ta|? = (Tx,Tz) = (&, T*Tx) < ||z|| | T*Tz|| < |T*TI| < |T*|IT] = IT*.

Taking the supremum over all 2 € H with |z|| = 1 shows the desired equalities.

(vi) kerT = (1gT*)* because for x € H

Tz=0 <= VyeH, (Tr,y)=0 <<= VYyeHy (x,T"y)=0
= oz Lrg(T).

Then also ker T* = (rg(T**))* = (rg(T))*. m|

Definition 4.40. Let Hy, Hy be Hilbert spaces, T € L(Hy, H>).
(i) T is called unitary if T is invertible and TT* = idy, and T*T = idy, .
(ii) T is called normal if Hy = Hy and TT* = T*T.
(iii) T is called selfadjoint if Hy = Hy and T = T*.
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Remarks. (i) T selfadjoint = T normal.

(i) T € L(Hy,Hy) = TT* and T*T are selfadjoint.

Next we show that a length preserving linear map between Hilbert spaces also
preserves angles.

Lemma 4.41. Let Hy, Hy be Hilbert spaces and T € L(Hy, H>).
(i) T is an isometry <= (Tx,Ty) = (x,y), =,y € Hy.
(if) T is unitary <= T is a surjective isometry.

Proof. (i) The direction “<=” is clear; “=" follows from the polarisation formula
(Theorem 4.7).

(ii) “=” Since T is unitary, if follows that rg(T) 2 rg(TT*) = rg(idn,) = Ho,
so T is surjective. T is an isometry because for all z,y € Hy

(Tz,Ty) =(T"Tx,y) = (z.y),

“«<”  Assume that T as a surjective isometry. Since
(w,y =T"Ty) =(z,y) — (T2, Ty) =0,  x,y€Hy,

it follows that T*Ty = y, so T*T = idg,. In particular T™ is surjective. Now
we will show that T* is an isometry. Let &, € Hy. Then there exist z,y € Hy
such that Tz = ¢ and Ty = n. It follows that

(T76,T™n) = (T"Tz, T"Ty) = (x,y) = (Tz,Ty) = (£, n)-
By the same argument as for T we conclude that idg, = T**T* = TT*. O
Examples 4.42. (i) Let Hy, H be Hilbert spaces with dim H; = dim Hy =
n < oo. After choice of bases, a linear operator T : Hy — Hj has a

representation (a;;)7;—; € Mn(C). The matrix corresponding to 7™ is
then (@57)7=1-

(ii) Let H = L2[0,1]. For k € Lo([0,1] x [0,1]) define
Ty : LQ[O, 1] — LQ[O, 1], ka / k S, t
Then T} € Lo[0,1] and
1
Ty : Lo[0,1] = Ly0, 1], (T f)(t) = /0 k(s,t) f(s) ds,

that is 7)) = T3.
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Theorem 4.43 (Hellinger-Toeplitz). Let H be a Hilbert space, T : H — H
a linear operator such that

(Tx,y) = (x,Ty), =yecH

Then T is bounded, hence selfadjoint.

Proof. Tt suffices to show that T is closed because D(T') = H is closed. Let
(zn)nen C H with z, — 0 and Tz,, — y. Observe that

lylI* = lim (Tzp,y) = lim (z,,Ty) = (lim z,,Ty) ={0,Ty) =0,
so y = 0. This implies that 7" is closable, hence closed since D(T') = H. O

Theorem 4.44. Let H be a complex Hilbert space. For T € L(H) the following
is equivalent.

(i) (Tz,z) eR, z € H.
(i) T is selfadjoint.
Proof. (ii) = (i) follows from
(Tx,z) = (x,Tx) = (Tx,z), z € H.
(i) = (i) Let 2,y € H and A € C.

A= (TOx+y), \e+y) =N (Tz,2) + (Ty,y) + MTz,y) + \NTy, ),

B:=(T0a+y), de+y) = N {Tz )+ Ty,y) + My, Ta) + Mz, Ty).
By assumption, A = B, so in the special cases A = 1 and A = i we obtain

(Tz,y) +(Ty,z) = (y,Tz) + (z,Ty),
(Tz,y) —(Ty,z) = —(y,Tz) + (z,Ty),

so finally (T'z,y) = (z,Ty). O
Theorem 4.45. Let H be a Hilbert space, T € L(H) selfadjoint. Then

1Tl = sup [(Tz,a).
[lz)l<1

Proof. Let M :=sup,<; (T2, z)|. Obviously M < ||T|| because for ||z <1

(Ta, @) < ||Tl|=)* < 1T

To show the reverse inequality fix z,y € H. Observe that

T@+y),z+y —(Tw-y),z—y =2(Tw,y)+2(Ty,z)
=2(Tx,y)+2(y,Tz) = 4Re(Tx,y).
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Hence, by the parallelogram identity (Theorem 4.8), for ||z|| < 1, [ly|| < 1,

1
Re(Tw,y) < 1 ((T(z+y), 2+ )|+ (T(z — ),z —y))
1 M
< Z(M\|1'+yH2 + M|z —y|?) = 7(\@”2 +llyl?) < M.

Now choose A € C, |A| = 1 such that AN(T'z,y) = [(Tz,y)|, so
KTz, y)| = (T(A\z),y) = [Re(T(Az), )| < M, [lz] <1, Iyl < 1.

In particular, ||(-,Tz)|| < M, so |Tz| < 1 for ||z|| < 1. This shows |T| <
M. O

Corollary 4.46. Let H be a Hilbert space and T € L(H) selfadjoint. If
(Ta,z) =0,z € H, then T =0.

Note that the condition (T'z,z) = 0 automatically implies that T is selfadjoint
in the case of a complex Hilbert space. In a real Hilbert spaces H the assumption
that T is selfadjoint is necessary for the statement in the corollary. For example,
let T = ((Pl é)) : R? — R? the rotation about 90°. Then T' # 0 but
(Tx,z) =0 for all z € R2.

Lemma 4.47. Let H be a Hilbert space, T € L(H) a normal operator. Then
ITall = |T*all,  weH,

in particular, ker T = ker T™*.

Proof. 0= (T"Tx — TT*z,x) = |Tz|* — | T*2|>. O

Definition 4.48. Let H be a Hilbert space. A bounded selfadjoint operator

T € L(H) is called non-negative, denoted by T' > 0, if (Tz ,z) > 0 for allz € H.

It is called positive, denoted by T' > 0, if (Tx,z) > 0 for all z € H \ {0}. We

write T < S if and only if S —T > 0. A sequence (T, )nen € L(H) is increasing

if and only if T, < T,,41, n € N. A sequence (T},)nen € L(H) is decreasing if

and only if (=T, )nen € L(H) is increasing.

Theorem 4.49. Let H be a Hilbert space. Every monotonic bounded sequence
of selfadjoint linear operators on H converges strongly.

Proof. Let (T),)nen be a bounded monotonic sequence of selfadjoint operators.
Without restriction we assume that it is increasing. Let

Spm + H x H— K, Snm(I,yJ = <<Tn - Tm)l',y>
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is a positive semidefinite sesquilinear form on H if n > m. Let M be a bound
of (T)nen. Note that then ||T}, — Tp,|| < 2M. Then, using Cauchy-Schwarz
inequality, we find for n > m and « € H with ||z|| =1
I(Tn = Ton)zl|” = (T — Ton), (Tn — Trn)z) = S (@, (T — Ton ) )
1 L
< Snm(l‘, 7')2 Snm«Tn - Tm)T (Tn - Tm)T) 2
= {(Ta = T),2) (T = T)er, (T = ) ) %
L 1
< ((Tn - Tm)x 3 T> 2 HTn — T H 2 HTn - Tm”
< @M)3(T, — T)a,2)*.
By assumption ((T,,z,2))nen is a monotonically increasing bounded sequence
in R, hence convergent. It follows that (T,,z)nen is a Cauchy sequence, hence T'

converges strongly to some T' € L(H) (Proposition 3.13). That T is selfadjoint
follows from

(Tr.) = lim (Ta.9) = lim (2. Toy) = (. Ty),  wycH O
n o0 n—o0

4.5 Projections in Hilbert spaces

Proposition 4.50. Let H be a Hilbert space, P € L(H) a projection. If P # 0
then the following is equivalent.
(i) P is an orthogonal projection.
(i) [IP]l =1.
(iii) P is selfadjoint.
(iv) P is normal.
)

(v

Proof. (i) = (ii) follows from Theorem 4.16.
(ii) = (i) Let « € ker P and y € rg(P). Then for all A € K

(Px,xz) >0, z€ H.

[Ay[12 = 1Pz + M) 1? < llz + dyll? = lz)® + APyl + 2Re(Az, 9).
In particular, 0 < ||z[|? 4+ 2ARe(z, y) for all A € R, and 0 < ||z||2 + 2iA Im(z , y)
for all X € iR, hence Re(z,y) = Im(z, y) = 0.
(i) = (iii) Observe that (Pxz,y) = (z, Py) for all 2,y € H because

(Pz.y) = (Pz,y — Py + Py) = (Pz, Py),
(x,Py) = (x — Px + Pz, Py) = (Px, Py).
(iii iv) is clear.
(iv i) By Lemma 4.47, ker P = ker P* = (rg P)*.

)=
v) = (
(i) = (v) For all 2 € H: (Pz,z) = (Px,2 — Px + Px) = (Pz,Pz) > 0.
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(v) = (i) Let 2 € ker P, y € rg P. Since for all A € R
0 <(Pz+Ay),z+Ay) = Ay, 2+ dy) = Nlyl* + My, 2),
it follows that (z,y) = 0. O

Lemma 4.51. Let H Hilbert space H. A linear operator P : H — H is an
orthogonal projection if and only if P> = P and (x,Py) = (y,Pz) for all
x,y € H.

Proof. Assume that P is an orthogonal projection. Then P? = P and by Propo-
sition 4.50 P is selfadjoint.

If P2 = P and (z,Py) = (y, Px) for all 2,y € H, then P is a projection. By
the theorem of Hellinger-Toeplitz (Theorem 4.43) P is selfadjoint, hence P is
an orthogonal projection by Proposition 4.50. O

Lemma 4.52. Let H be a Hilbert space, Uy, Uy C H closed subspaces and P,
Ps the corresponding orthogonal projections. Then the following is equivalent:
(i) PLP, = PP, =0.
(i) Uy L Us.
(iii) Py 4+ P» is an orthogonal projection.

If one of the equivalent conditions above hold, then rg(Py + Py) = Uy & Us.

Proof. (i) = (ii) By assumption, Uy = rgP> C ker P, = (1gPy)* = Ut
hence Uy L Us.

(i) = (i) By assumption, rg P, = Uy C Ui+ = ker Py, hence P, P, = 0. Since
(ii) is symmetric in Uy and Uy, it follows also that PPy = 0.

(i),(ii) = (iii) Observe that P1P» = P,P, = 0, so Pi + P» is a projection
because

(PL+ P)? =P+ PPy + PyPi + P§ = P + P,

Since the sum of two selfadjoint operators is selfadjoint, Py + P> is selfadjoint,
hence, by Proposition 4.50 an orthogonal projection.
(iii) = (i) Since Py + P is an orthogonal projection, it follows that

PPy 4+ PyP, = (P, + P)? — (P, + Py) = 0.

In particular 0 = (P, Py + P> Py) Pyw = (id +P») Py Pz Note that for y € H\{0}
the vectors (id —P)y and Py are linearly independent, hence (id+P2)y =
(id = P2)y + 2Poy is zero if and only if (id —P»)y = 0 and Poy = 0, hence y = 0.
Therefore rg Py P> C ker(id +P,) = {0}. [}

Lemma 4.53. Let H be a Hilbert space and Py, and P» orthogonal projections
on subspaces Uy and Us.
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(i) PP is an orthogonal projection if and only if Py P, = PoPy. In this case,
Py P, is an projection on Uy N Us.

(if) Py — P> is an orthogonal projection if and only if PiPy = PyPy = Ps.

Proof. (i) If PyP, is an orthonormal projection, then, by Proposition 4.50,
P, P, is selfadjoint, that is P1P, = (P1P)* = P;Pf = P,P;. On the other
hand, if P, and P, commute, then it is easy to verify that (P, P2)? = PP,
and (P P)* = PP, hence PP, is an orthogonal projection. In this case,
rg(P1 P) = rg(P2Py), so rg(P1P>) C Uy NU,. On the other hand, PP = @
for every @ € Uy NUs, so also rg(P1P;) 2 Uy N Us holds.

(i) Using Lemma 4.52 we obtain

P, — P, orthonormal projection <= 1 — (P — P,) orthonormal projection
<= (1 - P1)+ P> orthonormal projection
— P(1-P)=(01-P)P,=0

— PBP=PP,=P. O

Lemma 4.54. Let H be a Hilbert space and Py, Py orthogonal projections on
Hy, Hy C H. Then the following is equivalent.

1

(i) Ho C Hy,

(i) [|Pozll < [[Prll, =€ H.
i)
)

(ili) (Pox, 1) (Pix,z), xe€H.

(IV ()Pl

Proof. (ii) <= (ili) Letz € H and P an orthogonal projection. Then (Pz ,z) =
(P%z,z) = (Px, Pz) = || Pz
(i) = (iv)
PyPy=F < Py(id-P)=0 <= rg(id—P;) C ker Py
= (gP)t C (igh)" = Hi CHy
— HyCH.

(iv) = (ii) Forallz € H: ||Pyz|| = |PoPrz|| < ||Poll||Prz|| < || Prz]|-

(iii) = (i) Let € Hi* = ker P;. Then 0 = (Pyz,z) > (Pyx,x) > 0, hence
(Pox,x) = 0. It follows that | = 0 (Corollary 4.46), hence Hi- Cker Py =
He O

Lemma 4.55. Let H be a Hilbert space and (Py)nen a sequence of orthogonal
projections with (Ppx,z) < (Pyx,xz) for allz € X and m < n. Then (Py)nen
converges strongly to an orthogonal projection.
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Proof. By Theorem 4.49 we already know that s-lim P, =: P exists and is a
selfadjoint operator. It remains to be shown that P is a projection, that is, that
P?=P.Forz€ HandneN

P2z = (P~ Py + P,)(P— P, + Py = (P — P,) Pz + P,(P — Py)x + Pla.
Note that (P — P,)Pz — 0, n — oo, and also P, (P — P,)z because || P,| =1,
n € N. Since P2z = P,z — Pu, it follows that P? = P. O
4.6 The adjoint of an unbounded operator
In sections 2.4 and section 4.4 we have defined the adjoint of bounded linear
operators between Banach or Hilbert spaces. Now we define the adjoint of an un-
bounded linear operator. Recall that T'(X — Y') denotes a possibly unbounded
linear operators defined on a subspace D(T') C X.

Definition 4.56. Let X,Y be Banach spaces and D(T') C X a dense subspace.
For a linear map T: X D D(T) — Y we define

D(T'):={p €Y' : x+ ¢(Tz) is a bounded linear functional on D(T)},
Since D(T) is dense in X, the map D(T) — K, = ~ ¢(Tz) has a unique
continuous extension T"¢ € X’ for ¢ € D(T”). Hence the Banach space adjoint
T/

T:Y' 2D — X/, (T'p)(x) = o(Tz), z€D(T), ¢ €DT).
is well-defined.

Theorem 4.57. Let X,Y be Banach spaces, D(T) C X a dense subspace and
T:X DD(T)—Y be alinear operator. Then T" is closed.

Proof. Let G(T") ={(y',T"y') : p € D(T/)} C Y’ x X' be the graph of T".

Note that (y', ) € G(T") if and only if 2’z = 3/ (Tx) for all x € D(T). Now let
((yl,, " ))nEN C G(T") a convergent sequence with hm (yn, ) = (yh, p). For

all z € D(T) it follows that
/ _ : s _ 3 / ., _ : / .
zpr = lim zx = lim y,(Tz) = lim yo(Tx),
thus (yo, ) € G(T") which implies that T is closed. O
Definition 4.58. Let X,Y be Banach spaces. For linear operators S,7 from
X toY we write S C T if T is an extension of S, that is, if D(S) C D(T') and
T|ps) = S.

Theorem 4.59. Let X,Y,Z be Banach spaces.
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(i) Let (S,D(S)) and (T,D(T)) be densely defined linear operators X — Y.
If SCT thenT' C 5.
(i) Assume S(X =Y) and T(Y — Z) are densely defined such that also T'S
is densely defined. Then S'T" C (T'S)".
(iii) Assume S(X — Y) and T(X — Y) are densely defined such that also
T + S is densely defined. Then (S’ +T') C (S+T) .

Proof. (i) is clear from the definition of the adjoint operator.
(ii) Let 2’ € D(S'T’). Then T'2" € D(S’) and the map
D(S) =+ K, zw— (T"2')(Sz)

is continuous. Then also its restriction

D(TS) = K, xw (T'2)(Sx) =2/ (TSx)
is continuous. Note that by assumption D(T'S) is dense in X, hence 2’ €
D((TS)') and (T'S)'z' = S'T'7'.
(iii) Let ¥’ € D(T" 4+ S") = D(T") N D(S’). Then the map

DT +8) =K, zmy (Tz)+y'(Sz) =y (T +S)x)

is continuous. Since by assumption D(T' + S) is dense in X, y' € D((T'+ S)’)
and (T +9)'y = (T"+ 5"y O

If S and T are bounded, then “=” holds in (ii) and (iii) (Theorem 2.26). Note
that for unbounded linear operators T'+S’ = (T'+S)" is not necessarily true. For
example, if T(X — Y) is a densely defined unbounded linear operator such that
also 1" is densely defined with D(T") #Y’. Then D(T'—=T") #Y' =D(T-T)'.

Corollary 4.60. Let X be a Banach space, T a densely defined linear operator
in X with bounded inverse T~' € L(X). Then T' is invertible and

(T/)—l — (T—l)/.
Proof. By Theorem 4.59 (ii) it follows that (T~')'T’ C (TT~!) = idy = idy,
hence (T=)'T" = idp (7).
Again by Theorem 4.59 (ii) we find T(T~') C (T~'T) = id/D(T) = idx, so it
suffices to show D(T'(T1)') = D(T"). Let ¢ € D(T") and n = (T~')'¢. For
every z € D(T) it follows that 5(Tz) = (T~ ¢)(Tz) = (T~ Tx) = ¢(z),
which implies n € D(T”), hence D(T"(T 1)) = D(T"). O

More general is Theorem 4.65 due to Phillips.
Definition 4.61. Let X be a Banach space. For subspaces A C X and B C X'
we define the annihilators
A i={pe X :p(x)=0, z€ A} C X',
°B:={zeX:p(x)=0, pe B} C X.
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Remark 4.62. The sets A° and °B are closed subspaces and °(A°) = AIX
is reflexive, then also (°B)° = B.

Proof. Obviously, A° and °B are subspaces. Let (2], )nen C A° be a convergent
sequence. Then zf, := lim z, € A° because zjz = lim 2}z =0 for all z € A.
n—o0 n—00
Let (@n)nen C °B be a convergent sequence. Then zg := lim x,, € °B because

n—00
pro = lim ¢z, =0 for all ¢ € B.
n—o0
Now we show that °(A°) = A. Since obviously A C °(A°), also A C °(A°).
Assume that there exists an a € °(A°) \ A. By a corollary to the Hahn-Banach

theorem (Corollary 2.19) there exists a ¢ € X’ such that ¢|7 = 0 and ¢(a) # 0.
Therefore ¢ € A°, so by definition of °(A°), also ¢(a) = 0.

(°B)° = B follows if we identify X with X" using the canonical map Jx. O

Lemma 4.63. Let X,Y be Banach space, Y # {0} and T(X — Y) a densely
defined closed linear operator and yo € Y \ {0}. Then there exists a ¢ € D(T")
such that p(yo) # 0, in particular, D(T") # {0}.

Proof. By assumption, the graph G(T') of T is closed and (0, o) # G(T). Hence,
by a corollary to the Hahn-Banach theorem (Corollary 2.19) there exists ¢ €
(X x Y) such that ¥|gry = 0 and 9((0,90)) # 0. Let ¢ : Y = K, ¢(y) =
¥((0,y)). Obviously ¢ € Y and ¢(yo) # 0. Moreover, ¢ € D(T”) because for
all z € D(T)

@(Tx) = ¢((0,Tz)) = Y((2, Tx) - (2,0)) = ¥((z, Tx)) — ((2,0))
= _'l/)((xvo))' d

Theorem 4.64. Let X and Y be Banach spaces. For a densely defined closed
linear operator T(X — Y') the following holds:

rg(T)° = rg(T)0 =kerT".
rgT = °(ker T").

=Y <= T is injective.
°(rgT")ND(T) =kerT.

Proof. (i) The first equality is clear. The second equality follows from

pergT)® <« Vyerg(l) ¢y)=0
= VazeDT) ¢Tz)=0
= peDT), T'p=0
— @€ ker(T).

(i) rgT =°((rgT)°) = °(kerT”) by (i) and Remark 4.62.
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(ii) By (ii), rgT =Y if and only if ®(ker 7) = Y. This is the case if and only
if (y) =0 for all ¢ € ker T’ and y € Y, that is, if and only if ker 77 = {0}.
(iv) Let 2 € ker(T) and 2’ € rgT’. Choose y' € D(T") with T'y’ = 2’. Then
'z = (T"y )z = y'(Tx) = y'(0) = 0, hence x € °(rgT").

Now let 2 € °(xgT’) N D(T). Then y'(Tz) = (T"y')x = 0 for all y’ € Y’. Since
T is closed, it follows by Lemma 4.63 that Tz = 0, hence = € ker T'.

(v) Let 2’ € rg(T’) and = € kerT. Choose y’ € D(T”) such that T"y" = z’.
Then 2’z = (T'y' )z = y'(Tz) = y'(0) = 0. It follows that rg(T’) C (kerT)°,
and since (ker T')° is closed, the statement is proved. O

Theorem 4.65 (Phillips). Let X,Y be a Banach spaces, T(X — Y') a densely
defined injective linear operator with vrg(T) =Y. Then

(Tt =@ty (4.2)

and T~ is bounded if and only if T is closed and (T')~" is bounded on X'.
(T=1 denotes the inverse of T : D(T) — rg(T), similar for (T')~!.)

Proof. O

Theorem 4.66 (Closed range theorem). Let X,Y be reflexive Banach spaces
and T : X DD(T) = Y a closed densely defined linear operator. The following
is equivalent:
(i) rg(T) is closed.
(ii) rg(T") is closed.
: X DD(T) — rg(T) is open.
"Y' D D(T') — rg(T") is open.
rg(T) = °(ker T").
g(T") = (kerT)°.

-

Proof. (i) <= (iii) Since T is closed, (D(T'), || - ||7) is a Banach space and
T:(D(T),||-|l7) = rgT, Tz=Tzx

is continuous (Lemma 3.32). Observe that also ¢ : (D(T), || ||l7) = X, v+~ x is
continuous and that T =T 0i~! : X D D(T) — Y. Note that rgT is a Banach
space. _

If rgT is closed, then T' : (D,| - ||r) — rgT is open by the open mapping
theorem (Theorem 3.22), then also T = T oi~1 : X D D(T) — rgT is open as
composition of open maps. If T : D(T) — rgT is open, then it is surjective,
hence rgT is closed.

Note that 7" is closed (Theorem 4.57), hence (ii) <= (iv) is proved analogously.
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(i) <= (v) follows from theorem 4.64 (ii).
(i) <= (vi) follows from theorem 4.64 (ii)

rg(1) = °(ker T") = (ker T)°.

(iii) <= (iv) Recall that T is open if and only if there exists an , r > 0 such
that the image of the open ball in X with centre 0 and radius 7 contains the open
unit ball in Y. That is, there exists a r > 0 such that T(Bx(0,7)) 2 By (0,1).
Assume that T is open and let r as above.

To show that 7" is open, we have to show that for every z{, € rg(7”) with
llz]l < 1, there exists a yf, € D(T") with T'y, = z{, and [jyp|]| < r. Define
a linear functional ¢ on rg(7T) as follows: for y € rgT with ||y|| < 1 choose
2 € D(T') such that ||z]| < r and Te =y. Set p(y) = zyx and extend ¢ linearly
to rgT. Note that |p(y)| = |zgz| < ||zgllllz]] < rllyll, ¢ is bounded, so by
the theorem of Hahn-Banach it can be extended to a functional y{, € Y’ with
llyoll < 7. Note that

D(T) — K, = yo(Tz) = p(Tx) = zHx

is continuous, so yy € D(T).

(iv) <= (iii) Follows analogously if we note that 7" = T by the reflexivity of
X and Y. O

Definition 4.67. Let Hy, H> be Hilbert spaces and D(T) C H; a dense sub-
space. For a linear map T : Hy 2 D(T) — H, its Hilbert space adjoint T* is
defined by

D(T*):={y€ Hy : x— (Tx,y) is a bounded on D(T)},
T*:H, DD(T*) —» Hy, Try=y",

where y* € Hy such that (Tz,y) = (z,y*) for all z € D(T).

Note that for y € D(T™*) the map « — (T'x,y) is continuous and densely defined
and can therefore be extended uniquely to an element ¢, € H{. By the Riesz
representation theorem (Theorem 4.20) there exists exactly one y* € Hj as
desired.

Definition 4.68. Let Hi, Hy be Hilbert spaces and D(T) C Hy, D(S) C H,
subspaces. The linear maps T : Hy O D(T) — Hs and S : Hy D D(S) — Hy
are called formally adjoint if

Tz, y)n, = (x,SY)m, 2 €D(T),ye€D(S).

Note that the formal adjoint of a non-densely defined linear operator is not
unique; in particular, the operator trivial operator with D = {0} is formally
adjoint to every linear operator.

If T is densely defined, then its adjoint 7™ is its maximal formally adjoint
operator.



92 4.6. The adjoint of an unbounded operator

Lemma 4.69. Let Hy and Hy be Hilbert spaces and define
UtHyx Hy— Hyx Hi,  (2,9) 0 (y,—2).
If T(Hy — Ha) is a densely defined linear operator, then
G(I™) =U(G(T)*Y) = U(GD)]* (4.3)
Proof. Observe that U is unitary, hence U(G(T)*) = [U(G(T))]*. The first
equality in (4.3) follows from

(yo,20) € G(T™) (Tz,y0)y = (x,20)x, € D)
(Txz,y0) — (x,20) =0, x€DT)
(Tz,~z), (yo,%0))mxm, =0, 2 €D(T)
(U(x,Tx), (yo,20)YHaxm, =0, € D(T)
(

Y0,%0) € [(G(T))]* o

Theorem 4.70. Let Hy and Hy be Hilbert spaces. For a densely defined linear
operator T(X —'Y) the following holds:

r1eet

(i) T* is closed.
(i) If T is closable, then T* is densely defined and T** = T.

Proof. (i) follows immediately from (4.3).
(ii) Let yo € D(T*)*. Then (yo,y) = 0 for all y € D(T'). This implies

0={090), (=2:¥)mxn, = (0,90), Uy, 2))mixm,  (y,2) € G(T7).
Hence by Lemma 4.69,
(0.90) € [U™HG@T)]" = G(T) = C(T) = G(T).
It follows that yo = T0 = 0, so D(T*) =Y. Let
V :Hyx Hy — Hy x Ho, V(y,z) = (x,—y).
Obviously VU = —idy, xu, and application of Lemma 4.69 to T yields

G(T™) = V(GT)]*F = VUGN = [-(GD)N]* =G = G(T)
—G(T

N

hence T** =T. O

Theorem 4.71. Let Hy, Hy, Hs be Hilbert spaces.

(i) Let T(Hy — Ha) and S(Hy — Ha) be densely defined linear operators. If
S CT thenT* C S*.
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(ii) Assume S(Hy — Hs) and T(Ha — H3) are densely defined with TS = H,.
Then S*T* C (T'S)*.

(iii) Assume S(Hy — Hs) and T(Hy — Hs) are densely defined with T + S =
Hy. Then (T* +S5*) C (S+1T)*.

If S and T are bounded, then “=" holds in (ii) and (iii).
Proof. As is in the Banach space case.

Corollary 4.72. Let H be a Hilbert space, T a densely defined linear operator
in H with bounded inverse T~' € L(H). Then T* is invertible and

(Tt =@ =T

Proof. By Theorem 4.71 (ii) it follows that (7-1)*T* C (TT~!)* = idy- = idy,
hence (T71)*T* = idp(7-).

Again by Theorem 4.71 (ii) we find T*(T~1)* C (T~'T)* = idp(q) = idm, so it
suffices to show D(T*(T~1)*) = D(T*). Let y € D(T*) and z = (T~')*y. For
every z € D(T) it follows that (T'z, 7) =(Tz,(T~ ) y) = (T 'Tx,y) = (z,y),
so z € D(T*) which implies D(T*(T~1)*) = D(T* O

Theorem 4.73. Let Hy, Hy be Hilbert spaces, T(Hy — Hs) a densely defined
closed linear operator. Then the following holds.

(i) ra(T)" =1a(T) = kerT",
(i) rg(T) = (kerT*)
(iii) 1g(T*)* =ker T
(iv) rg(T*) = (ker T)

Proof. (i) Note that y € rg(T)* if and only if (Tz,y) for all # € D(T). This
is equivalent to y € D(T*) and T*y = 0.

—  —ll
(ii) By (i) rg(T) =rg(T) ~ = (ker 7).
(iii) By Theorem 4.70 T* is closed and densely defined and T** = T. Appli-
cation of (i) to T shows rg(T*)* = ker T'.
(iv) Application of (ii) to T shows rg(T*) = (ker T)*. a

Example 4.74. Let H = L,[0,1]. Let

D(Ty) := W3 (0,1) = {x € L»[0,1] : = absolutely continuous, 2’ € L»[0,1]},
D(Tz) = D(Tl ﬁ {l‘ € LQ[O, 1] : x(O) = Z(l)}
D (Ty) N{z € L2[0,1] : 2(0) = 2(1) = 0}.



94 4.6. The adjoint of an unbounded operator

For k =1,2,3 let
Tk :H o) D(Tk) — H, TkZ = iZl.

Obviously, the T}, are well-defined and D(T};) is dense in H (Theorem A.27).
We will show: T} = T3, Ty = T4, T5 = T, in particular all T}, are closed.

Proof. Let x,y € D(T1). Then, using integration by parts,

0

(Tiz,y) = /0 i’ ()5 dt:iz(t)mr /O i ()y (@) dt
=iz(1)y(1) — iz(0)y(0) + (x, Thy).

In particular we obtain

(Tx,y) = (x,Ty), z € D(Th), y € D(T3),
(Tz,y) = (z,Ty), z,y € D(T>).

This shows that
D(T3) € D(IYy), D(I>) CD(Ty) and D(Ty) C D(Ty)

and T} |p(ry) = T3, T3 |p(ry) = T1 and T3 |p(r,) = Ta-
To prove the inclusion D(T7) C D(Ts) let g € D(T}) and ¢ = Tyg. Define
D(t) = [Ot ©(s)ds. Then @ is absolutely continuous and &' = ¢. For x € D(T})

1 _ 1
/ ir'(t)g(t) dt = Tz, g) = (v, ) = / iz(t)p(t) dt
Jo Jo

Note that ®(1) = 0 as can be seen if z is chosen to be a constant function.
Hence

/1 iz’ (t)(g(t)i®(z)) dt =0, z € D(T),
0

implying that g+i® € rg(Ty)* = {0}. It follows that g is absolutely continuous
and 9(0) = ip(0) = 0, g(1) = ip(1) = 0, 50 g € D(T3).
Analogously, T5 = T» and T3 = T} can be shown. (]

Definition 4.75. Let H be a Hilbert spaces, D(T) C H a dense subspace and
T:H 2 D(T)— H a linear map.

(i) T is called symmetric it T C T*.
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(ii) T is called selfadjoint if T = T*.
(iii) 7 is called essentially selfadjoint if T = T*.

The operator T» in the example above is selfadjoint, the operator T3 is symmet-
ric.
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Chapter 5

Spectrum of linear
operators

If not stated explicitely otherwise, all Hilbert and Banach spaces in this chapter
are assumed to be complex vector spaces.
5.1 The spectrum of a linear operator

Definition 5.1. Let X be a Banach space and T'(X — X) a densely defined
linear operator.

p(T) :={A e C : Xid —T is bijective} resolvent set of T,
o(T) :=C\ p(T) spectrum of T.

The spectrum of 7' is further divided in point spectrum o, (T), continuous spec-
trum o.(T) and residual spectrum o, (T):

op(T) :={A € C : Xid =T is not injective},
0c(T) :={X € C: Xid —T is injective, rg(T — Aid) # X, rg(T — \id) = X},
0+(T) :={A € C : Xid —T is injective, rg(T — Xid) # X }.

It follows immediately from the definition that
o(T) = op(T) Uoe(T) Uay(T).
In the following, we often write A — 7" instead of \id —T'.

Definition 5.2. (i) Elements A € o,(T') are called eigenvalues of T

(ii) For A € op,(T") we define the geometric eigenspace of T in A, N\(T'), and
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the algebraic eigenspace of T in A\, Ax(T"), by

NA(T) :=ker(T — \),
A\T):={re X : (I' = X\)"z =0 for some n € N}.

(iii) For A € p(T) the resolvent of T in X is (A id —T)~! := R(\, T). The map
p(T) > L(X), A RAT)
is the resolvent map.

Remark 5.3. If T is closed, then (T — \)~! is closed if it exists. Therefore, by
the closed graph theorem,

p(T)={A€C : T — \is injective and (T — \)~' € L(X)}.

Remark 5.4. Often the resolvent set of a linear operator is defined slightly
differently: Let T'(X — X) is a densely defined linear operator. Then A € p(T")
if and only if A — T is bijective and (A — T)~! € L(X). With this definition
it follows that p(7') = @ for every non-closed T(X — X) because one of the
following cases holds:

(i) A —T is not bijective = X\ ¢ p(T);
(ii) A—T is bijective, then (A —T)~! is defined everywhere and not closed, so
it cannot be bounded, which implies A ¢ p(T').

Remark 5.5. If dim X < oo, then o¢(T') = 0+(T) = 0 and o,(T) is the set of
all eigenvalues of T'.

Theorem 5.6 (Spectral mapping theorem for polynomials). Let X be a
Banach space, T € L(X) and P € C[X] a polynomial. Then

o(P(T)) = P(o(T)).

Proof. Let A € C. Then there exists a polynomial @ such that P(X) — P(\) =
(X = N)Q(X). In particular, P(T) — P(\) = (T — NQ(T) = Q(T)(T — \).
Hence, if A € o(T'), then (T — \) is not bijective, so P(T') — P(\) is not bijective
which implies P(o(T)) C o(P(T)).

Now assume p € o(P(T)). There exist a, Ay, ..., A, € Csuch that P(X)—p =
a(X — A1)+ (X — A\p). Since P(T) — p is not invertible, at least one of the
terms A\; — 7' cannot be invertible, that is at least one A; must belong to the
spectrum of T and p = P(\;) € P(o(T)). O

5.2 The resolvent

In this section we will study the resolvent map p(T) — L(X), A — R(\,T) =
(A= T)~'. We will show that its domain is open and that it is analytic.
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Lemma 5.7. Let X be a Banach space and T'(X — X)) a closed linear operator.

. 1
@) IR, T > Tt 0o, o (1)) for all Ao € p(T).
(ii) For Ao € p(T) and X € C with |A — Xo| < [|[R(Xo, T)|| 7!
ROLT) =" (Ao — )™ (R(ho, T))" .
n=0

Note that (ii) shows that locally around a Ao € p(T") the resolvent has a power
series expansion with coefficients depending only on Ay and T'.

Proof of Lemma 5.7. Recall that for a bounded linear operator S € L(X) with
[IS|| < 1 the operator (id —S)~! € L(X) and it is given explicitly by the Neu-
mann series (Theorem 2.10)

=

([d=8)" =" s

n=0
Let A\g € p(T). For X\ € C we find
A=T=X2—-T—=—X=[id=(o =N =T)" (X = T).

If Ao — A] < |[(Ao = T)71| 71, then the term in brackets is invertible, hence so
is A — T and we obtain
A=T)" = o =T) " [id=(ho = V(o =)

=)

=0 =1) (Yo =N -T)7")

n=0
oo
=2 Qo= "o —T)""
n=0
which proves (ii). If y € C with |u| < ||(T — Xo)~Y| 7, then Ao + p € p(T),
hence dist(Xg, a(T)) > [|[(T — Xo) ™17, so also (i) is proved. O
As a corollary we obtain the following theorem.
Theorem 5.8. Let X be a Banach space and T(X — X)) a closed linear oper-
ator.
(i) o(T) is closed.
(i) If T € L(X), then o(T) is compact.
Proof. (i) C\ o(T) = p(T) is open by Lemma 5.7.
(ii) Let A € C with [A| > ||T||. Then A — T = A(id —=A~!T) is invertible since

[IA7'T|| < 1 (Neumann series, Theorem 2.10), hence A € p(T) It follows that
{AeC: A > |T||} 2 p(T). Since o is closed and bounded, it is compact. O
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Next we prove the so-called resolvent identities.

Theorem 5.9. Let X be a Banach space and T(X — X), S(X — X) a linear
operators with D(S) = D(T).

(i) Ist resolvent identity:
RAT)— R(u, T) = (u— NRNT)R(u, T), A p € p(T).
In particular, the resolvents commute.
(i) 2nd resolvent identity:

RO\T) = R(\,8) = ROTY(T — S)R(NS), A€ p(T)N p(S).

Proof. (i) follows from a straightforward calculation:
ROLT) = R(u,T) = (A= T)"" = (u—T)"!
A=) =T = A =D))(u— 1)
— (= VRO T)R(1,T).

(ii) is shown similarly:

ROAT)—R(AS)=(A=T)"1—=(A=8)?
=A-T)'A=S-(A-T)|(A-8)"*
=R\ T)(T - S)R(A, S), O

Next we study properties of the resolvent map p(T)) — L(X), A — R(A\,T). By
Lemma 5.7 we already now that its domain is open and that it is analytic, that
is, locally it has a power series representation.
Definition 5.10. Let © € C be an open set, X a Banach space and f: Q — X.
(i) f is called holomorphic in zy € Q if and only if the limit
1 £G) = f(a0)
z—rz0 zZ—20

exists in the norm topology. f is called holomorphic if and only if it is
holomorphic in every zp € 2.

(ii) f is called weakly holomorphic in zy € Q if and only if the limit
i 1) = (z0)
220 Z— 2

exists in the weak topology. f is called weakly holomorphic if and only if
it is weakly holomorphic in every zo € Q. Hence, for every ¢ € X’ the
map Q — C, z~ ¢(f(2)) is holomorphic in the usual sense.
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Lemma 5.11. Let X be a Banach space. A sequence (xp)nen € X is a Cauchy
sequence if and only if the sequence (p(xy))nen C X is uniformly Cauchy for
¢ € X" with ||¢|| < 1 (that is, for every e > 0 exists a N € N such that
lo(zn) — @(xm)| <€ for allm,n > N and all ¢ € X' with ||| < 1).

Proof. Assume that (z,)neny € X is a Cauchy sequence and let ¢ > 0. Then
there exists a N € N such that ||z, — 2| < € for m,n > N. It follows that
le(zn) — e(@m)|| < llellllzn — zm|| < € for all m,n > N and all ¢ € X’ with
llell < 1.

Now let ¢ > 0 and assume that there exists an N € N such that |p(z,) —
o(zm)| < e forall m,n > N and all ¢ € X’ with ||| < 1. Recall that the map
Jx : X = X" is an isometry. It follows for m,n > N

20 = 2mll = [ Tx@n = Ixzml = sup{|(Jxzn — Ixwm)p| : ¢ € X', |lo] <1}
= sup{|p(zn) — p(zm)] : ¢ € X', ol <1} <e. g

Recall the following fundamental theorem of complex analysis.

Theorem 5.12 (Cauchy’s integral formula). Let Q € C open and let f :
Q — C holomorphic. Let zp € Q and v > 0 such that K,(z) = {z € C :
|z — 20| <71} CQ. Then

fla) ! /1“ /() dz, a € By (z0) (5.1)

:% w(z0) 7 T @

where T'y.(z0) is the positively oriented boundary of K,(zy). More generally, for
n € Ny,

!
M (g) = G B 5.2
f@=gn [ Grgm s aeBGo. 62
Theorem 5.13 (Dunford). Let X be a Banach space and let Q € C open. A
map f:Q — X is holomorphic if and only if it is weakly holomorphic.

Proof. Clearly, holomorphy of f implies weak holomorphy. Now assume that f
is weakly holomorphic. Let zg € Q. Choose r > 0 such that K,(z) = {z € C:
|z —z0| <71} € Q. and let ', (20) be the positively oriented boundary of K,.(zo).
For every p € X’ Cauchy’s integral formula (5.1) yields

2mi z—a

o(f(@) = i/r'( )m & ac Bi(s).

For a € B,(z9) and 0 < |h| <7 — |29 — a] it follows that a + h € K,(z9), hence
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with Cauchy’s integral formula we obtain

(el ) ~e(s@) - (9o 1) (@)
1 1[ 1 1 h

T o, Lozo) Rlz—a—h z-a (2-a)?
1 i 1 1

~om _/p'_(zl)) [(z —a)(z—a—h) - (z— a)z}/’(f(z)) dz
h P(f(2)

dz.

2i | Iy(z0) (2= a)%(z —a—h)

Since z — ¢(f(z)) is holomorphic in a neighbourhood of I';(zp), it is in partic-
ular continuous. Hence there exists Cy, such that

lo(f(2)] < Cp, 2 €Tr(z0).

By a corollary to the theorem of Banach-Steinhaus (Corollary 3.8), there exists
C > 0 such that

[f) <C,  z€T(2).

Hence we obtain

% (po N(@)] < HlglC”

|3 (et 1) = o (@) — <

This implies that

tim o (F(a+h) — F(@)) = Jim 5 (#(F(a-+ 1) ~ (F(@)) = (9o 1) (a),

h—0 h—0 h

uniformly for ¢ € X', ||¢|| < 1. Therefore, by Lemma 5.11, ’lzin%] H(fla+h)—
—

f(a)) exists. O
Theorem 5.14 (Dunford). Let X be a Banach space, @ C C open and T :
Q — L(X). Then the following is equivalent:

(i) T is holomorphic in the operator norm.

(if) T s strongly holomorphic.

(iii) T is weakly holomorphic.
Proof. (i) = (ii) follows from the definition. (ii) <= (iii) follows form Theo-

rem 5.13. It remains to prove (iii) = (i). As in the proof of Theorem 5.13 we
obtain for z € X and ¢ € X’

1 d h
(Tt T@a) oo ) = 5 [ T

oTE)
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Since z — ¢(T'(z)z) is holomorphic in a neighbourhood of I',(z), it is continu-
ous, so there exists Cy , such that

G(T()D)] < Copr = € Tolz0).

By a corollary to the theorem of Banach-Steinhaus (Corollary 3.8), there exists
C, > 0 such that

IT(z)z]l < Cey 2z € T(20),

and by the theorem of Banach-Steinhaus (Theorem 3.7), there exists C' > 0
such that

ITG) < C 2 eTy(zo).

This implies that

1 L1
’lllg}) % (L,p(T(a +h)x — T(a)z)) = Lp(}lblil’%) E(T(a +h)x — T(a)z))
exists, uniformly for ¢ € X', ||¢|| < 1. Therefore, by Lemma 5.11,
L1
’ILIH}) E(T(a +h)x —T(a)x)

exists and convergence is uniform for x € X with ||z|| = 1. Analogously as in
the proof of Lemma 5.11 it follows the existence of

L1
%lblg%) E(T(a +h)—T(a)). O

Theorem 5.15. Let X be a Banach space, T(X — X) a densely defined closed
linear operator. Then the resolvent map

p(T) = L(X), A= ROT) = (A—1)"
is holomorphic.

Proof. Let Ao € p(T) and A € C with |XA — Xg| < [[R(Xo,T)|. For fixed z € X
and ¢ € X’ we have by Lemma 5.7

=S}

P(BOT) = o( (3o =20)" (RO, 1))

n=

=3

e

(A= 20)"@((R(%0, T))" " x)

Il
=3

n

where we used that the operator series converges and ¢ is continuous. Since
the last sum is absolutely convergent, it follows that A — @(R(A,T)z) is ana-
lytic locally at Ao, hence holomorphic. Since weak holomorphy is equivalent to
holomorphy in the operator norm (Theorem 5.14), the theorem is proved. O
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The preceding theorem allows us to apply theorems of complex analysis to the
resolvent map.

Theorem 5.16. Let X be a Banach space and T' € L(X). Then o(T) # 0.

Proof. Assume o(T) = (). Observe that this implies X # {0} and T~! € L(X).
Let A € C with |[A] > ||T||. Then A € p(T') and using the Neumann series

o0 oo 1
IR = || 3o a0 < 32 =) = e

n=0 n=0 H H _I I
In particular, ||R(X, T)|| — 0 for |A| — co. Hence for every z € X and ¢ € X’
the map A — @(R(A,T)z) is holomorphic and bounded in C, so constant by
the Liouville theorem. Since ¢(R(X,T)z) — 0 for |\| — oo, it follows that
e(R(A\,T)z) = 0forall A € C, z € X and ¢ € X'. By a corollary to the
Hahn-Banach theorem (Corollary 2.16) it follows that R(X,T)z = 0 for all
z € X and X € C, hence R(A\,T) = 0, A € C. This contradicts the fact that
L= TT-1| < |TIHT = 0. o

The following example shows that for unbounded linear operators the cases
o(T) = 0 and o(T) = C are possible.

Examples 5.17. (i) Let X = C([0,1]) and
T:X2040,1) =X, Tx=4d.
Then T is unbounded and closed and o(T") = 0},(T") = C.
(ii) Let X = {z € C([0,1]) : 2(0) = 0}, D(T) = {x € X N C*([0,1]) : 2’ € X}
and
T:X2OD(T)— X, Tz=2a'.
Then T is unbounded and closed and o(T) = 0.

Proof. (i) Obviously, T is unbounded and densely defined. If (z,,)nen € D(T)
such that z, — z and T, — y € X, then, by a theorem of Analysis 1, z is
differentiable, hence in D(T) and Tz = 2’ = y which implies that T is closed.
For every A € C the differential equation 2’ — Az = 0 has the solution z (t) = e**.
Note that ) € D(T) and (T'— A)zy =0, so A € o, (T).

(i) Obviously, T' is unbounded and densely defined. If (z,)neny € D(T) such
that z, — x and Tz, — y € X, then, by a theorem of Analysis 1, z is
differentiable and 2’ = y. Moreover, z(0) = nlgrgc 2, (0) = 0, so in D(T') and
Tz = 2’ = y which implies that T is closed.

For every A € C and every y € X the initial value problem z’ — Az = y, z(0)
has exactly one solution x) given by
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Obviously zx € C[0,1], 2x(0) = 0 and 2, (0) = Az (0) +y(0) = 0. Hence T — A
is bijective, in particular A € p(T). O

Note that in the last example the continuity of (7'— \) can be seen immediately:
t
17 = )yl = llea oo = sup {[ [ e (o) ] 1 € 0,17}
0
1
< ||yloo max{1, e*} / e ds.
0

Definition 5.18. Let X be a Banach space The spectral radius of T € L(X) is

1

r(T) := limsup ||T"

Theorem 5.19. Let X be a Banach space, T € L(X) and r(T) its spectral
radius.

r(T) < | T™|[Y™ < ||T|| for allm € N, in particular r(T) = lim [T/
o(T)C{AeC: A <r(D)}.

(iii) If X is a complex Banach space, then there exists a A € o(T) such that
Al = r(T), in particular

r(T) = max{|\ : A € o(T)}.

= =

(iv) If X is Hilbert space and T' is normal, then r(T) = || T|.

(v) If X is a complex Hilbert space and T is normal with v(T) = 0, then
T =0.

Proof. (i) Let m € N arbitrary. For every n € N there exist p,, ¢, € No with
gn <m and n = p,m + q,. Let M :=max{1, |T||, ..., |T™!(|}. Then
[T = [[Tomon]| < 7o o < DT

R = || T

This implies r(T) = limsup || T"||* < limsup M2 |[T™
n—oo n—o0
(ii) By the formula of Hadamard, the radius of convergence of 3o 2" +1{| 7|

is (limsup |77 %)~ = #(T)~'. Hence for all A € C, [A| > #(T), the series

n—oo
T2 G ATHEDTR = A converges in norm. By Theorem 2.10 (Neumann series),
A is the inverse of A — T. Because T is closed, it follows that {A € C: [A\] >
r(T)} C p(T), or equivalently {A € C: |X\| <r(T)} C o(T).
(iii) Let 7o := max{|\| : A € o(T)}. It follows from (ii) that ro < r(T"). Now
choose any p € C with |u| > rg. We have to show that || > »(T"). Observe
that by definition of R(T") and by the formula of Hadamard

A=) =3 AT A > (T, (5.3)
n=0
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where the series on the right hand side converges in norm. In particular, for
every ¢ € L(X)'

PA=T)"t = AT, N > (D).

n=0

Hence A — (T — A)~! defines an analytic function for |[A| > r(T). It follows
from complex analysis that then the equality in (5.3) holds for all A in the largest
open ring where A — (A — T) is analytic, that is for all A > r(T"). In partic-
ular, 3500 u=+Dp(T™) converges for every ¢ € L(X)', hence it is weakly
convergent, and therefore (= ("D o(T™)),en converges to 0. It follows that
(u= DT, is weakly convergent to 0, hence it is bounded (Corollary 3.9).
Let M € R such that ||~ T"| < M, n € N. Then |||T"||% < M= p'*=
for all n € N, in particular r(T") = nlglolo T < p.

(iv) Recall that ||[T7*|| = ||T'||? for a normal operator 7' (Theorem 4.39). Hence
IT2(12 = 1T*T*)?|| = [(TT*)?| = [(TTH|* = IT|I*,

hence | T2|| = ||T)|?. By induction, it can be shown that hence || 72" = ||T||*"
for all n € N, implying that

HT) = li nE = i 2|2 = =
P(T) = lim [77F = T 723 = tim [T = |T].
(v) follows directly from (iv). O

Note that in general r(T') < ||T'||, for example r(T) = 0 for every nilpotent
linear operator.

5.3 The spectrum of the adjoint operator

Lemma 5.20. (i) Let X be a Banach space and T(X — X)) a densely defined
closed linear operator. Then o(T') = o(T) and R\, T) = R(\,T") for
A€ p(T).
(ii) Let H be a Hilbert space and T(H — H) a densely defined closed linear
operator. Then o(T*) = o(T) = {\ € C : X € o(T)} and R(\,T)* =
R(\*,T*) for A € p(T).

Proof. The assertions follow from Theorem 4.65. O

Lemma 5.21. Let X be a Banach space and T(X — X) densely defined and
closed.

(i) A€ op(T) = A€ o,(T")Uo(T).
(i) A€o (T) = Aeo,(T).
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Proof. (i) If XA € op(T), then ker(A —T') 2 {0}, rg(A —T") C ker(T)° # X. It
follows that A € oy,(T”) or A € o,(T”).

(i) If X € 04(T), then rg(A —T) # X. By Theorem 4.64 rg(A — T) = X if and
only if (A —T)" =X —T" is not injective, hence A € op,(1"). O

Theorem 5.22. Let H be a complex Hilbert space, T(H — H) a symmetric
operator and A € C\ R.

(i) 1A =T)z|| = [Im(\)| ||z|| for all z € D(T).
In particular T — X : D(T) — rg(T — X\) is invertible with continuous
inverse and the point spectrum of T is real.

(i) If T is closed, then rg(A —T') is closed.
Proof. (i) For all z € D(T)
IO =Tyl lall = |(h = Ty, 2)] = |(Re A = ), ) +i(Tm Az, )|
> | Im Al||z||.

In particular, A — T is injective, which implies that A ¢ oy, (7).
(i) If (A = T) is continuous and closed, to its domain rg(A — T') is closed. O

Theorem 5.23. Let H be a complex Hilbert space and T(H — H) a symmetric
operator. Then the following is equivalent.

(i
(ii

(iii

T is selfadjoint.
rg(A—T) =H for all z€ C\R.
rg(+i—T) = H.

There exist z4 € C with Im z;. > 0 and Im z_ < 0 such that rg(z4+ —T) =
H.

) o(T) CR.
(vi) T is closed and ker(+i—T*) = H.

NS AN N

(iv

Proof. (i) = (ii) Let A € C\R. Thenrg(A—T') # H is closed by Theorem 5.22
and A* ¢ o, (T). It follows by Theorem 4.73 that

g\ = T) = 1g(A — T)* = ker(\* — T*)* = ker(\* — T)* = {0}+ = H.

(ii) = (i) By assumption, T is symmetric, hence T' C T*, so it suffices to
show that D(T*) C D(T). Let A € C\ R. Then A — T and X — T are bijective.
For x € D(T*) there exists a y € D(T) such that (A — T*)z = (A — T)y. Since
T C T*, it follows that Ty = T*, hence x —y € ker(A—T*) = {0} which implies
z=ye D).

(if) = (iii) = (iv) is obvious.
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(iv) = (v) Let z4 € C with Imz; > 0 and Im z_ < 0 such that rg(z+ —T') =
H. By Theorem 5.22, it follows that z1 — T is injective and its inverse is bounded
by |Sz4|. Hence, by Lemma 5.7, every A € C with |A — z4| < [Sz4| belongs to
p(T). Given any A € C\ R, repeating the argument above finitely many times
shows that A € p(T).

(v) = (ii) is obvious.

(vi) = (iii) Since T is closed, the rangc of +i— T iq cloq(‘d by Thcorcm 5.22.

Therefore rg(+i — T) = rg(+i — T)*++ = ker(Fi — ={0}*+ =
(i) = (vi) Since T'=T*, it is closed and C\R C p(T), in partlcular ker(+i—
T) = {0}. O

Analogously, we find a characterisation of essentially selfadjoint operators.

Theorem 5.24. Let H be a complex Hilbert space and T(H — H) a symmetric
operator. Then the following is equivalent.
(i) T is essentially selfadjoint.
(ii) rg(A\ = T) = H for all 2 € C\ R.
(iii) rg(£i—T)=H.
)

(iv There exist z4+ € C with Imz > 0 and Im z_ < 0 such that rg(z+ — T) =

(v) J(T) CR.
(vi) ker(£i—T*)=H.
Definition 5.25. Let X be a Banach space and T(X — X) densely defined

and closed. A\ € C is called approzimate eigenvalue if there exists a sequence
(zn)nen € X such that ||z, || =1 for all n € Nand lim (T — X)x, = 0. The set
n—o0

of all approximate eigenvalues is denoted by oap(T).
Proposition 5.26. (i) Every approzimate eigenvalue belongs to o(T).
(i) Every boundary point of o(T) C C is an approzimate eigenvalue of T

(iil) If X is a Hilbert space and if T is selfadjoint, then every A\ € o(T) is an
approzimate eigenvalue of T'.

Proof. (i) Let A be an approximate eigenvalue of T'. Choose a sequence (y,)nen
D(T) such that ||z,|| = 1 for all n € N and (A — T')z,, — 0. Assume that
A€ p(T). Then R(\,T) = (A —T)~! is bounded, therefore

’VLILIIE}O Ty = T}Ln;o RA-=T)AN—=T)zn =R(A-T) ’}LH;C(A —T)z, =0,

in contradiction to ||z,|| =1 for all n € N.

(if) Let A be a boundary point of o(7"). Then there exists a sequence (A, )nen C
p(T) which converges to A. For every n € N choose z, € X such that

N
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lzall = 1 and |[R(An,T)zn| > 3[R\, T)||l. From Lemma 5.7 we know
that [ROAn, D)l 2 gy Seb yn = 1R, D)7 R(An, T)2p.  Then
yn € D(T) and |jy,|| = 1 for all n € N. Moreover
I =T)yall < 1A = An)ynll + (A = T)ymll
= A=l + [R(An — T)an_l
<A= A 21RO —T)7 — 0, n— .
Hence A € 0,p(T).

(iif) By Theorem 5.23 the spectrum of a selfadjoint operator is real, so o(T") =
90(T) € 0ap(T) C o(T).

O

Lemma 5.27. Let H be Hilbert space and T € L(H) selfadjoint. Then o(T) C
[m, M| where m := inf{(Tz,z) : ||z| = 1} and M := sup{(Tx,z) : ||z| = 1}.
Moreover, m, M € o(T).

Proof. Let A € R, A <m. Then XA — T is injective because for all z € X
IO =D)zlllzll 2 (A= T)e,z) = (A —m)||=]*. (5.4)

In particular, rg(A—T) = D((A—=T)"!) is closed because (A\—T)~! : rg(A-T) —
H is closed and continuous by (5.4). Hence rg(A —T) = rg(A —T') = ker(A —
T)+ = H. It follows that (—oo, m) € p(T). Analogously (M, o0) € p(T) is
shown.

Now we show that m € o(T). By Proposition 5.26 it suffices to show that m €
0ap(T'). By definition of m there exists a sequence (2 )nen such that [|,| =1
for all n € N and (Tx, ,z,) \ m. Since s(z,y) := (T — m)x,y) defines a
positive semidefinite sesquilinear form, Cauchy-Schwarz inequality implies

I = )l = b, (7 )] < s ) (T —mj)
= <(T—m)zn,xn> (T = m)*xn , (T - m)zn>

Since the first term in the product tends to 0 for n — oo and the second term
is bounded by (||T|| — m)? < oo, it follows that [|(T — m)z,| tends to 0 for
n — co. This shows that m € 0,,(T). The proof of M € o(T') is analogous. O

5.4 Compact operators

Recall that a metric space M is compact if and only if every open cover of M
contains a finite cover. M is called totally bounded if and only if every for every
e > 0 there exists a covering of M with finitely many open balls of radius e.
M is called precompact (or precompact) if and only if M is compact. It can be
shown that a totally bounded metric M is compact if and only if M is complete.
In particular, a subset of a complete metric space is totally bounded if and only
if its closure is compact. A subset of a metric space is called relatively compact
if and only if its closure is compact.
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Definition 5.28. Let X,Y be normed spaces. An operator 7' € L(X,Y) is
called compact if for every bounded set A C X the set T(A) is relatively com-
pact. The set of all compact operators from X to Y is denoted by K(X,Y).

Remark 5.29. Sometimes compact operators are called completely continuous.

Remarks 5.30. (i) Every compact linear operator is bounded.

(if) T € L(X,Y) is compact if and only if for every bounded sequence (z, )nen
the sequence (Tz,,,)neN contains a convergent subsequence.

(ili) 7 € L(X,Y) is compact if and only if T'(Bx (0, 1)) is relatively compact.
(iv) Let T' € L(X,Y) with finite dimensional rg(7T"). The T is compact.

(v) The identity map id € L(X) is compact if and only if X is finite-dimensional.

Theorem 5.31. Let X,Y be Banach spaces. Then K(X,Y) is a closed subspace
of L(X,Y).

Proof. Obviously, 0 € K(X,Y) and Remark 5.30 (ii) implies that the linear
combination of compact operators is compact. Now let (T})nen € K(X,Y) a
Cauchy sequence. Since L(X,Y) is complete, there exists a T € L(X,Y") such
that T,, — T. We have to show T' € K(X,Y). Take an arbitrary bounded
sequence (Z,)neny C X and choose M € R such that ||z,|| < M, n € N.
Since 17 is compact, there exists a subsequence (zsbl >) such that (Tlac%l ))neN
converges. Continuing like this, for every k > 2 we find a subsequence (zﬁf )) of
(zﬁf’”) such that (Tkzsbk))neN converges. Let (Yn)nen = (zsbn)),,,eN the diagonal
sequence. Then, for every k € N, the sequence (Txyn)nen converges. Let & > 0.
Choose k € Nsuch that | T—T|| < 357 and N € N such that || Tyzn,—Tram| < §
for m,n > N. Then, for all m,n > N,

HTyn - TZ/mH < HTyn - Tkyn” + HTkyn - TkymH + ”Tkym - TymH
Me e Me

AR Vi

IN

Hence (Tyy)nen is Cauchy sequence in the Banach space Y, hence convergent.
O

Lemma 5.32. Let X,Y,Z be Banach spaces, S € L(X,Y) and T € L(Y, Z).
Then T'S is compact if at least one of the operators S or T is compact.

Proof. Let (xy,)nen be a bounded sequence in X. If S is compact, then there
exists a subsequence (zy,, )ren such that (Sz,, )ken converges. By continuity of
T, also ('S, )ren converges.

Now assume that 7' is compact. Since S is bounded, (Sz,)ren is bounded,
hence there exists a subsequence (2, )ken such that (T'Sz,,, )ren converges. O
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Theorem 5.33 (Schauder). Let X,Y be Banach space and T € L(X,Y).
Then T is compact if and only if T' is compact.

For the proof we use the Ascoli-Arzeld theorem.

Theorem 5.34 (Arzela-Ascoli). Let (M,d) be a compact metric space and
A C C(M) a family of real or complex valued continuous functions on M such
that

(i) A is bounded,

(i) A is closed,

(iii) A is equicontinuous, that is,

Ve>0 36>0 VfeA d(z,y) <6 = |f(z) — fly) <e.
Then A is compact.

Proof. See, e.g., [Rud91] or [Yos95]. O

Proof of Theorem 5.33. First assume that T is compact. Let Kx(0,1) := {z €
X :|jz]| < 1} be the closed unit ball in X. By assumption K := T(Kx(0,1))
is compact in Y and bounded by ||T|. Now let (¢n)nen € Y’ be a bounded
sequence and M € R such that ||¢,| < M, n € N. We define the functions

fn i K=K, fuly) = ealy)-

Then (f,)nen is bounded by M and equicontinuous because |f(y1) — f(y2)] <
Clly1 —yzll; y1,y2 € K. By the Ascoli-Arzeld, (f,)nen is compact, so there exists
a convergent subsequence (f,, )ren. Then also (T¢y, )ren converges because

1770, = T'n,, | = sup{lln, (Tw) = @n,, (T2)] : x € Kx(0,1)}
= sup{[lon, (v) = P W) 1y € K} =1 for = fnl-
Now assume that 7" is compact. Then T” € L(X”,Y") is compact. By
Lemma 5.32 T" o Jx is compact. Recall that Jy o T =T o Jx (Lemma 2.33),

so Jy oT : X — Y" is compact. Since Y is closed in Y, T : X — Y is
compact. O

Example 5.35. Let k € C([0,1]?) and
1
T C(0,1) - C(0,1]),  (Tha)(t) = / (s, D)a(s) ds.
0
Then T}, is compact.

Proof. Obviously T}, is well-defined and bounded. Let (z)nen € C([0,1]) a
bounded sequence with bound M. Hence (Tkzy)nen is bounded. To show that
it is equicontinuous fix € > 0. Since k is uniformly continuous, there exists
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a 0 > 0 such that |k(s,t) — k(s',t)] < e if ||(s,t) — (s',¢')|| < 6. Now for
t1,t2 € [0,1] with [t; — t2] < ¢ and n € N we obtain

1
|Than (t1) — Tran(t2)] < / |k(s,t1) — k(s,t2)||zn(s)] ds < e]|zn]|cc < Me.
0

By the Ascoli-Arzeld theorem it follows that (T2, )nen is relatively compact,
hence it contains a convergent subsequence. O

Let X be vector space and 7' : X — X a linear operator. Then obviously
{0} CkerT C kerT? CkerT? C ...,
XergTQrgT2 QrgT:;Q

Lemma 5.36. Let X a vector space and T : X — X a linear operator.

(i) Assume that ker T*+1 = ker T* for some k € Ng. Then ker T™ = ker T*®
for all integer n > k.

(ii) Assume that vgT*+' = rgT* for some k € Ng. Then rgT" = 1rgT* for
all integer n > k.

Proof. We prove the lemma by induction. The case when n = k is clear by
assumption.
(i) Assume that n > k and ker 7" = ker T*. Then

ker Tl = {z € X: T"" 2 =0} = {o € X : Tz € ker T"} = ker T = ker T*.
(i) Assume that n > k and 1g 7" = rg T*. Then
rg T = T(gT") = T(rgTF) = rg T+ = rg T*.
O

Definition 5.37. Let X be a vector space and 7' : X — X a linear operator.
We define

min{k € No : ker 7% = ker T#*1}, if the minimum exists,

ascent of T := a(T) := {
00 else

descent of T 1= 8(T) = {min{k €Np:rgTh =rgTF}, if1 the minimum exists,
oo else.

Lemma 5.38. Let X be a vector space and T : X — X a linear operator. If
both the ascent o(T) and the descent §(T) are finite, then o(T) = 6(T) =: p
and X = rg(T?) & ker(T?).
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Proof. Let p:= a(T) and ¢ := §(T"). We divide the proof in several steps.

Step 1. rg(TP) Nker(T™) = {0} for every n € Ny.

To see this, choose z € rg(T?) Nker(T™). Then there exists a y € X such that
x =TPy, so 0 =T"z = TPT"y. Hence y € ker TP™" = ker T? by Lemma 5.361.
It follows that x = TPy = 0.

Step 2. X =rg(T") + ker(T9) for every n € Ny.

For the proof fix € X. Then T% C rg(T9) = rg(T9""). Hence there exists
y € X such that T9% = T9""y. Then T9(z — T"y) = 0, and therefore z =
Ty + (x — T™y) € rg(T") + ker(T9).

Step 3. a(T) < 6(T) =q.

Let x € kerT9%!. We have to show = € kerT9. By step 2, with n = p,
there exist z; € rg(TP) and z2 € ker(T7) such that = z1 + 2. Hence
21 =2 — 29 C ker(T7+) Nrg(TP) = {0} by step 1. Therefore z = x5 € ker(T).

Step 4. 6(T) < a(T) =p.

By step 1 and step 2, we have that X = rg(TP) @ ker(T9). Since rg(TP*1) N
ker(T?) C rg(T?) Nker(T9) = {0}, we also have X = rg(T9"!) @ ker(T),
implying rg R(TP*!) = rg(T?), hence § < p. O

Theorem 5.39. Let X be a Banach space, T € L(X) a compact operator and
AeC\ {0}

(i) ker(A —T)" is finite dimensional for every n € Ny.

(i) IfU C X is a closed subspace with U Nker(A—T)" = {0}, then (A\—=T)(U)
is closed and A\ —T : U — 1g((A — T')|uy has a bounded inverse.

(iii) rg(A —T)™ is closed for every n € Ny.
Proof. Note that (A —T)" = A" — 3" (#)A"~*T* and the operator sum is
compact. Hence it suffices to show the assertions for n = 1.

(i) Observe that T|yer(x—7) = Aid |rer(rx—1)- Hence Aid |ger(r—7) is compact.
By Remark 5.30 (v) this is case if and only if ker(A — T') is finite dimensional.
(ii) Since U Nker(A — T') = {0}, the restriction (A — T)|y is invertible. We
will show that its inverse is bounded. Assume ((A — T)|U)71 is not bounded.
Then there exists a sequence (2, )nen such that [[z,] = 1 for all n € N and
lgn (A —=T)z, = 0. Since T is compact, there exists a convergent subsequence
(Twy,, )ken. Hence

Aep, = Tan, + (A =T)ap, — lim Tz, = y.
_,—/ n—oo

—0

Note that y € U because U is closed. Moreover, y € ker(A — T') because

=Ty = (A=) Jim oa, = limg (A= T)zw, =0.
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Hence y € ker(A —T)NU = {0} in contradiction to ||y|| = le Azn| =X #0.
Hence ((A— T)|U)71 :1g(A = T)|y — U is bounded. Since it is also closed, its
domain rg(A — T')|y must be closed.

(iii) By (i) we already know that dimker(A — T") < co. Then by the following

lemma 5.40 there exists a closed subspace U C X such that X =ker(A—-T)®U.
Hence rg(A — T') = rg((A — T)|v) is closed by (ii). O

Lemma 5.40. Let X be a Banach space and M C X a finite dimensional
subspace. Then there exists a closed subspace U of X such that X = M & U.

Proof. Let xy, ..., T, abasis of M. Then there exist ¢, ..., ¢, € M’ such that
llow]l = 1 and @r(x;)dk; for all j,k =1, ..., n. By the Hahn-Banach theorem
the ¢, can be extended to functionals v, € X’ with ||| =1,k =1, ..., n. Let
P:X — X,Px = Z;L:l @j(z)z. Obviously P = P2, hence P is a projection.
Note that M = P(X). Hence X = rg(P) ® ker P = M & ker P. ]

Theorem 5.41. Let X be a Banach space, T € L(X) a compact operator and
A€ C\{0}. Then a(A\=T) =06(A-T) =p < 00 and X = ker(A—T)P®rg(A\-T)?.

The number p = a(A —T) = 6(A — T') is called the Riesz index of A —T.

Proof. By Lemma 5.38 it suffices to show that a(T) and 6(7") are finite.
Assume that « is not finite. Since in this case ker(A —T) C ker(A —T)2 C ...
we can find a sequence (z,)neny € X such that for alln € N

1
lznll =1, x, €ker(A—=T)", and |z, —z| > 3 for all z € ker(A — T)" 1.

The last condition can be satisfied by the Riesz lemma (Theorem 1.21) because
ker(A — T')™ is closed for all n € N. Then for all 1 <m <n

1
Tz — Tam|| = |Aen —Azm — (A= T)an + (A= T)am || > 7

cker(A—T)n~1

Therefore (T'zy,)nen does not contain a convergent subsequence in contradiction
to T being compact.

Assume that § is not finite. Since in this case rg(A —T) 2 rg(A—=T)?> 2 ... we
can choose a sequence (z,)neny € X such that for all n € N

1
lznll =1, an€1g(A=T)", and |z, —z| > 5 forallz e rg(A — 7)™+

The last condition can be satisfied by the Riesz lemma because rg(A — T)" is
closed for all n € N by Theorem 5.39. Then forall 1 <m <n

|Tzn, = Tomll = Az =Axm — (A =Tz + (A = T)xp || >

erg(A—T)n+1

N o=
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Therefore (T, )nen does not contain a convergent subsequence in contradiction
to T being compact. O

Theorem 5.42 (Spectrum of a compact operator). Let X be a Banach
space. For a compact operator T € L(X) the following holds.

(i) If X € C\ {0}, then X either belongs to p(T') or it is an eigenvalue of T,
that is C\ {0} C p(T) U oy (T).

(ii) The spectrum of T is at most countable and 0 is the only possible accu-
mulation point.

(iii) If A € o(T) \ {0}, then the dimension of the algebraic eigenspace Ax(T)
is finite and Ax(T) = ker(\ — T')P where p is the Riesz index of A —T.

(iv) X = ker(A =T)? @ rg(A\ —T)? for A € o(T) \ {0} where p is the Riesz
index of A\ — T and ker(\ — T')? and rg(A\ — TP are T-invariant.

(v) op(T)\{0} = op(T")\ {0j and o(T) = o(T"). If H is a Hilbert space then
op(T)\N{0} ={r e C: X e op(T*)}\ {0} = O'p(T*) \ {0}, where the bar
denotes complex conjugation, and o(T) ={X € C: X € o(T*)} = o(T*).

Proof. (i) Let A € C\ {0}. By Theorem 5.41 the Riesz index p of A — T is
finite. If p = 0, then X = rg(A —T') by the proof of Lemma 5.38 (step 2), hence
A€ p(T). If p#0, then A € op,(T).

(ii) It suffices to show that for every ¢ > 0 the set {A € o(T') : |\| > ¢} is finite.
Assume there exists an € > 0 such that the set is not finite. Then there exists
a sequence (A, )nen such that X\, # A, for n # m and |\,| > ¢, n € N. Since
o(T) \ {0} consists of eigenvalues, we can choose eigenvectors z, of T with
eigenvalues \,. Note that the z, are linearly independent because A\, # A\,
for n # m. Let U, := span{z1, ..., z,}. Note that all U,, are T-invariant,
closed and that Uy C Uy C Us C .... Using the Riesz Lemma, we can choose a
sequence (yn)nen such that for all n € N

1
lynll=1, yn €Upn, and |y, —z| > 5 for all z € U,,_1.

Let 1 < m < n. Note that Tym € Un. Let y, = 37, aj; for some a; € C.
Then

O = T)n = an(An — TNz + 3 (T = An)aj = 0 (A — An)z; € Upoy.
j=1 j=1
Hence

1
1Tyn = Tymll = 1Aty —(An = T)yn — Tym || > 3

€Un—1
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Therefore (T2, )nen does not contain a convergent which contradicts the as-
sumption that T is compact.
(iii) and (iv) follow from Theorem 5.42.

£

(v) By Schauder’s theorem 1" is compact (theorem 5.33) Hence for A € C it
follows that

Aep(T) <= ker(A-T)={0}and rgA\-T)=X

<«  °rg(A—T')={0}and °ker(A—-T') =X

< 1g(\=T")=X"and ker(A—-T") = {0}

= Xep() O
Theorem 5.43 (Fredholm alternative; Riesz-Schauder theory). Let X
be a Banach space, T € L(X) a compact operator and A € C\{0}. Then ezactly
one of the following is true:

(i) For everyy € X the equation (A—T)x =y has exactly one solution x € X .

(if) (A—=T)z =0 has a non-trivial solution x € X .

Proof. (i) is equivalent to A € p(T') and (ii) is equivalent to A € o, (T). Since A #
0, the latter is equivalent to A € o(T"). The assertion follows from Theorem 5.42.

O

A more precise formulation of the Fredholm alternative is the following.

Theorem 5.44. Let X be a Banach space, T € L(X) a compact operator and
A€ C\{0}. Forz,y,€ X and ¢,n € X' consider the equations

A) A=Tz=y, € (A=The=n
(B) (A\-T)=0, (D) (A\—T)p =0.
Then
(i) Fory € X the following is equivalent:
(a) (A) has a solution x.
(b) ¢(y) =0 for every solution ¢ of (D).
(if) Forn € X' the following is equivalent:
(a) (C) has a solution .
(b) n(x) =0 for every solution x of (B).
(iii) Fredholm alternative: Exactly one of the following holds:

(a) Forally € X andn € X' the equations (A) and (C) have exactly one
solution (in particular (B) and (D) have only the trivial solutions).
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(b) (B) and (D) have non-trivial solutions. In this case dim(ker(A—T")) =
dim(ker(A — 7)) > 0 and (A) and (C) have solutions if and only if

p(y) =0 for all solutions ¢ of (D),
n(x) =0 for all solutions x of (B).

Definition 5.45. Let X,Y be Banach spaces. T € L(X) is called Fred-
holm operator if rg(T) is closed and n(T) := dim(kerT) < oo and d(T) :=
codimy (rg7T") := dim(Y/rg(T)) < oo. In this case, x(T) := n(T) — d(T) is
called the Fredholm index.

Proof of Theorem 5.44. ............ O

Now we return to the spectrum of compact operators.

Lemma 5.46. Let H be Hilbert space, # {0}, and T € L(H) a selfadjoint
compact operator. Then at least one the values ||T|| or —||T|| is an eigenvalue
of T. In particular, if T # 0, then T has at least one eigenvalue distinct from
0.

Proof. If ||T|| = 0, the assertion is clear. Now assume that ||T|| # 0. Recall
that ||7]| = sup{|[{Tz,z)| : € X, ||z|| = 1} (Theorem 4.45).

By Lemma 5.27 the numbers m = inf{(Tz,z) : € X,|jz|| = 1} and M =
inf{(Tz,z) : x € X, ||z|| = 1} belong to the spectrum of 7. Since T is compact
and ||T| # 0, it follows that 0 # {|| T} N o(T) = {£||T||} N op(T). O

Theorem 5.47 (Spectral theorem for compact selfadjoint operators).
Let H be a Hilbert space and T € L(H) a compact selfadjoint operator.

(i) There exists an orthonormal system (e,)N_, of eigenvectors of T with
eigenvalues (A\n)N_q where N € NU {oo} such that

N
Tz=Y Mz,en)en, z€H. (5.6)
n=1
The A\, can be chosen such that |\1] > |Aa| > -+ > 0. The only possible
accumulation point of the sequence (A )nen s 0.

(i) If Py is the orthogonal projection on ker T, then

N
z:P(Jz+Z<z,en)en, rc H. (5.7)

n=1
(iii) If A € p(T), A #£0
N

(A*T)’lm:/\’lPoerZ @, en) en, r € H.
n=1

An — A
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Proof. (i) Let X; = X and Ty = T. If T' # 0, then there exists a Ay € op,(T1)
such that |A;| = || T1|| # 0. Let By be an orthonormal basis of ker(A; —T7). Note
that By is finite because T is compact (Theorem 5.42). Let X; := ker(\; —T)* =
rg(A — T) = rg(A\ — T'). Here we used that T is selfadjoint and consequently
X € 0p(T) € R. By Theorem 5.42, X, is Ti-invariant, hence Ty := Ti|x, €
L(X5). Obviously, T» is selfadjoint and compact. If T5 # 0, then there exists
a Ay € op(T2) such that [Az| = [|T3]| # 0. Let By be an orthonormal basis
of ker(A\2 — T). Note that Bj is finite because T is compact (Theorem 5.42).
Hence By U B; is an orthonormal basis of span{ker(A\; — T'),ker(A2 — T)}. Let
X5 := span{ker(\; —T), ker(\o — T)}* and T := Ts|x,. Continuing like this we
obtain a sequence of Banach spaces X,, and a sequence of compact selfadjoint
operators T,, € L(X,,). Let 2 € X. Define

Tp41 =T — Z <T -,Cn> en € Xpi1.
en€B1U...B,
It follows that
[Tz—T Y (@,en)enll = [Torrznall < Pagalllzll — 0, n— o0
en€B1U...B,
This implies that
N N
Tx = Z(a:,cn>Tcn = Z/\,,,(J:,cn) o -
n=1 n=1

(ii) Note that ...
(iif)

O
Corollary 5.48. Let H be a Hilbert space and T € L(H) a compact selfadjoint

operator. There exists a sequence (Py)N_, of pairwise orthogonal projections
with N € NU{co} and a sequence |\1| > |Xo| > ... such that

N
T=Y APy (5.8)
n=1

where the series converges to T in the operator norm. If (\,), is an infinite
sequence, then lim A, = 0. The representation (5.8) is unique if the A, are
n—oo

pairwise distinct.

Proof. If the series is a finite sum, the assertion is clear. Now assume that the
series is an infinite. Note that for every k € N the operator Zf:k Py is
normal and that the norm of a normal operator is equal to maximum of the
moduli of the elements of its spectrum (Theorem 5.19). Since |Ag41| — 0 for
k — oo the claim follows from

k
|7=>2pn
n=1

=sup{An]:n > k+1} = [Apgal. o
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The representation (5.8) allows us to define the root of a positive compact
selfadjoint operator.

Theorem 5.49. Let H be a Hilbert space and K € L(H) a compact operator.

(i) T is positive <= all eigenvalues of T are positive.
T is strictly positive <= all eigenvalues of T are strictly positive.

(ii) If T is positive and k € N then there exists exactly one positive compact
selfadjoint operator R such that R* = T.

Note that the theorem does not imply that there cannot be non-compact oper-
ators A € L(H) such that A2 = T. In Corollary 5.60 we will show that every
bounded positive selfadjoint operator has a unique positive root.

Proof of Theorem 5.49. Recall that a linear operator 7' is positive if and only if
(Txz,z) >0 for all z € H. Let Py, A, and e, as in (5.7). Then (i) follows from

(To,2) = (3 Aale,enden, Por+ D Aalasen ,e)n> =D Aal(@.en)l* 2 0.
n n n

For the proof of (ii) define R = Y, )\}L/k<- ,en)en. Obviously R¥ = T. To
show uniqueness, assume that there exists a compact selfadjoint positive linear
operator S such that S* = T. Since S is compact, it has a representation
S =3, inQn with pairwise orthogonal projections @,,. By assumption

T=8= Z/LﬁQn.
Hence the p,, are the kth roots the eigenvalues \,, of T', so S = R. O

Definition 5.50. Let H be a Hilbert space and T' € L(H) a positive selfadjoint
compact operator. Then |T'| := (T*T)%. The non-zero eigenvalues s, of |T| are
the singular values of T'.

Obviously |T'| and |T*| are positive selfadjoint compact operators.

Lemma 5.51. (i) || |T|z| = [|Tz|| and || |T*|y|| = |T*y|| and for x € Hy
and y € Ho.

(ii) s is a singular value of T if and only if s* is an eigenvalue of T*T and
TT*.

Proof. (i) For all x € Hy
T e |* = (|T)e, |T|e) = (|Tfx,2) = (T*Tz,z) = | Tz|*.

An analogous calculation shows || |T*|y || = ||T*y|| and for y € Ho.
(ii) follows from the uniqueness of the representation (5.8). O
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Note that |T'| can be defined more generally for positive selfadjoint operators
on a Hilbert space H, see Definition 5.61.

A representation similar to (5.6) exists for arbitrary compact operators.

Theorem 5.52. Let Hy, Hy be Hilbert spaces and T € L(Hy,Hs) a compact
operator.

(i) Let s1 > sg > -+ > 0 be the singular values of T and (Lp,,,){zlzl C Hy and
(¥n)N_y C Hy such that

Tx

I
M=

sn(17@n>¢m x € Hy,

I
—

n

Z

Ty = snly, n)pn,  yE Ha.

n=1
If there are infinitely many s,, then lim s, = 0.
n—o0
(i) The non-zero eigenvalues of |T| and |T*| coincide and are equal to the sy,.

The si are the eigenvalues of T*T and TT*. Moreover, the 1, = %T«pn
are eigenvectors of T*.

Proof. (i) Let (¢n)nen € Hy a ONS such that, see Theorem 5.47,

N N
‘Tll‘ = Z 5'n<7«' ) Lp'n><pn: T"Tax = Z 5?1 <$ s W'n)‘pw

n=1 n=1

Let )y, := T%Tapn. Then (¢ )nen is an ONS in Hy because

1 1 1 .
<1/"n, 5 1/)m> = 9_2<T‘i9n -,T(Pm> = §—2<T*Ttp" 7*pm> = 9_2 Si(sn,m = Onm-

n “n “n
Moreover

1 82
T, = — TT*Tgp = 2T, = 520,
Sn Sn

Hence 0, (T*T)\ {0} = {s2 : 1 <n < N} C 0,,(TT*)\ {0}. Similarly the reverse
inclusion can be shown, so that o, (T*T) \ {0} C o, (T'T*) \ {0}.

(ii) ... O
Theorem 5.53 (Min-Max-Principle). Let Hy, H> be Hilbert spaces, K €
L(H,, H3) a compact operator with singular values s1 > so > s3 > .... Then

s1=||K|| and for n > 2

swn=_ i sw{|Kel ;v € By o Lspan{a,. ), el =1
T1,...xn €Hy

Proof. ... O
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5.5 Hilbert-Schmidt operators

Definition 5.54. Let Hy, H, be Hilbert spaces and K € L(Hy, Hy). K is called
a Hilbert-Schmidt operator if and only if there exists an ONB (ey)xea of Hy such
that

Z [IK ex|? < oo.

AEA

The set of all Hilbert-Schmidt operators from H; to Hs is denoted by HS(H;, Hs).

Theorem 5.55. Let Hy, Hy be Hilbert spaces.

(i) A operator K € L(Hy, H3) is a Hilbert-Schmidt operator if and only if K*
is a Hilbert-Schmidt operator. In this case:

DSIKeal? =Y IKeslP =D [Ker|? < oo

acA peB AEA
for all ONBes (eq)aca of Hi and (ep)pen of Ha.
(if) Every Hilbert-Schmidt operator is compact.

(iii) Let K € L(Hy, H3) be a compact operator with singular values x1 > xo >
s3 > .... Then K is a Hilbert-Schmidt operator if and only if K* is a

Hilbert-Schmidt operator if and only if
> sk <o
n
Theorem 5.55 (i) shows that for K € HS(H;, Hz) the Hilbert-Schmidt norm

K ||us := ( Z |1 K eq H2> for an ONB (eq)aca-

acA

is well-defined.

Proof of Theorem 5.55. (i) Let K be a Hilbert-Schmidt operator and (ex)aea
an ONB of Hj such that Y, [|[ K e ||* < co. For an arbritray ONB (¢3)gen
of Hy we find, using Parseval’s equality (Theorem 4.31) First we show that K*
is also a Hilbert-Schmidt operator.

STIE sl =Y DK g en)en|| =D D (K ws el

BeB BEB [INEA AEA BEB
=3 S s K e = 3 [Kual? < oo
AEA BEB AEA
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In particular, the Hilbert-Schmidt norm of K™ does not depend on the chosen
ONB of Hy. Applying the same proof to K*, it follows that the Hilbert-Schmidt
norm of K = K** does not depend on the chosen ONB of H;. For the proof of
[|K|| < || K|l as we observe that every x € Hy with |z|| =1 can be extended to
a ONB of H;. Hence

[1Kllms > | Kall = sup{|| Kyl : y € Hy, [lyll =1} = [|K]|.

(ii) Let (ex)rea an ONS of Hy and (en)nen a subset containing all ey with
K ey # 0 (this family is at most countable by Lemma 4.27). For n € N let P, be
the orthogonal projection on {ei,...,e,}. Note that all P, are compact because
they have finite-dimensional range. Since K is a Hilbert-Schmidt operator, we
find that

K - KPnH2 = [|K(id 71)")”2 < ”K(id*Pn)Hf{S = Z [ K en ”2 — 0,

m=n+1

in particular K is compact because it is the norm limit of compact operators.

(ili) Assume that K is compact. By Theorem 5.52 we can choose ONSs
(en)ren of Hy and (¢n)ren of Ha such that Kz = Y, oy sn(®, on)tn where
§1 > 89 >+ -+ > 0 are the singular values of K.

If K is a Hilbert-Schmidt operator, then
N N
Zsi = Z K enll® < I Klfs < o0
n=1 n=1

Now assume that Zn 182
(#n)nen- It follows that

N N
DoKA=Y 1K el < [1Kfs = ) s < oo,

AEA n=1 n=1

< oo and choose an arbitrary ONB of H; containing

implying that K is a Hilbert-Schmidt operator. O

Lemma 5.56. The finite-rank operators are dense in the Hilbert-Schmidt op-
erators.

Proof. Let H be a Hilbert space and S € HS(H). In particular, S is compact
and there exist ONBs (¢n)nen and (¢, )nen such that S = 2717\,,:1 Snl* s @n)thn.
For M € N let us define Sy = ny 150( @n)¥n. Then ||S — Sy|> < ||S —

S]\,[H%,IS:ZTL M+15,L~>Ofor M — oco. O

An important class of examples is given in the following theorem.

Theorem 5.57. Let H = Ly(0,1) and T € L(H). Then the following is equiv-
alent:
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(i) T is a Hilbert-Schmidt operator.
(ii) There ezists a k € L2(0,1)? such that

(Tx)(t) :/0 k(s,t)x(s) ds.

In this case we write Ty, for T.
If one of the equivalent conditions holds, then

141 P
HTH:(/U /0 ks, D2 ds. dt)” = k] zago,1y2-

Proof. (ii)) = (i) Let (e,)n be an ONB of Ly(0,1). Then also (&), is an
ONB of Ly(0,1) (where &, denotes the to e,, complex conjugated function) and

we find
/ k(s,t)en(s) ds
n=1"

Z ITen | =
/ t),&)|? dt (5.9)

dt Z/\ t), &% dt

n=1

- /U Ik, B dt (5.10)

1 1
= [ .00 s e = a0
0 0

In (5.9) we have used the monotone convergence theorem to exchange the
sum and the integral (Theorem A.18) and in (5.10) we used Parseval’s equal-
ity (Theorem 4.31). It follows that T is a Hilbert-Schmidt operator and that
[Tll1s = 11kl Lo (0,1)2-

(i) = (ii) By the proof we have an isometry

W Ly(0,1)% = HS(L2(0,1)), Wk =T}.
We will show that the range of ¥ is dense in HS(H). By Lemma 5.56 it suffices

to show that rg(¥) contains the finite-rank operators. Let T' be of finite rank.
Then T is of the form T = 220:1< , Tn)Yn SO that for every f € H

no no no

TF() =D (f s wn)yn(t Z/ F(8)zn(s)yn(t) ds—/ (Z“L" $)yn(t )(a) ds.

n=1 n=1

This shows that T € rg¥. Fix S € HS(H) and choose a sequence (Sp)nen in

the range of W. Since ¥, is an isometry, it follows that (lIl’lS,,L),LeN is Cauchy
sequence in H, hence its limit exists. Using the continuity of ¥ we find

n—oo

S = lim S, = hm R \I!( lim \IJ’]STL) € rg(P). O
n—oo
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Theorem 5.58. Let Hy, Hy be Hilbert spaces.

(i) (HS(Hl,Hz)7 Il HH5> is a normed spaces. The norm is induced by the
inner product

(S, Thus =Y (Sea,Tea), ST €HS(Hy, Hy),

for an arbitrary ONB (eq)aca of Hi.

(ii) Let T € HS(Hy, H3) and A a bounded linear operator between appropriate
Hilbert spaces. Then AT and T A are Hilbert-Schmidt operators and

AT lus < NAINT s, [T Allns < AT |ms-
(ili) HS(H) is a two-sided ideal in L(H).

Proof. Note that (a+b)? = a®+b?+2ab = a>+b*— (a—b)? +a®+b? < 2(a®+b?)
for a,b € R.

(i) Let S,T € HS(Hy,Hs) and A € C. Then obviously AS € HS(H:, Hz). To
show that S + T € HS(H;, Hz) fix an ONS (ex)rea of Hy. Using the above
remark is follows that

DS+ el <Y (ISen ]+ [Texl)* <2 Sexl* + [T ex || < oo
AEA AEA AEA

It follows that (-,-)ug is well-defined. The properties of an inner product are
clear. In particular, ||T||us = (T, T)us for T € HS(H,, H>).
(ii) Note that

Do lATex P < JAIP Y ITex ) = |AIPI T Ils.
AEA AEA

so AT is a Hilbert-Schmidt operator. It follows that TA = (A*T™)* is also a
Hilbert-Schmidt operator with norm || TAllus = |[(A*T*)*||us = [|A*T*|lus <
1A T s <= AT |ms-

(iii) is a consequence of (i) and (ii). O

5.6 Polar decomposition

Theorem 5.59. Let H be a Hilbert space and T € L(H) a selfadjoint operator
with T > 0. Then there exists evactly one R € L(H) such that R >0 R?2=T.

In addition, if S € L(H) commutes with T, then S commutes with R.

the operator R is called the root of T and is denoted by V/T.
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Proof. Without restriction we can assume || 7']| < 1, hence 0 < 7' < id. Now
assume that a solution R € L(H) of R? = T exists. Let A := id—T and
X :=id —R. Note that

id-A=T=R*>=(1-X)?=id—2X + X2

Note that 0 < R < id if and only if 0 < X < id. Hence R is a non-negative
solution of R? = T if and only if X is a non-negative solution of

X = %(A+X2). (5.11)

Step 1. Construction of a solution of (5.11).
We define

n—1

1
Xo :=1id, Xy = §(A+X2 ), neN
Note that every X,, is a polynomial in A with positive coefficients and that
XX = X X, for all n,m € N. Since A is positive, this implies that all X,

are positive. We will show the following properties of the sequence (X,,)nen by
induction.

(i) X, — X,—1 is a polynomial in A with positive coefficients, so that in
particular X,, — X,,—; > 0.

(if) | Xn)l < 1.

All assertions are clear in the case n = 0 (with X_; := 0). Now assume that
the assertions are true for some n € N. Note that

1 1 1
KXny1— Xn = 5(14 +X7) - §(A +X7 )= §(X121 - Xi1)
1
= E(Xn — Xno1) (X + Xno1).
Since by induction hypothesis both terms in the second line are polynomials in
A with positive coefficients, (i) is proved for n + 1. (ii) follows from || X,4+1|| <
sUIA]+ 1 Xnal) < 1.
Since (X, )nen is uniformely bounded monotonically increasing sequence in,
there exists an X € L(H) such that X = s-lim X, and || X || < liminf, . || X5 || <
n — oo

1 (see Exercise 4.25).
Now let S € L(H) with ST = T'S. By definition of A, then also SA = AS and
X, S = X, S for all X,, since the X, are polynomials in A. For every = € H we
therefore obtain

0<[|SXz— XSz| = lim |SX,z — X,,Sz| = lim ||SX,z — SX,z| =0.
n—00 n—oo
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Since all X,, commute with 7', it follows that X, X = X, X for all n € N, so
that for all z € X

X7 = X2)all = 1(Xn — X)(Xn + X)a|| < 20/(Xn - X)%2l| — 0, n— o0,
which shows that X? = s-1lim X2. Therefore X solves (5.11) because
n — oo

1

. . 1 N 1 :
X = s;lgnooXn = S;ngnoé(A +X2) = §(A+57—1151{)CX72L) = §(A+X2).

Setting R = id —X we obtain a bounded selfadjoint solution of R? = T with
0<R<id

Step 2. Uniqueness of the solution.

Let R’ € L(H) be solution of R? = T with R’ > 0. Then R and R’ commute
because

R'A=R(R)? = (R)’R = AR'.
It follows that
(R—RH)R(R-R)+(R-R)R(R-R)=(R*-R*)(R—-R)=0.

Since both operators on the left hand side are non-negative, it follows that both
of them are 0 and therefore

(R—R)' =(R-R)R(R-R)— (R— R)R'(R—R') = 0.
Since R — R’ is normal, it follows that ||(R — R')||* = ||(R — R')||*. m|

Corollary 5.60. If S,T € L(H) are positive and ST = TS, then also ST is
positive.

Proof. By Theorem 5.59 the root of T exists, is selfadjoiunt and commutes with
S. Hence for all v € H

(STx,z) = (SVTVTz ,z) = (NTSVTx,z) = (SVTx ,VTz) > 0. O
Definition 5.61. For T € L(H) we define |T| := (T*T)%.

Definition 5.62. Let Hy, H> be Hilbert spaces and U € L(Hy, H2). U is called
a partial isometry if U|(ker vy~ is an isometry. ker U L is called its initial space.

Note that U is an partial isometry if and only if
Ul(ker vy : (ker U)*t — rg(U)

is unitary.

Chapter 5. Spectrum of linear operators 127

Theorem 5.63 (Polar decomposition). Let Hy, Hy be Hilbert spaces and
T € L(Hy, Hy). Then there exists a partial isometry U € L(Hy, Ha) such that
T = U|T|. If in addition the initial space of U is (ker T)*, then U is unique.

Proof. Note that || |T|z||? = ||Tz||? for all 2 € Hy because
Tl |[* = (|T|2,|T|2) = {(T*T)%a, (T°T)32) = (T*Tw,2) = (Tz, Tx) = | Tz|*.
We define
U :rg(|T|) — rg(T), U(|T|x) =Twx.

U is well-defined because for z,y € Hy with |T'|z = |T'|y it follows that |72 —
Tyl = ||IT)z — |T|y|| = 0 hence Tz = Ty. U is and isometry because ||Tz| =
|| |7z || for all € H as shown above. In particular, ||U|| = 1 and has a unique
continuous extension to rg(|7|) — rg(T). Now we extend U to Hy by setting

Uz =0foralze rg(|T\)J' = ker(|T|) =kerT. O
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Appendix A

Z) spaces

Spaces of integrable functions play an important role in applications. As the
norm of a function f : [a.b] — K one could consider

b
If] = / ()] dt,

or more generally, for some 1 < p < oo

b 3
£l = ( [ ior dt> .

It can be shown that ||-]|, is a norm on C([a, ]). However the space of continuous
functions C([a, b]) is not complete for the norm || - [|;. For example, let

tn,o0<t<l1,
fo: 02 R fult) = {1, 1<t<2
All f,, are continuous and it is easy to check that || f, — fim||1 — 0 for n,m — oco.
So the f, form a Cauchy sequence, but it is not convergent. (If it were, then
there must exist a continuous function g such that

2 1 2
/U Falt) — g(b)] dt = /0 [Falt) — g()] dt + / [Falt) — 9O dt — 0

for n — oo. Hence g(t) = 0 for t € (0,1) and g(t) = 0 for t € (1,2) which is
impossible for a continuous function by the intermediate value theorem.

If we extend the space of functions to the Riemann integrable functions R([a, b]),
then the sequence above does converge to x[1,2). But there are several other
problems with the space of Riemann integrabel functions.

For example, let QN[0, 1] = {gy : n € N}. Then all characteristic functions x, :=
X{a1,....qu} are Riemann integrable, ||x,[l1 = 0, the x, form a Cauchy sequence,
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the pointwise limit exists and is xgn[o,1] Which is not Riemann integrabel. This
example shows that ||-||; is only a seminorm on R([a, b]), that Cauchy sequences
do not need to converge and that in general pointwise limit and integral cannot
be exchanged. The pointwise limit of a sequence of Riemann integrable functions
does not need to be Riemann integrable.

Recall that the Riemann integral of a function f : [a,b] — R is obtained as
the limit of Riemann sums when the interval [a,b] is divided in small pieces.
Lebesgue’s approach is to divide the range of the function in small pieces and
then measure the “size” of the pre-image. Hence admissible are functions whose
pre-images of intervals can be measured in some sense.

A.1 A reminder on measure theory
Definition A.1. Let T be a set and ¥ C PT" a family of subsets of T'.
(i) ¥ C PT is called a ring if for all A, B € ¥ also AUB and A\ B belong to
3.
(i) ¥ C PT is called a o-ring if it is a ring and |J
3.
(iii) ¥ C PT is called an algebra if ¥ is a ring and T' € X, that is

hen An € X for all (An)nen C

(a) Dex,
(b) Ae X = T\Aex,
(c) AABeX = AUBeZX.

(iv) ¥ C PT is called a o-algebra if it is a algebra and |J
(An)nen € 2.

nen An € X for all

Note that for A,B € X also ANB= A\ (T'\ B) € X if ¥ is an algebra.

Remark. ¥ is indeed a ring in the algebraic sense if one sets A + B := (AU

B)\(ANnB)and A-B:= ANB.

Definition A.2. Let T be a set with a o-algebra . A measure on ¥ is a
function p : 3 — [0, 0o] such that

(i) (@) =0,
(i) (An)nen C A with pairwise disjoint A, = p(Une; An) = Yoney 1(An).

Obviously, the intersection of rings is again a ring and PT" is a ring. Hence, given
a family U of subsets of T', there exists a smallest ring containing U, namely the
intersection of all rings that contain ¢/. This ring is called the ring generated by
U. Analogously the o-ring, the algebra and the o-algebra generated by U are
obtained.
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Example A.3. The smallest o-algebra containing all intervals of R is called
the Borel sets.

More generally, let (T',0) be a topological space. Then the Borel sets is the
o-algebra generated by O.

The aim is to assign a measure pu(U) to every Borel set U C R such that the
measure of intervals is its length.

Definition A.4. Let T be a set with a ring ¥ of sets. A pre-measure p on
(T,%) is a function

X —[0,00]

such that p(0) = 0 and

(An)nen C X, pairwise disjoint and U A, e =y U Ap) = Z 1(Ay,).

neN neN neN

Note that a pre-measure is monotonic: if A, B € ¥ and A C B, then p(A) <
u(B).

Example A.5. Let A be the set of all finite unions of finite intervals and
define p(A) := [ xadx where x4 is the characteristic function of A. Then
is a pre-measure on A.

Proof. Obviously A is a ring, for every A € A the characteristic function x4 is
Riemann integrable and u()) = 0. Now let (A, )nen C A be pairwise disjoint
with U,,cy An € A. Obviously, u(Uy_y An) = Yo_ i(Ay) for every n € N.

For n € N define B, := A\ (4, U---UA,). Obviously, B,, € A and
w(A) = p(| Ar) + 1(B).

To prove that (A) = p(Up; Ar) it suffices to show that lim u(B,) = 0. Fix
n—o0

e > 0. Since B € A there exists an compact set C,, C B,, with u(B,, \ Cy,) <

27"e. Let D,, := CyN---NC,. Then all D,, are compact and D,, C C,, C B,,.

By construction, By 2 B2 D Bs..., hence

n n

(B \ Dn) = p(Bn \ (Cr N -+ N Co) = (| (B \ Ci)) < (| (B \ C))
=1 k=1

< ZM(B/c \ Ck) < szE =e
k=1 k=1
On the other hand, ﬂz‘;l D, C ﬂzo:] B,, = 0. Since all D,, are compact and
Dy D Dy D ..., there exists an K € N such that D,, = (), n > K. Hence
w(By) = u(By \ Dp) < e foralln > k. O
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In order to measure all Borel sets, we have to show that the pre-measure of
Example A.5 can be extended to the Borel sets.

Theorem A.6 (Hahn). Let T be a set, A a ring on T and fi a pre-measure
on A. Let 3(A) be the o-algebra generated by A. Then

p(A) = inf { 3 i(An) + (Ahnen € AC [ 40

n=1
If fuis o-finite, i. e., if there exist An, € ¥ with p(Ay) < 00 and T = J;—; An,

then the extension i is unique.

For the proof, we first show that fi can be extended to an outer measure p* on
PT. Then, by the lemma of Carathéodory, the restriction of the outer measure
to the set of the p*-measurable sets is a measure.

Definition A.7. Let A be a o-algebra on T. An outer measure on A is a
function p* : A — [0, 00| such that

(i) w (@) =0,
(i) A,Be Awith ACB = p*(A) <p*(B).
(ii)) (An)nen €A = p*(Unly An) < 2507, 1*(An).
A set A € Ais called p*-measurable if
W(Z) =1 (Z0A) +ut(Z\A),  ZeA

Lemma A.8. With the assumptions of Hahn’s theorem (Theorem A.6)

w(A) =it {0 AAn) ¢ (Aanen €A, AC | An}
n=1 n=1

defines an outer measure on PT. In addition, u(A) = p*(A) for A€ A.

Proof. Properties (i) and (ii) of an outer measure are clear. Now let (A4, )nen
PT and»a > 0. Then there exists a family (B},)n jen € A such that A,
Uj.il Bl and

NN

0o

p . €
dowB) <ui(An)+ 55, neN.

j=1
By construction A := U, ey An € U, jen BJ and

=)

W) < S uB) <3 pt(A) +e.
n=1

n,j=1
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Note that (B )n jen is countable, hence we have proved p*(A) < 307 | u*(Ay).
Now let A € A. Clearly, u(A4) < p*(A) holds. Now fix e > 0 and choose

(An)nen € A such that A C |, oy An and

Z/L(An) < p'(A) +e. neN.
n=1

Since A = J,,cn(An N A) and p is a pre-measure on A, it follows that

o

WA NA) <> p(Ay) <p'(A)+e. neN
1 n=1

M3

n(A) <

n

Since this is true for all € > 0, it follows that u(A) < u*(A). O

Lemma A.9 (Carathéodory). Let u* be an outer measure on PT. Then the
set M of all p*-measurable sets is a o-algebra and p* is a measure on M.

Proof. ...... O

Proof of Theorem A.6. It suffices to show that the set of the p*-measurable sets
contains A ... O

Hahn’s theorem gives the desired measure on the Borel sets.

Definition A.10 (Lebesgue completion). Let (7,3, 1) be a measure space.
A C T is a zero set if there exists a B C T with u(B) = 0 and A C B (note
that A does not necessarily belong to ). The o-algebra generated by ¥ and
the zero sets is called the Lebesgue completion.

The measure on the completion of the Borel sets in R is the Lebesgue measure,
usually denoted by A. .

A.2 Integration

In the following, I is always an interval in R.

Definition A.11. A function f : I — R is called measurable if for every (a,b) C
R its preimage f~'((a,b)) is a Borel set.

More generally, let (T, X, ur) and (S, Xg, us) be measure spaces. A function
f:T — S is called measurable if for every U € X also f~1(U) € r.

Example A.12. Let E be a Borel set. Then the characteristic function xg is
measurable.
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Definition A.13. Let (7, %, 1) be a measure space. A function f: T — C is
called a simple function if there are Ej, € ¥ and «aj, € C such that

n
=" axm,.
k=1

It is easy to see that simple functions are measurable. Note, however, that the
sum representation of a simple function is not unique.

The next theorem lists important properties of measurable functions.

Theorem A.14. Let I be an interval in R and fn, f, g : I — R be functions.

(i) If f and g are measurable, then so are f+g, fg, i (if it exists), max{f, g}
and min{f, g}.
(ii) Ewvery continuous function is measurable.

(iil) If all f,, are measurable and f is their pointwise limit (i. e. f(¢t) = lim f,(¢)

n—00

ft), t €I), then f is measurable.
(iv) If f is measurable, then there exists a sequence (¢n)nen of simple functions

that converges pointwise to f. If in addition f > 0, then the sequence can
be chosen such that pn(t) 7 f(t), t € 1.

(v) If f is measurable and bounded, then there exists a sequence (¢n)nen of
simple functions that converges uniformly to f.

The theorem says that the set of the measurable functions are a vector space
and that it is stable under taking pointwise limits.

Next we introduce the integral for positive functions.

Definition A.15. Let (T, %, 1) be a measure space.

(i) Let f=Y")_, arxe, with E; € ¥ and oy, € [0,00] a simple function. We
define its integral as

/ Fdu=>" aru(Ey).
T k=1

(if) Let f:T — [0,00] be a measurable function. Choose a sequence (¢, )nen
of simple functions with ¢1 < @5 < ... that converges pointwise to f. We
define the integral of f by

/fd,u: lim /Qn,d,u.
T n—o0 T

Of course, it must be proved that the integral in (i) does not depend on the sum
representation of the simple function, and that the limit in (ii) does not depend
on the chosen sequence of simple functions.
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Definition A.16. Let I be an interval in R.
(i) A function f: T — [0,00] is called (Lebesgue) integrable if [, f dX\ < oo.

(ii) A function f : I — R is called (Lebesgue) integrable if f* := max{f,0}
and f~ := max{—f,0} are integrable. In this case

/Ifd/\::/lf+d)\f‘/lf’ d.

(iii) A function f : I — C is called (Lebesgue) integrable if Re(f) and Im(f)
are integrable. In this case

/f dA = / Re(f) d/\+i/hn(f) dA.
I I I
The Lebesgue integral has the following properties.
Lemma A.17. (i) If f,g are Lebesgue integrable and o € K, then
/((yf+g)d)\:u/fd/\+/gd)\.
I I I

(ii) If f is Lebesgue integrable then

\/I'f a| g/fm P

For Lebesgue integrals much stronger convergence theorems hold than for the
Riemann integral. The most important convergence theorems are the following.

Theorem A.18 (Monotone convergence theorem). Let (fy)nen be a se-

quence of measurable functions fn : I — [0,00] with 0 < f1 < fo <---. Then
FrIsfoed f):= lm fu()

is measurable and

/f d\ = lim /fn dA.
Jr n—oo I
The monotone convergence theorem is also called Beppo Levi theorem.

A sequence (f,)nen converges to f M-a.e. if the set, where the sequence does
not converge to f, has measure zero.

Theorem A.19 (Dominated convergence theorem). Let (fy)nen be a se-

quence of measurable functions and assume that there exists a measurable func-

tion f such that f(t) = lim f,(t) X-a.e. If there exists an integrable function
n—00

g with |fn] < g A-a.e., then f is integrable and

/ fdA= lim / fa dA.
I n—oo T
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The dominated convergence theorem is also called Lebesgue’s convergence the-
orem.

Theorem A.20 (Fatou’s lemma). Let (f,)nen be a sequence of integrable
functions and assume that there exists a measurable function f such that f(t) =
ILm In(t) X-a.e. If there exists a C such that [; fn dX < C for alln € N, then

f is integrable and

/ £ d\ < liminf / fn dA.
I n—oo I

A.3 £, spaces
In the following, € is always an open subset of R™.
Definition A.21. For 1 < p < oo we define

2,(Q) = {f : Q = K: f measurable, / [f[PdXx < oo},
Q
= ([15)", rez@.

Definition A.22. For a measurable function f : Q — K we define the essential
supremum

esssup f = inf{C e R: f(t) < C for \-almost all ¢},
essinf f := —esssup(—f)
and
Lo () :={f : @ = K: f measurable, esssup |f| < oo},
[flloo :=esssup[f],  f € Zoo(8).

It is easy to see that £ () is a vector space. For 1 < p < oo this follows from

/ If +glP dA < /(\f\ +lgl)? dr < /(Qmax{\fla lglH)? dA
Q Q Q

<2 [ max{|f17,lg7} dx <22 [ 17+ gl A
Q Q
= (I £112+ llg]2) < oc.
That \f € &, for A € K and f € %), is clear.

That || - ||, is a seminorm on .%, follows from the Minkowski inequality:

Theorem A.23 (Minkowski inequality). Let 1 <p < oo and f,g € Z,().
Then

I +gllp < 1£llp + gl
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For the proof of the Minkowski inequality, Holder’s inequality is used.

Theorem A.24. Let 1 < p < oo and q the conjugated exponent, i. e., =1.

If f € Z,(Q) and g € £4(Q), then fg € Z1(Q) and
I£gllx < [1f11pllgllq-

1,1
P+(1

Note that .Z,(€) is only a seminormed space, because there are non-zero func-
tions f with || f||, = 0.

Theorem A.25. (Z,(Q), |- |l,) is complete.

Definition A.26. Let Nj,(Q) :={f € &, : ||f|l, = 0}. Then L, := Z,(Q)/N(Q)
is a complete normed space.

Usually an equivalence class [f] € L,(Q) is simply denoted by f.

Often one is interested in dense subspaces of Ly (€2).
Theorem A.27. Let 1 <p < oo and 2 € R™ open. Then the test functions
Ce () == 2(Q) == {p € C(Q) : supp(p) C Q is compact}.

form a dense subset of L,(€2).
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Appendix B

Exercises

Exercises for Chapter 1

1. Banach’s fixed point theorem. Let M be a metric space. A map f :
M — M is called a contraction if there exists a v < 1 such that

d(f(z), f(y)) <vd(z,y), =z,yeM.

Show that every contraction f on a complete normed space M has exactly
one fixed point, that is, there exists exactly one zy € M such that f(zo) =
Zg.

2. Let X be a normed space. Then the following is equivalent:

(i) X is complete.

(ii) Every absolutely convergent series in X converges in X.

3. Let X be a normed space. Show:

(a) Every finite-dimensional subspace of X is closed.

(b) If V is a finite-dimensional subspace of X and W is a closed subspace
of X, then

VAW ={v+w:veV, we W}
is a closed subspace of X.
4. Let T be a set and £oo(T") be the space of all functions z : T' — K with
lz|loo := sup{|z(t)| : t € T} < 0.

Show that (£oo(T), | - |leo) is a Banach space.
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. Let the sequence spaces d, cg, ¢ be defined as in Example 1.15.

(a) Show that (co,| - [leo) and (¢, || - [|oo) are Banach spaces.

(b) Show that (d, || - ||oo) is a normed space, but that it is not complete.

. Sea X un espacio normado con dim X > 1y S,T operadores lineales en X
tales que ST — T'S = id. Muestre que al menos uno de estos operadores no

es acotado. Ayuda: Muestre que ST — TG = (n +1)T™.

. Sean X y Y espacios normados con X de dimensién finita. Muestre que
toda funcién lineal T': X — Y es acotada.

(a) Sea X = C([a,b]) con la norma | - ||oo. Muestre que
b

T:X —C, T;L‘:/x'(t)dt
a

es un operador lineal y acotado. ;Cudl es su norma?

(b) Ahora considere X con la norma

b 1/p
lellyi= ([ letor ar) ™, aex,

para 1 < p < co. ;Sigue siendo T acotado? Si es asi, calcule su norma.

. Sea 1l < p < oo. Para z = (2n)nen € loo sea T : £, — {, definido por
(Tx)n = Znzn para & = (Tn)nen € £p. Muestre que T' € L({,) y calcule || T']|.

Exercises for Chapter 2

1. Demuestre el teorema de Hahn-Banach para espacios vectoriales complejos.

Sugerencia: Para un espacio vectorial sobre los complejos X muestre que:
(a) Sea ¢: X — R un funcional R-lineal, entonces
Vo: X = C, Vy(z):=p(z) —ip(z),

es un funcional C-lineal sobre X con ReV,, = .
(b) Sea A: X — C un funcional C-lineal con Re A = ¢, entonces V,, = A.

(c) Sea p un funcional sublineal sobre X y ¢, V,, definido como en el punto
anterior, entonces

lp(@) < p(z) = [Vo(@)| <px), =X

(d) el = Vel

Chapter B. Exercises 141

2. En X = (5(N) considere el subespacio

U = {(@n)nen : n = 0 excepto para un numero finito de indices n}.

Sea V' el complemento algebraico de U en X, i.e., U es un subespacio tal
que U+V =Xy UNV ={0}. Muestre que

o0
p: X - K, @(x):Zun paraz =u-+vconu €U, veEV.
n=0

es un funcional lineal bien definido y no acotado.

(a) Sea ¢ C £y el conjunto de las sucesiones convergentes. Muestre que el
funcional

poic— K, = (l‘n)neN = lim @,
n—00

es continuo y calcule su norma.
(b) Sea lo(N,R) el conjunto de todas las sucesiones acotadas en R con la

norma del supremo. Muestre que existe ¢ € (¢oo(N,R))" tal que

liminf 2,, < ¢(z) < limsup @y, T = (Tn)nen € loo.
n—oo n—oo

. Sea X un espacio normado, f : X — K un funcional lineal no nulo y K =

ker f

(a) Muestre que dim(X/K) = 1.

(b) Muestre que f es continuo si y solo si ker f es cerrado.

. Un isomorfismo entre espacios normados X y Y es un homeomorfismo lineal.

Pruebe las siguientes afirmaciones.

(a) SiT:X — Y esun isomorfismo [isométrico] entre los espacios norma-
dos X y Y, entonces T : Y' — X’ es un isomorfismo [isométrico]. Si
X y Y son espacios de Banach, el converso también vale.

(b) Si un espacio normado Y es isomorfo a un espacio de Banach reflexivo
X, entonces Y es un espacio de Banach reflexivo.

5. Sea X un espacio normado separable y (2], ),en una sucesion acotada en X'.

3 22 / / ’
Entonces existe una subsucesion (z7,, Jren y 2o € X' tal que
: / /
lim z, (z) = zo(x), rzeX.
k—o0

Es cierto esto sin la hipétesis de que X sea separable?
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7. Sea X un espacio normado y M un subespacio de X. Sea

9.

L={feX'| f(z) =0 paratodox € M}.

Muestre que L es un subespacio cerrado de X’ y que M’ es isométricamente
isomorfo a X'/L.

. Sea X un espacio compacto, Cr(X) el conjunto de funciones continuas real-

evaluadas sobre X y Y C X un subconjunto cerrado.

(a) Considere el mapa p : Cr(X) — Cr(Y) definido por p(f) = fly.
Muestre que I := ker(p) es un subespacio cerrado de Cr(X).

(b) Sea p: Cr(X)/I — Cr(Y) el mapa inducido en el espacio cociente.
Pruebe que p es una isometria.

(¢) Demuestre que rg(p) es completo.

(d) Use el teorma de Stone-Weierstrafl para concluir el teorema de Tietze:
Sea X un espacio compacto de Hausdorff y ¥ C X un subconjunto
cerrado. Entonces cada funcién continua f : ¥ — R tiene una extension
continua f : X — R con ||fllox) = Il fllew)-

Muestre que en Iy la convergencia débil y la convergencia en norma coinciden.

Exercises for Chapter 3

1.

(a) Todo espacio métrico completo con infinitos elementos y ningin punto
aislado es no enumerable.

(b) Toda base algebraica de un espacio de Banach infinito dimensional es
no enumerable.

(a) Sea X un espacio de Banach, Y un espacio normado y (T),)nen C
L(X,Y). Suponga que para todo z € X el limite Tz := lim7,,x existe.
Entonces T' € L(X,Y). nel

(b) Sean X,Y espacios de Banach, Y reflexivo, y (T)nen € L(X,Y) tal
que (¢(Th,x))nen converge para todo z € X y ¢ € Y’. Entonces existe
un T € L(X,Y) tal que T, = T.

. Muestre que la hipétesis de completitud en el principio de acotacién uniforme

es necesaria.

. Sea [a,b] C R, n € Ny tome a < t(ln) < o<tV <y aL") c K,

k=1,...,n. Para f € C([a,b]) se define
Qu(f) =Y ol F(5").
k=1

Muestre que los siguientes enunciados son equivalentes:
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(a) Qn(f) — /b f(t) dt, n — oo, para todo f € Cla,b].

b
(b) Qun(p) — / p(t) dt, n — oo, para todo polinomio p : [a,b] = Ky

g
sup Sp_, g < oo,
neN

Sean X, Y, Z espacios de Banach y T : X O D(T) — Y un operador lin-
eal.

(a) Sea S : X D D(S) — Y un operador lineal. Entonces la suma de
operadores S + T se define como

D(S+T):=D(S)ND(T), (S+T)x:=Sx+Tx.

(b) Sea R:Y 2 D(R) — Z un operador lineal. Entonces el producto de
operadores o composicion RT se define como

D(RT) :={z e D(T): Tz € D(R)}, (RT)z := R(Tx).

. Sean X, Y, Z espacios de Banach, R € L(X,Y), T : X D D(T) — Y,

S :Y 2 D(S) — Z operadores lineales cerrados. Muestre que:

(a) R+ T es un operador lineal cerrado.
(b) SR es cerrado.
(c) Si S es continuamente invertible (i.e., S~ : rg(S) — Y existe y es

continuo), entonces ST es cerrado.

Muestre ademds que estas afirmaciones siguen siendo vélidas cambiando
“cerrado” por “clausurable”

. Sea X = (5(N) y

T:X2D(T)— X, Tz = (n@p)nen para = = (Ty)nen.
Diga si T' es cerrado con:

(a) D(T) ={x = (zn)nen € £2(N) : (nzp)nen € L2(N)},
(b) D(T)=d={z = (zn)nen € l2(N) : z, # 0 para solo finitos n}.

Z

. Sea X un espacio de Banach, n € N y T un operador lineal densamente

definido de X en K™. Muestre que T es cerrado si y solo si T' € L(X,K").

. Sean X y Y espacios normados y T : X D D(T) — Y un operador lineal

cerrado.
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10.

11.

12.

13.

(a) Sea K C X compacto. Muestre que T'(K) es cerrado en Y.

b Muestre que si F' es un compacto en Y entonces 7' L F') es cerrado en
q P
X.

(c¢) 4Si A es cerrado en X, es cierto que T(A) es cerrado?

. Sea X un espacio normado. Una sucesién (2, )nen € X es una sucesion débil

de Cauchy si para todo ¢ € X’ la sucesion (¢(z,))nen €s una sucesién de
Cauchy en K.

(a) Sea x = (xn)nen una sucesiéon acotada en X. Muestre que z es una
sucesion débil de Cauchy si y solo si existe un subconjunto denso U’ de
X' tal que (p(xn))nen es una sucesién de Cauchy para todo ¢ € U'.

(b) Toda sucesién débil de Cauchy en X es acotada.

Sea X un espacio de Banach, (z3)nen € X, (¢n)nen € X', y 7o € X,

o € X' tal que z,, M) Ty On — . Muestre que lgn on(Tn) = po(zo).
n—ro0

Sea X un espacio normado.

(a) Muestre que (X, |- ||)’ = (X, o(X,X"))". Es decir: un funcional lineal
¢ : X — K es continua con respecto a la topologia inducida por || - || si
y s6lo si es continua con respecto a la topologia débil.

(b) Sean (#,)nen € X, 20 € X ¥ (@n)nen C X', 0o € X' tal que @, — xo
Y ©n 25 . Muestre

[lzo|| < liminf ||z, llpoll < liminf ||p,||.
n—»00 n-—00

(c) Sean S ={z € X :|z|| =1} la esfera unitaria y K = {z € X : |jz]| =
1} la bola unitaria cerrada en X. ;Siempre son débilmente cerradas
(prueba o contraejemplo)?

Para n € N sea e, = (0,...,1,0,...) la sucesién que tiene 1 en la posicién
ny 0 en el resto.

(a) Muestre que (€y,)nen 1o es convergente débilmente en £;.

(b) Muestre que (e,)nen €s w* convergente en (1.

Sea X un espacio vectorial y M C X un subconjunto convexo, balanceado

y absorbente. Muestre que el funcional de Minkowski pjs es una seminorma
en X.
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Exercises for Chapter 4

1. Sea X un espacio pre-Hilbert, U C H un subespacio denso y zp € X tal que
(zo ,u) = 0 para todo u € U. Muestre que zo = 0.

2. Sea w € C([0,1],R). Para z,y € C([0,1]) se define

1
(T, Y)w ::/0 z()y(Ow(t) dt.

Halle una condicién necesaria y suficiente spobre w para que (-,-
un producto interno. Bajo qué condicién la norma inducida por (-,-), es
equivalente a la norma usual de Lo?

3. Let H be Hilbert space, (zn)nen € H and zg € H. Then the following is
equivalent:
(a) zp — zo.
®) |za| = xo and 2, <> xp.
4. Ejemplo de una proyecciéon no acotada. Sea H = Iy y e; el vector usual
el = 67. Defina
Ly := span{eant+1 :n € No}

1 1 1
Lo := span {61 + 562,63 + 2—264,85 + 2—365, .. }

Muestre que Ly N Ly = {0}.
Muestre que Ly & Ly = H.
Muestre que Ly & Lo # H.

Defina el operador Py : Ly & Ly — L1 @ Lo, Po(z +y) = z. Muestre
que Py es una proyeccién no acotada.

a o o

5. Para A € R defina fy : R — C, fi(s) = ¢ y sea X = span{f\ : A € R}.
Muestre que

T
(7o) = Jim g [ (G ds

define un producto interior en X. Muestre que la completacién de X no es
separable. (|| fx — fx |l =7)

Los elementos en la completacién de X se llaman funciones casi periddicas.

6. (Existe algtn producto interno (-, -) en C[0,1] tal que (z,z) = ||z||% para
todo z € C[0,1] ?
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7. Sea X un espacio pre-Hilbert. Muestre los siguientes resultados
(a) Sean z,y € X con = L y, entonces
llz +yll* = llz + lly)>.

. El converso es cierto en general? ;jHay algin caso para el que se tenga?
(b) Siz#0,y#0yax Ly muestre que el conjunto {z,y} es linealmente
independiente.
;Como se puede generalizar este resultado?
(c) = Ly,siysolosi|z+ ay| > |z| para todo escalar a.

8. Let H be a Hilbert space, Y C H a subspace and ¢ € Y. Show that there
exists exactly one extension ¢ € H' of o with [[o = ||¢]|-

9. Sea X un espacio pre-Hilbert y U C X un subespacio. Muestre que
(a) U #U*. ;Se tiene alguna contenencia?

(b) TeUt#X

10. Sea 1 < p < oco. Para f € L,(R) y s € R defina T : Ly(R) — L,(R) como
(Tsf)(t) :== f(t — s). Claramente los T son isometrias lineales.

(a) Sea 1 < p < oo. Muestre que T} 5id para s — 0. Los T, convergen
en norma?

(b) Los T, convergen en norma o convergen fuertemente en el caso p = co?

11.

—

Muestre que W™ (), H™(Q) y H{*(Q2) son espacios de Hilbert.

Para el problema 4.10: Para Q@ C R definimos el conjunto de funciones de
prueba

2(Q) :={p € C™(Q) : supp(p) C Q es compacto}.

Para un multi-indice a = (a1, ..., ap,) € N" se define |a| = a1+ 4+ ay, y
Dp =07 ... 0% si la derivada existe.

Sea f € Ly(2). Una funcién g € Ly(Q) se llama la derivada débil a-ésima
de f si

(g,9) = (=)"Kf, DY), ¢ €2(Q).

Note que la derivada débil es tinica si existe; se denota por D(®) f.

Para m € N definimos el espacio de Sobolev

W™(Q) := {f € L2(Q) : DY f € Ly(Q), |a] < m}.
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12.

13.

14.

W™(Q) es un producto interior con

(fsghwnm =Y (D[, DNg),.

o] <m
Ademas, definimos los espacios
H™(Q) := C™(Q) N Wm(Q) and HMQ) = 2(Q)
donde la clausura es tomada con respecto a la norma inducida por (-, -)ym.

Sea H un espacio de Hilbert and B : H x H — K sesquilineal. En H x H

considere la norma ||(z, y)|| := /||z]|? + ||y]|*-

(a) Muestre que las siguientes son equivalentes:

(i) B es continua.
(ii) B is parcialmente continua, es decir, para cada z fijo, y — B(zo, y)
es continua para cada yo fijo, x — B(z,yo) es continua.
(iii) B es acotado, es decir, existe M € R tal que || B(z,y)| < M|z||y|l
para todo z,y € H.

(b) Si B es continuo, entonces existe T € L(H) tal que
B(z,y) =(Tz,y), w,ycH

(c) Siademds existe m > 0 tal que B(z,z) > m|z|?, = € H, entonces T
es invertible y |77 < m~%

Sea H un espacio de Hilbert. Muestre que para toda sucesién (z,,), C H
acotada, existe una subsucesion (z,, )i tal que la sucesion (Y, )m donde,

1 m
Ym = E;Inm

converge.

Sea X un espacio normado, (z,)neny € X y @ € X. Las siquientes son
equivalentes:
(a) Y,en Tn converge incondicionalmente a .

(b) Para todo ¢ > 0 existe un conjunto finito A C N tal que para todo
conjunto finito B con A C BCN

[ a] <=
beB

. Sea H un espacio de Hilbert. Si P : H — H es un operador lineal, las

siquientes son equivalentes:
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(a) P es una proyeccién ortogonal.
(b) P*=Py(Pz.y)=(z,Py).
16. Sea H un espacio de Hilbert, V, W C H subespacios cerrados y Py, Py sus
correspondientes proyecciones ortogonales.
(a) Muestre que
VCaow <~ Py = Py Py = PywPy.
(b) Muestre que las siguientes afirmaciones son equivalentes:
(i) PvPw =0.
(iiy VLW.
(iii) Pv + Pw es una proyeccién ortogonal.
Muestre que rg(Py + Pw) =V & W si alguna de las condiciones anteriores

se tiene.

17. Sea H un espacio de Hilbert y Py, P, las proyecciones ortogonales sobre
Hy, H; C H. Entonces las siguientes afirmaciones son equivalenteas:

(a) Ho C Hi,

() [[Poz| < || Przll, z€H.

(¢) (Poz,2) < (Pix,z), z€H.
(d) PP = Po.

18. Sea H un espacio de Hilbert separable, (z,,)nen una base ortonormal de H,
¥, (Yn)nen una sucesion tal que:

fe )
Z [|zn —ynll <1
n=1

v z L yn, para todo n € N, entonces z = 0.

19. Sea H un espacio de Hilbert complejo y T : H — H un operador lineal
acotado. Muestre que T' es normal si y solo si ||T*z|| = ||Tz|| para todo
2 € H. En este caso, muestre que ||T2|| = ||T|%.

20. Haar functions. Let ¥ = x[o,1/2) — X[1/2,1)- For n,k € Z define
Yk R=R,  Uni(t) = 2"29(25 —n).
For k€ Ngandn € {0,1,2, ..., 25 — 1} let
haryn(t) = Ve (t), for ¢ €0,1),
hoiyp + [0,1] = R,

ok iy (1) = tl_ifﬂ U, (t)-

and ho(t) =1, t € 0, 1].
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(a) (hj)jen, is a orthonormal system in L2[0,1] and (¢ k)nkez is a or-
thonormal system in Lo (R).

(b) T:Ls[0,1] — L2[0,1], Tf = 22 71<f hj)h; is a orthonormal projec-
tion on the subspace

= {f € L2[0,1] : f const. in intervals [r27%, (r + 1)27%) with r € No}.

—

c) For f e C[0,1], the series Z;";()(f ,hj)h; converges uniformely to f.
(d

(€)  (¥k,n)knez is an orthonormal basis of Ly(RR).

(hj)jen, is an orthonormal basis of L0, 1].

=

21. Sea H un espacio de Hilbert, V, W C H subespacios cerrados y Py, Py sus
correspondientes proyecciones ortogonales.

(a) Muestre que

Vcw <= Py = Py Py = Py Py.

(b) Muestre que las siguientes afirmaciones son equivalentes:
(i) PvPw =0.
(i) VLw.
(iii) Py + Pw es una proyeccién ortogonal.

Muestre que rg(Py + Pw) = V @ W si alguna de las condiciones anteriores
se tiene.

22. Sea H un espacio de Hilbert y Py, P; las proyecciones ortogonales sobre
Hy, H; C H. Entonces las siguientes afirmaciones son equivalenteas:
(1) Hy C Hy,
(ii)| Poz|| < || Prz||, =z € H.
(111)<P0£L ;17) (Plz z), ze€H.
(iv) Po
23. Sea H un espacio de Hilbert separable, (2,)nen una base ortonormal de H,
¥, (Yn)nen una sucesion tal que:

oo
Z (|7 —ynll <1
n=1

y z L yy, para todo n € N, entonces z = 0.

24. Sea H un espacio de Hilbert complejo y 7' : H — H un operador lineal
acotado. Muestre que T es normal si y solo si ||[T*z|| = ||Tz|| para todo
2 € H. En este caso, muestre que ||T?|| = ||T|[%.



25. Sea H un espacio de Hilbert y (T},),en una sucesion acotada y mondtonamente

26.

27.

28.

creciente de operadores autoadjuntos. Muestre que la sucesiéon converge en
el sentido fuerte a un operador autoadjunto.

Sea (P,)nen una sucesién monétona de proyecciones ortogonales en un es-
pacio de Hilbert H. Muestre que (Py,)nen converge en el sentido fuerte a
una proyeccion ortogonal Py ademéas

(a) rg P = U,en79gPn si Py es creciente.
(b) rg P ={\,en79Pn si P, es decreciente.

Sean Hy, H> y Hj espacios de Hilbert y S(H, — Hs) y T(Hy — Hs)
operadores lineales densamente definidos.

(a) SiT € L(Ha, H3) entonces T'S es densamente definido y (T'S)* = S*T*.

(b) Si S es inyectivo y S™' € L(Ha,, Hy) entonces T'S es densamente
definido y (T')* = S*T*.

(c) SiSesinyectivoy S=! € L(Hs, Hy) entonces S* es inyectivoy (R*)~! =
(Rfl)*

Sean Hy, Hy espacios de Hilbert y U : Hy x Hy — Hy x Hy, U(z,y) =

(—y,z). Entonces

(a) U es unitario.

(b) SiT(H, — H>) es densamente definido,

(¢) T* es cerrado.
(d) SiT es clausurable, T* es densamente definido y T** =T.

Exercises for Chapter 5

1.

(a) Sea X =C([0,1]) y a € C([0,1]). Muestre que
A X=X, (Az)(t) = a(t)z(t)
es un operador lineal acotado. Encuentre ||Al|, 0(A), op(4), 0c(A) y
o (A).
(b) Sea H ={feC([0,1]): 2(0) = 0} y
S:H— H, (Sac)(t):/ta:(s)ds.
0

Encuentre o(S), 0,(9), 0c(S) y 0:(5).
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2. Sea (An)nen C C una sucesion acotada, y,

T: 00— 0 T ((n)nen) = (AnZn)nen-

Encuentre o(T'), op(T), 0c(T) y ov(T). Muestre ademds que, para todo
K C C compacto no vacio, existe un operador T' € L(£') cuyo espectro es
K.

. Sea X un espacio de Banach S,T € L(X). Muestre que o(ST) \ {0} =

a(TS)\ {0}.

Hint. Muestre que id —ST es invertible si y solo si id =TS es invertible, en-
contrando una relacién entre (id =7'S) "'y (id —ST)~!. Suponga ||T||||S|| <
1 y mire si la relacién en este caso es valida en general.

. Encuentre el espectro puntual, el espectro continuo y el espectro residual de

los operadores:
R: €2(N) — ZQ(N), R(Il, T2, I3, ) = <0, T, T2, T3, )

L:l3(N) = l5(N), L(z1, 2, 3, ...) = (22, 3, T4, ...),
T:0®°(N) = (>°(N), T(x1,22,23,...)= (2,23, T4,...).
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