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Notation
The letter K usually denotes either the real field R or the complex field C. The positive real numbers
are denoted by R+ := (0,∞).
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Chapter 1

Banach spaces

1.1 Metric spaces
We repeat the definition of a metric space.

Definition 1.1. A metric space (M,d) is a non-empty set M together with a map

d : M ×M → R

such that for all x, y, z ∈M :
(i) d(x, y) = 0 ⇐⇒ x = y,

(ii) d(x, y) = d(y, x),
(iii) d(x, y) ≤ d(x, z) + d(z, y).

The last inequality is called triangle inequality. Usually the metric space (M,d) is denoted simply
by M .

Note that the triangle inequality together with the symmetry of d implies

d(x, y) ≥ 0, x, y ∈M,

since 0 = d(x, x) ≤ d(x, y) + d(y, x) = 2d(x, y).
It is easy to check that

|d(x, y)− d(y, z)| ≤ d(x, z), x, y, z ∈M.

A subset N ⊆M is called bounded if

diamN := sup{d(x, y) : x, y ∈ N} <∞.

Let r > 0 and x ∈M . Then

Br(x) := {y ∈M : d(x, y) < r} =: open ball with centre x and radius r,
Kr(x) := {y ∈M : d(x, y) ≤ r} =: closed ball with centre x and radius r,
Sr(x) := {y ∈M : d(x, y) = r} =: sphere with centre x and radius r.
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Examples. • R with the d(x, y) = |x− y| is a metric space.
• Let X be a set and define d : X ×X → R by d(x, y) = 0 for x = y and d(x, y) = 1 for x 6= y.

Then (X, d) is a metric space. d is called the discrete metric on X.

Let (M,d) be a metric space. Recall that the metric d induces a topology on M : a set U ⊆ M is
open if and only if for every p ∈ U there exists an ε > 0 such that Bε(p) ⊆ U . In particular, the
open balls are open and closed balls are closed subsets of M . Let x ∈M . A subset U ⊆M is called
a neighbourhood of x if there exists an open set Ux such that x ∈ Ux ⊆ U .
It is easy to see that the topology generated by d has the Hausdorff property, that is, for every
x 6= y ∈M there exist neighbourhoods Ux of x and Uy of y with Ux ∩ Uy = ∅.
Recall that a set N ⊆M is called dense in M if N = M , where N denotes the closure of N .

Definition 1.2. A sequence (xn)n∈N ⊆ M converges to x ∈ M if and only if lim
n→∞

d(xn, x) = 0,
that is,

∀ ε > 0 ∃N ∈ N : n ≥ N =⇒ d(xn, x) < ε.

The limit x is unique. A sequence (xn)n∈N is a Cauchy sequence in M if and only if

∀ ε > 0 ∃N ∈ N : m,n ≥ N =⇒ d(xn, xm) < ε.

Definition 1.3. A metric space in which every Cauchy sequence is convergent, is called a complete
metric space.

Definition 1.4. Let (X,OX) and (Y,OY ) be topological spaces.

(i) A function f : X → Y is called continuous if and only if f−1(U) is open in X for every U
open in Y .

(ii) An bijective function f : X → Y is called a homeomorphism if and only if f and f−1 are
contiunous.

The following lemma is often useful.

Lemma 1.5. Let (M,d) be a complete metric space and N ⊆ M . Then N is closed in M if and
only if (N, d|M ) is complete.

Remarks. • Every convergent sequence is a Cauchy sequence.
• Every Cauchy sequence is bounded. Recall that a sequence (xn)n∈N is bounded if the set
{xn : n ∈ N} is bounded.

Not every metric space is complete, but every metric space can be completed in the following sense.

Definition 1.6. Let (M,dM ) and (N, dN ) be metric spaces. A map f : M → N is called an
isometry if and only if dN (f(x), f(y)) = dM (x, y) for all x, y ∈M . The spaces M and N are called
isometric if there exists a bijective isometry f : M → N .
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Note that an isometry is necessarily injective since x 6= y implies f(x) 6= f(y) because d(f(x), f(y)) =
d(x, y) 6= 0, and that every isometry is continuous.

Theorem 1.7. Let (M,d) be a metric space. Then there exists a complete metric space (M̂, d̂) and
an isometry ϕ : M → M̂ such that ϕ(M) = M̂ . M̂ is called completion of M ; it is unique up to
isometry.

Proof. Let

CM := {(xn)n∈N ⊆M : (xn)n∈N is a Cauchy sequence in M}

be the set of all Cauchy sequences in M . We define the equivalence relation ∼ on CM by

x ∼ y ⇐⇒ d(xn, yn)→ 0, n→∞

for all x = (xn)n∈N, y = (yn)n∈N ∈ CM . It is easy to check that ∼ is indeed a equivalence relation
(reflexivity and symmetry follow directly from properties (i) and (ii) of the definition of a metric
and transitivity of ∼ is a consequence of the triangle inequality).
Let M̂ := CM/ ∼ the set of all equivalence classes. The equivalence class containing x = (xn)n∈N
is denoted by [x]. On M̂ we define

d̂ : M̂ × M̂ → R, d̂([x], [y]) = lim
n→∞

d(xn, yn). (1.1)

We have to show that d̂ is well-defined.
Let (xn)n∈N ∈ [x] and (yn)n∈N ∈ [y]. Then

|d(xn, yn)− d(xm, ym)| ≤ |d(xn, yn)− d(xm, yn)|+ |d(xm, yn)− d(xm, ym)|
≤ d(xn, xm) + d(yn, ym)→ 0, m, n→∞.

Since (d(xn, yn))n∈N is a Cauchy sequence in the complete space R, the limit in (1.1) exists.
Moreover, for (x̃n)n∈N ∈ [x] and (ỹn)n∈N ∈ [y] it follows that

|d(xn, yn)− d(x̃n, ỹn)| ≤ |d(xn, yn)− d(x̃n, yn)|+ |d(x̃n, yn)− d(x̃n, ỹn)|
≤ d(xn, x̃n) + d(yn, ỹn)→ 0, n→∞.

Hence d̂ is well-defined.
Let

ϕ : M → M̂, ϕ(x) = [(x)n∈N].

We will show that (M̂, d̂) is a complete metric space, that ϕ is an isometry and that ϕ(M) = M̂ in
several steps.
Step 1: (M̂, d̂) is a metric space.
Proof. Let [x], [y], [z] ∈ M̂ . Then

• 0 = d̂([x], [y]) = lim
n→∞

d(xn, yn) ⇐⇒ x ∼ y ⇐⇒ [x] = [y].



10 1.1. Metric spaces

• d̂([x], [y]) = lim
n→∞

d(xn, yn) = lim
n→∞

d(yn, xn) = d̂([y], [x]).

• d̂([x], [y]) = lim
n→∞

d(xn, yn) ≤ lim
n→∞

d(xn, zn) + d(zn, yn) = d̂([x], [z]) + d̂([z], [y]).

Step 2: ϕ is an isometry.
Proof. This follows immediately from the definition.
Step 3: ϕ(M) = M̂ .
Proof. Let (xn)n∈N ∈ [x] ∈ M̂ and ε > 0. Then there exists an N ∈ N such that d(xn, xm) < ε

2 ,
m,n ≥ N . Let z := xN ∈M . Then

d̂(ϕ(z), [x]) = lim
n→∞

d(xN , xn) ≤ ε

2 < ε.

Next we show that (M̂, d̂) is complete. Let (x̂n)n∈N be a Cauchy sequence in M̂ . Since ϕ(M) is
dense in M̂ there exists a sequence z = (zn)n∈N ⊆M such that

d̂(x̂n, zn) < 1
n
, n ∈ N.

The sequence z is a Cauchy sequence in M because

d(zn, zm) = d̂(ϕ(zn), ϕ(zm)) ≤ d̂(ϕ(zn), x̂n) + d̂(x̂n, x̂m) + d̂(x̂m, ϕ(zm))

<
1
n

+ d̂(x̂n, x̂m) + 1
m
→ 0, m, n→∞.

The sequence (x̂n)n∈N converges to [z] because

d̂(x̂n, z) ≤ d̂(x̂n, ϕ(zn)) + d̂(ϕ(zn), z) < 1
n

+ lim
m→∞

d(zn, zm)→ 0, n→∞.

We have shown that ϕ(M) is a dense subset of the complete metric space (M̂, d̂) and that ϕ is an
isometry.
Finally, we have to show that M̂ is unique (up to isometry). Let (N, dN ) be complete metric space
and ψ : M → N an isometry such that ψ(M) = N . Then the map

T : ϕ(M)→ ψ(M), T (ϕ(x)) = ψ(x)

can be extended to a surjective isometry T : ϕ(M) = M̂ → N by

Tx = T ( lim
n→∞

xn) := lim
n→∞

Txn

for x = lim
n→∞

xn with xn ∈ ϕ(M), n ∈ N.

Examples. • Cn with d(x, y) = max{|xj − yj | : j = 1, . . . , n} is a complete metric space.

• Cn with d(x, y) =
√
|x1 − y1|2 + · · ·+ |xn − yn|2 is a complete metric space.
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• Let C([a, b]) be the set of all continuous functions on the interval [a, b]. For f, g ∈ C([a, b]) let

d1(f, g) := max{|f(x)− g(x)| : x ∈ [a, b]},

d2(f, g) :=
∫ b

a

|f(x)− g(x)|dx.

Then d1 and d2 are metrics on C([a, b]). (C([a, b]), d1) is complete, (C([a, b]), d2) is not
complete.

Remark. The completion of (C([a, b]), d2) is L1(a, b) (the set of all Lebesgue integrable functions
on (a, b)).

Definition 1.8. A metric space is called separable if it contains a countable dense subset.

Proposition 1.9. Let (M,d) be a separable metric space and N ⊆M . Then N is separable.

Proof. We have to show that there exists a countable set B ⊆ N such that B ⊇ N where the
closure is taken with respect to the metric on M . By assumption on M there exists a countable set
A := {xn : n ∈ N} ⊆M such that A = M . Let J := {(n,m) ∈ N×N : ∃y ∈ N with d(xn, y) < 1

m}.
For every (n,m) ∈ J choose a yn,m ∈ N and define B := {yn,m : (n,m) ∈ J}. Obviously, B is a
countable subset of N . To show that B is dense in N it suffices to show that for every y ∈ N and
k ∈ N there exists a b ∈ B such that d(b, y) < 1

k . By definition of A there exists a xn ∈ A such that
d(xn, y) < 1

2k . In particular, (n, 2k) ∈ J . It follows that d(yn,2k, y) ≤ d(yn,2k, xn)+d(xn, y) < 1
k .

1.2 Normed spaces
Definition 1.10. Let X be a vector space over K. A norm on X is a map

‖ · ‖ : X → R

such that for all x, y ∈ X, α ∈ K

(i) ‖x‖ = 0 ⇐⇒ x = 0,
(ii) ‖αx‖ = |α| ‖x‖,
(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Remarks. • Note that the implication ⇐ in (i) follows from (ii) because ‖0‖ = ‖2 · 0‖ = 2‖0‖.

• Note that ‖x‖ ≥ 0 for all x ∈ X because 0 = ‖x − x‖ ≤ 2‖x‖. The last inequality follows
from the triangle inequality (iii) and (ii) with α = −1.

Remark. A function [ · ] : X → R which satisfies only (ii) and (iii) of Definition 1.10 is called a
seminorm. As seen in the remark above for norms, a seminorm is non-negative and satisfies [0] = 0.

Remark. A norm on X induces a metric on X by setting

d(x, y) := ‖x− y‖, x, y ∈ X.



12 1.2. Normed spaces

Hence a norm induces a topology on X via the metric and we have the concept of convergence etc.
on a normed space.

Definition 1.11. A complete normed space is called a Banach space.

Obviously, every subspace of a normed space is a normed space by restriction of the norm. A
subspace of a Banach space is a Banach space if and only if it is closed.

Proposition 1.12. Let X be a normed space. Then the following is equivalent:

(i) X is complete.
(ii) Every absolutely convergent series in X converges in X.

Proof. Exercise 1.2.

Example 1.13 (Quotient space). Let X be a Banach space and M ⊆ X a closed subspace. On
X we have the equivalence relation

x ∼ y ⇐⇒ x− y ∈M.

For x ∈ X we denote the equivalence class of X/M containing x by [x]. Then X/M is a vector
space if we set

[x] + [y] := [x+ y], α[x] := [αx], x, y ∈ X, α ∈ K.

For x ∈ X let dist(x,M) := inf{‖x−m‖ : m ∈M}.

• (X/M, ‖ · ‖∼) is a normed space with

‖ · ‖∼ : X/M → R, ‖[x]‖∼ := dist(x,M).

Proof. First we show that ‖ · ‖∼ is well-defined. For x, y ∈ X with x− y ∈M we find

dist(x,M) = inf{‖x−m‖ : m ∈M} = inf{‖y − (
∈M︷ ︸︸ ︷
y − x+m)‖ : m ∈M}

= inf{‖y −m‖ : m ∈M} = dist(y,M).

Property (ii) in the definition of a norm is easily checked. For property (iii) let [x], [y] ∈ X/M .
Then

‖[x] + [y]‖∼ = ‖[x+ y]‖∼ = inf{‖x+ y −m‖ : m ∈M}
= inf{‖x−mx + y −my‖ : mx,my ∈M}
≤ inf{‖x−mx‖ : mx ∈M}+ inf{‖y −my‖ : my ∈M}
= ‖[x]‖∼ + ‖[y]‖∼.

It is clear that [x] = 0 implies ‖[x]‖∼ = 0. Now assume that ‖[x]‖∼ = 0. We have to show
that x ∈ M . By definition of dist there exists a sequence (mn)n∈N such that ‖x−mn‖ → 0,
that is, (mn)n∈N converges to x. Since M is closed, it follows that x ∈M .
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• Let X be a Banach space and M a closed subspace. Then X/M is Banach space with the
norm defined in Example 1.13.

Proof. We already saw that X/M is normed space. It remains to prove completeness. Let
([xn])n∈N be a Cauchy sequence.
First we show that we can assume ‖[xn] − [xm]‖∼ ≤ 2−n for all m ≥ n: Choose N1 ∈
N such that ‖[xN1 ] − [xm]‖∼ ≤ 2−1 for all m ≥ N1. Next choose N2 > N1 such that
‖[xN2 ]− [xm]‖∼ ≤ 2−2 for all m ≥ N2. Continuing this process, we obtain a subsequence with
the desired property. Since a Cauchy sequence converges if and only if it contains a convergent
subsequence, it suffices to prove convergence of the subsequence constructed above.
By definition of the quotient norm we can assume that ‖xn−xn+1‖ ≤ ‖[xn−xn+1]‖∼+2−n <
21−n. Then (xn)n∈N is Cauchy sequence in X because for all n > m

‖xn − xm‖ =
∥∥∥ n−1∑
j=m

xn+1 − xn
∥∥∥ ≤ n−1∑

j=m
‖xn+1 − xn‖ < 2

n−1∑
j=m

2−j .

Therefore x := lim
n→∞

xn exists and

‖[xn]− [x]‖∼ = ‖[xn − x]‖∼ ≤ ‖xn − x‖ → 0, n→∞.

Remark 1.14. (i) In the proof above we used that, by definition of ‖ · ‖∼, for every x ∈ X and
every ε > 0 there exists an x̃ ∈ [x] such that ‖x̃‖ < ‖[x]‖∼ + ε. Equivalently, there exists an
m ∈M such that ‖x+m‖ < ‖[x]‖∼ + ε.

(ii) Obviously, ‖x‖ ≥ ‖[x]‖∼ for every x ∈ X.

Examples 1.15. (i) Finite dimensional normed spaces. Cn and Rn are complete normed spaces
with

‖ · ‖∞ : Kn → R, ‖x‖∞ = max{|xj | : j = 1, . . . , n}.

Let 1 ≤ p <∞. Then Cn and Rn are complete normed spaces with

‖ · ‖p : Cn → R, ‖x‖p =
( n∑
j=1
|xj |p

) 1
p

.

The triangle inequality ‖x+ y‖p ≤ ‖x‖p + ‖y‖p is called the Minkowski inequality (see Section 1.3).

(ii) Let T be a set and define

`∞(T ) := {x : T → K bounded map}.

Obviously, `∞(T ) is a vector space. Let

‖x‖∞ := sup{|x(t)| : t ∈ T}, x ∈ `∞,

be the supremum norm. Then (`∞(T ), ‖ · ‖∞) is a Banach space.
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Proof. Exercise 1.4.

(iii) Sequence spaces.

• `∞ := `∞(N) is a Banach space.
• For 1 ≤ p <∞ let

`p := `p(N) :=
{

(xn)n∈N ⊆ K :
∞∑
n=1
|xn|p <∞

}
and

‖x‖p :=
( ∞∑
n=1
|xn|p

) 1
p

, x ∈ `p.

With the usual component-by-component addition and multiplication with a scalar, `p is a
vector space and (`p, ‖ · ‖p) is a Banach space.

Proof. First we show that `p is a vector space. For α ∈ K and x, y ∈ `p we have

∞∑
n=1
|αxn|p = |α|p

∞∑
n=1
|xn|p <∞

and
∞∑
n=1
|xn + yn|p ≤

∞∑
n=1

(
2 max{|xn|, |yn|}

)p = 2p
∞∑
n=1

(
max{|xn|, |yn|}

)p
≤ 2p

∞∑
n=1
|xn|p + |yn|p = 2p(‖x‖pp + ‖y‖pp) <∞.

Hence `p is a K-vector space. Properties (i) and (ii) in the definition of a norm are easily
verified. The triangle inequality is the Minkowski inequality (see Section 1.3).
To show that (`p, ‖ · ‖p) is complete, let (xn)n∈N be a Cauchy sequence in `p. Set xn =
(xn,m)m∈N. Then the sequence of the m-th components is a Cauchy sequence in K because

|xn,m − xk,m| < ‖xn − xk‖p, m ∈ N.

Since K is complete, the limit ym := lim
n→∞

xn,m exists. Let y := (ym)m∈N. We will show that

y ∈ `p and that xn
‖·‖p−−−→ y. Let ε > 0 and N ∈ N such that ‖xn − xk‖ < ε for all k, n ≥ N .

For every M ∈ N

M∑
j=1
|xn,j − xk,j |p ≤ ‖xn − xk‖pp < εp.
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Taking the limit k →∞ on the left hand side yields
M∑
j=1
|xn,j − yj |p < εp.

Taking the limit M →∞ on the left hand side finally gives
∞∑
j=1
|xn,j − yj |p ≤ εp <∞,

in particular, xn − y ∈ `p. Since `p is a vector space, we obtain y = xn + (y − xn) ∈ `p and
‖xn − y‖p ≤ ε. That (xn)n∈N converges to y follows from the inequality above since ε can be
chosen arbitrarily.

(iv) Lp spaces: See measure theory.

(v) Subspaces of `∞. Let

d := {x = (xn)n∈N ⊆ K : xn 6= 0 for at most finitely many n},
c0 := {x = (xn)n∈N ⊆ K : lim

n→∞
xn = 0},

c := {x = (xn)n∈N ⊆ K : lim
n→∞

xn exists},

Obviously, the inclusions d ( c0 ( c ( `∞ hold. Moreover, it can be shown that c0 and c are closed
subspaces of `∞ and that d is a non-closed subspace of `∞. In particular, (c0, ‖ · ‖∞) and (c, ‖ · ‖∞)
are Banach spaces, (d, ‖ · ‖∞) is not a Banach space (see Exercise 1.5).

(vi) Spaces of continuous functions. For metric space T (e. g. an interval in R) let

C(T ) := {f : T → K : f is continuous},
B(T ) := {f : T → K : f is bounded},

BC(T ) := C(T ) ∩B(T ).

For f ∈ B(T ) let

‖f‖∞ := sup{|f(t)| : t ∈ T}.

In Analysis 1 it was shown that (B(T ), ‖ · ‖∞) and (BC(T ), ‖ · ‖∞) are Banach spaces. Note that
C(T ) = BC(T ) for a compact metric space T .

(vii) Spaces of differentiable functions. Let [a, b] a real interval. We can define several norms on
the vector space

C1([a, b]) := {f : [a, b]→ K : f is continuously differentiable}.

• (C1([a, b]), ‖ · ‖∞) is not a Banach space.

Proof. For n ∈ N let fn : [−1, 1] → K, fn(t) := (t2 + n−2) 1
2 . Then the fn converge to

g : [−1, 1]→ K, g(t) = |t| in the ‖ ·‖∞-norm. But g /∈ C1([a, b]). Hence C1([a, b]) is not closed
as a subspace of the Banach space C([a, b]), so it is not a Banach space.
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• For f ∈ C1([a, b]) let

‖f‖(1) := ‖f‖∞ + ‖f ′‖∞.

Then (C1([a, b]), ‖ · ‖(1)) is a Banach space. Note that the right hand side is finite because by
assumption f ′ is continuous.

Proof. Let (xn)n∈N be a Cauchy sequence in (C1([a, b]), ‖ · ‖(1)). Then there exist x, y ∈
C([a, b]) such that xn → x and x′n → y in the supremum norm. A well-known theorem in
analysis implies x′ = y, hence xn → x in ‖ · ‖(1).

In the following, C1([a, b]) will always be considered to be equipped with the norm ‖ · ‖(1)
unless stated otherwise.

Theorem 1.16. Let X be a Banach space, Y a closed subspace and N a finite dimensional subspace
of X. Then Y +N is a closed subspace. In particular, every finite-dimensional subspace is closed.

Proof. Obviously, Y + N is a subspace of X. To proof that it is closed, we proceed by induction.
Therefore we can assume without restriction that dimN = 1. Let z ∈ X such thatN = {λz : λ ∈ K}
and (xn)n∈N = (yn + anz)n∈N a Cauchy sequence in Y +N .
Case 1. (an)n∈N is bounded. Then it contains a convergent subsequence (ank

)k∈N. Then the
sequence (ynk

)k∈N = (xnk
− ank

z)k∈N converges because it is the sum of two convergent sequences.
Case 2. (an)n∈N is unbounded. Then there exists a subsequence (ank

)k∈N with lim
k→∞

|ank
| = ∞.

Since (xnk
)k∈N is bounded, it follows that∥∥∥z + 1

ank

ynk

∥∥∥ =
∥∥∥ 1
ank

xnk

∥∥∥→ 0, n→∞.

Hence d(z, Y ) = 0. Since Y is closed, this implies z ∈ Y , therefore N + Y = Y is closed in X.
Finally, choosing Y = {0} shows that every finite-dimensional subspace is closed.

Note that the sum of two closed subspaces is not necessarily closed, see as the following example
shows. Another example can be found in [Hal98, § 15].

Example. In `1 consider the subspaces

U := {(xn)n∈N ∈ `1 : x2n = 0, n ∈ N}
V := {(xn)n∈N ∈ `1 : x2n−1 = nx2n, n ∈ N}.

Obvioulsy, U and V are closed subspaces of `1. Let en be the nth unit vector in `1. Let m ∈ N.
Then e2m−1 ∈ U ⊆ V +U and e2m = (e2m + 1

m e2m−1)− 1
m e2m−1 ∈ V +U . Since span{en : n ∈ N}

is a dense subset of `1, it follows that V + U = `1.
Now we will show that V + U 6= `1. Let

x = (xn)n∈N, xn =
{

1
n2 , n even,
0, n odd.
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Clearly x ∈ `1. Suppose that there exist v = (vn)n∈N ∈ V , u = (un)n∈N ∈ U such that x = v + u.
It follows for all m ∈ N

1
(2m)2 = x2m = v2m + u2m = v2m,

0 = x2m−1 = v2m−1 + u2m−1 = mv2m + u2m−1 = 1
4m2 + u2m−1,

impliying that u2m−1 = − 1
4m2 , m ∈ N, hence u 6= `1. Therefore x 6= V + U .

Definition 1.17. Let X be a normed space and ‖ · ‖1 and ‖ · ‖2 be norms on X. They are called
equivalent norms if there exist m,M > 0 such that

m‖x‖1 ≤ ‖x‖2 ≤M‖x‖1, x ∈ X. (1.2)

Theorem 1.18. Let ‖·‖1 and ‖·‖2 be norms on a vector space X. The the following are equivalent:

(i) ‖ · ‖1 and ‖ · ‖2 are equivalent.

(ii) A sequence (xn)n∈N ⊆ X converges with respect to ‖·‖1 if and only if it converges with respect
to ‖ · ‖2 and in this case the ‖ · ‖1-limit and the ‖ · ‖2-limit are equal.

(iii) A sequence (xn)n∈N ⊆ X converges to 0 with respect to ‖ · ‖1 if and only if it converges with
respect to ‖ · ‖2.

Proof. (i) =⇒ (ii) =⇒ (iii) is clear.

“(iii) =⇒ (i)”: Obviously it suffices to show the existence of M ∈ R such that (1.2) is true.
Assume no such M exists. Then there exists a sequence (xn)n∈N ⊆ X such that ‖xn‖1 = 1 and
‖xn‖2 > n‖xn‖1 = n. Let yn := n−1xn. Then yn

‖·‖1−−→ 0, so by assumption also yn
‖·‖2−−→ 0. This

contradicts ‖yn‖2 > 1 for all n ∈ N.

The theorem above implies in particular, that the topologies generated by equivalent norms coincide.
Moreover, the identity map id : (X, ‖·‖1)→ (X, ‖·‖2) is uniformly continuous for equivalent norms.

Example 1.19. On C1([a, b]) define the norm

‖f‖(2) := sup{max{|x(t)|, |x′(t)|} : t ∈ [a, b]}.

and let ‖ · ‖(1) be as in Example 1.15 (7). It is not hard to see that

‖x‖(1) ≤ ‖x‖(2) ≤ 2‖x‖(1), x ∈ C1([a, b]).
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Theorem 1.20. All norms on Kn are equivalent.

Proof. Let {e1, . . . , en} be a basis of Kn. For x =
∑n
j=1 αn en define

‖x‖2 :=
( n∑
j=1
|αj |2

) 1
2
.

Obviously, ‖ · ‖2 is a norm on X and it suffices to show that every norm on X is equivalent to ‖ · ‖2.
Let ‖ · ‖ be a norm on X and x =

∑n
j=1 αn en. Using triangle inequality for ‖ · ‖ and Hölder’s

inequality, we obtain

‖x‖ =
∥∥∥ n∑
j=1

αj ej
∥∥∥ ≤ n∑

j=1
|αj |‖ ej ‖ ≤

( n∑
j=1
|αj |2

) 1
2
( n∑
j=1
‖ ej ‖2

) 1
2 = C ‖x‖2 (1.3)

with constant C :=
(∑n

j=1 ‖ ej ‖2
) 1

2 independent of x.
Note that ‖ · ‖2 : X → R is continuous, hence S := {x ∈ X : ‖x‖2 = 1} is closed being the preimage
of the closed set {1} in R. In addition, S is bounded, therefore S is compact by the theorem of
Heine-Borel. Now consider the map T : (X, ‖ · ‖2) → R, Tx = ‖x‖. By (1.3), T is uniformly
continuous, so its restriction to the compact set S has a minimum m and a maximum M . Since
‖ · ‖ is a norm, m > 0 (otherwise there would exist an x ∈ S with ‖x‖ = 0, thus x = 0 but 0 /∈ S).
Therefore

m‖x‖2 = m ≤ ‖x‖ ≤M = M‖x‖2, x ∈ S,

and by the homogeneity of the norms

m‖x‖2 ≤ ‖x‖ ≤M‖x‖2, x ∈ X.

The theorem above implies that all norms a a finite-dimensional K-vector space are equivalent.
Moreover, it follows that every finite normed space is complete because Kn with the Euclidean
norm is complete and that a subset of a finite dimensional normed space is compact if and only if it
is bounded and closed (Theorem of Heine-Borel for Kn with the Euclidean metric). In particular,
the unit ball in a finite dimensional space is compact.
This is no longer true in infinite dimensional normed spaces. In fact, the unit ball is compact if
and only if the dimensions of the space is finite. For the proof we use the following theorem which
is also of independent interest, as it shows that in a certain sense quotient spaces can work as a
substitute for the orthogonal complement in inner product spaces (see 4.2).

Theorem 1.21 (Riesz’s lemma). Let X be a normed space, Y ⊆ X a closed subspace with Y 6= X
and ε > 0. Then there exists an x ∈ X such with ‖x‖ = 1 and dist(x, Y ) > 1− ε.

Proof. If Y = {0} or ε ≥ 1, the assertion is clear. Now assume 0 < ε < 1. Note that in this case
1

1−ε > 1. Since Y is closed and different from X, the quotient space X/Y is not trivial. Hence
there exists an ξ ∈ X such that ‖[ξ]‖∼ = 1. By Remark 1.14 there exists y ∈ Y such that

1 = ‖[ξ]‖∼ ≤ ‖ξ + y‖ < 1
1− ε .
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Let x = ‖ξ + y‖−1(ξ + y). Obviously, ‖x‖ = 1 and for every z ∈ Y

‖x− z‖ = ‖ξ + y‖−1
∥∥∥ξ + y − ‖ξ + y‖z︸ ︷︷ ︸

∈Y

∥∥∥ ≥ ‖ξ + y‖−1 ‖[ξ]‖∼ = ‖ξ + y‖−1 > 1− ε.

Hence d(x, Y ) = inf{‖x− z‖ : z ∈ Y } > 1− ε.

Theorem 1.22. For a normed space X the following are equivalent:

(i) dimX <∞,

(ii) BX := {x ∈ X : ‖x‖ ≤ 1} is compact.

(iii) Every bounded sequence in X contains a convergent subsequence.

Proof. “(i) =⇒ (ii)” follows from Theorem 1.20.
“(ii) =⇒ (i)”: Assume that BX is compact. Then there are x1, . . . , xn ∈ X with ‖xj‖ ≤ 1,
j = 1, . . . , n, such that

BX ⊆
n⋃
j=1

B 1
2
(xj). (1.4)

Let U = span{x1, . . . , xn}. If U 6= X, then, by Riesz’s lemma, there exists an x ∈ X such that
‖x‖ = 1 and dist(x, U) > 1

2 , in contradiction to (1.4). Therefore dimX = dimU ≤ n.
“(ii) =⇒ (iii)”: If BX is compact, then obviously for every α ≥ 0 also αBX := {αx : x ∈ BX}
is compact. Since every bounded sequence is a subset of some αBX , it must contain a convergent
subsequence.
“(iii) =⇒ (i)”: Assume that dimX =∞. Choose x1 ∈ X with ‖x1‖ = 1 and set U1 := span{x1} 6=
X. By Riesz’s lemma there exists an x2 ∈ X with ‖x2‖ = 1 and dist(x2, U1) > 1

2 , in particular
‖x1 − x2‖ > 1

2 . Set U2 := span{x1, x2} 6= X. Continuing this way, we obtain a sequence x =
(xn)n∈N ⊆ X with ‖xn−xm‖ > 1

2 for all n,m ∈ N with n 6= m. Therefore, the sequence x does not
contain a convergent subsequence, hence BX is not compact (Recall that a compact metric space
is sequentially compact).

Let X be a vector space and Λ a set. A family (xλ)λ∈Λ ⊆ X is called linearly independent if
every finite subset is linearly independent. A Hamel basis (or an elgebraic basis) of X is a family
(xλ)λ∈Λ ⊆ X that is linearly independent and such that every element x ∈ X is a (finite!) linear
combination of the xλ. The existence of a Hamel basis can be shown with Zorn’s lemma.

Definition 1.23. Let X be a normed space. A family (xn)n∈N is a Schauder basis of X if every
x ∈ X can be written uniquely as

∞∑
n=1

αnxn with αn ∈ K.
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Definition 1.24. Let (X, ‖ · ‖) be a normed space over K. A subset Y ⊆ X is said to be a total
subset of X if

span(Y ) = X,

that is, if the set of all linear combinations of elements of Y is dense in X.

Theorem 1.25. A normed space (X, ‖ · ‖) is separable if and only if it contains a countable total
subset.

Proof. Let A be a dense countable subset of X. Then obviously spanA = X, that is, A is a total
subset of X.
Now assume that A is countable total subset of X. Let B := {λan : n ∈ N, λ ∈ Q̃} where Q̃ := Q
if X is a R-vector space and Q̃ := Q + iQ if X is a C-vector space. In both cases B is countable.
We will show that B = X. Let x ∈ X and ε > 0. Since A is a total subset of X, there exist
a1, . . . , an ∈ A and λ1, . . . , λn ∈ K such that

‖x−
n∑
j=1

λjaj‖ <
ε

2 .

Since Q̃ is dense in K, there exist µ1, . . . , µn ∈ Q̃ such that

|µj − λj | <
ε

2

( n∑
j=1
‖aj‖

)−1
, j = 1, . . . , n.

Then y :=
∑n
j=1 µjaj ∈ spanA and

‖x− y‖ ≤
∥∥∥x− n∑

j=1
λjaj

∥∥∥+
∥∥∥y − n∑

j=1
λjaj

∥∥∥ < ε

2 +
∥∥∥ n∑
j=1
|µj − λj |aj

∥∥∥
≤ ε

2 + nmax
j=1
|µj − λj |

n∑
j=1
‖an‖ <

ε

2 + ε

2 = ε.

Note that every normed space with a Schauder basis is separable, but not every separable normed
space has a Schauder basis.

Examples 1.26. (i) `p is separable for 1 ≤ p <∞.

Proof. Let en := (0, . . . , 0, 1, 0 . . . ) be the nth unit vector in `p. We will show that {en : n ∈ N}
is a total subset of `p. Let x = (xn)n∈N ⊆ `p. Then

∥∥∥x− n∑
j=1

xjej

∥∥∥
p

=
∥∥∥ ∞∑
j=n+1

xjej

∥∥∥
p
→ 0, n→∞.

(ii) `∞ is not separable.
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Proof. Recall that the set A := {(xn)n∈N : xn ∈ {0, 1}} i s not countable. Obviously, A ⊆ `∞. Let
B be a dense subset of `∞. Then for every x ∈ A there exists an bx ∈ B such that ‖x− bx‖∞ < 1

2 .
Since ‖x− y‖∞ = 1 for x 6= y ∈ A, it follows that B has at least the cardinality of A, that is, there
exists no countable dense subset of `p.

(iii) C[a, b] is separable since by the theorem of Weierstraß the set of polynomials

{[a, b]→ R, x 7→ xn : n ∈ N}

is a total subset of C[a, b].

1.3 Hölder and Minkowski inequality
In this section we prove Hölder’s inequality and Minkowski’s inequality. For the proof we use
Young’s inequality.

Theorem 1.27. Let p, q ∈ (1,∞) such that

1
p

+ 1
q

= 1.

Then for all a, b ≥ 0:

ab ≤ 1
p
ap + 1

q
bq. (1.5)

Proof. If ab = 0, then inequality (1.5) is clear. Now assume ab > 0. Since the logarithm is concave
and 1

p + 1
q = 1 is follows that

ln
(1
p
ap + 1

q
bq
)
≥ 1
p

ln(ap) + 1
q

ln(bq) = ln(a) + ln(b) = ln(ab).

Application of the monotonically increasing function exp : R→ R yields (1.5).

Theorem 1.28 (Hölder’s inequality). Let 1 ≤ p ≤ ∞ and q = p
p−1 , i. e.,

1
p

+ 1
q

= 1

(setting 1
∞ = 0). If x ∈ `p and y ∈ `q, then z = (xnyn)n∈N ∈ `1 and

‖z‖1 ≤ ‖x‖p ‖y‖q. (1.6)

Proof. If x = 0 or y = 0 then the inequality (1.6) clearly holds. Also the cases p = 1 and p = ∞
are clear.
Now assume x, y 6= 0 and 1 < p <∞. The Young inequality (1.6) with

a = |xj |
‖x‖p

, b = |yj |
‖y‖q
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yields
|xj | |yj |
‖x‖p ‖y‖q

≤ 1
p

|xj |p

‖x‖pp
+ 1
q

|yj |q

‖y‖qq
.

Taking the sum over gives

1
‖x‖p ‖y‖q

∞∑
j=1
|xjyj | ≤

1
p

1
‖x‖pp

∞∑
j=1
|xj |p︸ ︷︷ ︸

=‖x‖p
p︸ ︷︷ ︸

=1

+ 1
q

1
‖y‖qq

∞∑
j=1
|yj |q︸ ︷︷ ︸

=‖y‖q
q︸ ︷︷ ︸

=1

= 1
p

+ 1
q

= 1.

In the special case p = q = 2 we obtain the Cauchy-Schwarz inequality.

Corollary 1.29 (Cauchy-Schwarz inequality). For x = (xn)n∈N, y = (yn)n∈N ∈ `2 the Hölder
inequality implies

|〈x , y〉| :=
∣∣∣ ∞∑
j=1

xjyj

∣∣∣ ≤ ‖x‖2 ‖y‖2.
Theorem 1.30 (Minkowski inequality). For 1 ≤ p ≤ ∞ and x, y ∈ `p Minkowski’s inequality
holds:

‖x+ y‖p ≤ ‖x‖p + ‖y‖p. (1.7)

Proof. If x+ y = 0 then (1.7) clearly holds. Also the cases p = 1 and p =∞ are easy to check.
Now assume x+ y 6= 0 and 1 < p <∞. Let q ∈ (1,∞) such that 1

p + 1
q = 1. The triangle inequality

in K and Hölder’s inequality (1.6) yield for all M ∈ N:

M∑
j=1
|xj + yj |p =

M∑
j=1
|xj + yj | · |xj + yj |p−1

≤
M∑
j=1
|xj | |xj + yj |p−1 +

M∑
j=1
|yj | |xj + yj |p−1

≤
( M∑
j=1
|xj |p

) 1
p
( M∑
j=1
|xj + yj |

p︷ ︸︸ ︷
(p−1)q

) 1
q +

( M∑
j=1
|yj |p

) 1
p
( M∑
j=1
|xj + yj |

p︷ ︸︸ ︷
(p−1)q

) 1
q

≤
(
‖x‖p + ‖x‖p

)( M∑
j=1
|xj + yj |p

) 1
q
.

Note that
(∑M

j=1 |xj + yj |p
) 1
q 6= 0 for M large enough. Hence the above inequality yields

( M∑
j=1
|xj + yj |p

) 1
p ≤ ‖x‖p + ‖x‖p
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using p− p
q = p

(
1− 1

q

)
= 1. Taking the limit M →∞ finally proves (1.7).
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Chapter 2

Bounded maps; the dual space

2.1 Bounded linear maps
Definition 2.1. Let X,Y be normed spaces over the same field K. The set of all linear continuous
maps X → Y is denoted by L(X,Y ), i. e.,

L(X,Y ) = {T : X → Y : T linear and continuous}

and L(X) := L(X,X).

Recall that the following is equivalent:

(i) T : X → Y is continuous
(ii) lim

n→∞
Txn = T limn→∞ xn for every convergent sequence (xn)n∈N ∈ X

(iii) ∀x0 ∈ X ∀ ε > 0 ∃ δ > 0 : ‖x− x0‖ < δ =⇒ ‖Tx− Tx0‖ < ε

(iv) U ⊆ Y open =⇒ T−1(U) = {x ∈ X : f(x) ∈ U} open in X.

Definition 2.2. Let X,Y be normed spaces over the same field K. For a linear map T : X → Y
define the operator norm

‖T‖ := sup{‖Tx‖ : x ∈ X, ‖x‖ = 1}.

If ‖T‖ <∞ then T is called a bounded linear operator and ‖T‖ is the operator norm of ‖T‖.

Remark 2.3. (i) For a continuous linear map T : X → Y

‖Tx‖ ≤ ‖T‖ ‖x‖, x ∈ X.

Proof. The inequality is obvious for x = 0 or ‖x‖ = 1. For x ∈ X \ {0} let x̃ = ‖x‖−1x. By
definition of ‖T‖ we find ‖Tx‖ = ‖x‖ ‖T x̃‖ ≤ ‖x‖ ‖T‖. Note that the inequality is also true
if T is unbounded and x 6= 0.
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(ii) The following is easy to check:

‖T‖ = sup{‖Tx‖ : x ∈ X, ‖x‖ = 1}
= sup{‖Tx‖ : x ∈ X, ‖x‖ ≤ 1}

= sup
{‖Tx‖
‖x‖

: x ∈ X, x 6= 0
}

= inf{M ∈ R : ∀x ∈ X ‖Tx‖ ≤M‖x‖}.

Remark 2.4. (i) For S, T ∈ L(X,Y ) and λ ∈ K we define

(λT + S) : X → Y, (λT + S)x := λTx+ Sx.

Since the sum and composition of continuous functions is continuous, and (λT + S obviously
is linear, L(X,Y ) is a vector space.
It will be shown in Theorem 2.6 that ‖·‖ is indeed a norm. Note the the operator norm depends
on the norms on X and Y . This is can be made explicit using the notation ‖T‖L(X,Y ), or
similar notation.

(ii) Let X,Y, Z be normed spaces and T ∈ L(X,Y ), S ∈ L(Y,Z). Then

ST : X → Z, STx := S(Tx).

Obviously, ST ∈ L(X,Z) as composition of continuous linear functions and ‖ST‖ ≤ ‖S‖ ‖T‖
because by Remark 2.3

‖STx‖ ≤ ‖S‖ ‖Tx‖ ≤ ‖S‖ ‖T‖ ‖x‖, x ∈ X.

In particular, L(X) is an algebra.

Theorem 2.5. Let X,Y be normed spaces, T : X → Y linear. The following is equivalent:

(i) T is continuous.
(ii) T is continuous in 0.
(iii) T is bounded.
(iv) T is uniformly continuous.

Proof. The implications (iii) =⇒ (iv) =⇒ (i) =⇒ (ii) are obvious.
“ (ii) =⇒ (iii)”: Assume that T is not bounded. Then there exists a sequence (xn)n∈N ⊆ X such
that ‖xn‖ = 1 and ‖Txn‖ > n for all n ∈ N. Let yn := n−1xn. Then yn → 0 but ‖Tyn‖ > 1 for all
n ∈ N in contradiction to the continuity of T in 0.

Theorem 2.6. Let X,Y be normed spaces.

(i) L(X,Y ) is a normed space.
(ii) If Y is Banach space, then L(X,Y ) is a Banach space.
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Proof. (i) In Remark 2.4 we have seen that L(X,Y ) is a vector space. From definition of the
operator norm it is clear that ‖T‖ = 0 if and only if T = 0 and that ‖λT‖ = |λ| ‖T‖ for all
λ ∈ K. To prove the triangle inequality let S, T ∈ L(X,Y ) and x ∈ X.

‖(S + T )x‖ = ‖Sx+ Tx‖ ≤ ‖Sx‖+ ‖Tx‖ ≤ ‖S‖+ ‖T‖.

Taking the supremum over all x ∈ X with ‖x‖ = 1 yields ‖S + T‖ ≤ ‖S‖+ ‖T‖.

(ii) Let (Tn)n∈N be a Cauchy sequence in L(X,Y ). For x ∈ X, the sequence (Tnx)n∈N is a Cauchy
sequence in Y because

‖Tnx− Tmx‖ ≤ ‖Tn − Tm‖ ‖x‖.

Since Y is complete, we can define

T : X → Y, Tx := lim
n→∞

Tnx.

It is easy to check that T is linear. That T is bounded and Tn → T follows as in Exam-
ple 1.13(2): For ε > 0 exists an N ∈ N such that

‖Tn − Tm‖ <
ε

2 , n,m ≥ N.

In particular, for all x ∈ X it follows for n ≥ N that

‖Tx− Tnx‖ ≤ ‖Tx− Tmx‖+ ‖Tmx− Tnx‖ ≤ ‖Tx− Tmx‖+ ε

2 , m ∈ N. (2.1)

Taking the limit m → ∞ on the right hand side yields ‖Tx − Tnx‖ ≤ ε
2 < ε. It follows that

T − Tn is a bounded linear map. Since L(X,Y ) is a vector space, also T = Tn + (T − Tn) is
a bounded linear map. In addition, (2.1) shows that Tn → T , n→∞.

Examples 2.7. In the following examples, the linearity of the operator under consideration is easy
to check.

(i) Let X be a normed space. Then the identity id : X → X is bounded and ‖ id ‖ = 1.

(ii) Let 1 ≤ p ≤ ∞. The left shift and the right shift on `p are defined by

R : `p → `p, (x1, x2, x3 . . . )n∈N 7→ (0, x1, x2, . . . ),
L : `p → `p, (x1, x2, x3 . . . )n∈N 7→ (x2, x3, . . . ).

Obviously, R and L are well-defined and linear. Moreover, R is an isometry because ‖Rx‖p =
‖x‖p; in particular ‖R‖ = 1.
The left shift is not an isometry because, e. g., ‖L(1, 0, 0, . . . )‖p = ‖0‖p = 0 < 1 = ‖(1, 0, 0, . . . )‖p.
It is easy to see that ‖Lx‖p ≤ ‖x‖p, x ∈ `p, implying that ‖L‖ ≤ 1. Since ‖L(0, 1, 0, 0 . . . )‖p =
‖(1, 0, 0 . . . )‖p = ‖(0, 1, 0, 0 . . . )‖p we also have ‖L‖ ≥ 1, so that altogether ‖L‖ = 1.
Note that LR = id`p

but RL 6= id`p
.

(iii) T : C1([0, 1], ‖ · ‖C1)→ C([a, b], ‖ · ‖∞), Tx = x′ with ‖x‖C1 := ‖x‖∞+ ‖x′‖∞. The operator
T is bounded and ‖T‖ = 1.
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Proof. The operator T is bounded with ‖T‖ ≤ 1 because ‖Tx‖∞ = ‖x′‖∞ ≤ ‖x‖∞+‖x′‖∞ ≤
‖x‖C1 for all x ∈ X.
To proof that ‖T‖ ≥ 1 let xn : [0, 1] → R, xn(t) := 1

n exp(−nt). Obviously, xn ∈ C1([0, 1]),
‖xn‖C1 = 1

n + 1 and ‖Txn‖∞ = 1. It follows that

‖T‖ = sup
{‖Tx‖∞
‖x‖C1

: x ∈ C1([0, 1]) \ {0}
}
≥ sup

{‖Txn‖∞
‖xn‖C1

: n ∈ N
}

= sup
{ 1

1+ 1
n

: n ∈ N
}

= 1.

(iv) T : C1([0, 1], ‖ · ‖∞)→ C([a, b], ‖ · ‖∞), Tx = x′ is not bounded.

Proof. As in the example above let xn : [0, 1]→ R, xn(t) := 1
n exp(−nt). It follows that

sup
{‖Tx‖∞
‖x‖∞ : x ∈ C1([0, 1]) \ {0}

}
≥ sup

{‖Txn‖∞
‖xn‖∞

: n ∈ N
}

= sup
{ 1

1
n

: n ∈ N
}

=∞

Lemma 2.8. let X,Y be normed spaces, X finite-dimensional. Then every linear map T : X → Y
is bounded.

Proof. Let e1, . . . , en be a basis of X. Since on X all norms are equivalent, we can assume that

∥∥∥ n∑
j=1

αj ej
∥∥∥ =

n∑
j=1
|αj |.

Let M := max{‖T ej ‖ : j = 1, . . . , n}. Then T is bounded with ‖T‖ ≤ M because for x =∑n
j=1 αj ej ∈ X

‖Tx‖Y =
∥∥∥ n∑
j=1

αjT ej
∥∥∥
Y
≤

n∑
j=1
|αj | ‖T ej ‖Y ≤M

n∑
j=1
|αj | = M‖x‖X .

Theorem 2.9. Let X,Y be normed spaces, Y a Banach space. Let D ⊆ X be a dense subspace of
X and T ∈ L(D,Y ). Then there exists exactly one continuous extension T̂ : X → Y of T . The
extension is bounded with ‖T̂‖ = ‖T‖.

Proof. For x ∈ X choose a sequence (xn)n∈N ⊆ D which converges to x. The sequence is a
Cauchy sequence in D, hence, by the uniform continuity of T , (Txn)n∈N is a Cauchy sequence
in Y , and therefore it converges in Y because Y is complete. Let (ξn)n∈N be another Cauchy
sequence in D which converges to x. By what was said before, (Tξn) converges in Y . Then
lim
n→∞

‖Txn − Tξn‖ = lim
n→∞

‖T (xn − ξn)‖ ≤ lim
n→∞

‖T‖ ‖(xn − ξn)‖ = ‖T‖ lim
n→∞

‖(xn − ξn)‖ = 0, the
following operator is well defined:

T̃ : X → Y, T̃x := lim
n→∞

Txn for any (xn)n∈N ⊆ D which converges to x.
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It is not hard to see that T̃ is a linear extension of T and that ‖T̃‖ ≥ ‖T‖. To see that indeed
equality holds, we only need to observe that by definition of T̃

{‖Tx‖ : x ∈ D, ‖x‖ = 1} = {‖T̃ x‖ : x ∈ X, ‖x‖ = 1},

hence the suprema of both sets without the closure are equal (and equal to the supremum of the
closed sets). Since T̃ is linear and bounded by ‖T‖, it is continuous.
Assume that S is an arbitrary continuous extension of T . For x ∈ X and a sequence (xn)n∈N ⊆ D
which converges to x we find

Sx = lim
n→∞

Sxn = lim
n→∞

Txn = lim
n→∞

T̂ xn = T̂ x.

Therefore, T̂ is the unique continuous extension of T .

Finally we give a criterion for the invertibility of a bounded linear operator.

Theorem 2.10 (Neumann series). Let X be a normed space and T ∈  L(X) such that
∑∞
n=0 T

n

converges. Then id−T is invertible in L(X) and

(id−T )−1 =
∞∑
n=0

Tn. (2.2)

In particular, if X is a Banach space and ‖T‖ < 1, then id−T is invertible and

‖(id−T )−1‖ ≤ (1− ‖T‖)−1.

Proof. The proof is analogous to the proof for the convergence of the geometric series. We define
the partial sums Sm :=

∑m
n=0 T

n, m ∈ N0. Then

(id−T )Sm = Sm(id−T ) = id−Tm+1, m ∈ N0. (2.3)

Note that:

(i) Tm → 0 for m→∞ because
∑∞
m=0 T

m converges.
(ii) Sm →

∑∞
n=0 T

n for m→∞ by assumption.
(iii) For fixed R ∈ L(X) the maps L(X) → L(X), S 7→ RS and S 7→ SR respectively are

continuous.

Hence taking the limit m→∞ in (2.3) gives

(id−T )
∞∑
n=0

Tn =
( ∞∑
n=0

Tn
)

(id−T ) = id

implying that id−T is invertible and that (2.2) holds.
Now assume that X is a Banach space and that ‖T‖ < 1. Then

∑∞
n=0 T

n converges in norm
because ‖Tn‖ ≤ ‖T‖n. In particular,

(∑m
j=0 T

j
)
m∈N

is a Cauchy sequence in L(X). Since L(X)
is complete by assumption on X and Theorem 2.6 the series converges. By the first part of the
proof, id−T is invertible and formula (2.2) holds.
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Application 2.11 (Volterra integral equation). Let k ∈ C([0, 1]2) and y ∈ C([0, 1]). We ask
if the equation

x(s)−
∫ s

0
k(s, t)x(t) dt = y(s), s ∈ [0, 1]. (2.4)

has solution x ∈ C([0, 1]). If a solution exists, is it unique? Can the norm of the solution be
estimated in terms of y?

Solution. Note that equation (2.4) can be written as an equation in the Banach space C([0, 1]):

x−Kx = y

where

K : C([0, 1])→ C([0, 1]), (Kx)(s) :=
∫ s

0
k(s, t)x(t) dt, s ∈ [0, 1].

Obviously, K is a well-defined linear operator and for all x ∈ C([0, 1]), s ∈ [0, 1]

|Kx(s)| =
∣∣∣∣∫ s

0
k(s, t)x(t) dt

∣∣∣∣ ≤ ∫ s

0
|k(s, t)| |x(t)| dt ≤ s ‖k‖∞ ‖x‖∞,

|K2x(s)| =
∣∣∣∣∫ s

0
k(s, t)

∫ t

0
k(t, t1)x(t1) dt1 dt

∣∣∣∣ ≤ ‖k‖2∞ ‖x‖∞ ∫ s

0

∫ t

0
dt1 dt

= ‖k‖2∞ ‖x‖∞
s2

2 .

Repeating this process, it follows that

|Knx(s)| ≤ sn

n! ‖k‖
n
∞ ‖x‖∞, s ∈ [0, 1], x ∈ C([0, 1]), n ∈ N,

which shows that ‖Kn‖ ≤ ‖k‖∞n! . In particular,
∑∞
n=0K

n converges so that id−K is invertible by
Theorem 2.10. Hence equation (2.4) has exactly one solution x ∈ C([0, 1]), given by

x =
∞∑
n=0

Kny.

Moreover, ‖x‖∞ =
∥∥∥∑∞n=0K

ny
∥∥∥
∞
≤
∑∞
n=0 ‖Kn‖ ‖y‖∞ ≤

∑∞
n=0

‖k‖∞
n! ‖y‖∞ = e ‖k‖∞‖y‖∞.

2.2 The dual space and the Hahn-Banach theorem
Definition 2.12. Let X be a normed space. X ′ := L(X,K) is the dual space of X; elements in
the dual space are called functionals.

Note that in general the algebraic dual space, i. e., the space of all linear maps X → K in general
is larger than the topological dual space defined above.
Theorem 2.6 implies immediately:
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Proposition 2.13. The dual space of a normed space X with the norm

‖x′‖ = sup{|x′(x)| : x ∈ X, ‖x‖ ≤ 1}, x′ ∈ X ′,

is a Banach space.

Definition 2.14. Let X be normed space. p : X → R is a a seminorm if

(i) p(λx) = |λ|p(x), λ ∈ K, x ∈ X,
(ii) p(x+ y) ≤ p(x) + p(y), x, y ∈ X.

A seminorm p is called bounded if there exists an M ∈ R such that

p(x) ≤M‖x‖, x ∈ X.

If p satisfies only

(i’) p(λx) = λp(x), λ ≥ 0, x ∈ X

instead of (i), then it is called a sublinear functional.

Remark. Observe that p(x) ≥ 0 for every x ∈ X and every sublinear functional p. Moreover, note
that every seminorm is a sublinear functional.

Examples. • Every norm on X is a seminorm.

• Every linear functional ϕ : X → K induces a seminorm by

X → R, x 7→ |ϕ(x)|.

• On the space of all real valued bounded sequences `∞(N,R) we have the sublinear functional

`∞(N,R)→ R, x 7→ lim sup
n→∞

xn

which is not a seminorm.

The next fundamental theorem shows that every normed space admits non-trivial functionals (ex-
cept when X = {0}).

Theorem 2.15 (Hahn-Banach theorem for normed spaces over R). Let X be normed space
over R and let p : X → R be a sublinear functional. Let Y ⊆ X a subspace and let ϕ0 : Y → R be
a linear function on Y with

−p(−y) ≤ ϕ0(y) ≤ p(y), y ∈ Y.

Then ϕ0 has an extension to a linear function ϕ : X → R which satisfies

−p(−x) ≤ ϕ(x) ≤ p(x), x ∈ X. (2.5)
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Proof. For Y = X there is nothing to show. Now assume Y 6= X. We distinguish between the real
and the complex case.
We divide the proof in two steps.
Step 1. Let z0 ∈ X \ Y and Z := span{z0, Y }. We will show that ϕ0 can be extended to some
ψ ∈ Z ′ such that (2.8) holds for all z ∈ Z.
Obviously, every linear extension of ψ must be of the form

ψc(y + λz0) = ϕ0(y) + λc, λ ∈ R, y ∈ Y

for some c ∈ R. We have to find c such that

−p(−(y + λz0)) ≤ ψc(y + λz0) ≤ p(y + λz0), y ∈ Y, λ ∈ R. (2.6)

By assumption on ϕ0

ϕ0(x)− ϕ0(y) = ϕ0(x− y) ≤ p(x− y) ≤ p(x+ z0) + p(−(y + z0)), y, x ∈ Y,

implying

−ϕ0(y)− p(−(y + z0)) ≤ −ϕ0(x) + p(x+ z0), y, x ∈ Y,

so that

a := sup{−ϕ0(x)− p(x+ z0) : x ∈ Y } ≤ inf{−ϕ0(x) + p(x+ z0) : x ∈ Y } =: b.

Now let c ∈ [a, b] arbitrary. We show that ψc is an extension of ϕ0 as desired. Let z = y+ λz0 ∈ Z
with y ∈ Y and λ ∈ R.
We have to show (2.6). For λ = 0 equation (2.6) clearly holds. Now let λ 6= 0. Note that by
definition of a and b, we have that

−ϕ0( 1
λx)− p(−( 1

λx+ z0)) ≤ a ≤ c ≤ b ≤ ϕ0( 1
λx) + p( 1

λx+ z0)

Hence, for λ > 0,

ψc(y + λz0) = ϕ0(y) + λc ≤ ϕ0(y) + λb ≤ λp( 1
λx+ z0) = p(y + λz0),

ψc(y + λz0) = ϕ0(y) + λc ≥ ϕ0(y) + λa ≥ −λp(0( 1
λx+ z0)) = −p(−(y + λz0)).

If λ < 0, then we can write ψc(y + λz0) = −ψc(−y + |λ|z0) and the above inequalities show that

ψc(y + λz0) ≥ −p(−y + |λ|z0) = −p(−(y + λz0)),
ψc(y + λz0) ≤ p(−(−y + |λ|z0)) = p(y + λz0).

In summary, we have −p(−z) ≤ ψ(z) ≤ p(z) for all z ∈ Z.
Step 2. Let Φ be the set of all proper extensions ϕ of ϕ0 that satisfy −p(−x) ≤ ϕ(x) ≤ p(x) for all
x ∈ D(ϕ) (the domain of ϕ). By Step 1, Φ is not empty and partially ordered by

ϕ1 < ϕ2 ⇐⇒ ϕ2 is an extension of ϕ1.

Every totally ordered subset Φ0 has the upper bound

D(f) =
⋃
ψ∈Φ0

D(ψ), f(x) = ψ(x) for x ∈ D(ψ).

By Zorn’s lemma, Φ contains a maximal element ϕ. This ϕ is defined on X because otherwise, by
Step 1, it would not be maximal. Therefore ϕ is an extension of ϕ0 as desired.
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The above theorem can be formulated easily for seminorms instead of sublinear functionals.

Theorem (Hahn-Banach theorem for normed spaces over R for seminorms). As in The-
orem , Let X be normed space over R, Y ⊆ X a subspace and let ϕ0 : Y → R be a linear function
on Y with

|ϕ0(y)| ≤ p(y), y ∈ Y

where p : X → R is a seminorm on X. Then ϕ0 has an extension to a linear function ϕ : X → R
which satisfies

|ϕ(x)| ≤ p(x), x ∈ X. (2.7)

Proof. This follows immediately from Theorem 2.2 because p(−x) = p(x) for all x ∈ X. Therefore
−p(−x) ≤ α ≤ p(x) is equivalent to |α| ≤ p(x).

Next we prove the version of the Hahn-Banach theorem for seminorms of the case of a complex
normed space. (Note that the inequality (2.7) does not make sense in a complex normed space.)

Theorem 2.16 (Hahn-Banach theorem for normed spaces over R). Let X be normed space
and p : X → R a seminorm. Let Y ⊆ X a subspace and ϕ0 : Y → K a linear function on Y with

|ϕ0(y)| ≤ p(y), y ∈ Y.

Then ϕ0 has an extension to a linear function ϕ : X → K which satisfies

|ϕ(x)| ≤ p(x), x ∈ X. (2.8)

Proof. The case K = R was shown above. Now assume that K = C. Consider X as a vector space
over R and define the functional

V0 : Y → R, V0(y) = Re(ϕ(y)).

It is R-linear because for all x, y ∈ Y and α ∈ R

V0(αx+ y) = Re(ϕ0(αx+ y)) = Re(αϕ0(x) + ϕ0(y)) = αRe(ϕ0(x)) + Re(ϕ0(y))
= αV0(x) + V0(y).

In addition, V0 is bounded by the sublinear functional p

|V0(y)| = |Re(ϕ0(y))| ≤ |ϕ0(y)| ≤ p(y), y ∈ Y.

By what we have already shown, there exists an R-linear extension V : X → R of V0 with |V (x)| ≤
p(x), x ∈ X. Now define

ϕ : X → C, ϕ(x) = V (x)− iV (ix).

The function ϕ has the following properties:
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(i) ϕ is an extension of ϕ0. To see this, let y ∈ Y .

ϕ(y) = V0(y)− iV0(iy) = Re(ϕ0(y))− i Re(ϕ0(iy)) = Re(ϕ0(y))− i Re(iϕ0(y))
= Re(ϕ0(y)) + i Im(ϕ0(y)) = ϕ0(y).

(ii) ϕ is C-linear. To show this, let x, y ∈ X and ζ = a+ ib with a, b ∈ R.

ϕ(x+ y) = V (x+ y)− iV (i(x+ y)) = V (x) + V (y)− iV (ix)− iV (iy)
= ϕ(x) + ϕ(y),

ϕ(ζx) = ϕ(ax) + ϕ(ibx) = V (ax)− iV (iax) + V (ibx)− iV (i2bx)
= a[V (x)− iV (ix)] + b[V (ix) + iV (x)]
= (a+ ib)[V (x)− iV (ix)] = ζϕ(x).

(iii) ϕ is bounded by p. To prove this, let x ∈ X and α ∈ R such that

|ϕ(x)| = eiα ϕ(x) = Re
(
ϕ(eiα x)

)
= V

(
(eiα x)

)
≤ p
(
(eiα x)

)
= p(x).

In conclusion, ϕ is a C-linearextension of ϕ0 which is bounded by p as desired.

Remark. If in the Hahn-Banach theorem we consider only real normed spaces and replace the
seminorm p by a sublinear functional such that ϕ0(y) ≤ q(y) for all y ∈ Y , then ϕ0 can be extented
to a functional ϕ : X → K such that −q(x) ≤ ϕ(x) ≤ q(x) for all x ∈ X, see [Rud91, Theorem 3.2].

The Hahn-Banach theorem has some important corollaries.

Corollary 2.17. Let X be a normed space, Y ⊆ X a subspace and ϕ0 ∈ Y ′. Then there exists an
extension ϕ ∈ X ′ of ϕ0 such that ‖ϕ‖ = ‖ϕ0‖.

Proof. The map p : X → R, p(x) = ‖ϕ0‖ ‖x‖ is a sublinear functional on X and |ϕ0(y)| ≤
‖ϕ0(y)‖ ‖y‖ = p(y) for all y ∈ Y . By the Hahn-Banach theorem, ϕ0 can be extended to a ϕ ∈ X ′
with |ϕ(x)| ≤ p(x) = ‖ϕ0‖ ‖x‖, so that ‖ϕ‖ ≤ ‖ϕ0‖. On other hand ‖ϕ‖ ≥ ‖ϕ0‖ holds because ϕ0
is a restriction of ϕ.

The next corollary shows that X ′ does not consist only of the trivial functional and that it separates
points in X.

Corollary 2.18. Let X be a normed space, x ∈ X, x 6= 0. Then there exists a ϕ ∈ X ′ such that
ϕ(x) = ‖x‖. In particular for all x, y ∈ X:

(i) x = 0 ⇐⇒ ∀ϕ ∈ X ′ ϕ(x) = 0,
(ii) x 6= y =⇒ ∃ϕ ∈ X ′ ϕ(x) 6= ϕ(y).

Proof. Let Y := span{x} and ϕ0 ∈ Y ′ defined by ϕ0(λx) = λ‖x‖. Then ϕ0(x) = ‖x‖ and ‖ϕ0‖ = 1.
By Corollary 2.17 there exists an extension ϕ ∈ X ′ of ϕ0 with the desired properties. Statement
(i) is clear; (ii) follows when (i) is applied to x− y.
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Corollary 2.19. Let X,Y be a normed spaces.
(i) ‖x‖ = sup{ϕ(x) : ϕ ∈ X ′, ‖ϕ‖ = 1}, x ∈ X.

(ii) For T : X → Y linear

‖T‖ = sup{ϕ(Tx) : x ∈ X, ‖x‖ = 1, ϕ ∈ Y ′, ‖ϕ‖ = 1}.

Proof. (i) For all ϕ ∈ X ′ with ‖ϕ‖ = 1: ‖x‖ = ‖ϕ‖ ‖x‖ ≥ |ϕ(x)|, hence ‖x‖ ≥ sup{ϕ(x) : ϕ ∈
X ′, ‖ϕ‖ = 1}. To show that in fact we have equality, we recall that by Corollary 2.18 there exists a
ϕ ∈ X ′ with ‖ϕ‖ = 1 and ϕ(x) = ‖x‖. Hence the formula in (i) is proved. Note the the supremum
is in fact a maximum.
(ii) Let M := sup{ϕ(Tx) : x ∈ X, ‖x‖ = 1, ϕ ∈ Y ′, ‖ϕ‖ = 1}. We have to show M = ‖T‖.
Obviously, M =∞ if and only if ‖T‖ =∞. Now assume ‖T‖ <∞. Let ε > 0. Then there exists an
x ∈ X with ‖x‖ = 1 and ‖Tx‖ ≥ ‖T‖− ε. Choose a ϕ ∈ X ′ such that ‖ϕ‖ = 1 and ϕ(Tx) = ‖Tx‖.
Then M ≥ ϕ(Tx) = ‖T‖ − ε. Since ε is arbitrary, it follows that M ≥ ‖T‖. The revers inequality
follows from

ϕ(Tx) ≤ ‖ϕ‖ ‖Tx‖ ≤ ‖ϕ‖ ‖T‖ ‖x‖ = ‖T‖, x ∈ X, ‖x‖ = 1, ϕ ∈ X ′, ‖ϕ‖ = 1.

Corollary 2.20. Let X be a normed space, Y ⊆ X a closed subspace. For every x0 ∈ X \ Y exists
ϕ ∈ X ′ such that ϕ|Y = 0 and ϕ(x0) = 1.

Proof. Let π : X → X/Y be the canonical projection. Then π(y) = 0, y ∈ Y , and π(x0) 6= 0.
Since X is a normed space by Example 1.13, there exists a ψ ∈ (X/Y )′ such that ϕ(π(x0)) 6= 0 and
ϕ(π(x0)) = 1. Obviously ϕ = ψ ◦ π ∈ X ′ and has the desired properties.

Corollary 2.21. Let X be a normed space, Y ⊆ X a subspace. Then the following are equivalent:
(i) Y = X,

(ii)
(
ϕ|Y = 0 =⇒ ϕ = 0

)
, ϕ ∈ X ′.

Theorem 2.22. Let X be a normed space.

X ′ separable =⇒ X separable.

Proof. By Proposition 1.9 the unit sphere SX′ := {x′ ∈ X ′ : ‖x′‖ = 1} is separable. Choose dense
subset {x′n : n ∈ N} of SX′ . and xn ∈ SX := {x ∈ X : ‖x‖ = 1} with ‖x′n(xn)‖ > 1

2 . Let
U = span{xn : n ∈ N}. We will show U = X. Assume this is not true. By Corollary 2.20 there
exists an x′ ∈ SX′ such that x′ 6= 0 and x′|U = 0. Let n ∈ N such that ‖x′n − x′‖ < 1

4 . This leads
to the contradiction

1
2 ≤ |x

′
n(xn)| ≤ |x′n(xn)− x′(xn)|+ |x′(xn)| ≤ ‖x′n − x′‖+ |x′(xn)| < 1

4 .

2.3 Examples of dual spaces
Theorem 2.23. (i) Let 1 ≤ p <∞ and q such that

1
p

+ 1
q

= 1
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with the convention 1
∞ = 0. q is called the Hölder conjugate of p.

The following map is an isometric isomorphism:

T : `q → (`p)′, (Tx)y =
∞∑
n=0

xnyn for x = (xn) ∈ `q, y = (yn) ∈ `p.

(ii) The following map is an isometric isomorphism:

T : `1 → (c0)′, (Tx)y =
∞∑
n=0

xnyn for x = (xn) ∈ `1, y = (yn) ∈ c0.

Proof. (i) Let 1 < p <∞. T is well-defined by Hölder’s inequality and

|(Tx)y| =
∣∣ ∞∑
n=0

xnyn
∣∣ ≤ ‖x‖q‖y‖p.

Linearity and injectivity of T is clear. The inequality above gives

‖Tx‖ ≤ ‖x‖q, x ∈ `q. (2.9)

It remains to show surjectivity of T and that ‖Tx‖ ≥ ‖x‖, x ∈ `q. To this end, let y′ ∈ (`p)′ and
set xn := y′(en), n ∈ N, where en is the nth unit vector in `p. We will show that x := (xn)n∈N ∈ `q
and that Tx = y′. For y′ = 0 this is clear. Now assume that y′ 6= 0. For n ∈ N define

tn :=
{
|xn|q
xn

, xn 6= 0,
0, xn = 0.

Using pq − p = q we find

N∑
n=1
|tn|p =

N∑
n=1
|xn|p(q−1), N ∈ N.

Hence, for all N ∈ N,

N∑
n=1
|xn|q =

N∑
n=1

xntn =
N∑
n=1

tny
′(en) = y′

( N∑
n=1

tn en
)
≤ ‖y′‖

∥∥ N∑
n=1

tn en
∥∥
p

= ‖y′‖
( N∑
n=1
|tn|p

) 1
p ≤ ‖y′‖

( N∑
n=1
|xn|q

) 1
p .

For N large enough, the last factor in the line above is not zero, so, using 1− 1
p = 1

q , we obtain

( N∑
n=1
|xn|q

) 1
q ≤ ‖y′‖
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implying that x ∈ `q. Since (Tx) en = xn en = y′ en, n ∈ N, and {en : n ∈ N} a total subset of `p,
it follows that Tx = y′. In particular, with the inequality above, ‖x‖q ≤ ‖y′‖ = ‖Tx‖. Together
with (2.9) it follows that ‖Tx‖ = ‖x‖, that is, T is an isometry.
The proof for p = 1 is similar.
(ii) Well-definedness and injectivity of T are clear. Moreover ‖Tx‖ ≤ ‖x‖1 for every x ∈ `1 because∣∣ ∞∑

n=0
xnyn

∣∣ ≤ ‖y‖∞ ∞∑
n=0
|xn| = ‖y‖∞‖x‖1, y ∈ c0, x ∈ `1.

To show that T is surjective, let y′ ∈ (c0)′ and let xn := yn(en) where en is the nth unit vector in
c0. For n ∈ N choose αn ∈ R such that |y′(en)| = exp(iαn)y′(en). It follows that

∞∑
n=0
|xn| =

∞∑
n=0
|y′(en)| =

∞∑
n=0

exp(iαn) y′(en) = y′
( ∞∑
n=0

exp(iαn) en
)

≤ ‖y′‖
∥∥ ∞∑
n=0

exp(iαn) en
∥∥
∞ = ‖y′‖.

Hence x ∈ `1 and ‖x‖1 ≤ ‖y′‖. As before, since {en : n ∈ N} is a total subset of c0, it follows that
Tx = y′ and the proof is complete. (Note however, that {en : n ∈ N} is not dense in `∞.)

The theorem above shows that

(`p)′ ∼= `q, 1 ≤ p <∞,
(c0)′ ∼= `1.

Remark. Note that (`∞)′ � `1. To see this, assume that (`∞)′ ∼= `1. Since `1 is separable,
Theorem 2.22 would imply that also `∞ is separable, in contradiction to Example 1.26.

Other important examples are given without proof in the following theorems.

Theorem 2.24. Let (Ω,Σ, µ) be a σ-finite measure space. Let 1 ≤ p <∞ and q such that 1
p+ 1

q = 1.
Then

T : Lq(Ω)→ (Lp(Ω))′, (Tf)(g) =
∫

Ω
fg dµ, f ∈ Lq(Ω), g ∈ Lp(Ω),

is an isometric isomorphism.

Theorem 2.25 (Riesz’s representation theorem). Let K be a compact metric space and M(K)
the set of all regular Borel measures with finite variation, that is ‖µ‖ <∞ with

‖µ‖ := sup
{ ∑
V ∈Z
|µ(V )| : Z partition of K in pairwise disjoint measurable sets

}
.

Let 1 ≤ p <∞ and q such that 1
p + 1

q = 1. Then

T : M(K)→ (C(K))′, (Tµ)(g) =
∫

Ω
g dµ, µ ∈M(K), g ∈ C(K),

is an isometric isomorphism.
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For a proof, see [Rud87, Theorem 6.19].
The theorems above show that

(Lp)′ ∼= Lq, 1 ≤ p <∞,
(C(K))′ ∼= M(K).

2.4 The Banach space adjoint and the bidual
Definition 2.26. Let X,Y be normed spaces and T ∈ L(X,Y ). The Banach space adjoint of T is

T ′ : Y ′ → X ′, (T ′y′)x := y′(Tx), y′ ∈ Y ′, x ∈ X.

Obviously, T ′ is linear and continuous as composition of continuous functions, hence T ′ ∈ L(Y ′, X ′)
and the following diagram commutes

X Y

K

T

x′=y′◦T y′

Theorem 2.27. Let X,Y, Z be normed spaces.

(i) The map L(X,Y ) → L(Y ′, X ′), T 7→ T ′, is linear and isometric, that is, ‖T ′‖ = ‖T‖. In
general, it is not surjective.

(ii) (ST )′ = T ′S′ for S ∈ L(Y,Z) and T ∈ L(X,Y ).

Proof. (i) Linearity of T 7→ T ′ is clear. Immediately by the definition of T ′ we have that

‖T ′y′‖ = ‖y′ ◦ T‖ ≤ ‖y′‖ ‖T‖, y′ ∈ Y ′,

hence ‖T ′‖ ≤ ‖T‖. By Corollary 2.19 ‖T‖ is

‖T‖ = sup{y′(Tx) : x ∈ X, ‖x‖ = 1, y′ ∈ Y ′, ‖y′‖ = 1}.

For every ε > 0 there exist x ∈ X, ‖x‖ = 1, y′ ∈ Y ′ such that ‖T‖ − ε < y′(Tx) = (T ′y′)(x) ≤
‖T ′‖ ‖y′‖ ‖x‖ = ‖T ′‖ , so ‖T‖ ≤ ‖T ′‖.
(ii) For all z′ ∈ Z ′ and x ∈ X we have ((ST )′z′)(x) = z′(ST (x)) = z′(S(Tx)) = (S′z′)(Tx) =
T ′(S′z′)x = (T ′S′)(z′)(x), hence (ST )′ = T ′S′.

Example 2.28. Let 1 ≤ p <∞. The adjoint of the left shift

L : `p → `p, L(x1, x2, x3, . . . ) = (x2, x3, . . . )

is the right shift.
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Proof. Let 1
p + 1

q = 1 and y = (yn)n∈N ∈ lq ∼= (lp)′. Then for all x = (xn)n∈N ∈ lp:

(L′y)x = y(Lx) =
∞∑
n=1

yn(Lx)n =
∞∑
n=1

ynxn+1 =
∞∑
n=2

yn−1xn =
∞∑
n=2

(Ry)nxn

=
∞∑
n=1

(Ry)nxn = (Ry)x.

Definition 2.29. Let X be a normed space. X ′′ := (X ′)′ is the bidual of X.

For every x ∈ X the linear map

JX(x) : X ′ → K, JX(x)x′ := x′x

is linear and bounded by ‖x‖, hence JX(x) ∈ X ′′.

Theorem 2.30. The map

JX : X → X ′′, JX(x)x′ = x′x, x′ ∈ X ′

is a linear isometry. In general, it is not surjective.

Proof. We have seen above that JX is well-defined, linear and ‖JX(x)‖ ≤ ‖x‖, x ∈ X. Now let
x ∈ X and choose ϕx ∈ X ′ such that ϕx(x) = ‖x‖ (Corollary 2.18). It follows that ‖JX(x)ϕx‖ =
|ϕx(x)| = ‖x‖, hence ‖JX(x)‖ ≥ 1.

The preceding theorem gives another easy proof that every normed space X can be completed (see
Theorem 1.7).

Corollary 2.31. Every normed space is isometrically isomorphic to a dense subspace of a Banach
space.

Proof. By the theorem above, X is isometrically isomorphic to JX(X) ⊆ X ′′. Since X ′′ is complete
(Theorem 2.6), the closure JX(X) is a Banach space.

Definition 2.32. A Banach space is called reflexive if JX is surjective.

Examples 2.33. (i) Every finite-dimensional normed space is reflexive.

(ii) `p is reflexive for 1 < p <∞ by Theorem 2.23.

(iii) c0 and `1 are not reflexive.

Note that there are non-reflexive Banach spaces X such that X ∼= X ′′ (but JX is not surjective).

Lemma 2.34. Let X,Y be normed spaces and T ∈ L(X,Y ). Then T ′′ ◦ JX = JY ◦ T , that is, the
following diagram commutes:



40 2.4. The Banach space adjoint and the bidual

X Y

X ′′ Y ′′

T

JX JY

T ′′

Proof. For x ∈ X and y′ ∈ Y ′

[T ′′(JX(x))](y′) = (JX(x))(T ′y′) = T ′y′x = y′(Tx) = (JY (Tx))y′ = [(JY ◦ T )(x)]y′.

If X and Y are identified with subspaces of X ′′ and Y ′′ via the canonical maps JX and JY , then T ′′
is an extension of T . Note that with this identification S ∈ L(Y ′, X ′) is adjoint operator of some
T ∈ L(X,Y ) if and only if S′(X) ⊆ Y .

Lemma 2.35. Let X be a normed space. Then J ′X ◦ JX′ = idX′ .

Proof. Note that JX′ : X ′ → X ′′′ and J ′X : X ′′′ → X ′. For x ∈ X, x′ ∈ X ′

[(J ′X ◦ JX′)x′](x) = [JX′x′](JX(x)) = [JXx]x′ = x′x.

Theorem 2.36. (i) Every closed subspace of a reflexive normed space is reflexive.
(ii) A Banach space X is reflexive if and only if X ′ is reflexive.

Proof. (i) Let U be a closed subspace of a reflexive normed space X and let u′′ ∈ U ′′. We have to
find a u ∈ U such that JX(u) = u′′. Let x′′0 : X ′ → K, x′′0(x′) = u′′(x′|U ). Obviously, x′′0 is linear
and bounded because

|x′′0(x′)| = |u′′(x′|U )| ≤ ‖u′′‖‖x′|U‖ ≤ ‖u′′‖‖x′‖,

hence x′′0 ∈ X ′′. Since X is reflexive there exists an x0 ∈ X such that JX(x0) = x′′0 . Assume that
x0 /∈ U . Since U is closed, there exists a ϕ ∈ X ′ such that ϕ|U = 0 and ϕ(x0) = 1 (Corollary 2.20).
On the other hand ϕ(x0) = 0 by choice of x0 because

x′(x0) = x′′0(x′) = JX(x0)x′ = u′′(x′|U ), x′ ∈ X ′,

Therefore x0 ∈ U . It remains to be shown that JU (x0) = u′′, that is

u′′(u′) = u′(x0), u′ ∈ U ′.

Let u′ ∈ U ′ and choose an arbitrary extension ϕ ∈ X ′ (Corollary 2.17). By definition of x0 it
follows that

u′′(u′) = u′′(ϕ|U ) = x′′0(ϕ) = ϕ(x0) = u′(x0).

(ii) Let X be reflexive. We have to show that JX′ : X ′ → X ′′′ is surjective. Let x′′′0 ∈ X ′′′. The
map x′0 : X → K, x′0(x) = x′′′0 (JX(x)) is linear and bounded, hence x′0 ∈ X ′. We will show that
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JX′(x′0) = x′′′0 . Let x′′ ∈ X ′′. Since X is reflexive, there exists an x ∈ X such that JX(x) = x′′.
Therefore

JX′(x′0)x′′ = x′′(x′0) = JX(x)(x′0) = x′0x = x′′′0 (JX(x)) = x′′′0 (x′′),

hence indeed JX′(x′0) = x′′′0 .
Now assume that X ′ is reflexive. By what was is already proved, X ′′ is reflexive. Since X is a
closed subspace of X ′′ via the canonical map JX , X is reflexive by part (i) of the theorem.

Corollary 2.37. A reflexive normed space X is separable if and only if X ′ is separable.

Proof. That separability of X ′ implies separability of X was shown in Theorem 2.22. If X is
separable and reflexive, then also X ′′ is separable. By Theorem 2.36 X ′ is reflexive, so we can again
apply Theorem 2.22 to obtain that X ′ is separable.

Definition 2.38. Let X be a normed space. A sequence (xn)n∈N converges weakly to x0 ∈ X if
and only if

lim
n→∞

x′(xn) = x′(x0), x′ ∈ X ′.

Notation: xn
w−→ x or w- lim

n→∞
xn = x.

If it should be emphasised that a sequence converges with respect to the norm in the given Banach
space, then the sequence is called norm convergent. Sometimes the notion strongly convergent is
used. Note, however, that in spaces of linear operators the term “strong convergence” has another
meaning (see Defintion 3.12).
The next remark shows that strong convergence is indeed stronger than weak convergence.

Remarks 2.39. (i) If the weak limit of a sequence exists, then it is unique, because, by the
Hahn-Banach theorem, the dual space separates points (Corollary 2.18).

(ii) Every convergent sequence is weakly convergent with the same limit.

(iii) A weakly convergent sequence is not necessarily convergent. Consider for example the se-
quence of the unit vectors (en)n∈N in c0. Let ϕ ∈ c′0

∼= `1. Then lim
n∈N

ϕ(en) = 0 but the
sequence of the unit vectors does not converge in norm.

Example 2.40. Let (xn)n∈N be a bounded sequence in C([0, 1]). Then the following is equivalent:

(i) (xn)n∈N converges weakly to y ∈ C[(0, 1)].
(ii) (xn)n∈N converges pointwise to y ∈ C[(0, 1)].

Proof. “(i) =⇒ (ii)” It is easy to see that for every t0 ∈ [0, 1] the point evaluation x 7→ x(t0) is a
bounded linear functional. Hence for all t ∈ [0, 1] the sequence (xn(t)n∈N converges to some y(t).
By assumption, [0, 1]→ K, t 7→ y(t) belongs to C([0, 1]).
“(ii) =⇒ (i)” follows from Riesz’s representation theorem (Theorem 2.25) and the Lebesgue
convergence theorem (see A.19).
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Theorem 2.41. Every bounded sequence in a reflexive normed space contains a weakly convergent
subsequence.

Proof. Let X be a reflexive normed space and x = (xn)n∈N ⊆ X be a bounded sequence.
First we assume that X is separable. By theorem 2.37, also X ′ is separable. Let {ϕn : n ∈ N} be a
dense subset of X ′. We will construct a subsequence y = (yn)n∈N of x such that for every j ∈ N the
sequence (ϕj(yn))n∈N converges. The sequence (ϕ1(xn))n∈N is bounded, so it contains a convergent
subsequence

(ϕ1(xn1,1), ϕ1(xn1,2), ϕ1(xn1,3), . . . )

Now the sequence (ϕ2(xn1,j))j∈N is bounded, so it contains a convergent subsequence

(ϕ2(xn2,1), ϕ2(xn2,2), ϕ2(xn2,3), . . . )

Continuing like this, we obtain a sequence of subsequences xnm
= (xnm,j)j∈N, m ∈ N such that

(ϕm(xnm,j))j∈N converges. Now the “diagonal sequence” y with ym := xnm,m has the desired
property.
Now we will show that y is weakly convergent. Let x′ ∈ X ′ and ε > 0. Choose an k ∈ N such that
‖x′−ϕk‖ < ε

4M where M := sup{‖xn‖ : n ∈ N} <∞. Let N ∈ N such that |ϕk(yn)−ϕk(ym)| < ε
2 ,

m,n ≥ N . It follows for m,n ≥ N :

|x′(yn)− x′(ym)| ≤ |x′(yn)− ϕk(yn)|+ |ϕk(yn)− ϕk(ym)|+ |ϕk(ym)− x′(ym)|
≤ 2M‖x′ − ϕk‖+ |ϕk(yn)− ϕk(ym)|

<
ε

2 + ε

2 = ε.

This implies that (x′(yn))n∈N is a Cauchy sequence in K, hence it converges. To show that (yn)n∈N
converges weakly, define the map

ψ : X ′ → K, ψ(x′) = lim
n→∞

x′(yn).

By what is already shown, ψ is well-defined and linear. It is also bounded because

|ψ(x′)| =
∣∣ lim
n→∞

x′(yn)
∣∣ = lim

n→∞
|x′(yn)| ≤ lim

n→∞
‖x′‖ ‖(yn)‖ ≤M‖x′‖.

Hence ψ ∈ X ′′. Since X is reflexive, there exists a y0 ∈ X such that x′(y0) = ψ(x′) = lim
n→∞

x′(yn).
Hence (yn)n∈N converges weakly to y0.
Now assume that X is not separable. Let Y := span{xn : n ∈ N} where (xn)n∈N is the bounded
sequence in X chosen at the beginning of the proof. Y is separable (Theorem 1.25) and reflexive
(Theorem 2.36). Hence, by the first step of the proof, there exists a subsequence (yn)n∈N ⊆ Y of
(xn)n∈N and a y0 such that yn

w−→ y0 in Y . Let x′ ∈ X ′. Then x′|Y ′ ∈ Y ′, hence lim
n→∞

x′(yn) =
lim
n→∞

x′|Y ′(yn) = x′|Y ′(y0) = x′(y0). Therefore we also have yn
w−→ y0 in X.
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Chapter 3

Linear operators in Banach spaces

3.1 Baire’s theorem
Theorem 3.1 (Baire-Hausdorff). Let (X, d) be a complete metric space and (An)n∈N be a family
of open dense subsets of X. Then

⋂∞
n=1An is dense in X.

Taking complements, it is easily seen that the theorem above implies

Theorem. Let (X, d) be a complete metric space and (Bn)n∈N be a family of closed subsets of X
such that

⋃∞
n=1Bn contains an open subset. Then at least one of the sets Bn contains a non-empty

open subset.

Proof of Theorem 3.1. For r > 0 and x ∈ X let B(x, r) := {ξ ∈ X : ‖x− ξ‖ < r}. We have to show
that any open ball in X has non-empty intersection with

⋂
n∈NAn. Let ε > 0 and x0 ∈ X.

A1 is open and dense in X, hence A1 ∩ B(x0, ε) is open and not empty. Hence there exist ε1 ∈
(0, 2−1ε) and x1 ∈ A1 such that B(x1, ε1) ⊆ A1 ∩B(x0, ε), hence

B(x1,
ε1
2 ) ⊆ B(x1, ε1) ⊆ A1 ∩B(x0, ε).

A2 is open and dense in X, hence A2 ∩ B(x1,
ε1
2 ) is open and not empty. Hence there exist

ε2 ∈ (0, 2−2ε) and x2 ∈ A2 such that B(x2, ε2) ⊆ A2 ∩B(x1,
ε1
2 ), hence

B(x2,
ε2
2 ) ⊆ B(x2, ε2) ⊆ A2 ∩B(x1,

ε1
2 ) ⊆ A2 ∩A1 ∩B(x0, ε1).

In this way we obtain sequences (εn)n∈N and (xn)n∈N with 0 < εn < 2−nε and

B(xn, εn

2 ) ⊆ B(xn, εn) ⊆ An ∩B(xn−1, εn−1) ⊆ An−1 ∩ . . . A2 ∩A1 ∩B(x0, ε1). (3.1)

Observe that xn ∈ B(xN , εN

2 ) forN ∈ N and n ≥ N . This implies that (xn)n∈N is a Cauchy sequence
in X because, for fixed N ∈ N and all n,m > N we obtain d(xm, xn) ≤ d(xm, xN ) + d(xn, xN ) <
2−N+1. Since X is complete, y := lim

n→∞
xn exists and x0 ∈ B(xN , εN ) for every N ∈ N because for

fixed N , we have that xn ∈ B(xN , εN

2 ) if n ≥ N . Hence (3.1) implies

y ∈ B(xN , εN

2 ) ⊆ B(xN−1, εN−1) ⊆ AN−1 ∩ . . . A2 ∩A1 ∩B(x0, ε1), N ≥ 2,
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so y ∈
⋂
n∈NAn ∩B(x0, ε).

Definition 3.2. Let (X, d) be a metric space.

• A ⊆ X is called nowhere dense in X, if A does not contain an open set.
• A ⊆ X is of first category if it is the countable union of nowhere dense sets.
• A ⊆ X is of second category if it is not of first category.

Note that A is nowhere dense if and only if X \A is dense in X.
An equivalent formulation of

Theorem 3.3 (Baire’s category theorem). A complete metric space is of second category in
itself.

Examples 3.4. Q is of first category in R. R is of second category in R.

3.2 Uniform boundedness principle
Definition 3.5. Let (X, d) be a metric space. A family F = (fλ)λ∈Λ of maps X → R is called
uniformly bounded if there exists an M ∈ R such that

|fλ(x)| ≤M, x ∈ X, λ ∈ Λ.

The next theorem shows that a family of pointwise bounded continuous functions on a complete
metric space is necessarily uniformly continuous on a certain ball.

Theorem 3.6 (Uniform boundedness principle). Let X be a complete metric space, Y a
normed space and F ⊆ C(X,Y ) a family of continuous functions which is pointwise bounded, i. e.,

∀x ∈ X ∃Cx ≥ 0 ∀ f ∈ F ‖f(x)‖ < Cx.

Then there exists an M ∈ R, x0 ∈ X and r > 0 such that

∀x ∈ Br(x0) ∀ f ∈ F ‖f(x)‖ < M. (3.2)

Proof. For n ∈ N let

An :=
⋂
f∈F

{x ∈ X : ‖f(x)‖ ≤ n}.

Note that for every n ∈ N the set {x ∈ X : ‖f(x)‖ ≤ n} is closed because f and ‖ ·‖ are continuous.
Since all An are intersections of closed sets, they are closed. Let x ∈ X. Since F is pointwise
bounded, there exists an nx ∈ N such that x ∈ Anx

, hence X ⊆ ∪n∈NAn. By Baire’s theorem exists
an N ∈ N, x0 ∈ X, r > 0 such that Br(x0) ⊆ AN , that is, (3.2) is satisfied with M = N .

The Banach-Steinhaus theorem is obtained in the special case of linear bounded functions.
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Theorem 3.7 (Banach-Steinhaus theorem). Let X be a Banach space, Y a normed space and
F ⊆ L(X,Y ) a family of continuous linear functions which is pointwise bounded, i. e.,

∀x ∈ X ∃Cx ≥ 0 ∀ f ∈ F ‖f(x)‖ < Cx.

Then there exists an M ∈ R such that

‖f‖ < M, f ∈ F .

Proof. By the uniform boundedness principle there exists an open ball Br(x0) ⊆ X and an M ′ ∈ R
such that ‖f(x)‖ < M ′ for all x ∈ Br(x0) and f ∈ F . For x ∈ X with ‖x‖ = 1 and f ∈ F we find

‖f(x)‖ = 1
r
‖f(rx)‖ = 1

r
‖f(x0)− f(x0 − rx)‖

≤ 1
r

(‖f(x0)‖+ ‖f(x0 − rx︸ ︷︷ ︸
∈Br(x0)

)‖) ≤ 2M ′
r

=: M,

showing that F is uniformly bounded by M .

Corollary 3.8. Let X be a normed space and A ⊆ X. Then the following are equivalent:

(i) A is bounded.
(ii) For every x′ ∈ X ′ the set {x′(a) : a ∈ A} is bounded.

Proof. “(i) =⇒ (ii)” is clear.
“(ii) =⇒ (i)” The family (JX(a))a∈A ⊆ X ′′ is pointwise bounded by assumption. By the Banach-
Steinhaus theorem there exists a M ∈ R such that

‖a‖ = ‖JX(a)‖ ≤M, a ∈ A.

Hence A is bounded.

Corollary 3.9. Every weakly convergent sequence in a normed space is bounded.

Proof. Let X be a normed space and (xn)n∈N be a weakly convergent sequence in X. By hypothesis,
for every x′ ∈ X ′ the set {x′(xn) : n ∈ N} is bounded. Therefore, by Corollary 3.8, the set
{xn : n ∈ N} is bounded.

The following theorem follows directly from Theorem 2.41 and Corollary 3.9.

Theorem 3.10. Let (X, ‖ · ‖) be a normed space, (xn)n∈N and x0 ∈ X. Then the following is
equivalent:

(i) x0 = w- lim
n→∞

xn.

(ii) (xn)n∈N is bounded and there exists a total subset M ′ ⊆ X ′ such that

lim
n→∞

f(xn) = f(x0), f ∈M ′.
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Corollary 3.11. Let X be Banach space and A′ ⊆ X ′. Then the following is equivalent:

(i) A′ is bounded.
(ii) For all x ∈ X the set {a′(x) : a′ ∈ A′} is bounded.

Proof. The implication “(i) =⇒ (ii)” is clear. The other direction follows directly from the Banach-
Steinhaus theorem.

Note that for “(ii) =⇒ (i)” the assumption that X is a Banach space is necessary. For example, let
d = {x = (xn)n∈N : xn 6= 0 for at most finitely many n} ⊆ `∞. d is a non-complete normed space
(see Example 1.15 (5)). For m ∈ N define the linear function ϕm : d → K by ϕm(en) = mδm,n
where δm,n is the Kronecker delta. Obviously ϕm ∈ d′ and ‖ϕm‖ = m, hence the family (ϕm) is
not bounded in d′, but for every fixed x ∈ d the set {ϕm(x) : m ∈M} is.

Definition 3.12. Let X,Y be normed spaces, (Tn)n∈N ∈ L(X,Y ) a sequence of bounded linear
operators and T ∈ L(X,Y ).

(i) (Tn)n∈N converges to T , denoted by lim
n→∞

Tn = T , if and only if

lim
n→∞

‖Tn − T‖ = 0.

(ii) (Tn)n∈N converges strongly to T , denoted by s- lim
n→∞

Tn = T or Tn
s−→ T , if and only if

lim
n→∞

‖Tnx− Tx‖ = 0, x ∈ X.

(iii) (Tn)n∈N converges weakly to T , denoted by w- lim
n→∞

Tn = T or Tn
w−→ T , if and only if

lim
n→∞

|ϕ(Tnx)− ϕ(Tx)| = 0, x ∈ X, ϕ ∈ Y ′.

Remark. (i) The limits are unique if they exist.

(ii) Convergence in norm implies strong convergence and the limits are equal. Strong convergence
implies weak convergence and the limits are equal.
The reverse implications are not true:

• Let X = `2(N), Tn : X → X, Tnx = (x1, . . . , xn, 0, . . . ) for x = (xm)m∈N. Then T converges
strongly to id but ‖Tn − id ‖ = 1 for all n ∈ N, so that (Tn)n∈N does not converge to id in
norm.

• Let X = `2(N), Tn : X → X, Tnx = (0, . . . , 0, x1, x2, . . . ) (n leading zeros) for x = (xm)m∈N.
Then T converges weakly to 0 but ‖Tnx‖ = 1 for all n ∈ N, so that (Tn)n∈N does not converge
strongly to 0.

Proposition 3.13. Let X be a Banach space, Y be a normed space and (Tn)n∈N ⊆ L(X,Y ) such
that for all x ∈ X the limit Tx := lim

n∈N
Tnx exists. Then T ∈ L(X,Y ).
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Proof. It is clear that T is well-defined and linear. By the uniform boundedness principle, there
exists an C ∈ R such that ‖Tn‖ < C for all n ∈ N. Now let x ∈ X with ‖x‖ = 1. Then
‖Tx‖ = lim

n→∞
‖Tnx‖ ≤ sup

n∈N
‖Tn‖ ‖x‖ ≤ C which implies that T ∈ L(X,Y ).

We finish this section with a result on strong convergence of positive operators on a space of
continuous functions. An operator T on a function space is called positivity preserving if Tf ≥ 0
for every f ≥ 0 in the domain of T .

Theorem 3.14 (Korovkin). Let X = C[0, 2π] the space of the continuous functions on [0, 2π]
and let xj ∈ X with x0(t) = 1, x1(t) = cos(t), x2(t) = sin(t) for t ∈ [0, 2π]. Let (Tn)n∈N ⊆ L(X) be
a sequence of positivity preserving operators such that Tnxj → xj for n→∞ and j = 0, 1, 2. Then
(Tn)n∈N converges strongly to id, that is, Tnx→ x for all x ∈ X.

Proof. We define the auxiliary functions

yt(s) = sin2 t− s
2 , t, s ∈ [0, 2π].

Note that yt(s) = 1
2 (1 − cos(s) cos(t) − sin(s) sin(t)), hence yt ∈ span{x0, x1, x2}, in particular

Tnyt → yt for n→∞.
Now fix x ∈ X and ε > 0. Since x is uniformly continuous there exists a δ > 0 such that for all
s, t ∈ [0, 2π]

yt(s) = sin2 t− s
2 < δ =⇒ |x(t)− x(s)| < ε.

Setting α = 2‖x‖∞
δ we obtain that

|x(t)− x(s)| ≤ ε+ αyt(s), s, t ∈ [0, 2π],

because either s, t are such that yt(s) < δ, then |x(t) − x(s)| < δ by definition of δ; or yt(s) ≥ δ,
then |x(t)− x(s)| ≤ 2‖x‖∞ = αδ ≤ αyt(s). Hence we have that

−ε− αyt(s) ≤ x(t)− x(s) ≤ ε+ αyt(s), s, t ∈ [0, 2π]
=⇒ −εx0 − αyt ≤ x(t)x0 − x ≤ εx0 + αyt, t ∈ [0, 2π]

and since Tn is positive and yt is a positive function

−εTnx0 − αTnyt ≤ x(t)Tnx0 − Tnx ≤ εTnx0 + αTnyt, t ∈ [0, 2π].

Since Tnx0 → x0 and Tnyt → 1
2 (1−cos(t)x1−sin(t)x2) for n→∞, we can find N ∈ N large enough

such that εTnx0 + αTnyt < εx0 + αyt + ε for all n ≥ N , hence

|x(t)Tnx0 − Tnx| ≤ εx0 + αyt + ε, t ∈ [0, 2π], n ≥ N.

Hence xTnx0 − Tnx0 converges to 0 in norm in X because by the inequality above

|x(t)(Tnx0)(t)− (Tnx)(t)| ≤ ε+ αyt(t) + ε = 2ε, t ∈ [0, 2π], n ≥ N.

That Tnx→ x follows now from

‖x− xTnx0‖∞ + ‖xTnx0 − Tn‖∞ ≤ ‖x‖ ‖x0 − Tnx0‖∞ + ‖xTnx0 − Tn‖∞.
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Fourier Series
Definition 3.15. Let x : R→ R a 2π-periodic integrable function. The Fourier series of x is

S(x, t) = a0

2 +
∞∑
k=1

(ak cos(kt) + bk sin(kt)),

where

ak := 1
π

∫ π

−π
x(s) cos(ks) ds, k ∈ N0,

bk := 1
π

∫ π

−π
x(s) sin(ks) ds, k ∈ N.

Note that the Fourier series is a formal series only. In the following we will prove theorems on
convergence of the Fourier series.
First we will use methods from Analysis 1 to show that for a continuously differentiable periodic
function its Fourier series converges uniformly to the function. Next we will use the uniform
boundedness principle to show that there exist continuous functions whose Fourier series does not
converge pointwise everywhere. Finally, the Korovkin theorem implies that the arithmetic means
of the partial sums of the Fourier series of a periodic function converges uniformly to the function.
For a given 2π-periodic function and n ∈ N we define the nth partial sum

sn(x, t) = a0

2 +
n∑
k=1

(ak cos(kt) + bk sin(kt)). (3.3)

Lemma 3.16.

sn(x, t) = 1
π

∫ π

−π
x(s+ t)Dn(s) ds with Dn(s) =

{ sin((n+ 1
2 )s)

2 sin( s
2 ) , s 6= 0,

n+ 1
2 s = 0.

(3.4)

Dn is called Dirichlet kernel. Dn is continuous and
1
π

∫ π

−π
Dn(s) ds = 1. (3.5)

Proof. Using the trigonometric identity cos(a) cos(b) + sin(a) sin(b) = cos(a − b) and that x is
2π-periodic we obtain

sn(x, t) = a0

2 +
n∑
k=1

(ak cos(kt) + bk sin(kt))

= 1
π

∫ π

−π
x(s)

(1
2 +

n∑
k=1

(cos(ks) cos(kt) + sin(ks) sin(kt))
)

ds

= 1
π

∫ π

−π
x(s)

(1
2 +

n∑
k=1

cos(k(s− t))
)

ds

= 1
π

∫ π

−π
x(s+ t)

(1
2 +

n∑
k=1

cos(ks)
)

ds.
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Now we calculate for s 6= 0

1
2 +

n∑
k=1

cos(ks) = 1
2 + 1

2

n∑
k=1

(eıs + e−iks) = 1
2

n∑
k=−n

eıks = e−ins

2

2n∑
k=0

eıks

= e−ins

2
eı2ns−1
eıs−1 = 1

2
eı(n+ 1

2 )s− e−ı(n+ 1
2 )s

eıs/2− e−ıs/2 =
sin((n+ 1

2 )s)
2 sin s

2
= Dn(s).

Note that lim
s→0

Dn(s) = n + 1
2 = 1

2 +
∑n
k=1 cos(0). For the proof of (3.5) let x = 1 a constant

function on R. Then, by (3.3),
1
π

∫ π

−π
Dn(s) ds = sn(x, t) = x(t) = 1.

Theorem 3.17. Let x : R → R be a 2π-periodic continuously differentiable function. Then the
Fourier series of x converges uniformly to x.

Proof. Let x : R → R a 2π-periodic continuously differentiable function. Let ε > 0 and h ∈ (0, π)
such that h < ε

π‖x′‖∞ . Using (3.4) and (3.5) it follows that

|x(s)− sn(x, t)| =
∣∣∣ 1
π

∫ π

−π
(x(s+ t)− x(t))Dn(s) ds

∣∣∣
≤ 1
π

( ∣∣∣ ∫ −h
−π

. . . ds
∣∣∣︸ ︷︷ ︸

=:An(t)

+
∫ h

−h
| . . . |ds︸ ︷︷ ︸

=:Bn(t)

+
∣∣∣ ∫ π

h

. . . ds
∣∣∣︸ ︷︷ ︸

=:Cn(t)

)
.

We have to show that An(t), Bn(t) and Cn(t) tend to 0 for n→∞ uniformly in t. Using the mean
value theorem and that π

2σ ≤ sin(σ) for σ ∈ [0, π/2] we obtain

Bn(t) =
∫ h

−h

|x(s+ t)− x(t)|
2 sin | s2 |

| sin((n+ 1
2 )s)|︸ ︷︷ ︸

≤1

ds ≤
∫ h

−h

‖x′‖ |s|
2 sin | s2 |

ds

≤ 2h‖x′‖∞
π

2 <
ε

2 .

Define the auxiliary function

ft(s) = x(s+ t)− x(t)
2 sin( s2 ) , s ∈ [h, π], t ∈ [0, π].

The functions ft are continuously differentiable and ‖ft‖∞ ≤ 2‖x‖∞
2 sin(h/2) =: M1, ‖f ′t‖∞ ≤

‖x′‖∞
2 sin(h/2) =:

M2. Note that the bounds do not depend on t. Integrating by parts, we find

Cn(t) =
∣∣∣ ∫ π

h

ft(s) sin((n+ 1
2 )s) ds

∣∣∣
=
∣∣∣− cos((n+ 1

2 )s)
n+ 1

2
ft(s)

∣∣∣π
h

+
∫ π

h

cos((n+ 1
2 )s)

n+ 1
2

f ′t(s) ds
∣∣∣

≤ 1
n+ 1

2
(2M1 + (π − h)M2) =: M

n+ 1
2
.
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Note that M ′ does not depend on t. When we choose N such that M
n+ 1

2
< ε

2 we obtain finally
|x(s)− sn(x, t)| < ε for all t ∈ R, that is, ‖x− sn(x, · )‖∞ < ε.

Theorem 3.18. There exists a 2π-periodic continuous function x whose Fourier series does not
converge everywhere pointwise to x.

Proof. We identify the 2π-periodic functions on R with
X :=

{
x ∈ C([−π, π]) : x(−π) = x(π)

}
.

Clearly (X, ‖ · ‖∞) is a Banach space.
Note that for fixed t ∈ [−π, π] and n ∈ N

sn( · , t) : X → K

is linear and bounded, hence an element in X ′.
Assume that for every x ∈ X its Fourier series converges pointwise to x. Then for every x ∈ X and
t ∈ [−π, π] the sequence (sn(x, t))n∈N is bounded (because it converges to x(t)). By the uniform
boundedness principle there exists Ct such that ‖sn( · , t)‖ ≤ Ct for all n ∈ N. In particular, we
have

‖sn( · , 0)‖ ≤ C0, n ∈ N.

It is easy to see that

‖sn(x, 0)‖ = 1
π

∣∣∣ ∫ π

−π
x(s)Dn(s) ds

∣∣∣ ≤ 1
π
‖x‖∞

∫ π

−π
|Dn(s)|ds

hence ‖sn( · , 0)‖ ≤
∫ π
−π |Dn(s)|ds. On the other hand, the function y(s) = sign(Dn(s)) can be

approximated by continuous functions ym with ‖ym‖ = 1 such that

‖sn(ym, 0)‖ = 1
π

∫ π

−π
x(s)Dn(s) ds→ 1

π

∫ π

−π
sign(Dn(s))Dn(s) ds = 1

π

∫ π

−π
|Dn(s)|ds

so that finally we obtain

‖sn( · , 0)‖ = 1
π

∫ π

−π
|Dn(s)|ds < C0, n ∈ N.

However ‖sn( · , 0)‖ → ∞ for n→∞ because∫ π

−π
|Dn(s)|ds = 2

∫ π

0

| sin((n+ 1
2 )s)|

2 sin s
2

ds ≥ 2
∫ π

0

| sin((n+ 1
2 )s)|

s
ds

= 2
∫ π(n+ 1

2 )

0

| sin σ|
σ

dσ ≥ 2
n−1∑
k=0

∫ (k+1)π

kπ

| sin σ|
σ

dσ

≥ 2
n−1∑
k=0

1
π(k + 1)

∫ (k+1)π

kπ

| sin σ|dσ = 4π
n−1∑
k=0

1
π(k + 1) .

= 4
n∑
k=1

1
k
.

Hence the theorem is proved.
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Finally we show that the arithmetic mean of the partial sums of the Fourier series of a continuous
function converge.

Theorem 3.19 (Fejér). As before let

X :=
{
x ∈ C([−π, π]) : x(−π) = x(π)

}
and let Tn ∈ L(X) defined by

Tnx = 1
n

n−1∑
k=0

sn(x, · ).

Then (Tn)n∈N converges strongly to id (i. e. Tnx→ x for n→∞, x ∈ X).

Proof. Note that the Tn are well-defined and that for all x ∈ X and t ∈ [−π, π]

Tnx(t) = 1
n

n−1∑
k=0

∫ π

−π
x(s+ t)Dk(s) ds = 1

nπ

∫ π

−π

x(s+ t))
2 sin s

2

n−1∑
k=0

sin((k + 1
2)s) ds.

We simplify the sum in the integrand:

n−1∑
k=0

sin((k + 1
2 )s) = Im

n−1∑
k=0

ei(k+ 1
2 )s = Im

(
ei s

2

n−1∑
k=0

eiks
)

= Im
(

ei s
2

eins−1
eis−1

)
= Im eins−1

eis/2− e−is/2 = Im eins/2(eins/2− eins/2)
eis/2− e−is/2

= Im 2i(cos(ns/2) + i sin(ns/2)) sin(ns/2)
2i sin(s/2) = sin2(ns/2)

sin(s/2) .

If we define the Fejér kernel

Fn(s) :=
{

1
2n

sin2(ns/2)
sin(s/2) , s 6= 0,

1
2n s = 0,

we can write Tnx as

Tnx(t) = 1
π

∫
−ππFn(s)x(s+ t) ds.

Note that all Fn are positive functions, hence the Tn are positive operators. To show the theorem,
it suffices to show that Tnxj → xj for x0(t) = 1, x1(t) = cos(t), x2(t) = sin(t) (Korovkin theorem).
Using (3.3) it follows that sk(x0, · ) = x0 for all k ∈ N0 and that

s0(x1, · ) = s0(x2, · ) = 0,
sk(x2, · ) = x1, sk(x1, · ) = x2, k ∈ N.

Since Tnx0 = x0, Tnxj = n−1
n xj for j = 1, 2 and n ∈ N the theorem is proved.
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3.3 The open mapping theorem
Definition 3.20. A map f between metric spaces X and Y is called open if the image of an open
set in X is an open set in Y .

Note that an open map does not necessarily map closed sets to closed sets. For example, the
projection π : R × R → R, π((s, t)) = s, is open. The set A := {(s, t) ∈ R × R : s ≥ 0, st ≥ 2} is
closed in R× R but π(A) = (0,∞) is open in R.

Lemma 3.21. Let X,Y be Banach spaces and T ∈ L(X,Y ) such that

BY (0, r) ⊆ T (BX(0, 1)).

for some r > 0. Then for every ε ∈ (0, 1)

BY (0, (1− ε)r) ⊆ T (BX(0, 1)).

Here BX(x0, r) := {x ∈ X : ‖x− x0‖ < r} and BY (y0, r) := {y ∈ Y : ‖y − y0‖ < r} are open balls
in X and Y respectively.

The lemma says that if T (BX(0, 1)) is dense in BY (0, r), then, for any 0 < ρ < r, the ball BY (0, ρ)
is contained in T (BX(0, 1)).

Proof. Note that the assertion is equivalent to

BY (0, r) ⊆ (1− ε)−1T (BX(0, 1)) = T (BX(0, (1− ε)−1)).

Fix ε > 0 and y0 ∈ BY (0, r). We have to show that there exists an x0 ∈ X with ‖x0‖ < (1− ε)−1

and y0 = T (x0). By assumption, BY (0, r) ⊆ T (BX(0, 1)). Hence there exists an x1 ∈ BX(0, 1) such
that ‖y0−Tx1‖ < εr. By scaling, we know that T (BX(0, ε)) is dense in BY (0, εr). Since y0−Tx1 ∈
BY (0, εr), there exists an x2 ∈ BX(0, ε) such that ‖y0 − Tx1 − Tx2‖ < ε2r. Since T (BX(0, ε2)) is
dense in BY (0, ε2r), there exists an x3 ∈ BX(0, ε2) such that ‖y0 − Tx1 − Tx2 − Tx3‖ < ε3r.
Continuing in this way, we obtain a sequence (xn)n∈N such that

‖xn‖ < εn−1, ‖y0 −
n∑
k=1

Txk‖ < rεn, n ∈ N. (3.6)

It follows that x0 :=
∑∞
k=1 xk exists and lies in B(0, (1−ε)−1) because

∑∞
k=1 ‖xk‖ <

∑∞
k=1 rε

k−1 =
r(1− ε)−1. Since T is continuous, we know that

T (x0) = T
( ∞∑
k=1

xk
)

=
∞∑
k=1

Txk.

By (3.6) it follows that
∑n
k=1 Txk converges to y0 for n→∞. Hence Tx0 = y0 and the statement

is proved.

In the proof of the open mapping theorem we use the following fact.
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Remark. Let T : X → Y be a linear map between normed spaces X and Y and assume that
TX(B(0, 1)) is dense in BY (y, δ) for some y ∈ Y and δ > 0. Then TX(B(0, 1)) is dense in BY (0, δ).

Proof. Obviously it suffices to show that T (BX(0, 2)) is dense in BY (0, 2δ). Since T is linear,
it follows immediately that TX(B(0, 1)) is dense in BY (−y, δ). Let z ∈ BY (0, 2δ) and ε > 0.
Note that y − z/2 ∈ BY (y, δ) and −y − z/2 ∈ BY (−y, δ). Choose x1, x2 ∈ BX(0, 1) such that
‖Tx1 − (y − z/2)‖ < ε/2 and ‖Tx2 − (−y − z)‖ < ε/2. Since x1 + x2 ∈ BX(0, 2) and

‖T (x1 + x2)− z‖ ≤ ‖Tx1 − (y − z/2)‖+ ‖Tx2 − (−y − z/2)‖ < ε,

it follows that z ∈ T (BX(0, 2)) because ε can be chosen arbitrarily small.

Theorem 3.22 (Open mapping theorem). Let X,Y be Banach spaces and T ∈ L(X,Y ). Then
T is open if and only if it is surjective.

Proof. If T is open, then it is obviously surjective.
Now assume that T is surjective. We use the notation of the preceding lemma. By assumption

Y =
∞⋃
k=1

T (BX(0, k)).

Since Y is complete, by Baire’s category theorem there must exist an n ∈ N and y ∈ Y and ε > 0
such BY (y, ε) ⊆ T (BX(0, n)), in other words, T (BX(0, 1)) is dense in BY (y/n, ε/n). By the remark
above T (BX(0, 1)) is dense in BY (0, ε/n), so by Lemma 3.21 BY (0, δ) ⊆ T (BX(0, 1)) for all δ < ε/n.

Now let U ⊆ X be an open set and u ∈ U . Then there exists an open ball BX(0, ε) such that
u + BX(0, ε) ⊆ U . By what was shown above, there exists an δ > 0 such that Tu + BY (0, δ) ⊆
Tu+ T (BX(0, ε)) = T (u+BX(0, ε)) ⊆ T (U).

The open mapping theorem has the following important corollaries.

Corollary 3.23 (Inverse mapping theorem). Let X,Y be Banach spaces and T ∈ L(X,Y ) a
bijection. Then T−1 exists and is continuous.

Proof. By the open mapping theorem T is open, so its inverse T−1 is continuous.

Corollary 3.24. Let X,Y be Banach spaces and T ∈ L(X,Y ) injective. Then T−1 : rg(T ) → X
is continuous if and only if rg(T ) is closed.

Proof. If rg(T ) is closed in Y then it is a Banach space. So by the previous lemma, T : X → rg(T )
has a continuous inverse. On the other hand, if T−1 : rg(T ) → X is continuous, then T is an
isomorphism between X and rg(T ), so rg(T ) is complete, hence closed in Y .

Corollary 3.25. Let X be a K-vector space and ‖ · ‖1 and ‖ · ‖2 norms on X such that X is
complete with respect to both norms. Assume that there exists an α > 0 such that ‖x‖2 ≤ α‖x‖1
for all x ∈ X. Then the two norms are equivalent.
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Proof. Let T : (X, ‖·‖1)→ (X, ‖·‖2), Tx = x. T is surjective and bounded by α, so it is continuous.
By the open mapping theorem, its inverse is continuous, hence bounded. The statement follows
now from ‖x‖1 = ‖T−1x‖1 ≤ ‖T−1‖ ‖x‖2, x ∈ X.

3.4 The closed graph theorem
Let X,Y be normed spaces. Then X × Y is a normed space with either of the norms

‖ · ‖ : X × Y → R, ‖(x, y)‖ = ‖x‖+ ‖y‖,
‖ · ‖ : X × Y → R, ‖(x, y)‖ =

√
‖x‖2 + ‖y‖2.

Note that the two norms defined above are equivalent.

Definition 3.26. Let X,Y be normed spaces, D a subspace of X and T : D → Y linear. T is
called closed if its graph

G(T ) := {(x, Tx) : x ∈ D} ⊆ X × Y

is closed in X × Y . T is closable if G(T ) is the graph of an operator T . The operator T is called
the closure of T .

D is called the domain of T , also denoted by domT . Sometimes the notations T : X ⊇ D → Y or
T (X → Y ) are used.

Obviously, the graph G(T ) is a subspace of X × Y .

Lemma 3.27. Let X,Y normed space and D ⊆ X a subspace. Then T : X ⊇ D → Y is closed if
and only if for every sequence (xn)n∈N ⊆ D the following is true:

(xn)n∈N and (Txn)n∈N converge
=⇒ x0 := lim

n→∞
xn ∈ D and lim

n→∞
Txn = Tx0.

(3.7)

Proof. Assume that T is closed and let (xn)n∈N such that (xn)n∈N and (Txn)n∈N converge. Then
((xn, Txn))n∈N ⊆ G(T ) converges in X×Y . Since G(T ) is closed, lim

n→∞
(xn, Txn) = (x0, y0) ∈ G(T ).

By definition of G(T ) this implies lim
n→∞

xn = x0 ∈ D(T ) and Tx0 = y0 = lim
n→∞

Txn.

Now assume that (3.7) holds and let ((xn, Txn))n∈N ⊆ G(T ) be a sequence that converges in X×Y .
Then both (xn)n∈N and (Txn)n∈N converge, hence x0 := lim

n→∞
xn ∈ D and lim

n→∞
Txn = Tx0 which

shows that lim
n→∞

(xn, Txn) = (x0, Tx0) ∈ G(T ), hence G(T ) is closed.

Lemma 3.28. Let X,Y normed space and D ⊆ X a subspace. Then T : D → Y is closable if and
only if for every sequence (xn)n∈N ⊆ D the following is true:

lim
n→∞

xn = 0 and (Txn)n∈N converges =⇒ lim
n→∞

Txn = 0. (3.8)
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The closure T of T is given by

D(T ) = {x ∈ X : ∃ (xn)n∈N ⊆ D with lim
n→∞

xn = x and (Txn)n∈N converges },

Tx = lim
n→∞

(Txn) for (xn)n∈N ⊆ D with lim
n→∞

xn = x.
(3.9)

Proof. Assume that T is closable. Then G(T ) is the graph of a linear function. Hence for a
sequence (xn)n∈N ⊆ D with lim

n→∞
xn = 0 and lim

n→∞
Txn = y for some y ∈ Y it follows that

(0, y) ∈ G(T ) = G(T ). Hence y = T0 = 0 because T is linear.
Now assume that (3.8) holds and define T as in (3.9). T is well-defined because for sequences
(xn)n∈N and (x̃n)n∈N in D with lim

n→∞
xn = lim

n→∞
x̃n = x such that (Txn)n∈N and (T x̃n)n∈N in D

converge, it follows that (xn− x̃n)n∈N converges to 0. Since T (xn− x̃n) = T (xn− x̃n) converges, it
follows by assumption that lim

n→∞
Txn − lim

n→∞
T x̃n = lim

n→∞
T (xn − x̃n) = 0. Linearity of T is clear.

By definition, G(T ) is the closure of G(T ), so T is the closure of T .

Remarks 3.29. Let X,Y be normed spaces.

(i) Every T ∈ L(X,Y ) is closed.

(ii) If T is closed and injective, then T−1 is closed.

Proof. Closedness of {(x, Tx) : x ∈ X} ⊆ X×Y implies closeness of {(T−1y, y) : y ∈ rg(T )} ⊆
X × Y .

(iii) If T : D ⊇ X → Y is linear and continuous, then T is closable and D(T ) = D(T ).

Examples 3.30. (i) A continuous operator that is not closed.
Let X be normed space, S ∈ L(X) and D a dense subset of X with X \D 6= ∅. (For example,
d is dense in c0.) Then T := S|D is continuous because it is the restriction of a continuous
function, but is not closed. To see this, fix an x0 ∈ X \D and choose a sequence (xn)n∈N ⊆ D
which converges to x0. Then (Txn)n∈N converges (to Sx0). If T were closed, this would imply
that x0 ∈ D, contradicting the choice of x0.

(ii) A closed operator that is not continuous.
Let X = C([−1, 1]), D = C1([−1, 1]) ⊆ C([−1, 1]) and T : X ⊇ D → X, Tx = x′. Then T is
closed and not continuous.

Proof. Let (xn)n∈N ⊆ D such that (xn)n∈N and (Txn)n∈N converge. From a well-known theo-
rem in Analysis 1 it follows that x0 := lim

n→∞
xn is differentiable and Tx0 = x′0 = ( lim

n→∞
xn)′ =

lim
n→∞

x′n = lim
n→∞

Txn.
That T is not continuous was already shown in Example 2.7 (iv) (choose xn(t) = 1

n exp(−n(t+
1))).

(iii) Let X = L2(−1, 1), D = C1([0, 1]) ⊆ L2([0, 1]) and T : X ⊇ D → X, Tx = x′. Then T is
not closed.
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Proof. Let xn : [−1, 1]→ R, xn(t) = (t2 +n−2) 1
2 . Then (xn)n∈N ⊆ D and xn → g for n→∞

where g(t) = |t|, t ∈ [−1, 1]. The sequence of the derivatives converges

x′n(t) = t

(t2 + n−1) 1
2
→ h(t) =


1, t > 0,
−1, t < 0,
0, t = 0.

Obviously h ∈ L2(−1, 1). If T were closed, it would follow that g ∈ C1([−1, 1]), a contradic-
tion.

Definition 3.31. Let X,Y be Banach spaces, D ⊆ X a subspace and T : X ⊇ D → Y a linear
operator. Then

‖ · ‖T : D → R, ‖x‖T = ‖x‖+ ‖Tx‖

is called the graph norm of T .

It is easy to see that ‖ · ‖T is a norm on D. Moreover, the norm defined above is equivalent to the
norm ‖x‖′T =

√
‖x‖2 + ‖Tx‖2 on D. Most of the time, the graph norm defined in Definition 3.31

is easier to use in calculations. However, the norm with the square root is sometimes more useful
when operators in Hilbert spaces are considered.

Lemma 3.32. Let X,Y be Banach spaces, D ⊆ X a subspace and T : X ⊇ D → Y a closed linear
operator. Then

(i) (D, ‖ · ‖T ) is a Banach space.

(ii) T̃ : (D, ‖ · ‖T )→ Y, T̃x = Tx, is continuous.

Proof. (i) To show completeness of (D, ‖ · ‖T ) let (xn)n∈N ⊆ D be a Cauchy sequence with respect
to ‖ · ‖T . Then, by definition of the graph norm, (xn)n∈N is a Cauchy sequence in X and (Txn)n∈N
is a Cauchy sequence in Y . Since X and Y are complete, the sequences converge. Hence, by the
closeness of T , ‖ · ‖- lim

n→∞
xn =: x0 ∈ D and xn

‖·‖T−−−→ x0.

(ii) The statement follows from ‖T̃ x‖Y ≤ ‖x‖X + ‖Tx‖Y = ‖x‖T , x ∈ D.

Lemma 3.33. Let X,Y be Banach spaces, D ⊆ X a subspace and T : X ⊇ D → Y a closed
surjective operator. Then T is open. If, in addition, T is injective, then T−1 is continuous.

Proof. By Lemma 3.32 and the open mapping theorem (Theorem 3.22) the operator iT̃ : (D, ‖ ·
‖T )→ Y, T̃x = Tx, is open. Let U ⊆ D open with respect to the norm in X. Then U is also open
with respect to the graph norm because obviously i : (D, ‖ · ‖T ) → (D, ‖ · ‖), ix = x, is bounded,
hence continuous. Hence T (U) = T̃ (U) is open in Y .
Now assume in addition that T is injective. Then T̃−1 : Y → (D, ‖ ·‖T ) is continuous by the inverse
mapping theorem. Since i is continuous, also T−1 = (T̃ ◦ i−1)−1 = i ◦ T̃−1 is continuous.

Lemma 3.34. Let X,Y be Banach spaces, D ⊆ X a subspace and T : X ⊇ D → Y a closed
injective linear operator such that T−1 : rg(T )→ X is continuous. Then rg(T ) is closed.
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Proof. Let (yn)n∈N be a Cauchy sequence in rg(T ) with y0 := lim
n→∞

yn. and xn := T−1yn, n ∈ N.
Then (xn)n∈N is a Cauchy sequence inD because ‖xn−xm‖ = ‖T−1yn−T−1ym‖ ≤ ‖T−1‖ ‖yn−ym‖.
Hence (xn)n∈N converges in X and its limit x0 belongs to D and y0 = lim

n→∞
yn = Tx0 ∈ rg(T )

because T is closed.

Theorem 3.35 (Closed graph theorem). Let X,Y be Banach spaces and T : X → Y be a
closed linear operator. Then T is bounded.

Proof. Note that the projections

π1 : G(T )→ X, π1(x, Tx) = x,

π2 : G(T )→ Y, π2(x, Tx) = Tx

are continuous and that π1 is bijective. By assumption the graph G(T ) is closed in X × Y , hence
a Banach space, so π1 is open by the open mapping theorem (Theorem 3.22). Hence T = π2 ◦ π−1

1
is continuous.

Lemma 3.36. Let X,Y be Banach spaces, D ⊆ X a subspace and T : D → Y linear. Then the
following are equivalent:

(i) T is closed and D(T ) is closed.
(ii) T is closed and T is continuous.
(iii) D(T ) is closed and T is continuous.

Proof. (i) =⇒ (ii) follows from the closed graph theorem because by assumption D is Banach space.
(ii) =⇒ (iii) and (iii) =⇒ (i) are clear.

Example 3.37. An everywhere defined linear operator that is not closed.

Let X be an infinite dimensional Banach space and (xλ)λ∈Λ an algebraic basis of X. Without
restriction we can assume ‖xλ‖ = 1, λ ∈ Λ. Choose N → Λ, n 7→ λn be an injection. Then the
operator

T : X → X, T (x) =
∑
n∈N

n cλn
xλn

for x =
∑
λ∈Λ

cλn
xλn
∈ X,

is well-defined. Assume that T is closed. By the closed graph theorem T must be bounded, but
‖Txλn

‖ = ‖nxλn
‖ = n while ‖xλn

‖ = 1, n ∈ N contradicting the boundedness of T .

3.5 Projections in Banach spaces
Definition 3.38. Let X be a vector space. P : X → X is called a projection (on rg(P )) if P 2 = P .

Note that if P is a projection, then also id−P is a projection because (id−P )2 = id−2P + P 2 =
id−P .
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Lemma 3.39. Let X be a normed space and P ∈ L(X) a projection. Then the following holds:

(i) Either P = 0 or ‖P‖ ≥ 1.
(ii) ker(P ) and rg(P ) are closed.

(iii) X is isomorphic to kerP ⊕ rg(P ).

Proof. (i) Note that ‖P‖ = ‖P 2‖ ≤ ‖P‖2, hence 0 ≤ ‖P‖ − ‖P‖2 = ‖P‖(1− ‖P‖).
(ii) Since P is continuous, ker(P ) = P−1({0}) is closed. To see that rg(P ) is closed, it suffices to
show that rg(P ) = ker(id−P ). Indeed, x ∈ ker(id−P ) implies x = Px ∈ rg(P ) and y ∈ rg(P )
implies (P − id)y = Py − y = y − y = 0, hence y ∈ ker(id−P ).
(iii) Obviously x 7→ ((id−P )x, Px) ∈ ker(P )⊕rg(P ) is well defined, linear, bijective and continuous
because id−P and P are continuous. By the inverse mapping theorem then also the inverse operator
is continuous which shows that X and ker(P )⊕ rg(P ) are isomorphic.

Theorem 3.40. Let X be a normed space, U ⊆ X a finite dimensional subspace. Then there exists
a linear continuous projection P of X to U with ‖P‖ ≤ dimU .

Proof. From linear algebra we know that there exist bases (u1, . . . , un) of U and (ϕ1, . . . , ϕn) of U ′
such that ‖uk‖ = ‖ϕk‖ = 1 and ϕj(uk) = δjk, j, k = 1, . . . , n. By the Hahn-Banach theorem the
ϕk can be extended to linear functionals ψk on X with ‖ϕk‖ = ‖ψk‖. We define

P : X → X, Px =
n∑
k=1

ϕk(x)uk.

Obviously P is a linear bounded projection on U and

‖Px‖ ≤
n∑
k=1
‖ϕk‖ ‖x‖ ‖uk‖ =

n∑
k=1
‖x‖ = n‖x‖.

Theorem 3.41. Let X be Banach space, U, V ⊆ X closed subspaces such that X and U ⊕ V are
algebraically isomorphic. Then the following holds:

(i) X is isomorphic to V ⊕ U with ‖(u, v)‖ = ‖u‖+ ‖v‖.
(ii) There exists a continuous linear projection of X on U .

(iii) V is isomorphic to X/U .

Proof. (i) Since U and V are Banach spaces, their sum U ⊕ V is a Banach space. The map
U ⊕ V → X, (u, v) 7→ u + v is linear, continuous and bijective. Hence by the inverse mapping
theorem, also the inverse is continuous.
(ii) P : X → U, u+ v 7→ u is the desired projection.
(iii) The map V 7→ X/V, v 7→ [v] is linear, bijective and continuous. Since U is closed, X/U is a
Banach space. By the inverse mapping theorem it follows that V and X/U are isomorphic.

Definition 3.42. let X be a Banach space. A closed subspace U of X is called complemented if
there exists a continuous linear projection on U .
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Remark 3.43. Note that not every closed subspace of a Banach space is complemented in the
sense of the theorem above. For example, c0 is not complemented as subspace of `∞.

3.6 Weak convergence
Definition 3.44. Let X be a set and U = (Uλ)λ∈Λ a family of subsets of sets in X. The smallest
topology on X such that all Uλ are open is called the topology generated by U , denoted by τ(U).

Obviously τ(U) exists and is the intersection of topologies containing all Uλ.

Lemma 3.45. Let X be a set, U = (Uλ)λ∈Λ a family of subsets of X. Then the topology generated
by U consists of all sets of the form ⋃

γ∈Γ

n⋂
k=1

Uγ,k, (3.10)

that is, of arbitrary unions of finite intersections of sets in the family U .

Proof. Let τ(U) be the topology generated by U and σ(U) the system of sets described in (3.10).
It is not hard to see that σ(U) is a topology containing U , hence containing τ(U). On the other
hand, all sets of the form (3.10) are open in τ(U), so σ(U) ⊆ τ(U).

Definition 3.46. Let X be a set, Λ be an index set and for every λ ∈ Λ let (Yλ, τλ) be a topological
space. Consider a family F = (fλ : X → Yλ) of functions. The smallest topology on X such that
all fλ are continuous, is called the initial topology on X, denoted by σ(X,F).

Note that τ(F) = τ
(
{f−1
λ (Uλ) : λ ∈ Λ, Uλ ∈ τλ}.

Definition 3.47. Let X be a normed space. The topology σ(X,X ′) is called the weak topology on
X. The topology σ(X ′, X) is called the weak ∗ topology on X ′ when X is identified with a subset
of X ′′ by the canonical map JX .

Note that σ(X ′, X) ⊆ σ(X ′, X ′′) ⊆ σ‖·‖.

Lemma 3.48. Let X be a normed space. A sequence (xn)n∈N ⊆ X is weakly convergent to some
x0 ∈ X (in the sense of Definition 2.38) if and only if it converges in the weak topology σ(X,X ′).

Proof. Assume that (xn)n∈N is weakly convergent with x0 := w- lim
n→∞

xn and let U be a σ(X,X ′)-open
set containing x0. Then there exist ϕ1, . . . , ϕn such that

x0 ∈
n⋂
k=1

ϕ−1
j (Vj) ⊆ U

with Vj open subsets in R containing ϕj(x0). Since lim
n→∞

ϕ(xn) = ϕ(x0) for all ϕ ∈ X ′, we can
choose an N ∈ N such that ϕj(xn) ∈ Uj for all n ≥ N and all j = 1, . . . , n. Hence xn ∈⋂n
k=1{ϕ

−1
j (Vj)} ⊆ U for all n ≥ N .
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Now assume that (xn)n∈N ⊆ X converges to x0 in the weak topology. Since by definition of
σ(X,X ′) all functionals ϕ ∈ X ′ are continuous, it follows that (ϕ(xn))n∈N converges to ϕ(x0) for
every ϕ ∈ X ′.

Lemma 3.49. Let X be a normed space, (xn)n∈N ⊆ X and (ϕn)n∈N ⊆ X ′.

(i) x0 = w- lim
n→∞

xn =⇒ ‖x0‖ ≤ lim inf
n→∞

xn.

(ii) ϕ0 = w ∗ - lim
n→∞

ϕn =⇒ ‖ϕ0‖ ≤ lim inf
n→∞

ϕn.

Proof. (i) For x0 = 0 the assertion is clear. By the Hahn-Banach theorem there exists an ϕ ∈ X ′
such that ϕ(x0) = ‖x0‖ and ‖ϕ‖ = 1. Hence

‖x0‖ = ‖ lim
n→∞

ϕ(xn)‖ ≤ lim inf
n→∞

‖ϕ‖ ‖xn‖ = lim inf
n→∞

‖xn‖.

(ii) Let ε > 0. Then there exists an x ∈ X with ‖x‖ = 1 such that ‖ϕ0‖ − ε < ‖ϕ0(x)‖. The
statement follows as above:

‖ϕ0‖ − ε < ‖ϕ0(x)‖ = lim
n→∞

‖ϕn(x)‖ ≤ lim inf
n→∞

‖ϕn‖ ‖x‖ = lim inf
n→∞

‖ϕn‖.

Definition 3.50. Let X be a topological space. A function f : X → R is called upper semicontin-
uous if lim sup

xn→x
f(xn) ≤ f(x). It is called lower semicontinuous if lim inf

xn→x
f(xn) ≥ f(x).

Hence the lemma above states that ‖ · ‖ is lower semicontinuous in the weak topology.

Definition 3.51. For λ ∈ Λ let (Xλ, τλ) be topological spaces. Define

X :=
∏
λ∈Λ

Xλ :=
{
f : Λ→

⋃
λ∈Λ

Xλ : f(λ) ∈ Xλ, λ ∈ Λ
}
.

The product topology on X is the weakest topology such that for every λ ∈ Λ the projection

πλ : X → Xλ, πj(f) = f(j),

is continuous.

Lemma 3.52. Let X as above with the product topology. Let O ⊆ P(X) be the family of all sets
U ⊆ X such that for every u ∈ U there exist λj ∈ Λ, Uj ⊆ Xλj

open, j = 1, . . . , n, such that

u ∈ {s ∈ X : s(λj) ∈ Uj , j = 1, . . . , n} =
n⋂
j=1

π−1
λj

(Uj)︸ ︷︷ ︸
open in O

⊆ U.

Then O is the product topology on X.

Proof. This is a special case of Lemma 3.48.
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Theorem 3.53 (Banach-Alaoglu). Let X be a normed space. Then the closed unit ball K ′1 :=
{ϕ ∈ X ′ : ‖ϕ‖ ≤ 1} is weak ∗-compact.

Proof. For x ∈ X define the set Ax := {z ∈ K : |z| ≤ ‖x‖} and let A :=
∏
x∈X Ax together with

the product topology. By Tychonoff’s theorem A is compact. Note that elements a ∈ A are maps
X → K with |a(x)| ≤ ‖x‖, x ∈ X. Hence K ′1 ⊆ A because |ϕ(x)| ≤ ‖ϕ‖ ‖x‖ ≤ ‖x‖ for every
ϕ ∈ K ′1. The product topology on A is the weakest topology on A such that for every x ∈ X the
map πx : A → K, a 7→ a(x) is continuous. Hence the topology on K ′1 induced by A is exactly the
weak ∗-topology on K ′1. So it suffices to show that K ′1 is closed in A with the product topology.
Let ϕ ∈ K ′1 and let x, y ∈ X and ε > 0. Then

U := {a ∈ A : |a(x+ y)− ϕ(x+ y)| < ε, |a(x)− ϕ(x)| < ε, |a(y)− ϕ(y)| < ε}

is an open neighbourhood of ϕ. Hence there exists a g ∈ U ∩K ′1. Since g is linear, it follows that

|ϕ(x+ y)− ϕ(x)− ϕ(y)| = |ϕ(x+ y)− ϕ(x)− ϕ(y)− g(x+ y) + g(x) + g(y)|
≤ |ϕ(x+ y)− g(x+ y)|+ |ϕ(x)− g(x)|+ |ϕ(y)− g(y)| < 3ε.

Since ε was arbitrary, this implies ϕ(x+ y) = ϕ(x) +ϕ(y). Similarly it can be shown that ϕ(λx) =
λϕ(x) for λ ∈ K and x ∈ X. It follows that ϕ is linear. Since ϕ ∈ A, it follows that ‖ϕ‖ ≤ 1, hence
ϕ ∈ K ′1.
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Chapter 4

Hilbert spaces

4.1 Hilbert spaces
Definition 4.1. Let X be a K-vector space. A map

〈· , ·〉 : X ×X → K

is a sesquilinear form on X if for all x, y, z ∈ X, λ ∈ K

(i) 〈λx+ y , z〉 = λ〈x , z〉+ 〈y , z〉,
(ii) 〈x , λy + z〉 = λ〈x , y〉+ 〈x , z〉.

The inner product is called

• hermitian ⇐⇒ 〈x , y〉 = 〈y , x〉, x, z ∈ X,
• positive semidefinite ⇐⇒ 〈x , x〉 ≥ 0, x ∈ X,
• positive (definite) ⇐⇒ 〈x , x〉 > 0, x ∈ X \ {0}.

Definition 4.2. A positive definite hermitian sesquilinear form on a K-vector X is called an inner
product on X and (X, 〈· , ·〉) is called an inner product space (or pre-Hilbert space).

Note that 〈x , x〉 ∈ R, x ∈ X, for a hermitian sesquilinear form X because 〈x , x〉 = 〈x , x〉.

Lemma 4.3 (Cauchy-Schwarz inequality). Let X be a K-vector space with inner product 〈· , ·〉.
Then for all x, y ∈ X

|〈x , y〉|2 ≤ |〈x , x〉| |〈y , y〉|, (4.1)

with equality if and only if x and y are linearly dependent.

Proof. For x = 0 or y = 0 there is nothing to show. Now assume that y 6= 0. For all λ ∈ K

0 ≤ 〈x+ λy , x+ λy〉 = 〈x , x〉+ λ〈y , x〉+ λ〈x , y〉+ |λ|2〈y , y〉.



64 4.1. Hilbert spaces

In particular, when we choose λ = − 〈x ,y〉〈y ,y〉 we obtain

0 ≤ 〈x+ λy , x+ λy〉 = 〈x , x〉 − |〈y , x〉|
2

〈y , y〉
− |〈x , y〉|

2

〈y , y〉
+ |〈x , y〉|

2

〈y , y〉

= 〈x , x〉 − |〈x , y〉|
2

〈y , y〉

which proves (4.1). If there exist α, β ∈ K such that αx + βy = 0, then obviously equality holds
in (4.1). On the other hand, if equality holds, then 〈x + λy , x + λy〉 = 0 with λ chosen as above,
so x and y are linearly dependent.

Note that (4.1) is true also in a space X with a semidefinite hermitian sesquilinear form but equality
in (4.1) does not imply that x and y are linearly dependent.

Lemma 4.4. An inner product space (X, 〈· , ·〉) becomes a normed space by setting ‖x‖ := 〈x , x〉 1
2 ,

x ∈ X.

Proof. The only property of a norm that does not follow immediately from the definition of ‖ · ‖ is
the triangle inequality. To prove the triangle inequality, choose x, y ∈ X. Using the Cauchy-Schwarz
inequality, we find

‖x+ y‖2 = ‖x‖2 + 2 Re〈x , y〉+ ‖y‖2 ≤ ‖x‖2 + 2|〈x , y〉|+ ‖y‖2

≤ ‖x‖2 + 2‖x‖ ‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2.

In the following, we will always consider inner product spaces endowed with the topology induced
by the norm.

Definition 4.5. A complete inner product space is called a Hilbert space.

Lemma 4.6. Note that the scalar product on a inner product space X is a continuous map X×X →
K when X ×X is equipped with the norm ‖(x, y)‖ = ‖x‖X + ‖y‖X .

Proof. The statement follows from

|〈x1 , x2〉 − 〈y1 , y2〉| = |〈x1 , x2 − y2〉 − 〈y1 − x1 , y2〉|
≤ ‖x1‖ ‖x2 − y2‖ − ‖y1 − x1‖ ‖y2‖.

The polarisation formula allows to express the inner product of two elements of X in terms of their
norms.

Theorem 4.7 (Polarisation formula). Let X be an inner product space over K and x, y ∈ X.
Then

〈x , y〉 = 1
4

(
‖x+ y‖2 − ‖x− y‖2

)
, if K = R,

〈x , y〉 = 1
4

(
‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2

)
, if K = C.
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Proof. Straightforward calculation.

A necessary and sufficient criterion for a normed space to be an inner product space is the following.

Theorem 4.8 (Parallelogram identity). Let X be normed space. Then the norm on X is
generated by an inner product if and only if for all x, y ∈ X the parallelogram identity is satisfied:

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.

In this case, the inner product is given by the polarisation formula.

Proof. Assume that the norm is generated by the inner product 〈· , ·〉 and let ‖x‖ = 〈x , x〉 1
2 . Then

for all x, y ∈ X parallelogram identity holds:

‖x+ y‖2 + ‖x− y‖2 = ‖x‖2 + ‖y‖2 + 2 Re〈x , y〉+ ‖x‖2 + ‖y‖2 − 2 Re〈x , y〉
= 2‖x‖2 + 2‖y‖2.

Now assume that the norm on X is such that the parallelogram identity holds and for x, y ∈ X
define 〈x , y〉 by the polarisation formula. We prove that 〈· , ·〉 is an inner product on X in the case
K = C. The case K = R can be proved analogously.

• Positivity.

4〈x , x〉 = ‖x+ x‖2 − ‖x− x‖2 + i ‖x+ ix‖2 − i ‖x− ix‖2

= 4‖x‖2 + i ‖x+ ix‖2 − i ‖ix+ x‖2 = 4‖x‖2 ≥ 0.

• Hermiticity.

4〈x , y〉 = ‖x+ y‖2 − ‖x− y‖2 + i ‖x+ iy‖2 − i ‖x− iy‖2

= ‖y + x‖2 − ‖y − x‖2 + i ‖ − ix+ y‖2 − i ‖ix+ y‖2 = 4〈y , x〉.
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• Additivity.

4(〈x , y〉+ 〈x , z〉)
= ‖x+ y‖2 − ‖x− y‖2 + i ‖x+ iy‖2 − i ‖x− iy‖2

+ ‖x+ z‖2 − ‖x− z‖2 + i ‖x+ iz‖2 − i ‖x− iz‖2

=
∥∥∥x+ y + z

2 + y − z
2

∥∥∥2
−
∥∥∥x− y + z

2 − y − z
2

∥∥∥2

+
∥∥∥x+ y + z

2 − y − z
2

∥∥∥2
−
∥∥∥x− y + z

2 + y − z
2

∥∥∥2

+ i
∥∥∥x+ i y + z

2 + i y − z2

∥∥∥2
− i
∥∥∥x− i y + z

2 − i y − z2

∥∥∥2

+ i
∥∥∥x+ i y + z

2 − i y − z2

∥∥∥2
− i
∥∥∥x− i y + z

2 + i y − z2

∥∥∥2

= 2
∥∥∥x+ y + z

2

∥∥∥2
+ 2
∥∥∥y − z2

∥∥∥2
− 2
∥∥∥x− y + z

2

∥∥∥2
− 2
∥∥∥y − z2

∥∥∥2

+ 2i
∥∥∥x+ i y + z

2

∥∥∥2
+ 2i

∥∥∥y − z2

∥∥∥2
− 2i

∥∥∥x− i y + z

2

∥∥∥2
− 2i

∥∥∥y − z2

∥∥∥2

= 2
∥∥∥x+ y + z

2

∥∥∥2
− 2
∥∥∥x− y + z

2

∥∥∥2
+ 2i

∥∥∥x+ i y + z

2

∥∥∥2
− 2i

∥∥∥x− i y + z

2

∥∥∥2

= 2 · 4〈x , y + z

2 〉.

If we choose z = 0 we find 〈x , y〉 = 2〈x , y2 〉, hence

〈x , y〉+ 〈x , z〉 = 2
〈
x ,
y + z

2
〉

= 〈x , y + z〉.

• Homogeneity. From the additivity we obtain 〈λx , y〉 = λ〈x , y〉 for all λ ∈ Q. Note that
〈ix , y〉 = i〈x , y〉, hence homogeneity is proved for λ ∈ Q + iQ. Hence for fixed x, y ∈ C the
two continuous functions C → C, λ 7→ λ〈x , y〉 and C → C, λ 7→ 〈λx , y〉 must be equal
because they are equal on the dense subset Q+ iQ of C.

Theorem 4.9. The completion of an inner product space is an inner product space.

Proof. By continuity of the norm, the parallelogram identity holds on the completion X of an inner
product space X. So X is an inner product space.

Examples 4.10. (i) Rn and Cn with the Euclidean inner product

〈x , y〉 =
n∑
k=1

xkyk, x = (xk)nk=1, y = (yk)nk=1,

are inner product spaces.

(ii) `2(N) with

〈x , y〉 =
∞∑
k=1

xkyk, x = (xk)k∈N, y = (yk)k∈N,
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is an inner product space.

(iii) Let R([0, 1]) be the vector space of the Riemann integrable functions on the interval [0, 1].
Then

〈f , g〉 =
∫ 1

0
f(t)g(t) dt, f, g ∈ R([0, 1]),

defines a sesquilinear form on R([0, 1]) which is not positive definite, since, for example,
χ{0} 6= 0, but 〈χ{0} , χ{0}〉 = 0.
The restriction of 〈· , ·〉 to the space of the continuous functions C([0, 1]) is an inner product
which is not complete (its closure is the space L2([0, 1])).

4.2 Orthogonality
Definition 4.11. Let X be an inner product space.

(i) Elements x, y ∈ X are called orthogonal, denoted by x ⊥ y, if and only if 〈x , y〉 = 0
(ii) Subsets A,B ⊆ X are called orthogonal, denoted by A ⊥ B, if and only if 〈a , b〉 = 0 for all

a ∈ A, b ∈ B.
(iii) The orthogonal complement of a set M ⊆ X is

M⊥ := {x ∈ X : x ⊥ m, m ∈M}.

Remarks 4.12. (i) Pythagoras’ theorem holds: ‖x+ y‖2 = ‖x‖2 + ‖y‖2 if x ⊥ y.
(ii) For every set M ⊆ X its orthogonal complement M⊥ is a closed subspace of X.
(iii) A ⊆ (A⊥)⊥ for every subset A ⊆ X.
(iv) A⊥ = (spanA)⊥ for every subset A ⊆ X.

Theorem 4.13 (Projection theorem). Let H be a Hilbert space, M ⊆ H a nonempty closed and
convex subset and x0 ∈ H. Then there exists exactly one y0 ∈M such that ‖x0−y0‖ = dist(x0,M).

Proof. Recall that dist(x0,M) := inf{‖x0 − y‖ : y ∈ M}. If x0 ∈ M then the assertion is clear
(choose y0 = x0).
Now assume that x0 /∈M . Without restriction we may assume x0 = 0.
Existence of y0. Let d := dist(x0,M) = inf{‖y‖ : y ∈ M}. Then there exists a sequence
(yn)n∈N ⊆ M such that lim

n→∞
‖yn‖ = d. We will show that (yn)n∈N is a Cauchy sequence. Note

that ‖yn+ym

2 ‖2 ≥ d2 because yn+ym

2 ∈M by the convexity of M . Hence the parallelogram identity
(Theorem 4.8) yields∥∥∥yn − ym2

∥∥∥2
≤
∥∥∥yn − ym2

∥∥∥2
+
∥∥∥yn + ym

2

∥∥∥2
− d2

= 1
2(‖yn‖2 + ‖ym‖2)− d2 −→ 0, n,m→∞.

Since X is a Banach space, (yn)n∈N converges to some y0 ∈ X, and since M is closed, y0 ∈M .
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Uniqueness of y0. Assume that there are y0, ỹ0 ∈ M such that ‖y0‖ = ‖ỹ0‖ = d = dist(x0,M).
The parallelogram identity yields

d2 ≤
∥∥∥y0 + ỹ0

2

∥∥∥2
≤
∥∥∥y0 + ỹ0

2

∥∥∥2
+
∥∥∥y0 − ỹ0

2

∥∥∥2
= 1

2(‖y0‖2 + ‖ỹ0‖2) = d2.

It follows that ‖y0 − ỹ0‖ = 0, so y0 = ỹ0.

Lemma 4.14. Let M be a closed and convex subset of a Hilbert space H and fix x0 ∈ H. For
y0 ∈M the following are equivalent:

(i) ‖x0 − y0‖ = dist(x0,M),
(ii) Re〈x0 − y0 , y − y0〉 ≤ 0, y ∈M .

Proof. (i) =⇒ (ii) For t ∈ [0, 1] and y ∈M let yt := y0 + t(y− y0). Then yt ∈M by the convexity
of M and by assumption on y0

‖x0 − y0‖2 ≤ ‖x0 − yt‖2 = ‖x0 − y0 − t(y − y0)‖2

= ‖x0 − y0‖2 − 2tRe〈x0 − y0 , y − y0〉+ t2‖y − y0‖2.

So for all t ∈ (0, 1]

2 Re〈x0 − y0 , y − y0〉 ≤ t‖y − y0‖2

which implies Re〈x0 − y0 , y − y0〉 ≤ 0.
(ii) =⇒ (i) Let y ∈M . By assumption

‖x0 − y‖2 = ‖(x0 − y0) + (y0 − y)‖2

= ‖x0 − y0‖2 + ‖y0 − y‖2 + 2 Re〈x0 − y0 , y0 − y〉 ≥ ‖x0 − y0‖2.

Lemma 4.15. Let U be a closed subspace of a Hilbert space H and fix x0 ∈ H. For y0 ∈ U the
following are equivalent:

(i) ‖x0 − y0‖ = dist(x0, U),
(ii) x0 − y0 ⊥ U .

Proof. (i) =⇒ (ii) Let y ∈ U . If y = 0, then obviously 〈x0 − y0 , y〉 = 0. If ‖y‖ = 1, let
λ = ‖y‖−1〈x0 − y0 , y〉. By assumption

‖x0 − y0‖2 ≤ ‖x0 − y0 − λy‖2

= ‖x0 − y0‖2 − λ〈x0 − y0 , y〉 − λ〈y , x0 − y0〉+ |λ|2‖y‖2

= ‖x0 − y0‖2 + (1− 2‖y‖−2)|〈x0 − y0 , y〉|2

= ‖x0 − y0‖2 − |〈x0 − y0 , y〉|2

so 〈x0 − y0 , y〉 = 0. By linearity of U then x0 − y0 ⊥ y for all y ∈ U .
(ii) =⇒ (i) Let y ∈ U . By assumption

‖x0 − y‖2 = ‖(x0 − y0) + (y0 − y)‖2 = ‖x0 − y0‖2 + ‖y0 − y‖2 ≥ ‖x0 − y0‖2.
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Recall that a linear operator P : X → X on a Banach space X is called a projection if and only if
P 2 = P (see Definition 3.38).

Theorem 4.16. Let H be a Hilbert space, U ⊆ H a closed subspace with U 6= {0}. Then there
exists a projection PU ∈ L(H) on U such that ‖PU‖ = 1 and ker(PU ) = U⊥. Also id−PU is
continuous projection with ‖ id−PU‖ = 0 if U = H and ‖ id−PU‖ = 1 if U 6= H. If U ⊕ U⊥ is
equipped with the norm ‖(u, v)‖ = (‖u‖2 + ‖v‖2) 1

2 , then H = U ⊕ U⊥.

Definition 4.17. PU as in the theorem is called the orthogonal projection on U .

Proof of Theorem 4.16. Fix x0 ∈ H and let PU (x0) := y0 the unique element y0 ∈ U such that
‖x0 − y0‖ = dist(x0, U). Then rg(PU ) = U and P 2

U = PU , hence PU is a projection on U .
By Lemma 4.15, PU (x0) is the unique element in U such that x0 − PU (x0) ∈ U⊥.

Re〈x0 − PU (x0) , y − PU (x0)〉 ≤ 0, y ∈ U.

We will show that PU is linear. Let x1, x2 ∈ H and λ ∈ K. Since U⊥ is a subspace, we obtain

λx1 − x2 − (λPU (x1)− PU (x2)) = λ(x1 − PU (x1))− (x2 − PU (x2)) ∈ U⊥.

Hence, by definition of PU ,

PU (λx1 − x2) = λPU (x1)− PU (x2).

We already know that rg(PU ) = U . ker(PU ) = U⊥ because

PU (x) = 0 ⇐⇒ x0 ∈ U⊥.

Therefore id−PU is a projection with rg(id−PU ) = U⊥ and ker(id−U) = U . By Pythagoras’
theorem we obtain

‖x0‖2 = ‖PU (x0) + (id−PU )(x0)‖2 = ‖PU (x0)‖2 + ‖(id−PU )(x0)‖2.

In particular, H = U ⊕ U⊥ with norm as in the statement, and ‖PU‖ ≤ 1 and ‖ id−PU‖ ≤ 1.
Lemma 3.39 implies ‖PU‖ = 1, ‖ id−PU‖ = 1 if U 6= H and ‖ id−PU‖ = 0 if U = H.

Lemma 4.18. Let U be a subspace of a Hilbert space H. Then U = U⊥⊥.

Proof. By the projection theorem (Theorem 4.16), for every closed subspace V

PV = id−PV ⊥ = id−(id−PV ⊥⊥) = PV ⊥⊥ ,

hence V = V ⊥⊥. Application to V = U shows the statement.

Definition 4.19. Let X,Y be vector spaces. A map X → Y is called antilinear or conjugate linear
if f(λx+ y) = λf(x) + f(y) for all λ ∈ K and x, y ∈ X.
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Theorem 4.20 (Fréchet-Riesz representation theorem). Let H be a Hilbert space. Then the
map

Φ : H → H ′, y 7→ 〈· , y〉

is an isometric antilinear bijection.

Proof. Obviously Φ(0) = 0 ∈ H ′. The Cauchy-Schwarz inequality yields

‖Φ(y)(x)‖ = |〈x , y〉| ≤ ‖x‖ ‖y‖, x, y ∈ H,

hence ‖Φ(y)‖ ≤ ‖y‖ If y 6= 0, then set x = ‖y‖−1y. Note that ‖x‖ = 1 and ‖Φ(y)x‖ = ‖y‖, implying
that ‖Φ(y)‖ = ‖y‖. So we have shown that Φ is well-defined and an isometry. In particular, Φ is
injective.
To show that Φ is surjective, fix an ϕ ∈ H ′. If ϕ = 0, then ϕ = Φ(0). Otherwise we can
assume that ‖ϕ‖ = 1. Since ker{ϕ} is closed, there exists a decomposition H = kerϕ ⊕ (kerϕ)⊥.
Note that rg(ϕ) = K, hence dim(kerϕ)⊥ = 1. Choose y0 ∈ (kerϕ)⊥ with ϕ(y0) = 1. Then
(kerϕ)⊥ = span{y0}. For x = u+ λy0 ∈ kerϕ⊕ (kerϕ)⊥,

〈x , ‖y0‖−2y0〉 = λ = λϕ(y) + ϕ(u) = ϕ(x),

hence ϕ = 〈· , ‖y0‖−1y0〉. Since Φ is an isometry, it follows that 1 = ‖ϕ‖ =
∥∥∥ ‖y0‖
‖y0‖2

∥∥∥ = 1
‖y0‖ , so

‖y0‖ = 1.

Corollary 4.21. (i) Every Hilbert space is reflexive.

(ii) The dual H ′ of a Hilbert space H is an inner product space by

〈Φ(x) ,Φ(y)〉H′ = 〈y , x〉H

with Φ : H → H ′ as in Theorem 4.20.

Proof. (ii) is clear. Let Ψ : H ′ → H ′′ as in Theorem 4.20. Then it is easy to check that Ψ◦Φ = JH ,
so JH is surjective, implying that H is reflexive.

Corollary 4.22. Let H be a Hilbert space.

(i) A sequence (xn)n∈N ⊆ H converges weakly to x0 ∈ H if and only if

〈xn − x0 , y〉 → 0, y ∈ H.

(ii) Every bounded sequence (xn)n∈N ⊆ H contains a weakly convergent subsequence.

Proof. (i) follows from the Riesz-Fréchet theorem, and (ii) follows with Theorem 2.41.
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4.3 Orthonormal systems
Definition 4.23. Let H be a Hilbert space. A family S = (xλ)λ∈Λ of vectors in H is called an
orthonormal system if 〈xλ , xλ′〉 = δλλ′ . A orthonormal system S is an orthonormal basis (or a
complete orthonormal system) if and only if for every orthonormal system T

S ⊆ T =⇒ S = T.

Examples 4.24. (i) The unit vectors (en)n∈N in `2(N) are a orthonormal system.

(ii) Let H = L2(−π, π). An orthonormal system in H is

S =
{ 1√

2π

}
∪
{ 1√

π
sin(n · ) : n ∈ N

}
∪
{ 1√

π
cos(n · ) : n ∈ N

}
.

Lemma 4.25 (Gram-Schmidt). Let H be a Hilbert space and (xn)n∈N a family of linearly
independent vectors. Then there exists a orthonormal system S = (sn)n∈N such that spanS =
span{xn : n ∈ N}.

Proof. Let s1 := ‖x1‖−1x1. Next set y2 := x2−〈x1 , s1〉s1. Note that y2 6= 0 because x2 and x1 are
linearly independent. Let s2 := ‖y2‖−1y2. Then s1 ⊥ s2 and ‖s1‖ = ‖s2‖ = 1. Now for k ≥ 1 let

yn+1 := xn+1 −
n∑
k=1
〈xk , sk〉sk, sn+1 := ‖yn+1‖−1yn+1.

Since x1, . . . , xn+1 are linearly independent, sn+1 is well-defined. By construction, sn+1 ⊥ sj
for j = 1, . . . n. Note that for every n ∈ N, sn ∈ span{x1, . . . , xn} and xn ∈ spanS, hence
spanS = {xn : n ∈ N}.

Example. LetH = L2((0, 1)) and xn ∈ H defined by xn(t) = tn. Application of the Gram-Schmidt
orthogonalisation yields polynomials sn(t) =

√
n+ 1

2Pn(t) where Pn(t) = 1
2nn!

dn

dtn (t2 − 1)n is the
nth Legendre polynomial.

Theorem 4.26 (Bessel inequality). Let H be a Hilbert space, {sn : n ∈ N} a orthonormal
system in H. Then

∞∑
n=1
|〈x , sn〉|2 ≤ ‖x‖2, x ∈ H.

Proof. For N ∈ N let xN := x −
∑N
n=1〈x , sn〉sn. Since xN ⊥ sn for n = 1, . . . , N , Pythagoras’

theorem yields

‖x‖2 = ‖xN‖2 +
∥∥∥ N∑
n=1
〈x , sn〉sn

∥∥∥2
= ‖xN‖2 +

N∑
n=1
|〈x , sn〉|2 ≥

N∑
n=1
|〈x , sn〉|2.

‘
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Lemma 4.27. Let H be a Hilbert space, S = (sλ)λ∈Λ a orthonormal system in H. Then for every
x ∈ H the set

Sx := {λ ∈ Λ : 〈x , sλ〉 6= 0}

is at most countable.

Proof. By the Bessel inequality, for every n ∈ N the set

Sx,n :=
{
λ ∈ Λ : |〈x , sλ〉| ≥

1
n

}
is finite. Hence Sx =

⋃∞
n=1 Sx,n is at most countable.

Definition 4.28. Let X be a normed space, (xλ)λ∈Λ ⊆ X. Then
∑
λ∈Λ xλ converges uncondition-

ally to x ∈ H if and only if Λ0 := {λ ∈ Λ : xλ 6= 0} is at most countable and
∑∞
n=1 xλn

= x for
every enumeration Λ0 = {λn : n ∈ N}.

Recall that in finite dimensional Banach spaces unconditional convergence is equivalent to absolute
convergence. In every infinite dimensional Banach space, however, there exists a unconditionally
convergent series that does not converge absolutely (Dvoretzky-Rogers theorem).

Corollary 4.29 (Bessel inequality). Let H be a Hilbert space and S ⊆ H a orthonormal system.
Then ∑

s∈S
|〈x , s〉| ≤ ‖x‖2, x ∈ H.

Proof. For fixed x ∈ H, the set Sx = {s ∈ S : 〈x , s〉 6= 0} is at most countable (Lemma 4.27), so
the claim follows from the Bessel inequality for countable orthonormal systems.

Theorem 4.30. Let H be a Hilbert space and S ⊆ H a orthonormal system. Then

P : H → H, Px =
∑
s∈S
〈x , s〉s

is an orthogonal projection on spanS and the series is unconditionally convergent.

Proof. First we proof that the series in the definition of P is unconditionally convergent (this
proves then well-definedness of P ). Fix x ∈ H. For fixed x ∈ H, the set Sx = {s ∈ S : 〈x , s〉 6= 0}
is at most countable (Lemma 4.27). Let Sx = {sn : n ∈ N} be an enumeration of Sx. Then(∑n

k=1〈x , sk〉sk
)
n∈N is a Cauchy sequence because

∥∥∥ M∑
k=N
〈x , sk〉sk

∥∥∥2
=

M∑
k=N
|〈x , sk〉|2 −→ 0, M, K →∞

by Bessel’s inequality. Since H is complete, y :=
∑∞
k=1〈x , sk〉sk exists. Let π : N → N be a

permutation. Then also yπ :=
∑∞
k=1〈x , sπ(k)〉sπ(k) exists. We have to show that y = yπ. For all
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z ∈ H

〈y , z〉 =
∞∑
n=1
〈y , sn〉〈sn , z〉 =

∞∑
n=1
〈y , sπ〉〈sπ , z〉 = 〈yπ , z〉.

We have used that
∑∞
n=1〈y , sn〉〈sn , z〉 is absolute convergent and can therefore be rearranged,

because, by Hölder’s inequality and Bessel’s inequality( ∞∑
n=1
|〈y , sn〉〈sn , z〉|

)2
≤
( ∞∑
n=1
|〈y , sn〉|2

)( ∞∑
n=1
|〈sn , z〉|2

)
≤ ‖y‖2‖z‖2 <∞.

Since y − yπ ⊥ z, z ∈ H, it follows that y = yπ. Therefore the series in the definition of P is
unconditionally convergent and P is well-defined.
It is clear that P is a linear and ‖P‖ ≤ 1 follows from Corollary 4.29. Let x ∈ H. We have to show
that x− Px ∈ spanS⊥ (Theorem 4.16). This is clear because〈

x−
∑
s∈S
〈x , s〉 , s0

〉
=
〈
x−

∑
s∈Sx

〈x , s〉 , s0

〉
= 0, s0 ∈ S.

Theorem 4.31. Let H be a Hilbert space and S ⊆ H a orthonormal system. Then the following
is equivalent.

(i) S is a complete orthonormal system.
(ii) x ⊥ S =⇒ x = 0, x ∈ H.
(iii) H = spanS.

(iv) x =
∑
s∈S
〈x , s〉s, x ∈ H.

(v) 〈x , y〉 =
∑
s∈S
〈x , s〉〈s , y〉, x, y ∈ H.

(vi) Parseval’s equality holds: ‖x‖2 =
∑
s∈S
|〈x , s〉|2, x ∈ H.

Proof. (i) =⇒ (ii) If there exists an x ∈ H such that x ∈ S⊥ \ {0}, then S′ := S ∪ {‖x‖−1x} is a
orthonormal system with S ( S′, contradicting the maximality of S.
(ii) =⇒ (iii) follows from Lemma 4.18.
(iii) =⇒ (iv) By theorem 4.30, x 7→

∑
s∈S〈x , s〉s is the orthogonal projection on spanS = H.

(iv) =⇒ (v) straightforward.
(v) =⇒ (vi) Choose x = y.
(vi) =⇒ (i) Assume there exists an orthonormal system S′ ) S. Then for every s′ ∈ S′ \S we get
the contradiction

1 = ‖s′‖2 =
∑
s∈S
|〈s′ , s〉|2 = 0.

Now we show that the orthonormal systems in Example 4.24 are complete.
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Examples 4.32. (i) The set of the unit vectors {en : n ∈ N} in `2(N) are a complete orthonormal
system in `2(N) because {en : n ∈ N} = `2(N).

(ii) Let Γ be a set and define

`2(Γ) :=
{
f : Γ→ K : f(γ) 6= 0 for at most countably many γ ∈ Γ and∑

γ∈Γ
|f(γ)|2 <∞

}
.

Then 〈f , g〉 =
∑
γ∈Γ f(γ)g(γ) is a well-defined inner product (note that only countably many

terms are 6= 0 and the sum is absolutely convergent by Hölder’s inequality). As in the case
Γ = N it can be shown that `2(Γ) is a Hilbert space and (fλ)λ∈Γ where fλ(γ) = δλγ (Kronecker
delta) is a complete orthonormal system in `2(Γ).

(iii) Let H = L2(0, 1) and

S =
{ 1√

2π

}
∪
{ 1√

π
sin(n · ) : n ∈ N

}
∪
{ 1√

π
cos(n · ) : n ∈ N

}
.

Note that spanS is the set of all trigonometric polynomials. Without restriction we can
assume that K = R. By the theorem of Fejér, the trigonometric polynomials are dense in
C2π := {f ∈ C([−π, π]) : f(−π) = f(π)} with respect to ‖ · ‖∞, hence also with respect to
‖ · ‖2. Since C2π is ‖ · ‖2-dense in L2([−π, π]), S is a total subset of L2([−π, π]).

Lemma 4.33. Let H be an infinite dimensional Hilbert space. Then the following is equivalent.

(i) H is separable.
(ii) Every complete orthonormal system in H is countable.
(iii) There exists an countable complete orthonormal system in H.

Proof. (i) =⇒ (ii) Assume S ⊆ H is an uncountable complete orthonormal system in H. Let
ε ∈ (0, 2− 1

2 ) and s 6= s′ ∈ S. Then Bε(s) ∩ Bε(s′) = ∅ because by Pythagoras ‖s − s′‖ =√
‖s‖2 + ‖s′‖2 =

√
2. Let A be a dense subset of H. For every s ∈ S there exists an as ∈ A such

that as ∈ Bε(s). In particular, as 6= as′ if s 6= s′, so A cannot be countable, thus H is not separable.

(ii) =⇒ (iii) The existence of a complete orthonormal system in H follows from Zorn’s lemma.
By assumption, it must be complete.
(iii) =⇒ (i) Let S be a countable orthonormal system in H. Then spanS = H by Theorem 4.31
and H is separable by Theorem 1.25.

Lemma 4.34. Let H be Hilbert space and S and T be complete orthonormal system in H. Then
|S| = |T |.

Proof. The statement is proved in linear algebra if |S| <∞. Now assume that S is not finite. For
x ∈ S the set Tx := {y ∈ T : 〈x , y〉 6= 0} is at most countable by Lemma 4.27. By Theorem 4.31 (ii)
T ⊆

⋃
x∈S Tx, hence |T | ≤ |S||N| = |S|. Analogously, |S| ≤ |T ||N| = |T |. By the Schröder-Bernstein

theorem then |S| = |T |.
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Theorem 4.35. Let H be a Hilbert space and S an orthonormal basis of H. Then H ∼= `2(S) (see
Example 4.32 (ii)).

Proof. Define T : H → `2(S) by Tx(s) = 〈x , s〉, x ∈ H, s ∈ S. T is well-defined by Bessel’s
inequality. Then T : H → `2(S) is linear and isometric by Parseval’s equality. To show that T is
surjective, let y ∈ `2(S) and define x :=

∑
s∈S y(s)s. Then x ∈ H (Theorem 4.30) and Tx = y.

Note that by construction 〈Tx , Ty〉 = 〈x , y〉, x, y ∈ H.

Corollary 4.36. If H is a separable Hilbert space, then H ∼= `2(N).

Corollary 4.37 (Fischer-Riesz theorem). L2[0, 1] ∼= `2(N).

4.4 Linear operators in Hilbert spaces
Definition 4.38. Let H1, H2 be Hilbert spaces and Φj : Hj → H ′j the canonical isomorphism in
the Fréchet-Riesz representation theorem (Theorem 4.20). Let T ∈ L(H1, H2). Its (Hilbert space)
adjoint operator is T ∗ := Φ−1

1 T ′Φ2 ∈ L(H2, H1) where T ′ is the Banach space adjoint of T (see
Definition 2.26).

Hence T ∗ is characterised by

〈Tx , y〉 = 〈x , T ∗y〉, x ∈ H1, y ∈ H2.

Theorem 4.39. Let H1, H2, H3 be Hilbert spaces, S, T ∈ L(H1, H2), R ∈ L(H2, H3) and λ ∈ K.

(i) (λS + T )∗ = λS∗ + T ∗.
(ii) (RT )∗ = T ∗R∗.
(iii) T ∗ ∈ L(H2, H1) and ‖T ∗‖ = ‖T‖.
(iv) T ∗∗ = T .
(v) ‖TT ∗‖ = ‖T ∗T‖ = ‖T‖2.
(vi) kerT = (rg(T ∗))⊥, kerT ∗ = (rg(T ))⊥.

(vii) If T is invertible, then (T−1)∗ = (T ∗)−1.

Proof. (i)–(iv) are clear. For the proof of (v) note that for ‖x‖ = 1

‖Tx‖2 = 〈Tx , Tx〉 = 〈x , T ∗Tx〉 ≤ ‖x‖ ‖T ∗Tx‖ ≤ ‖T ∗T‖ ≤ ‖T ∗‖ ‖T‖ = ‖T‖2.

Taking the supremum over all x ∈ H with ‖x‖ = 1 shows the desired equalities.
(vi) kerT = (rg T ∗)⊥ because for x ∈ H

Tx = 0 ⇐⇒ ∀y ∈ H2 〈Tx , y〉 = 0 ⇐⇒ ∀y ∈ H2 〈x , T ∗y〉 = 0
⇐⇒ x ⊥ rg(T ∗).

Then also kerT ∗ = (rg(T ∗∗))⊥ = (rg(T ))⊥.
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Definition 4.40. Let H1, H2 be Hilbert spaces, T ∈ L(H1, H2).

(i) T is called unitary if T is invertible and TT ∗ = idH2 and T ∗T = idH1 .
(ii) T is called normal if H1 = H2 and TT ∗ = T ∗T .

(iii) T is called selfadjoint if H1 = H2 and T = T ∗.

Remarks. (i) T selfadjoint =⇒ T normal.

(ii) T ∈ L(H1, H2) =⇒ TT ∗ and T ∗T are selfadjoint.

Next we show that a length preserving linear map between Hilbert spaces also preserves angles.

Lemma 4.41. Let H1, H2 be Hilbert spaces and T ∈ L(H1, H2).

(i) T is an isometry ⇐⇒ 〈Tx , Ty〉 = 〈x , y〉, x, y ∈ H1.
(ii) T is unitary ⇐⇒ T is a surjective isometry.

Proof. (i) The direction “⇐” is clear; “⇒” follows from the polarisation formula (Theorem 4.7).
(ii) “⇒” Since T is unitary, if follows that rg(T ) ⊇ rg(TT ∗) = rg(idH2) = H2, so T is surjective.
T is an isometry because for all x, y ∈ H1

〈Tx , Ty〉 = 〈T ∗Tx , y〉 = 〈x , y〉,

“⇐” Assume that T as a surjective isometry. Since

〈x , y − T ∗Ty〉 = 〈x , y〉 − 〈Tx , Ty〉 = 0, x, y ∈ H1,

it follows that T ∗Ty = y, so T ∗T = idH1 . In particular T ∗ is surjective. Now we will show that T ∗
is an isometry. Let ξ, η ∈ H2. Then there exist x, y ∈ H1 such that Tx = ξ and Ty = η. It follows
that

〈T ∗ξ , T ∗η〉 = 〈T ∗Tx , T ∗Ty〉 = 〈x , y〉 = 〈Tx , Ty〉 = 〈ξ , η〉.

By the same argument as for T we conclude that idH2 = T ∗∗T ∗ = TT ∗.

Examples 4.42. (i) Let H1, H2 be Hilbert spaces with dimH1 = dimH2 = n < ∞. After
choice of bases, a linear operator T : H1 → H2 has a representation (aij)nij=1 ∈ Mn(C). The
matrix corresponding to T ∗ is then (aji)nij=1.

(ii) Let H = L2[0, 1]. For k ∈ L∞([0, 1]× [0, 1]) define

Tk : L2[0, 1]→ L2[0, 1], (Tkf)(t) =
∫ 1

0
k(s, t)f(s) ds.

Then Tk ∈ L2[0, 1] and

T ∗k : L2[0, 1]→ L2[0, 1], (Tkf)(t) =
∫ 1

0
k(s, t)f(s) ds,

that is T ∗k = Tk.
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Theorem 4.43 (Hellinger-Toeplitz). Let H be a Hilbert space, T : H → H a linear operator
such that

〈Tx , y〉 = 〈x , Ty〉, x, y ∈ H.

Then T is bounded, hence selfadjoint.

Proof. It suffices to show that T is closed because D(T ) = H is closed. Let (xn)n∈N ⊆ H with
xn → 0 and Txn → y. Observe that

‖y‖2 = lim
n→∞

〈Txn , y〉 = lim
n→∞

〈xn , T y〉 = 〈 lim
n→∞

xn , Ty〉 = 〈0 , T y〉 = 0,

so y = 0. This implies that T is closable, hence closed since D(T ) = H.

Theorem 4.44. Let H be a complex Hilbert space. For T ∈ L(H) the following is equivalent.

(i) 〈Tx , x〉 ∈ R, x ∈ H.
(ii) T is selfadjoint.

Proof. (ii) =⇒ (i) follows from

〈Tx , x〉 = 〈x , Tx〉 = 〈Tx , x〉, x ∈ H.

(i) =⇒ (ii) Let x, y ∈ H and λ ∈ C.

A := 〈T (λx+ y) , λx+ y〉 = |λ|2〈Tx , x〉+ 〈Ty , y〉+ λ〈Tx , y〉+ λ〈Ty , x〉,

B := 〈T (λx+ y) , λx+ y〉 = |λ|2〈Tx , x〉+ 〈Ty , y〉+ λ〈y , Tx〉+ λ〈x , Ty〉.

By assumption, A = B, so in the special cases λ = 1 and λ = i we obtain

〈Tx , y〉+ 〈Ty , x〉 = 〈y , Tx〉+ 〈x , Ty〉,
〈Tx , y〉 − 〈Ty , x〉 = −〈y , Tx〉+ 〈x , Ty〉,

so finally 〈Tx , y〉 = 〈x , Ty〉.

Theorem 4.45. Let H be a Hilbert space, T ∈ L(H) selfadjoint. Then

‖T‖ = sup
‖x‖≤1

|〈Tx , x〉|.

Proof. Let M := sup‖x‖≤1 |〈Tx , x〉|. Obviously M ≤ ‖T‖ because for ‖x‖ ≤ 1

|〈Tx , x〉| ≤ ‖T‖‖x‖2 ≤ ‖T‖.

To show the reverse inequality fix x, y ∈ H. Observe that

〈T (x+ y) , x+ y〉 − 〈T (x− y) , x− y〉 = 2〈Tx , y〉+ 2〈Ty , x〉
= 2〈Tx , y〉+ 2〈y , Tx〉 = 4 Re〈Tx , y〉.
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Hence, by the parallelogram identity (Theorem 4.8), for ‖x‖ ≤ 1, ‖y‖ ≤ 1,

Re〈Tx , y〉 ≤ 1
4
(
|〈T (x+ y) , x+ y〉|+ |〈T (x− y) , x− y〉|

)
≤ 1

4
(
M‖x+ y‖2 +M‖x− y‖2

)
= M

2 (‖x‖2 + ‖y‖2) ≤M.

Now choose λ ∈ C, |λ| = 1 such that λ〈Tx , y〉 = |〈Tx , y〉|, so

|〈Tx , y〉| = 〈T (λx) , y〉 = |Re〈T (λx) , y〉| ≤M, ‖x‖ ≤ 1, ‖y‖ ≤ 1.

In particular, ‖〈· , Tx〉‖ ≤M , so ‖Tx‖ ≤ 1 for ‖x‖ ≤ 1. This shows ‖T‖ ≤M .

Corollary 4.46. Let H be a Hilbert space and T ∈ L(H) selfadjoint. If 〈Tx , x〉 = 0, x ∈ H, then
T = 0.

Note that the condition 〈Tx , x〉 = 0 automatically implies that T is selfadjoint in the case of a
complex Hilbert space. In a real Hilbert spaces H the assumption that T is selfadjoint is necessary
for the statement in the corollary. For example, let T =

(( 0 1
−1 0

))
: R2 → R2 the rotation about

90◦. Then T 6= 0 but 〈Tx , x〉 = 0 for all x ∈ R2.

Lemma 4.47. Let H be a Hilbert space, T ∈ L(H) a normal operator. Then

‖Tx‖ = ‖T ∗x‖, x ∈ H,

in particular, kerT = kerT ∗.

Proof. 0 = 〈T ∗Tx− TT ∗x , x〉 = ‖Tx‖2 − ‖T ∗x‖2.

Definition 4.48. Let H be a Hilbert space. A bounded selfadjoint operator T ∈ L(H) is called
non-negative, denoted by T ≥ 0, if 〈Tx , x〉 ≥ 0 for all x ∈ H. It is called positive, denoted by
T > 0, if 〈Tx , x〉 > 0 for all x ∈ H \ {0}. We write T ≤ S if and only if S − T ≥ 0. A sequence
(Tn)n∈N ∈ L(H) is increasing if and only if Tn ≤ Tn+1, n ∈ N. A sequence (Tn)n∈N ∈ L(H) is
decreasing if and only if (−Tn)n∈N ∈ L(H) is increasing.

Theorem 4.49. Let H be a Hilbert space. Every monotonic bounded sequence of selfadjoint linear
operators on H converges strongly.

Proof. Let (Tn)n∈N be a bounded monotonic sequence of selfadjoint operators. Without restriction
we assume that it is increasing. Let

snm : H ×H → K, snm(x, y) = 〈(Tn − Tm)x , y〉

is a positive semidefinite sesquilinear form on H if n ≥ m. Let M be a bound of (Tn)n∈N. Note
that then ‖Tn−Tm‖ ≤ 2M . Then, using Cauchy-Schwarz inequality, we find for n ≥ m and x ∈ H
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with ‖x‖ = 1

‖(Tn − Tm)x‖2 = 〈(Tn − Tm)x , (Tn − Tm)x〉 = snm(x, (Tn − Tm)x)
≤ snm(x, x) 1

2 snm((Tn − Tm)x, (Tn − Tm)x) 1
2

= 〈(Tn − Tm)x , x〉 1
2 〈(Tn − Tm)x , (Tn − Tm)2x〉 1

2

≤ 〈(Tn − Tm)x , x〉 1
2 ‖Tn − Tm‖

1
2 ‖Tn − Tm‖

≤ (2M) 3
2 〈(Tn − Tm)x , x〉 1

2 .

By assumption (〈Tnx , x〉)n∈N is a monotonically increasing bounded sequence in R, hence conver-
gent. It follows that (Tnx)n∈N is a Cauchy sequence, hence T converges strongly to some T ∈ L(H)
(Proposition 3.13). That T is selfadjoint follows from

〈Tx , y〉 = lim
n→∞

〈Tnx , y〉 = lim
n→∞

〈x , Tny〉 = 〈x , Ty〉, x, y ∈ H.

4.5 Projections in Hilbert spaces
Proposition 4.50. Let H be a Hilbert space, P ∈ L(H) a projection. If P 6= 0 then the following
is equivalent.

(i) P is an orthogonal projection.
(ii) ‖P‖ = 1.
(iii) P is selfadjoint.
(iv) P is normal.
(v) 〈Px , x〉 ≥ 0, x ∈ H.

Proof. (i) =⇒ (ii) follows from Theorem 4.16.
(ii) =⇒ (i) Let x ∈ kerP and y ∈ rg(P ). Then for all λ ∈ K

‖λy‖2 = ‖P (x+ λy)‖2 ≤ ‖x+ λy‖2 = ‖x‖2 + |λ|2‖y‖2 + 2 Re(λ〈x , y〉).

In particular, 0 ≤ ‖x‖2 +2λRe〈x , y〉 for all λ ∈ R, and 0 ≤ ‖x‖2 +2iλ Im〈x , y〉 for all λ ∈ iR, hence
Re〈x , y〉 = Im〈x , y〉 = 0.
(i) =⇒ (iii) Observe that 〈Px , y〉 = 〈x , Py〉 for all x, y ∈ H because

〈Px , y〉 = 〈Px , y − Py + Py〉 = 〈Px , Py〉,
〈x , Py〉 = 〈x− Px+ Px , Py〉 = 〈Px , Py〉.

(iii) =⇒ (iv) is clear.
(iv) =⇒ (i) By Lemma 4.47, kerP = kerP ∗ = (rgP )⊥.
(i) =⇒ (v) For all x ∈ H: 〈Px , x〉 = 〈Px , x− Px+ Px〉 = 〈Px , Px〉 ≥ 0.
(v) =⇒ (i) Let x ∈ kerP , y ∈ rgP . Since for all λ ∈ R

0 ≤ 〈P (x+ λy) , x+ λy〉 = 〈λy , x+ λy〉 = λ2‖y‖2 + λ〈y , x〉,

it follows that 〈x , y〉 = 0.
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Lemma 4.51. Let H Hilbert space H. A linear operator P : H → H is an orthogonal projection
if and only if P 2 = P and 〈x , Py〉 = 〈y , Px〉 for all x, y ∈ H.

Proof. Assume that P is an orthogonal projection. Then P 2 = P and by Proposition 4.50 P is
selfadjoint.
If P 2 = P and 〈x , Py〉 = 〈y , Px〉 for all x, y ∈ H, then P is a projection. By the theorem of
Hellinger-Toeplitz (Theorem 4.43) P is selfadjoint, hence P is an orthogonal projection by Propo-
sition 4.50.

Lemma 4.52. Let H be a Hilbert space, U1, U2 ⊆ H closed subspaces and P1, P2 the corresponding
orthogonal projections. Then the following is equivalent:

(i) P1P2 = P2P1 = 0.
(ii) U1 ⊥ U2.

(iii) P1 + P2 is an orthogonal projection.

If one of the equivalent conditions above hold, then rg(P1 + P2) = U1 ⊕ U2.

Proof. (i) =⇒ (ii) By assumption, U2 = rgP2 ⊆ kerP1 = (rgP1)⊥ = U⊥1 , hence U1 ⊥ U2.
(ii) =⇒ (i) By assumption, rgP2 = U2 ⊆ U⊥1 = kerP1, hence P1P2 = 0. Since (ii) is symmetric in
U1 and U2, it follows also that P2P1 = 0.
(i),(ii) =⇒ (iii) Observe that P1P2 = P2P1 = 0, so P1 + P2 is a projection because

(P1 + P2)2 = P 2
1 + P1P2 + P2P1 + P 2

2 = P1 + P2.

Since the sum of two selfadjoint operators is selfadjoint, P1 + P2 is selfadjoint, hence, by Proposi-
tion 4.50 an orthogonal projection.
(iii) =⇒ (i) Since P1 + P2 is an orthogonal projection, it follows that

P1P2 + P2P1 = (P1 + P2)2 − (P1 + P2) = 0.

In particular 0 = (P1P2 + P2P1)P2x = (id +P2)P1P2x. Note that for y ∈ H \ {0} the vectors
(id−P2)y and P2y are linearly independent, hence (id +P2)y = (id−P2)y+ 2P2y is zero if and only
if (id−P2)y = 0 and P2y = 0, hence y = 0. Therefore rgP1P2 ⊆ ker(id +P2) = {0}.

Lemma 4.53. Let H be a Hilbert space and P1 and P2 orthogonal projections on subspaces U1 and
U2.

(i) P1P2 is an orthogonal projection if and only if P1P2 = P2P1. In this case, P1P2 is an
projection on U1 ∩ U2.

(ii) P1 − P2 is an orthogonal projection if and only if P1P2 = P2P1 = P2.

Proof. (i) If P1P2 is an orthonormal projection, then, by Proposition 4.50, P1P2 is selfadjoint,
that is P1P2 = (P1P2)∗ = P ∗2 P

∗
1 = P2P1. On the other hand, if P1 and P2 commute, then it is easy

to verify that (P1P2)2 = P1P2 and (P1P2)∗ = P1P2, hence P1P2 is an orthogonal projection. In
this case, rg(P1P2) = rg(P2P1), so rg(P1P2) ⊆ U1 ∩ U2. On the other hand, P1P2x = x for every
x ∈ U1 ∩ U2, so also rg(P1P2) ⊇ U1 ∩ U2 holds.
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(ii) Using Lemma 4.52 we obtain

P1 − P2 orthonormal projection ⇐⇒ 1− (P1 − P2) orthonormal projection
⇐⇒ (1− P1) + P2 orthonormal projection
⇐⇒ P2(1− P1) = (1− P1)P2 = 0
⇐⇒ P2P1 = P1P2 = P2.

Lemma 4.54. Let H be a Hilbert space and P1, P2 orthogonal projections on H0, H1 ⊆ H. Then
the following is equivalent.

(i) H0 ⊆ H1,
(ii) ‖P0x‖ ≤ ‖P1x‖, x ∈ H.
(iii) 〈P0x , x〉 ≤ 〈P1x , x〉, x ∈ H.
(iv) P0P1 = P0.

Proof. (ii) ⇐⇒ (iii) Let x ∈ H and P an orthogonal projection. Then 〈Px , x〉 = 〈P 2x , x〉 =
〈Px , Px〉 = ‖Px‖2.
(i)⇐⇒ (iv)

P0P1 = P0 ⇐⇒ P0(id−P1) = 0 ⇐⇒ rg(id−P1) ⊆ kerP0

⇐⇒ (rgP1)⊥ ⊆ (rgP0)⊥ ⇐⇒ H⊥1 ⊆ H⊥0
⇐⇒ H0 ⊆ H1.

(iv) =⇒ (ii) For all x ∈ H: ‖P0x‖ = ‖P0P1x‖ ≤ ‖P0‖‖P1x‖ ≤ ‖P1x‖.
(iii) =⇒ (i) Let x ∈ H⊥1 = kerP1. Then 0 = 〈P1x , x〉 ≥ 〈P0x , x〉 = ‖P0‖2, hence H⊥1 ⊆ kerP0 =
H⊥0 .

Lemma 4.55. Let H be a Hilbert space and (Pn)n∈N a sequence of orthogonal projections with
〈Pmx , x〉 ≤ 〈Pnx , x〉 for all x ∈ X and m < n. Then (Pn)n∈N converges strongly to an orthogonal
projection.

Proof. By Theorem 4.49 we already know that s- limPn =: P exists and is a selfadjoint operator.
It remains to be shown that P is a projection, that is, that P 2 = P . For x ∈ H and n ∈ N

P 2x = (P − Pn + Pn)(P − Pn + Pn)x = (P − Pn)Px+ Pn(P − Pn)x+ P 2
nx.

Note that (P − Pn)Px → 0, n → ∞, and also Pn(P − Pn)x because ‖Pn‖ = 1, n ∈ N. Since
P 2
nx = Pnx→ Px, it follows that P 2 = P .

4.6 The adjoint of an unbounded operator
In sections 2.4 and section 4.4 we have defined the adjoint of bounded linear operators between
Banach or Hilbert spaces. Now we define the adjoint of an unbounded linear operator. Recall that
T (X → Y ) denotes a possibly unbounded linear operators defined on a subspace D(T ) ⊆ X.
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Definition 4.56. Let X,Y be Banach spaces and D(T ) ⊆ X a dense subspace. For a linear map
T : X ⊇ D(T )→ Y we define

D(T ′) := {ϕ ∈ Y ′ : x 7→ ϕ(Tx) is a bounded linear functional on D(T )},

Since D(T ) is dense in X, the map D(T ) → K, x 7→ ϕ(Tx) has a unique continuous extension
T ′ϕ ∈ X ′ for ϕ ∈ D(T ′). Hence the Banach space adjoint T ′

T ′ : Y ′ ⊇ D(T ′)→ X ′, (T ′ϕ)(x) = ϕ(Tx), x ∈ D(T ), ϕ ∈ D(T ′).

is well-defined.

Theorem 4.57. Let X,Y be Banach spaces, D(T ) ⊆ X a dense subspace and T : X ⊇ D(T )→ Y
be a linear operator. Then T ′ is closed.

Proof. Let G(T ′) = {(y′, T ′y′) : ϕ ∈ D(T ′)} ⊆ Y ′ ×X ′ be the graph of T ′.
Note that (y′, x′) ∈ G(T ′) if and only if x′x = y′(Tx) for all x ∈ D(T ). Now let ((y′n, x′n))n∈N ⊆
G(T ′) a convergent sequence with lim

n→∞
(y′n, x′n) = (y′0, x′0). For all x ∈ D(T ) it follows that

x′0x = lim
n→∞

x′nx = lim
n→∞

y′n(Tx) = lim
n→∞

y′0(Tx),

thus (y′0, x′0) ∈ G(T ′) which implies that T ′ is closed.

Definition 4.58. Let X,Y be Banach spaces. For linear operators S, T from X to Y we write
S ⊆ T if T is an extension of S, that is, if D(S) ⊆ D(T ) and T |D(S) = S.

Theorem 4.59. Let X,Y, Z be Banach spaces.

(i) Let (S,D(S)) and (T,D(T )) be densely defined linear operators X → Y . If S ⊆ T then
T ′ ⊆ S′.

(ii) Assume S(X → Y ) and T (Y → Z) are densely defined such that also TS is densely defined.
Then S′T ′ ⊆ (TS)′.

(iii) Assume S(X → Y ) and T (X → Y ) are densely defined such that also T+S is densely defined.
Then (S′ + T ′) ⊆ (S + T )′.

Proof. (i) is clear from the definition of the adjoint operator.
(ii) Let z′ ∈ D(S′T ′). Then T ′z′ ∈ D(S′) and the map

D(S)→ K, x 7→ (T ′z′)(Sx)

is continuous. Then also its restriction

D(TS)→ K, x 7→ (T ′z′)(Sx) = z′(TSx)

is continuous. Note that by assumption D(TS) is dense in X, hence z′ ∈ D((TS)′) and (TS)′z′ =
S′T ′z′.
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(iii) Let y′ ∈ D(T ′ + S′) = D(T ′) ∩ D(S′). Then the map

D(T + S)→ K, x 7→ y′(Tx) + y′(Sx) = y′((T + S)x)

is continuous. Since by assumption D(T + S) is dense in X, y′ ∈ D((T + S)′) and (T + S)′y′ =
(T ′ + S′)y′.

If S and T are bounded, then “=” holds in (ii) and (iii) (Theorem 2.27). Note that for unbounded
linear operators T ′ + S′ = (T + S)′ is not necessarily true. For example, if T (X → Y ) is a densely
defined unbounded linear operator such that also T ′ is densely defined with D(T ′) 6= Y ′. Then
D(T ′ − T ′) 6= Y ′ = D(T − T )′.

Corollary 4.60. Let X be a Banach space, T a densely defined linear operator in X with bounded
inverse T−1 ∈ L(X). Then T ′ is invertible and

(T ′)−1 = (T−1)′.

Proof. By Theorem 4.59 (ii) it follows that (T−1)′T ′ ⊆ (TT−1)′ = id′X = idX , hence (T−1)′T ′ =
idD(T ′).
Again by Theorem 4.59 (ii) we find T ′(T−1)′ ⊆ (T−1T )′ = id′D(T ) = idX , so it suffices to show
D(T ′(T−1)′) = D(T ′). Let ϕ ∈ D(T ′) and η = (T−1)′ϕ. For every x ∈ D(T ) it follows that
η(Tx) = ((T−1)′ϕ)(Tx) = ϕ(T−1′Tx) = ϕ(x), which implies η ∈ D(T ′), hence D(T ′(T−1)′) =
D(T ′).

Note that above Corollary follows also from Theorem 5.20.
More general is Theorem 4.65 due to Phillips.

Definition 4.61. Let X be a Banach space. For subspaces A ⊆ X and B ⊆ X ′ we define the
annihilators

A◦ := {ϕ ∈ X ′ : ϕ(x) = 0, x ∈ A} ⊆ X ′,
◦B := {x ∈ X : ϕ(x) = 0, ϕ ∈ B} ⊆ X.

Remark 4.62. The sets A◦ and ◦B are closed subspaces and ◦(A◦) = A. If X is reflexive, then
also (◦B)◦ = B.

Proof. Obviously, A◦ and ◦B are subspaces. Let (x′n)n∈N ⊆ A◦ be a convergent sequence. Then
x′0 := lim

n→∞
x′n ∈ A◦ because x′0x = lim

n→∞
x′nx = 0 for all x ∈ A. Let (xn)n∈N ⊆ ◦B be a convergent

sequence. Then x0 := lim
n→∞

xn ∈ ◦B because ϕx0 = lim
n→∞

ϕxn = 0 for all ϕ ∈ B.

Now we show that ◦(A◦) = A. Since obviously A ⊆ ◦(A◦), also A ⊆ ◦(A◦). Assume that there
exists an a ∈ ◦(A◦) \A. By a corollary to the Hahn-Banach theorem (Corollary 2.20) there exists a
ϕ ∈ X ′ such that ϕ|A = 0 and ϕ(a) 6= 0. Therefore ϕ ∈ A◦, so by definition of ◦(A◦), also ϕ(a) = 0.

(◦B)◦ = B follows if we identify X with X ′′ using the canonical map JX .
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Lemma 4.63. Let X,Y be Banach space, Y 6= {0} and T (X → Y ) a densely defined closed linear
operator and y0 ∈ Y \ {0}. Then there exists a ϕ ∈ D(T ′) such that ϕ(y0) 6= 0, in particular,
D(T ′) 6= {0}.

Proof. By assumption, the graph G(T ) of T is closed and (0, y0) 6= G(T ). Hence, by a corollary
to the Hahn-Banach theorem (Corollary 2.20) there exists ψ ∈ (X × Y )′ such that ψ|G(T ) = 0 and
ψ((0, y0)) 6= 0. Let ϕ : Y → K, ϕ(y) = ψ((0, y)). Obviously ϕ ∈ Y ′ and ϕ(y0) 6= 0. Moreover,
ϕ ∈ D(T ′) because for all x ∈ D(T )

ϕ(Tx) = ψ((0, Tx)) = ψ((x, Tx)− (x, 0)) = ψ((x, Tx))− ψ((x, 0))
= −ψ((x, 0)).

Theorem 4.64. Let X and Y be Banach spaces. For a densely defined closed linear operator
T (X → Y ) the following holds:

(i) rg(T )◦ = rg(T )◦ = kerT ′.
(ii) rg T = ◦(kerT ′).

(iii) rg T = Y ⇐⇒ T ′ is injective.
(iv) ◦(rg T ′) ∩ D(T ) = kerT.
(v) rg T ′ ⊆ (kerT )◦.

Proof. (i) The first equality is clear. The second equality follows from

ϕ ∈ rg(T )◦ ⇐⇒ ∀ y ∈ rg(T ) ϕ(y) = 0
⇐⇒ ∀ x ∈ D(T ) ϕ(Tx) = 0
⇐⇒ ϕ ∈ D(T ′), T ′ϕ = 0
⇐⇒ ϕ ∈ ker(T ′).

(ii) rg T = ◦((rg T )◦) = ◦(kerT ′) by (i) and Remark 4.62.
(iii) By (ii), rg T = Y if and only if ◦(kerT ′) = Y . This is the case if and only if ϕ(y) = 0 for all
ϕ ∈ kerT ′ and y ∈ Y , that is, if and only if kerT ′ = {0}.
(iv) Let x ∈ ker(T ) and x′ ∈ rg T ′. Choose y′ ∈ D(T ′) with T ′y′ = x′. Then x′x = (T ′y′)x =
y′(Tx) = y′(0) = 0, hence x ∈ ◦(rg T ′).
Now let x ∈ ◦(rg T ′)∩D(T ). Then y′(Tx) = (T ′y′)x = 0 for all y′ ∈ Y ′. Since T is closed, it follows
by Lemma 4.63 that Tx = 0, hence x ∈ kerT .
(v) Let x′ ∈ rg(T ′) and x ∈ kerT . Choose y′ ∈ D(T ′) such that T ′y′ = x′. Then x′x = (T ′y′)x =
y′(Tx) = y′(0) = 0. It follows that rg(T ′) ⊆ (kerT )◦, and since (kerT )◦ is closed, the statement is
proved.

Theorem 4.65 (Phillips). Let X,Y be a Banach spaces, T (X → Y ) a densely defined injective
linear operator with rg(T ) = Y . Then

(T ′)−1 = (T−1)′. (4.2)

Moreover, rg(T ) = Y and T−1 is bounded if and only if T is closed and (T ′)−1 is bounded on X ′.
(T−1 denotes the inverse of T : D(T )→ rg(T ), similar for (T ′)−1.)
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Proof. By assumption, D(T−1) = rg(T ) is dense in Y , hence Y , (T−1)′ exists. Moreover, T ′ is
injective by Theorem 4.64 (iii), hence (T ′)−1 : rg(T ′)→ Y ′ exists.
Let us prove (4.2). To show that (T ′)−1 ⊆ (T−1)′, let ϕ ∈ rg(T ′) = D((T ′)−1). Note that for every
y ∈ rg(T ) = D(T−1), we have that

ϕ(T−1y) = (T ′(T ′)−1ϕ)(T−1y) = ((T ′)−1ϕ)(TT−1y) = ((T ′)−1ϕ)y

hence ϕ ∈ D((T−1)′) and hence (T−1)′ϕ = (T ′)−1ϕ.
To show that (T ′)−1 ⊇ (T−1)′, let ψ ∈ rg(T ′) = D((T−1)′). Note that (T−1)′ϕ ∈ D(T ′) because
for all x ∈ D(T ) we have that

((T−1)′ϕ)(Tx) = ϕ((T−1)Tx) = ϕ((x)

and hence ϕ = T ′((T−1)′ϕ ∈ rg(T ′) = D((T ′)−1.
If rg(T ) = Y and T−1 is bounded, then T is closed and T−1 ∈ L(Y,X) which implies that also
(T−1)′ ∈ L(X ′, Y ′).
If on the other hand T is closed and (T ′)−1 ∈ L(X ′, Y ′), then also T−1 is closed. For all ϕ ∈ X ′
and y ∈ D(T−1) with ‖y‖ = 1, we have that

|ϕ(T−1y)| = |T ′(T ′)−1ϕ(T−1y)| = |(T ′)−1ϕ(y)| ≤ ‖(T ′)−1‖ ‖ϕ‖.

Hence {T−1y : y ∈ D(T−1), ‖y‖ = 1} is bounded by Corollary 3.8, therefore T−1 is bounded its
domain is closed by the closed graph theorem, hence D(T−1) = rg T = rg(T ) = Y . Since T−1 is
closed by

Theorem 4.66 (Closed range theorem). Let X,Y be reflexive Banach spaces and T : X ⊇
D(T )→ Y a closed densely defined linear operator. The following is equivalent:

(i) rg(T ) is closed.
(ii) rg(T ′) is closed.
(iii) T : X ⊇ D(T )→ rg(T ) is open.
(iv) T ′ : Y ′ ⊇ D(T ′)→ rg(T ′) is open.
(v) rg(T ) = ◦(kerT ′).

(vi) rg(T ′) = (kerT )◦.

Proof. (i)⇐⇒ (iii) Since T is closed, (D(T ), ‖ · ‖T ) is a Banach space and

T̃ : (D(T ), ‖ · ‖T )→ rg T, T̃x = Tx

is continuous (Lemma 3.32). Observe that also i : (D(T ), ‖ · ‖T ) → X, x 7→ x is continuous and
that T = T̃ ◦ i−1 : X ⊇ D(T )→ Y . Note that rg T is a Banach space.
If rg T is closed, then T̃ : (D, ‖ · ‖T )→ rg T is open by the open mapping theorem (Theorem 3.22),
then also T = T̃ ◦ i−1 : X ⊇ D(T )→ rg T is open as composition of open maps. If T : D(T )→ rg T
is open, then it is surjective, hence rg T is closed.
Note that T ′ is closed (Theorem 4.57), hence (ii)⇐⇒ (iv) is proved analogously.
(i)⇐⇒ (v) follows from theorem 4.64 (ii).
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(ii)⇐⇒ (vi) follows from theorem 4.64 (ii)

rg(T ′) = ◦(kerT ′′) = (kerT )◦.

(iii)⇐⇒ (iv) Recall that T is open if and only if there exists an , r > 0 such that the image of the
open ball in X with centre 0 and radius r contains the open unit ball in Y . That is, there exists a
r > 0 such that T (BX(0, r)) ⊇ BY (0, 1). Assume that T is open and let r as above.
To show that T ′ is open, we have to show that for every x′0 ∈ rg(T ′) with ‖x′0‖ < 1, there exists
a y′0 ∈ D(T ′) with T ′y′0 = x′0 and ‖y′0‖ < r. Define a linear functional ϕ on rg(T ) as follows: for
y ∈ rg T with ‖y‖ < 1 choose x ∈ D(T ) such that ‖x‖ < r and Tx = y. Set ϕ(y) = x′0x and extend
ϕ linearly to rg T . Note that |ϕ(y)| = |x′0x| ≤ ‖x′0‖‖x‖ ≤ r‖y‖, ϕ is bounded, so by the theorem of
Hahn-Banach it can be extended to a functional y′0 ∈ Y ′ with ‖y′0‖ ≤ r. Note that

D(T )→ K, 7→ y′0(Tx) = ϕ(Tx) = x′0x

is continuous, so y′0 ∈ D(T ).
(iv)⇐⇒ (iii) Follows analogously if we note that T ′′ = T by the reflexivity of X and Y .

Definition 4.67. Let H1, H2 be Hilbert spaces and D(T ) ⊆ H1 a dense subspace. For a linear
map T : H1 ⊇ D(T )→ H2 its Hilbert space adjoint T ∗ is defined by

D(T ∗) := {y ∈ H2 : x 7→ 〈Tx , y〉 is a bounded on D(T )},
T ∗ : H2 ⊇ D(T ∗)→ H1, T ∗y = y∗,

where y∗ ∈ H1 such that 〈Tx , y〉 = 〈x , y∗〉 for all x ∈ D(T ).
Note that for y ∈ D(T ∗) the map x 7→ 〈Tx , y〉 is continuous and densely defined and can therefore
be extended uniquely to an element ϕy ∈ H ′1. By the Riesz representation theorem (Theorem 4.20)
there exists exactly one y∗ ∈ H1 as desired.

Definition 4.68. Let H1, H2 be Hilbert spaces and D(T ) ⊆ H1, D(S) ⊆ H2 subspaces. The linear
maps T : H1 ⊇ D(T )→ H2 and S : H2 ⊇ D(S)→ H1 are called formally adjoint if

〈Tx , y〉H2 = 〈x , Sy〉H1 , x ∈ D(T ), y ∈ D(S).

Note that the formal adjoint of a non-densely defined linear operator is not unique; in particular,
the operator trivial operator with D = {0} is formally adjoint to every linear operator.
If T is densely defined, then its adjoint T ∗ is its maximal formally adjoint operator.

Lemma 4.69. Let H1 and H2 be Hilbert spaces and define

U : H1 ×H2 → H2 ×H1, (x, y) 7→ (y,−x).

If T (H1 → H2) is a densely defined linear operator, then

G(T ∗) = U(G(T )⊥) = [U(G(T ))]⊥. (4.3)
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Proof. Observe that U is unitary, hence U(G(T )⊥) = [U(G(T ))]⊥. The first equality in (4.3) follows
from

(y0, x0) ∈ G(T ∗) ⇐⇒ 〈Tx , y0〉Y = 〈x , x0〉X , x ∈ D(T )
⇐⇒ 〈Tx , y0〉 − 〈x , x0〉 = 0, x ∈ D(T )
⇐⇒ 〈(Tx,−x) , (y0, x0)〉H2×H1 = 0, x ∈ D(T )
⇐⇒ 〈U(x, Tx) , (y0, x0)〉H2×H1 = 0, x ∈ D(T )
⇐⇒ (y0, x0) ∈ [U(G(T ))]⊥.

Theorem 4.70. Let H1 and H2 be Hilbert spaces. For a densely defined linear operator T (X → Y )
the following holds:

(i) T ∗ is closed.
(ii) If T is closable, then T ∗ is densely defined and T ∗∗ = T .

Proof. (i) follows immediately from (4.3).
(ii) Let y0 ∈ D(T ∗)⊥. Then 〈y0 , y〉 = 0 for all y ∈ D(T ). This implies

0 = 〈(0, y0) , (−z, y)〉H1×H2 = 〈(0, y0) , U(y, z)〉H1×H2 , (y, z) ∈ G(T ∗).

Hence by Lemma 4.69,

(0, y0) ∈ [U−1(G(T ∗))]⊥ = G(T )⊥⊥ = G(T ) = G(T ).

It follows that y0 = T0 = 0, so D(T ∗) = Y . Let

V : H2 ×H1 → H1 ×H2, V (y, x) = (x,−y).

Obviously V U = − idH1×H2 and application of Lemma 4.69 to T ∗ yields

G(T ∗∗) = [V (G(T ∗))]⊥ = [V U(G(T )⊥)]⊥ = [−(G(T )⊥)]⊥ = G(T )⊥⊥ = G(T )
= G(T ).

hence T ∗∗ = T .

Theorem 4.71. Let H1, H2, H3 be Hilbert spaces.

(i) Let T (H1 → H2) and S(H1 → H2) be densely defined linear operators. If S ⊆ T then
T ∗ ⊆ S∗.

(ii) Assume S(H1 → H2) and T (H2 → H3) are densely defined with TS = H1. Then S∗T ∗ ⊆
(TS)∗.

(iii) Assume S(H1 → H2) and T (H1 → H2) are densely defined with T + S = H1. Then (T ∗ +
S∗) ⊆ (S + T )∗.

If S and T are bounded, then “=” holds in (ii) and (iii).
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Proof. As is in the Banach space case.

Corollary 4.72. Let H be a Hilbert space, T a densely defined linear operator in H with bounded
inverse T−1 ∈ L(H). Then T ∗ is invertible and

(T ∗)−1 = (T−1)∗ =: T−∗.

Proof. By Theorem 4.71 (ii) it follows that (T−1)∗T ∗ ⊆ (TT−1)∗ = idH∗ = idH , hence (T−1)∗T ∗ =
idD(T∗).
Again by Theorem 4.71 (ii) we find T ∗(T−1)∗ ⊆ (T−1T )∗ = id∗D(T ) = idH , so it suffices to show
D(T ∗(T−1)∗) = D(T ∗). Let y ∈ D(T ∗) and z = (T−1)∗y. For every x ∈ D(T ) it follows that
〈Tx , z〉 = 〈Tx , (T−1)∗y〉 = 〈T−1Tx , y〉 = 〈x , y〉, so z ∈ D(T ∗) which implies D(T ∗(T−1)∗) =
D(T ∗).

Theorem 4.73. Let H1, H2 be Hilbert spaces, T (H1 → H2) a densely defined closed linear operator.
Then the following holds.

(i) rg(T )⊥ = rg(T )⊥ = kerT ∗.

(ii) rg(T ) = (kerT ∗)⊥.

(iii) rg(T ∗)⊥ = kerT .

(iv) rg(T ∗) = (kerT )⊥.

Proof. (i) Note that y ∈ rg(T )⊥ if and only if 〈Tx , y〉 for all x ∈ D(T ). This is equivalent to
y ∈ D(T ∗) and T ∗y = 0.

(ii) By (i) rg(T ) = rg(T )⊥⊥ = (kerT ∗)⊥.
(iii) By Theorem 4.70 T ∗ is closed and densely defined and T ∗∗ = T . Application of (i) to T ∗

shows rg(T ∗)⊥ = kerT .
(iv) Application of (ii) to T ∗ shows rg(T ∗) = (kerT )⊥.

Example 4.74. Let H = L2[0, 1]. Let

D(T1) := W 1
2 (0, 1) = {x ∈ L2[0, 1] : x absolutely continuous, x′ ∈ L2[0, 1]},

D(T2) := D(T1) ∩ {x ∈ L2[0, 1] : x(0) = x(1)}
D(T3) := D(T1) ∩ {x ∈ L2[0, 1] : x(0) = x(1) = 0}.

For k = 1, 2, 3 let

Tk : H ⊇ D(Tk)→ H, Tkx = ix′.

Obviously, the Tk are well-defined and D(Tk) is dense in H (Theorem A.27). We will show: T ∗1 = T3,
T ∗3 = T1, T ∗2 = T2, in particular all Tk are closed.
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Proof. Let x, y ∈ D(T1). Then, using integration by parts,

〈T1x , y〉 =
∫ 1

0
ix′(t)y(t) dt = ix(t)y(t)

∣∣∣1
0
−
∫ 1

0
ix(t)y′(t) dt

= ix(1)y(1)− ix(0)y(0) + 〈x , T1y〉.

In particular we obtain

〈Tx , y〉 = 〈x , Ty〉, x ∈ D(T1), y ∈ D(T3),
〈Tx , y〉 = 〈x , Ty〉, x, y ∈ D(T2).

This shows that

D(T3) ⊆ D(T ∗1 ), D(T2) ⊆ D(T ∗2 ) and D(T1) ⊆ D(T ∗3 )

and T ∗1 |D(T3) = T3, T ∗3 |D(T3) = T1 and T ∗2 |D(T3) = T2.
To prove the inclusion D(T ∗1 ) ⊆ D(T3) let g ∈ D(T ∗1 ) and ϕ = T ∗1 g. Define Φ(t) =

∫ t
0 ϕ(s) ds. Then

Φ is absolutely continuous and Φ′ = ϕ. For x ∈ D(T1)∫ 1

0
ix′(t)g(t) dt = 〈T1x , g〉 = 〈x , ϕ〉 =

∫ 1

0
ix(t)ϕ(t) dt

= x(t)Φ(t)
∣∣∣1
0
−
∫ 1

0
ix′(t)Φ(t) dt

= x(1)Φ(1)−
∫ 1

0
ix′(t)Φ(t) dt.

Note that Φ(1) = 0 as can be seen if x is chosen to be a constant function. Hence∫ 1

0
ix′(t)(g(t)iΦ(x)) dt = 0, x ∈ D(T1),

implying that g+iΦ ∈ rg(T1)⊥ = {0}. It follows that g is absolutely continuous and g(0) = iϕ(0) =
0, g(1) = iϕ(1) = 0, so g ∈ D(T3).
Analogously, T ∗2 = T2 and T ∗3 = T1 can be shown.

Definition 4.75. Let H be a Hilbert spaces, D(T ) ⊆ H a dense subspace and T : H ⊇ D(T )→ H
a linear map.

(i) T is called symmetric if T ⊆ T ∗.
(ii) T is called selfadjoint if T = T ∗.
(iii) T is called essentially selfadjoint if T = T ∗.

The operator T2 in the example above is selfadjoint, the operator T3 is symmetric.
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Chapter 5

Spectrum of linear operators

If not stated explicitely otherwise, all Hilbert and Banach spaces in this chapter are assumed to be
complex vector spaces.

5.1 The spectrum of a linear operator
Definition 5.1. Let X be a Banach space and T (X → X) a densely defined linear operator.

ρ(T ) := {λ ∈ C : λ id−T is bijective} resolvent set of T,
σ(T ) := C \ ρ(T ) spectrum of T.

The spectrum of T is further divided in point spectrum σp(T ), continuous spectrum σc(T ) and
residual spectrum σr(T ):

σp(T ) := {λ ∈ C : λ id−T is not injective},
σc(T ) := {λ ∈ C : λ id−T is injective, rg(T − λ id) 6= X, rg(T − λ id) = X},

σr(T ) := {λ ∈ C : λ id−T is injective, rg(T − λ id) 6= X}.

It follows immediately from the definition that

σ(T ) = σp(T ) ∪̇σc(T ) ∪̇σr(T ).

In the following, we often write λ− T instead of λ id−T .

Definition 5.2. (i) Elements λ ∈ σp(T ) are called eigenvalues of T .

(ii) For λ ∈ σp(T ) we define the geometric eigenspace of T in λ, Nλ(T ), and the algebraic
eigenspace of T in λ, Aλ(T ), by

Nλ(T ) := ker(T − λ),
Aλ(T ) := {x ∈ X : (T − λ)nx = 0 for some n ∈ N}.
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(iii) For λ ∈ ρ(T ) the resolvent of T in λ is (λ id−T )−1 := R(λ, T ). The map

ρ(T )→ L(X), λ 7→ R(λ, T )

is the resolvent map.

Remark 5.3. If T is closed, then (T − λ)−1 is closed if it exists. Therefore, by the closed graph
theorem,

ρ(T ) = {λ ∈ C : T − λ is injective and (T − λ)−1 ∈ L(X)}.

Remark 5.4. Often the resolvent set of a linear operator is defined slightly differently: Let T (X →
X) is a densely defined linear operator. Then λ ∈ ρ(T ) if and only if λ − T is bijective and
(λ − T )−1 ∈ L(X). With this definition it follows that ρ(T ) = ∅ for every non-closed T (X → X)
because one of the following cases holds:

(i) λ− T is not bijective =⇒ λ /∈ ρ(T );
(ii) λ − T is bijective, then (λ − T )−1 is defined everywhere and not closed, so it cannot be

bounded, which implies λ /∈ ρ(T ).

Remark 5.5. If dimX <∞, then σc(T ) = σr(T ) = ∅ and σp(T ) is the set of all eigenvalues of T .

Theorem 5.6 (Spectral mapping theorem for polynomials). Let X be a Banach space,
T ∈ L(X) and P ∈ C[X] a polynomial. Then

σ(P (T )) = P (σ(T )).

Proof. Let λ ∈ C. Then there exists a polynomial Q such that P (X) − P (λ) = (X − λ)Q(X). In
particular, P (T ) − P (λ) = (T − λ)Q(T ) = Q(T )(T − λ). Hence, if λ ∈ σ(T ), then (T − λ) is not
bijective, so P (T )− P (λ) is not bijective which implies P (σ(T )) ⊆ σ(P (T )).
Now assume µ ∈ σ(P (T )). There exist a, λ1, . . . , λn ∈ C such that P (X)−µ = a(X−λ1) · · · (X−
λn). Since P (T )− µ is not invertible, at least one of the terms λj − T cannot be invertible, that is
at least one λj must belong to the spectrum of T and µ = P (λj) ∈ P (σ(T )).

5.2 The resolvent
In this section we will study the resolvent map ρ(T )→ L(X), λ 7→ R(λ, T ) = (λ− T )−1. We will
show that its domain is open and that it is analytic.

Lemma 5.7. Let X be a Banach space and T (X → X) a closed linear operator.

(i) ‖R(λ0, T )‖ ≥ 1
dist(λ0, σ(T )) for all λ0 ∈ ρ(T ).

(ii) For λ0 ∈ ρ(T ) and λ ∈ C with |λ− λ0| < ‖R(λ0, T )‖−1

R(λ, T ) =
∞∑
n=0

(λ0 − λ)n(R(λ0, T ))n+1.
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Note that (ii) shows that locally around a λ0 ∈ ρ(T ) the resolvent has a power series expansion
with coefficients depending only on λ0 and T .

Proof of Lemma 5.7. Recall that for a bounded linear operator S ∈ L(X) with ‖S‖ < 1 the operator
(id−S)−1 ∈ L(X) and it is given explicitly by the Neumann series (Theorem 2.10)

(id−S)−1 =
∞∑
n=0

Sn.

Let λ0 ∈ ρ(T ). For λ ∈ C we find

λ− T = λ0 − T − (λ0 − λ) =
[

id−(λ0 − λ)(λ0 − T )−1](λ0 − T ).

If |λ0 − λ| < ‖(λ0 − T )−1‖−1, then the term in brackets is invertible, hence so is λ − T and we
obtain

(λ− T )−1 = (λ0 − T )−1[ id−(λ0 − λ)(λ0 − T )−1]−1

= (λ0 − T )−1
( ∞∑
n=0

(λ0 − λ)n(λ0 − T )−n
)

=
∞∑
n=0

(λ0 − λ)n(λ0 − T )−(n+1)

which proves (ii). If µ ∈ C with |µ| < ‖(T − λ0)−1‖−1, then λ0 + µ ∈ ρ(T ), hence dist(λ0, σ(T )) ≥
‖(T − λ0)−1‖−1, so also (i) is proved.

As a corollary we obtain the following theorem.

Theorem 5.8. Let X be a Banach space and T (X → X) a closed linear operator.

(i) σ(T ) is closed.

(ii) If T ∈ L(X), then σ(T ) is compact.

Proof. (i) C \ σ(T ) = ρ(T ) is open by Lemma 5.7.
(ii) Let λ ∈ C with |λ| > ‖T‖. Then λ−T = λ(id−λ−1T ) is invertible since ‖λ−1T‖ < 1 (Neumann
series, Theorem 2.10), hence λ ∈ ρ(T ) It follows that {λ ∈ C : |λ| > ‖T‖} ⊇ ρ(T ). Since σ is closed
and bounded, it is compact.

Next we prove the so-called resolvent identities.

Theorem 5.9. Let X be a Banach space and T (X → X), S(X → X) a linear operators with
D(S) = D(T ).

(i) 1st resolvent identity:

R(λ, T )−R(µ, T ) = (µ− λ)R(λ, T )R(µ, T ), λ, µ ∈ ρ(T ).

In particular, the resolvents commute.
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(ii) 2nd resolvent identity:

R(λ, T )−R(λ, S) = R(λ, T )(T − S)R(λ, S), λ ∈ ρ(T ) ∩ ρ(S).

Proof. (i) follows from a straightforward calculation:

R(λ, T )−R(µ, T ) = (λ− T )−1 − (µ− T )−1

= (λ− T )−1[µ− T − (λ− T )
]
(µ− T )−1

= (µ− λ)R(λ, T )R(µ, T ).

(ii) is shown similarly:

R(λ, T )−R(λ, S) = (λ− T )−1 − (λ− S)−1

= (λ− T )−1[λ− S − (λ− T )
]
(λ− S)−1

= R(λ, T )(T − S)R(λ, S),

Next we study properties of the resolvent map ρ(T ) → L(X), λ 7→ R(λ, T ). By Lemma 5.7 we
already now that its domain is open and that it is analytic, that is, locally it has a power series
representation.

Definition 5.10. Let Ω ∈ C be an open set, X a Banach space and f : Ω→ X.

(i) f is called holomorphic in z0 ∈ Ω if and only if the limit

lim
z→z0

f(z)− f(z0)
z − z0

exists in the norm topology. f is called holomorphic if and only if it is holomorphic in every
z0 ∈ Ω.

(ii) f is called weakly holomorphic in z0 ∈ Ω if and only if the limit

lim
z→z0

f(z)− f(z0)
z − z0

exists in the weak topology. f is called weakly holomorphic if and only if it is weakly holomor-
phic in every z0 ∈ Ω. Hence, for every ϕ ∈ X ′ the map Ω→ C, z 7→ ϕ(f(z)) is holomorphic
in the usual sense.

Lemma 5.11. Let X be a Banach space. A sequence (xn)n∈N ⊆ X is a Cauchy sequence if and
only if the sequence (ϕ(xn))n∈N ⊆ X is uniformly Cauchy for ϕ ∈ X ′ with ‖ϕ‖ ≤ 1 (that is, for
every ε > 0 exists a N ∈ N such that |ϕ(xn) − ϕ(xm)| < ε for all m,n ≥ N and all ϕ ∈ X ′ with
‖ϕ‖ ≤ 1).

Proof. Assume that (xn)n∈N ⊆ X is a Cauchy sequence and let ε > 0. Then there exists a N ∈ N
such that ‖xn − xm‖ < ε for m,n ≥ N . It follows that ‖ϕ(xn)− ϕ(xm)‖ ≤ ‖ϕ‖‖xn − xm‖ < ε for
all m,n ≥ N and all ϕ ∈ X ′ with ‖ϕ‖ ≤ 1.
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Now let ε > 0 and assume that there exists an N ∈ N such that |ϕ(xn) − ϕ(xm)| < ε for all
m,n ≥ N and all ϕ ∈ X ′ with ‖ϕ‖ ≤ 1. Recall that the map JX : X → X ′′ is an isometry. It
follows for m,n ≥ N

‖xn − xm‖ = ‖JXxn − JXxm‖ = sup{|(JXxn − JXxm)ϕ| : ϕ ∈ X ′, ‖ϕ‖ ≤ 1}
= sup{|ϕ(xn)− ϕ(xm)| : ϕ ∈ X ′, ‖ϕ‖ ≤ 1} < ε.

Recall the following fundamental theorem of complex analysis.

Theorem 5.12 (Cauchy’s integral formula). Let Ω ∈ C open and let f : Ω→ C holomorphic.
Let z0 ∈ Ω and r > 0 such that Kr(z0) := {z ∈ C : |z − z0| ≤ r} ⊆ Ω. Then

f(a) = 1
2πi

∫
Γr(z0)

f(z)
z − a

dz, a ∈ Br(z0) (5.1)

where Γr(z0) is the positively oriented boundary of Kr(z0). More generally, for n ∈ N0,

f (n)(a) = n!
2πi

∫
Γr(z0)

f(z)
(z − a)n+1 dz, a ∈ Br(z0). (5.2)

Theorem 5.13 (Dunford). Let X be a Banach space and let Ω ∈ C open. A map f : Ω→ X is
holomorphic if and only if it is weakly holomorphic.

Proof. Clearly, holomorphy of f implies weak holomorphy. Now assume that f is weakly holomor-
phic. Let z0 ∈ Ω. Choose r > 0 such that Kr(z0) = {z ∈ C : |z − z0| ≤ r} ∈ Ω. and let Γr(z0)
be the positively oriented boundary of Kr(z0). For every ϕ ∈ X ′ Cauchy’s integral formula (5.1)
yields

ϕ(f(a)) = 1
2πi

∫
Γr(z0)

ϕ(f(z))
z − a

dz, a ∈ Br(z0).

For a ∈ Br(z0) and 0 < |h| < r − |z0 − a| it follows that a + h ∈ Kr(z0), hence with Cauchy’s
integral formula we obtain

1
h

(
ϕ(f(a+ h))− ϕ(f(a))

)
− (ϕ ◦ f)′(a)

= 1
2πi

∫
Γr(z0)

1
h

[ 1
z − a− h

− 1
z − a

− h

(z − a)2

]
ϕ(f(z)) dz

= 1
2πi

∫
Γr(z0)

[ 1
(z − a)(z − a− h) −

1
(z − a)2

]
ϕ(f(z)) dz

= h

2πi

∫
Γr(z0)

ϕ(f(z))
(z − a)2(z − a− h) dz.

Since z 7→ ϕ(f(z)) is holomorphic in a neighbourhood of Γr(z0), it is in particular continuous.
Hence there exists Cϕ such that

|ϕ(f(z))| < Cϕ, z ∈ Γr(z0).
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By a corollary to the theorem of Banach-Steinhaus (Corollary 3.8), there exists C > 0 such that

‖f(z)‖ < C, z ∈ Γr(z0).

Hence we obtain ∣∣∣ 1
h

(
ϕ(f(a+ h))− ϕ(f(a))

)
− d

dz (ϕ ◦ f)(a)
∣∣∣ ≤ h‖ϕ‖C ′.

This implies that

lim
h→0

ϕ
( 1
h

(
f(a+ h)− f(a)

))
= lim
h→0

1
h

(
ϕ(f(a+ h))− ϕ(f(a))

)
= (ϕ ◦ f)′(a),

uniformly for ϕ ∈ X ′, ‖ϕ‖ ≤ 1. Therefore, by Lemma 5.11, lim
h→0

1
h

(
f(a+ h)− f(a)

)
exists.

Theorem 5.14 (Dunford). Let X be a Banach space, Ω ⊆ C open and T : Ω→ L(X). Then the
following is equivalent:

(i) T is holomorphic in the operator norm.
(ii) T is strongly holomorphic.

(iii) T is weakly holomorphic.

Proof. (i) =⇒ (ii) follows from the definition. (ii)⇐⇒ (iii) follows form Theorem 5.13. It remains
to prove (iii) =⇒ (i). As in the proof of Theorem 5.13 we obtain for x ∈ X and ϕ ∈ X ′

1
h

(
ϕ(T (a+ h)x− T (a)x)

)
− d

dz |z=a(ϕT (z)x) = h

2πi

∫
Γr(z0)

ϕ(T (z)x)
(z − a)2(z − a− h) dz.

Since z 7→ ϕ(T (z)x) is holomorphic in a neighbourhood of Γr(z0), it is continuous, so there exists
Cx,ϕ such that

|ϕ(T (z)x)| < Cx,ϕ, z ∈ Γr(z0).

By a corollary to the theorem of Banach-Steinhaus (Corollary 3.8), there exists Cx > 0 such that

‖T (z)x‖ < Cx, z ∈ Γr(z0),

and by the theorem of Banach-Steinhaus (Theorem 3.7), there exists C > 0 such that

‖T (z)‖ < C, z ∈ Γr(z0).

This implies that

lim
h→0

1
h

(
ϕ(T (a+ h)x− T (a)x)

)
= ϕ

(
lim
h→0

1
h

(T (a+ h)x− T (a)x)
)

exists, uniformly for ϕ ∈ X ′, ‖ϕ‖ ≤ 1. Therefore, by Lemma 5.11,

lim
h→0

1
h

(T (a+ h)x− T (a)x)

exists and convergence is uniform for x ∈ X with ‖x‖ = 1. Analogously as in the proof of
Lemma 5.11 it follows the existence of

lim
h→0

1
h

(T (a+ h)− T (a)).
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Theorem 5.15. Let X be a Banach space, T (X → X) a densely defined closed linear operator.
Then the resolvent map

ρ(T )→ L(X), λ 7→ R(λ, T ) = (λ− T )−1

is holomorphic.

Proof. Let λ0 ∈ ρ(T ) and λ ∈ C with |λ− λ0| < ‖R(λ0, T )‖. For fixed x ∈ X and ϕ ∈ X ′ we have
by Lemma 5.7

ϕ(R(λ, T )x) = ϕ
(( ∞∑

n=0
(λ− λ0)n(R(λ0, T ))n+1

)
x
)

=
∞∑
n=0

(λ− λ0)nϕ
(
(R(λ0, T ))n+1x

)
where we used that the operator series converges and ϕ is continuous. Since the last sum is
absolutely convergent, it follows that λ→ ϕ(R(λ, T )x) is analytic locally at λ0, hence holomorphic.
Since weak holomorphy is equivalent to holomorphy in the operator norm (Theorem 5.14), the
theorem is proved.

The preceding theorem allows us to apply theorems of complex analysis to the resolvent map.

Theorem 5.16. Let X be a Banach space and T ∈ L(X). Then σ(T ) 6= ∅.

Proof. Assume σ(T ) = ∅. Observe that this implies X 6= {0} and T−1 ∈ L(X). Let λ ∈ C with
|λ| > ‖T‖. Then λ ∈ ρ(T ) and using the Neumann series

‖R(λ, T )‖ =
∥∥∥ ∞∑
n=0

λnT−(n+1)
∥∥∥ ≤ ∞∑

n=0
|λn|‖T‖−(n+1) = 1

‖T‖ − |λ|
.

In particular, ‖R(λ, T )‖ → 0 for |λ| → ∞. Hence for every x ∈ X and ϕ ∈ X ′ the map
λ → ϕ(R(λ, T )x) is holomorphic and bounded in C, so constant by the Liouville theorem. Since
ϕ(R(λ, T )x)→ 0 for |λ| → ∞, it follows that ϕ(R(λ, T )x) = 0 for all λ ∈ C, x ∈ X and ϕ ∈ X ′. By
a corollary to the Hahn-Banach theorem (Corollary 2.17) it follows that R(λ, T )x = 0 for all x ∈ X
and λ ∈ C, hence R(λ, T ) = 0, λ ∈ C. This contradicts the fact that 1 = ‖TT−1‖ ≤ ‖T‖‖T−1‖ =
0.

The following example shows that for unbounded linear operators the cases σ(T ) = ∅ and σ(T ) = C
are possible.

Examples 5.17. (i) Let X = C([0, 1]) and

T : X ⊇ C1([0, 1])→ X, Tx = x′.

Then T is unbounded and closed and σ(T ) = σp(T ) = C.
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(ii) Let X = {x ∈ C([0, 1]) : x(0) = 0}, D(T ) = {x ∈ X ∩ C1([0, 1]) : x′ ∈ X} and

T : X ⊇ D(T )→ X, Tx = x′.

Then T is unbounded and closed and σ(T ) = ∅.

Proof. (i) Obviously, T is unbounded and densely defined. If (xn)n∈N ⊆ D(T ) such that xn → x and
Txn → y ∈ X, then, by a theorem of Analysis 1, x is differentiable, hence in D(T ) and Tx = x′ = y
which implies that T is closed.
For every λ ∈ C the differential equation x′ − λx = 0 has the solution xλ(t) = eλt. Note that
xλ ∈ D(T ) and (T − λ)xλ = 0, so λ ∈ σp(T ).
(ii) Obviously, T is unbounded and densely defined. If (xn)n∈N ⊆ D(T ) such that xn → x and
Txn → y ∈ X, then, by a theorem of Analysis 1, x is differentiable and x′ = y. Moreover,
x(0) = lim

n→∞
xn(0) = 0, so in D(T ) and Tx = x′ = y which implies that T is closed.

For every λ ∈ C and every y ∈ X the initial value problem x′ − λx = y, x(0) has exactly one
solution xλ given by

xλ(t) = eλt
∫ t

0
e−λs y(s) ds.

Obviously xλ ∈ C1[0, 1], xλ(0) = 0 and x′λ(0) = λxλ(0) + y(0) = 0. Hence T − λ is bijective, in
particular λ ∈ ρ(T ).

Note that in the last example the continuity of (T − λ) can be seen immediately:

‖(T − λ)−1y‖∞ = ‖xλ‖∞ = sup
{∣∣∣ eλt ∫ t

0
e−λs y(s) ds

∣∣∣ : t ∈ [0, 1]
}

≤ ‖y‖∞max{1, eλ}
∫ 1

0
e−λs ds.

Definition 5.18. Let X be a Banach space The spectral radius of T ∈ L(X) is

r(T ) := lim sup ‖Tn‖ 1
n .

Theorem 5.19. Let X be a Banach space, T ∈ L(X) and r(T ) its spectral radius.

(i) r(T ) ≤ ‖Tm‖1/m ≤ ‖T‖ for all m ∈ N, in particular r(T ) = lim
m→∞

‖Tm‖1/m.

(ii) σ(T ) ⊆ {λ ∈ C : |λ| ≤ r(T )}.
(iii) If X is a complex Banach space, then there exists a λ ∈ σ(T ) such that |λ| = r(T ), in

particular

r(T ) = max{|λ| : λ ∈ σ(T )}.

(iv) If X is Hilbert space and T is normal, then r(T ) = ‖T‖.
(v) If X is a complex Hilbert space and T is normal with r(T ) = 0, then T = 0.
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Proof. (i) Let m ∈ N arbitrary. For every n ∈ N there exist pn, qn ∈ N0 with qn < m and
n = pnm+ qn. Let M := max{1, ‖T‖, . . . , ‖Tm−1‖}. Then

‖Tn‖ = ‖T pnm+qn‖ ≤ ‖T pnm‖ ‖T qn‖ ≤M‖Tm‖pn .

This implies r(T ) = lim sup
n→∞

‖Tn‖ 1
n ≤ lim sup

n→∞
M

1
2 ‖Tm‖ 1

m−
qm
nm = ‖Tm‖ 1

m .

(ii) By the formula of Hadamard, the radius of convergence of
∑∞
n=0 z

n+1‖Tn‖ is (lim sup
n→∞

‖Tn‖ 1
n )−1 =

r(T )−1. Hence for all λ ∈ C, |λ| > r(T ), the series
∑∞
n=0 λ

−(n+1)Tn =: A converges in norm. By
Theorem 2.10 (Neumann series), A is the inverse of λ − T . Because T is closed, it follows that
{λ ∈ C : |λ| > r(T )} ⊆ ρ(T ), or equivalently {λ ∈ C : |λ| ≤ r(T )} ⊆ σ(T ).

(iii) Let r0 := max{|λ| : λ ∈ σ(T )}. It follows from (ii) that r0 ≤ r(T ). Now choose any µ ∈ C
with |µ| > r0. We have to show that |µ| > r(T ). Observe that by definition of R(T ) and by the
formula of Hadamard

(λ− T )−1 =
∞∑
n=0

λ−(n+1)Tn, |λ| > r(T ), (5.3)

where the series on the right hand side converges in norm. In particular, for every ϕ ∈ L(X)′

ϕ(λ− T )−1 =
∞∑
n=0

λ−(n+1)ϕ(Tn), |λ| > r(T ).

Hence λ 7→ ϕ(T −λ)−1 defines an analytic function for |λ| > r(T ). It follows from complex analysis
that then the equality in (5.3) holds for all λ in the largest open ring where λ 7→ ϕ(λ − T ) is
analytic, that is for all λ > r(T ). In particular,

∑∞
n=0 µ

−(n+1)ϕ(Tn) converges for every ϕ ∈ L(X)′,
hence it is weakly convergent, and therefore (µ−(n+1)ϕ(Tn))n∈N converges to 0. It follows that
(µ−(n+1)Tn)n∈N is weakly convergent to 0, hence it is bounded (Corollary 3.9). Let M ∈ R
such that ‖µ−(n+1)‖Tn‖ < M , n ∈ N. Then ‖‖Tn‖ 1

n < M
1
nµ1+ 1

n for all n ∈ N, in particular
r(T ) = lim

n→∞
‖‖Tn‖ 1

n ≤ µ.

(iv) Recall that ‖TT ∗‖ = ‖T‖2 for a normal operator T (Theorem 4.39). Hence

‖T 2‖2 = ‖T 2(T ∗)2‖ = ‖(TT ∗)2‖ = ‖(TT ∗)‖2 = ‖T‖4,

hence ‖T 2‖ = ‖T‖2. By induction, it can be shown that hence ‖T 2n‖ = ‖T‖2n for all n ∈ N,
implying that

r(T ) = lim
n→∞

‖Tn‖ 1
n = lim

n→∞
‖T 2n

‖ 1
2n = lim

n→∞
‖T‖ = ‖T‖.

(v) follows directly from (iv).

Note that in general r(T ) < ‖T‖, for example r(T ) = 0 for every nilpotent linear operator.
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5.3 The spectrum of the adjoint operator
Theorem 5.20. (i) Let X be a Banach space and T (X → X) a densely defined closed linear

operator. Then σ(T ′) = σ(T ) and R(λ, T )′ = R(λ, T ′) for λ ∈ ρ(T ).

(ii) Let H be a Hilbert space and T (H → H) a densely defined closed linear operator. Then
σ(T ∗) = σ(T ) = {λ ∈ C : λ ∈ σ(T )} and R(λ, T )∗ = R(λ∗, T ∗) for λ ∈ ρ(T ).

Proof. If λ ∈ ρ(T ), then λ ∈ ρ(T ′) and ((T −λ)−1)′ = ((T −λ)′)−1 by Theorem 4.65. (This follows
also from Corollary .)
If on the other hand λ ∈ ρ(T ′), then

rg(T − λ) = ◦(ker(T ′ − λ)) = ◦{0} = Y,

ker(T − λ) = ◦(rg(T ′ − λ)) ∩ D(T ) = ◦(Y ′) ∩ D(T ) = {0}.

Hence T − λ is injective and has dense range. Therefore Theorem 4.65 shows that rg(T − λ) = Y ,
hence λ ∈ ρ(T ).

Lemma 5.21. Let X be a Banach space and T (X → X) densely defined and closed.

(i) λ ∈ σp(T ) =⇒ λ ∈ σp(T ′) ∪ σr(T ′).

(ii) λ ∈ σr(T ) =⇒ λ ∈ σp(T ′).

Proof. (i) If λ ∈ σp(T ), then ker(λ − T ) ) {0}, rg(λ− T ′) ⊆ ker(T )◦ 6= X. It follows that
λ ∈ σp(T ′) or λ ∈ σr(T ′).
(i) If λ ∈ σr(T ), then rg(λ− T ) 6= X. By Theorem 4.64 rg(λ− T ) = X if and only if (λ−T )′ = λ−T ′
is not injective, hence λ ∈ σp(T ′).

Theorem 5.22. Let H be a complex Hilbert space, T (H → H) a symmetric operator and λ ∈ C\R.

(i) ‖(λ− T )x‖ ≥ | Im(λ)| ‖x‖ for all x ∈ D(T ).
In particular T − λ : D(T ) → rg(T − λ) is invertible with continuous inverse and the point
spectrum of T is real.

(ii) If T is closed, then rg(λ− T ) is closed.

Proof. (i) For all x ∈ D(T )

‖(λ− T )x‖ ‖x‖ ≥
∣∣〈(λ− T )x , x〉

∣∣ =
∣∣〈(Reλ− T )x , x〉+ i〈Imλx , x〉

∣∣
≥ | Imλ|‖x‖.

In particular, λ− T is injective, which implies that λ /∈ σp(T ).
(i) If (λ− T ) is continuous and closed, to its domain rg(λ− T ) is closed.

Theorem 5.23. Let H be a complex Hilbert space and T (H → H) a symmetric operator. Then
the following is equivalent.
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(i) T is selfadjoint.
(ii) rg(λ− T ) = H for all z ∈ C \ R.
(iii) rg(±i− T ) = H.
(iv) There exist z± ∈ C with Im z+ > 0 and Im z− < 0 such that rg(z± − T ) = H.
(v) σ(T ) ⊆ R.

(vi) T is closed and ker(±i− T ∗) = H.

Proof. (i) =⇒ (ii) Let λ ∈ C \R. Then rg(λ−T ) 6= H is closed by Theorem 5.22 and λ∗ /∈ σp(T ).
It follows by Theorem 4.73 that

rg(λ− T ) = rg(λ− T )⊥⊥ = ker(λ∗ − T ∗)⊥ = ker(λ∗ − T )⊥ = {0}⊥ = H.

(ii) =⇒ (i) By assumption, T is symmetric, hence T ⊆ T ∗, so it suffices to show that D(T ∗) ⊆
D(T ). Let λ ∈ C\R. Then λ−T and λ−T are bijective. For x ∈ D(T ∗) there exists a y ∈ D(T ) such
that (λ−T ∗)x = (λ−T )y. Since T ⊆ T ∗, it follows that Ty = T ∗, hence x−y ∈ ker(λ−T ∗) = {0}
which implies x = y ∈ D(T ).
(ii) =⇒ (iii) =⇒ (iv) is obvious.
(iv) =⇒ (v) Let z± ∈ C with Im z+ > 0 and Im z− < 0 such that rg(z± − T ) = H. By
Theorem 5.22, it follows that z± − T is injective and its inverse is bounded by |=z±|. Hence, by
Lemma 5.7, every λ ∈ C with |λ − z±| < |=z±| belongs to ρ(T ). Given any λ ∈ C \ R, repeating
the argument above finitely many times shows that λ ∈ ρ(T ).
(v) =⇒ (ii) is obvious.
(vi) =⇒ (iii) Since T is closed, the range of ±i− T is closed by Theorem 5.22. Therefore rg(±i−
T ) = rg(±i− T )⊥⊥ = ker(∓i− T ∗)⊥ = {0}⊥ = H.
(i) =⇒ (vi) Since T = T ∗, it is closed and C \ R ⊆ ρ(T ), in particular ker(±i− T ) = {0}.

Analogously, we find a characterisation of essentially selfadjoint operators.

Theorem 5.24. Let H be a complex Hilbert space and T (H → H) a symmetric operator. Then
the following is equivalent.

(i) T is essentially selfadjoint.
(ii) rg(λ− T ) = H for all z ∈ C \ R.
(iii) rg(±i− T ) = H.
(iv) There exist z± ∈ C with Im z+ > 0 and Im z− < 0 such that rg(z± − T ) = H.
(v) σ(T ) ⊆ R.

(vi) ker(±i− T ∗) = H.

Definition 5.25. Let X be a Banach space and T (X → X) densely defined and closed. λ ∈ C is
called approximate eigenvalue if there exists a sequence (xn)n∈N ⊆ X such that ‖xn‖ = 1 for all
n ∈ N and lim

n→∞
(T − λ)xn = 0. The set of all approximate eigenvalues is denoted by σap(T ).
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Proposition 5.26. (i) Every approximate eigenvalue belongs to σ(T ).

(ii) Every boundary point of σ(T ) ⊆ C is an approximate eigenvalue of T .

(iii) If X is a Hilbert space and if T is selfadjoint, then every λ ∈ σ(T ) is an approximate eigenvalue
of T .

Proof. (i) Let λ be an approximate eigenvalue of T . Choose a sequence (xn)n∈N ⊆ D(T ) such
that ‖xn‖ = 1 for all n ∈ N and (λ−T )xn → 0. Assume that λ ∈ ρ(T ). Then R(λ, T ) = (λ−T )−1

is bounded, therefore

lim
n→∞

xn = lim
n→∞

R(λ− T )(λ− T )xn = R(λ− T ) lim
n→∞

(λ− T )xn = 0,

in contradiction to ‖xn‖ = 1 for all n ∈ N.
(ii) Let λ be a boundary point of σ(T ). Then there exists a sequence (λn)n∈N ⊆ ρ(T ) which con-
verges to λ. For every n ∈ N choose xn ∈ X such that ‖xn‖ = 1 and ‖R(λn, T )xn‖ ≥ 1

2‖R(λn, T )‖.
From Lemma 5.7 we know that ‖R(λn, T )‖ ≥ 1

dist(λn,σ(T )) . Set yn := ‖R(λn, T )‖−1R(λn, T )xn.
Then yn ∈ D(T ) and ‖yn‖ = 1 for all n ∈ N. Moreover

‖(λ− T )yn‖ ≤ ‖(λ− λn)yn‖+ ‖(λn − T )yn‖
= |λ− λn|+ ‖R(λn − T )xn‖−1

≤ |λ− λn|+ 2‖R(λn − T )‖−1 −→ 0, n→∞.

Hence λ ∈ σap(T ).
(iii) By Theorem 5.23 the spectrum of a selfadjoint operator is real, so σ(T ) = ∂σ(T ) ⊆ σap(T ) ⊆
σ(T ).

Lemma 5.27. Let H be Hilbert space and T ∈ L(H) selfadjoint. Then σ(T ) ⊆ [m,M ] where
m := inf{〈Tx , x〉 : ‖x‖ = 1} and M := sup{〈Tx , x〉 : ‖x‖ = 1}. Moreover, m,M ∈ σ(T ).

Proof. Let λ ∈ R, λ < m. Then λ− T is injective because for all x ∈ X

‖(λ− T )x‖‖x‖ ≥ 〈(λ− T )x , x〉 ≥ (λ−m)‖x‖2. (5.4)

In particular, rg(λ − T ) = D((λ − T )−1) is closed because (λ − T )−1 : rg(λ − T ) → H is closed
and continuous by (5.4). Hence rg(λ − T ) = rg(λ− T ) = ker(λ − T )⊥ = H. It follows that
(−∞, m) ∈ ρ(T ). Analogously (M, ∞) ∈ ρ(T ) is shown.
Now we show that m ∈ σ(T ). By Proposition 5.26 it suffices to show that m ∈ σap(T ). By definition
of m there exists a sequence (xn)n∈N such that ‖xn‖ = 1 for all n ∈ N and 〈Txn , xn〉 ↘ m. Since
s(x, y) := 〈(T−m)x , y〉 defines a positive semidefinite sesquilinear form, Cauchy-Schwarz inequality
implies

‖(T −m)xn‖2 = |s(xn, (T −m)xn)| ≤ s(xn, xn) 1
2 s((T −m)xn) 1

2

= 〈(T −m)xn , xn〉
1
2 〈(T −m)2xn , (T −m)xn〉

1
2 .

Since the first term in the product tends to 0 for n → ∞ and the second term is bounded by
(‖T‖−m) 3

2 <∞, it follows that ‖(T −m)xn‖ tends to 0 for n→∞. This shows that m ∈ σap(T ).
The proof of M ∈ σ(T ) is analogous.
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5.4 Compact operators
Recall that a metric space M is compact if and only if every open cover of M contains a finite
cover. M is called totally bounded if and only if every for every ε > 0 there exists a covering of
M with finitely many open balls of radius ε. M is called precompact (or precompact) if and only
if M is compact. It can be shown that a totally bounded metric M is compact if and only if M is
complete. In particular, a subset of a complete metric space is totally bounded if and only if its
closure is compact. A subset of a metric space is called relatively compact if and only if its closure
is compact.

Definition 5.28. Let X,Y be normed spaces. An operator T ∈ L(X,Y ) is called compact if for
every bounded set A ⊆ X the set T (A) is relatively compact. The set of all compact operators
from X to Y is denoted by K(X,Y ).

Remark 5.29. Sometimes compact operators are called completely continuous.

Remarks 5.30. (i) Every compact linear operator is bounded.

(ii) T ∈ L(X,Y ) is compact if and only if for every bounded sequence (xn)n∈N the sequence
(Txn)n∈N contains a convergent subsequence.

(iii) T ∈ L(X,Y ) is compact if and only if T (BX(0, 1)) is relatively compact.

(iv) Let T ∈ L(X,Y ) with finite dimensional rg(T ). The T is compact.

(v) The identity map id ∈ L(X) is compact if and only if X is finite-dimensional.

Theorem 5.31. Let X,Y be Banach spaces. Then K(X,Y ) is a closed subspace of L(X,Y ).

Proof. Obviously, 0 ∈ K(X,Y ) and Remark 5.30 (ii) implies that the linear combination of compact
operators is compact. Now let (Tn)n∈N ⊆ K(X,Y ) a Cauchy sequence. Since L(X,Y ) is complete,
there exists a T ∈ L(X,Y ) such that Tn → T . We have to show T ∈ K(X,Y ). Take an arbitrary
bounded sequence (xn)n∈N ⊆ X and choose M ∈ R such that ‖xn‖ ≤ M , n ∈ N. Since T1 is
compact, there exists a subsequence (x(1)

n ) such that (T1x
(1)
n )n∈N converges. Continuing like this, for

every k ≥ 2 we find a subsequence (x(k)
n ) of (x(k−1)

n ) such that (Tkx(k)
n )n∈N converges. Let (yn)n∈N =

(x(n)
n )n∈N the diagonal sequence. Then, for every k ∈ N, the sequence (Tkyn)n∈N converges. Let

ε > 0. Choose k ∈ N such that ‖T − Tk‖ < ε
3M and N ∈ N such that ‖Tkxn − Tkxm‖ ≤ ε

3 for
m,n ≥ N . Then, for all m,n ≥ N ,

‖Tyn − Tym‖ ≤ ‖Tyn − Tkyn‖+ ‖Tkyn − Tkym‖+ ‖Tkym − Tym‖

≤ Mε

3M + ε

3 + Mε

3M = ε.

Hence (Tyn)n∈N is Cauchy sequence in the Banach space Y , hence convergent.

Lemma 5.32. Let X,Y, Z be Banach spaces, S ∈ L(X,Y ) and T ∈ L(Y,Z). Then TS is compact
if at least one of the operators S or T is compact.
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Proof. Let (xn)n∈N be a bounded sequence in X. If S is compact, then there exists a subsequence
(xnk

)k∈N such that (Sxnk
)k∈N converges. By continuity of T , also (TSxnk

)k∈N converges.
Now assume that T is compact. Since S is bounded, (Sxn)k∈N is bounded, hence there exists a
subsequence (xnk

)k∈N such that (TSxnk
)k∈N converges.

Theorem 5.33 (Schauder). Let X,Y be Banach space and T ∈ L(X,Y ). Then T is compact if
and only if T ′ is compact.

For the proof we use the Ascoli-Arzelá theorem.

Theorem 5.34 (Arzelá-Ascoli). Let (M,d) be a compact metric space and A ⊆ C(M) a family
of real or complex valued continuous functions on M such that

(i) A is bounded,
(ii) A is closed,

(iii) A is equicontinuous, that is,

∀ ε > 0 ∃ δ > 0 ∀ f ∈ A d(x, y) < δ =⇒ |f(x)− f(y)| < ε.

Then A is compact.

Proof. See, e. g., [Rud91] or [Yos95].

Proof of Theorem 5.33. First assume that T is compact. Let KX(0, 1) := {x ∈ X : ‖x‖ ≤ 1} be
the closed unit ball in X. By assumption K := T (KX(0, 1)) is compact in Y and bounded by ‖T‖.
Now let (ϕn)n∈N ⊆ Y ′ be a bounded sequence and C ∈ R such that ‖ϕn‖ ≤ C, n ∈ N. We define
the functions

fn : K → K, fn(y) := ϕn(y).

Then (fn)n∈N is bounded by C and equicontinuous because |f(y1) − f(y2)| ≤ C‖y1 − y2‖ for all
y1, y2 ∈ K. By the Ascoli-Arzelá, (fn)n∈N is compact, so there exists a convergent subsequence
(fnk

)k∈N. Then also (T ′ϕnk
)k∈N converges because

‖T ′ϕnk
− T ′ϕnm

‖ = sup{‖ϕnk
(Tx)− ϕnm

(Tx)‖ : x ∈ KX(0, 1)}
= sup{‖ϕnk

(y)− ϕnm
(y)‖ : y ∈ K} = ‖fnk

− fnm
‖.

Now assume that T ′ is compact. Then T ′′ ∈ L(X ′′, Y ′′) is compact. By Lemma 5.32 T ′′ ◦ JX is
compact. Recall that JY ◦ T = T ◦ JX (Lemma 2.34), so JY ◦ T : X → Y ′′ is compact. Since Y is
closed in Y ′′, T : X → Y is compact.

Example 5.35. Let k ∈ C([0, 1]2) and

Tk : C([0, 1])→ C([0, 1]), (Tkx)(t) =
∫ 1

0
k(s, t)x(s) ds.

Then Tk is compact.
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Proof. Obviously Tk is well-defined and bounded. Let (xn)n∈N ⊆ C([0, 1]) a bounded sequence with
bound C. Hence (Tkxn)n∈N is bounded. To show that it is equicontinuous fix ε > 0. Since k is
uniformly continuous, there exists a δ > 0 such that |k(s, t)− k(s′, t′)| < ε if ‖(s, t)− (s′, t′)‖ < δ.
Now for t1, t2 ∈ [0, 1] with |t1 − t2| < δ and n ∈ N we obtain

|Tkxn(t1)− Tkxn(t2)| ≤
∫ 1

0
|k(s, t1)− k(s, t2)||xn(s)| ds < ε‖xn‖∞ ≤ Cε.

By the Ascoli-Arzelá theorem it follows that (Tkxn)n∈N is relatively compact, hence it contains a
convergent subsequence.

Let X be vector space and T : X → X a linear operator. Then obviously

{0} ⊆ kerT ⊆ kerT 2 ⊆ kerT 3 ⊆ . . . ,
X ⊇ rg T ⊇ rg T 2 ⊇ rg T 3 ⊇ . . . .

Lemma 5.36. Let X a vector space and T : X → X a linear operator.

(i) Assume that kerT k+1 = kerT k for some k ∈ N0. Then kerTn = kerT k for all integer n ≥ k.

(ii) Assume that rg T k+1 = rg T k for some k ∈ N0. Then rg Tn = rg T k for all integer n ≥ k.

Proof. We prove the lemma by induction. The case when n = k is clear by assumption.
(i) Assume that n > k and kerTn = kerT k. Then

kerTn+1 = {x ∈ X : Tn+1x = 0} = {x ∈ X : Tx ∈ kerT k} = kerT k+1 = kerT k.

(i) Assume that n > k and rg Tn = rg T k. Then

rg Tn+1 = T (rg Tn) = T (rg T k) = rg T k+1 = rg T k.

Definition 5.37. Let X be a vector space and T : X → X a linear operator. We define

ascent of T := α(T ) :=
{

min{k ∈ N0 : kerT k = kerT k+1}, if the minimum exists,
∞ else

descent of T := δ(T ) :=
{

min{k ∈ N0 : rg T k = rg T k+1}, if the minimum exists,
∞ else.

Lemma 5.38. Let X be a vector space and T : X → X a linear operator. If both the ascent α(T )
and the descent δ(T ) are finite, then α(T ) = δ(T ) =: p and X = rg(T p)⊕ ker(T p).

Proof. Let p := α(T ) and q := δ(T ). We divide the proof in several steps.
Step 1. rg(T p) ∩ ker(Tn) = {0} for every n ∈ N0.
To see this, choose x ∈ rg(T p) ∩ ker(Tn). Then there exists a y ∈ X such that x = T py, so
0 = Tnx = T p+ny. Hence y ∈ kerT p+n = kerT p by Lemma 5.36 i. It follows that x = T py = 0.
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Step 2. X = rg(Tn) + ker(T q) for every n ∈ N0.
For the proof fix x ∈ X. Then T qx ⊆ rg(T q) = rg(T q+n). Hence there exists y ∈ X such that
T qx = T q+ny. Then T q(x− Tny) = 0, and therefore x = Tny + (x− Tny) ∈ rg(Tn) + ker(T q).
Step 3. α(T ) ≤ δ(T ) = q.
Let x ∈ kerT q+1. We have to show x ∈ kerT q. By step 2, with n = p, there exist x1 ∈ rg(T p) and
x2 ∈ ker(T q) such that x = x1 + x2. Hence x1 = x − x2 ⊆ ker(T q+1) ∩ rg(T p) = {0} by step 1.
Therefore x = x2 ∈ ker(T q).
Step 4. δ(T ) ≤ α(T ) = p.
By step 1 and step 2, we have that X = rg(T p) ⊕ ker(T q). Since rg(T p+1) ∩ ker(T q) ⊆ rg(T p) ∩
ker(T q) = {0}, we also have X = rg(T q+1) ⊕ ker(T q), implying rgR(T p+1) = rg(T p), hence
δ ≤ p.

Theorem 5.39. Let X be a Banach space, T ∈ L(X) a compact operator and λ ∈ C \ {0}.

(i) ker(λ− T )n is finite dimensional for every n ∈ N0.

(ii) If U ⊆ X is a closed subspace with U ∩ ker(λ − T )n = {0}, then (λ − T )(U) is closed and
λ− T : U → rg((λ− T )|U has a bounded inverse.

(iii) rg(λ− T )n is closed for every n ∈ N0.

Proof. Note that (λ − T )n = λn −
∑n
n=1

(
n
k

)
λn−kT k and the operator sum is compact. Hence it

suffices to show the assertions for n = 1.
(i) Observe that T |ker(λ−T ) = λ id |ker(λ−T ). Hence λ id |ker(λ−T ) is compact. By Remark 5.30 (v)
this is case if and only if ker(λ− T ) is finite dimensional.
(ii) Since U ∩ker(λ−T ) = {0}, the restriction (λ−T )|U is invertible. We will show that its inverse
is bounded. Assume

(
(λ − T )|U

)−1 is not bounded. Then there exists a sequence (xn)n∈N such
that ‖xn‖ = 1 for all n ∈ N and lim

n→∞
(λ− T )xn = 0. Since T is compact, there exists a convergent

subsequence (Txnk
)k∈N. Hence

λxnk
= Txnk

+ (λ− T )xnk︸ ︷︷ ︸
→0

−→ lim
n→∞

Txnk
=: y.

Note that y ∈ U because U is closed. Moreover, y ∈ ker(λ− T ) because

(λ− T )y = (λ− T ) lim
n→∞

xnk
= lim
n→∞

(λ− T )xnk
= 0.

Hence y ∈ ker(λ−T )∩U = {0} in contradiction to ‖y‖ = lim
n→∞

‖λxn‖ = λ 6= 0. Hence
(
(λ−T )|U

)−1 :
rg(λ− T )|U → U is bounded. Since it is also closed, its domain rg(λ− T )|U must be closed.
(iii) By (i) we already know that dim ker(λ − T ) < ∞. Then by the following lemma 5.40 there
exists a closed subspace U ⊆ X such that X = ker(λ− T )⊕ U . Hence rg(λ− T ) = rg((λ− T )|U )
is closed by (ii).

Lemma 5.40. Let X be a Banach space and M ⊆ X a finite dimensional subspace. Then there
exists a closed subspace U of X such that X = M ⊕ U .
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Proof. Let x1, . . . , xn a basis of M . Then there exist ϕ1, . . . , ϕn ∈ M ′ such that ‖ϕk‖ = 1
and ϕk(xj)δkj for all j, k = 1, . . . , n. By the Hahn-Banach theorem the ϕk can be extended to
functionals ψk ∈ X ′ with ‖ψk‖ = 1, k = 1, . . . , n. Let P : X → X,Px =

∑n
j=1 ϕj(x)x. Obviously

P = P 2, hence P is a projection. Note that M = P (X). Hence X = rg(P )⊕kerP = M⊕kerP .

Theorem 5.41. Let X be a Banach space, T ∈ L(X) a compact operator and λ ∈ C \ {0}. Then
α(λ− T ) = δ(λ− T ) = p <∞ and X = ker(λ− T )p ⊕ rg(λ− T )p.

The number p = α(λ− T ) = δ(λ− T ) is called the Riesz index of λ− T .

Proof. By Lemma 5.38 it suffices to show that α(T ) and δ(T ) are finite.
Assume that α is not finite. Since in this case ker(λ−T ) ( ker(λ−T )2 ( . . . we can find a sequence
(xn)n∈N ⊆ X such that for all n ∈ N

‖xn‖ = 1, xn ∈ ker(λ− T )n, and ‖xn − z‖ ≥
1
2 for all z ∈ ker(λ− T )n−1.

The last condition can be satisfied by the Riesz lemma (Theorem 1.21) because ker(λ−T )n is closed
for all n ∈ N. Then for all 1 ≤ m < n

‖Txn − Txm‖ = ‖λxn−λxm − (λ− T )xn + (λ− T )xm︸ ︷︷ ︸
∈ker(λ−T )n−1

‖ ≥ 1
2 .

Therefore (Txn)n∈N does not contain a convergent subsequence in contradiction to T being compact.

Assume that δ is not finite. Since in this case rg(λ − T ) ) rg(λ − T )2 ) . . . we can choose a
sequence (xn)n∈N ⊆ X such that for all n ∈ N

‖xn‖ = 1, xn ∈ rg(λ− T )n, and ‖xn − z‖ ≥
1
2 for all z ∈ rg(λ− T )n+1.

The last condition can be satisfied by the Riesz lemma because rg(λ − T )n is closed for all n ∈ N
by Theorem 5.39. Then for all 1 ≤ m < n

‖Txn − Txm‖ = ‖λxn−λxm − (λ− T )xn + (λ− T )xm︸ ︷︷ ︸
∈rg(λ−T )n+1

‖ ≥ 1
2 .

Therefore (Txn)n∈N does not contain a convergent subsequence in contradiction to T being compact.

Theorem 5.42 (Spectrum of a compact operator). Let X be a Banach space. For a compact
operator T ∈ L(X) the following holds.

(i) If λ ∈ C \ {0}, then λ either belongs to ρ(T ) or it is an eigenvalue of T , that is C \ {0} ⊆
ρ(T ) ∪ σp(T ).

(ii) The spectrum of T is at most countable and 0 is the only possible accumulation point.
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(iii) If λ ∈ σ(T )\{0}, then the dimension of the algebraic eigenspace Aλ(T ) is finite and Aλ(T ) =
ker(λ− T )p where p is the Riesz index of λ− T .

(iv) X = ker(λ − T )p ⊕ rg(λ − T )p for λ ∈ σ(T ) \ {0} where p is the Riesz index of λ − T and
ker(λ− T )p and rg(λ− T )p are T -invariant.

(v) σp(T ) \ {0} = σp(T ′) \ {0} and σ(T ) = σ(T ′). If H is a Hilbert space then σp(T ) \ {0} =
{λ ∈ C : λ ∈ σp(T ∗)} \ {0} = σp(T ∗) \ {0}, where the bar denotes complex conjugation, and
σ(T ) = {λ ∈ C : λ ∈ σ(T ∗)} = σ(T ∗).

Proof. (i) Let λ ∈ C \ {0}. By Theorem 5.41 the Riesz index p of λ − T is finite. If p = 0, then
X = rg(λ− T ) by the proof of Lemma 5.38 (step 2), hence λ ∈ ρ(T ). If p 6= 0, then λ ∈ σp(T ).
(ii) It suffices to show that for every ε > 0 the set {λ ∈ σ(T ) : |λ| > ε} is finite. Assume there exists
an ε > 0 such that the set is not finite. Then there exists a sequence (λn)n∈N such that λn 6= λm for
n 6= m and |λn| > ε, n ∈ N. Since σ(T ) \ {0} consists of eigenvalues, we can choose eigenvectors xn
of T with eigenvalues λn. Note that the xn are linearly independent because λn 6= λm for n 6= m.
Let Un := span{x1, . . . , xn}. Note that all Un are T -invariant, closed and that U1 ( U2 ( U3 ( . . . .
Using the Riesz Lemma, we can choose a sequence (yn)n∈N such that for all n ∈ N

‖yn‖ = 1, yn ∈ Un, and ‖yn − z‖ ≥
1
2 for all z ∈ Un−1.

Let 1 ≤ m < n. Note that Tym ∈ Um. Let yn =
∑n
j=1 αjxj for some αj ∈ C. Then

(λn − T )yn = αn(λn − T )xn +
n∑
j=1

αj(T − λn)xj =
n∑
j=1

αj(λj − λn)xj ∈ Un−1.

Hence

‖Tyn − Tym‖ = ‖λnyn−(λn − T )yn − Tym︸ ︷︷ ︸
∈Un−1

‖ ≥ 1
2 . (5.5)

Therefore (Txn)n∈N does not contain a convergent which contradicts the assumption that T is
compact.
(iii) and (iv) follow from Theorem 5.42.
(v) By Schauder’s theorem T ′ is compact (theorem 5.33) Hence for λ ∈ C it follows that

λ ∈ ρ(T ) ⇐⇒ ker(λ− T ) = {0} and rg(λ− T ) = X

⇐⇒ ◦ rg(λ− T ′) = {0} and ◦ ker(λ− T ′) = X

⇐⇒ rg(λ− T ′) = X ′ and ker(λ− T ′) = {0}
⇐⇒ λ ∈ ρ(T )

Theorem 5.43 (Fredholm alternative; Riesz-Schauder theory). Let X be a Banach space,
T ∈ L(X) a compact operator and λ ∈ C \ {0}. Then exactly one of the following is true:

(i) For every y ∈ X the equation (λ− T )x = y has exactly one solution x ∈ X.
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(ii) (λ− T )x = 0 has a non-trivial solution x ∈ X.

Proof. (i) is equivalent to λ ∈ ρ(T ) and (ii) is equivalent to λ ∈ σp(T ). Since λ 6= 0, the latter is
equivalent to λ ∈ σ(T ). The assertion follows from Theorem 5.42.

A more precise formulation of the Fredholm alternative is the following.

Theorem 5.44. Let X be a Banach space, T ∈ L(X) a compact operator and λ ∈ C \ {0}. For
x, y,∈ X and ϕ, η ∈ X ′ consider the equations

(A) (λ− T )x = y, (C) (λ− T ′)ϕ = η,

(B) (λ− T )x = 0, (D) (λ− T ′)ϕ = 0.

Then

(i) For y ∈ X the following is equivalent:

(a) (A) has a solution x.
(b) ϕ(y) = 0 for every solution ϕ of (D).

(ii) For η ∈ X ′ the following is equivalent:

(a) (C) has a solution ϕ.
(b) η(x) = 0 for every solution x of (B).

(iii) Fredholm alternative: Exactly one of the following holds:

(a) For all y ∈ X and η ∈ X ′ the equations (A) and (C) have exactly one solution (in
particular (B) and (D) have only the trivial solutions).

(b) (B) and (D) have non-trivial solutions. In this case dim(ker(λ−T )) = dim(ker(λ−T ′)) >
0 and (A) and (C) have solutions if and only if

ϕ(y) = 0 for all solutions ϕ of (D),
η(x) = 0 for all solutions x of (B).

Definition 5.45. Let X,Y be Banach spaces. T ∈ L(X) is called Fredholm operator if rg(T ) is
closed and n(T ) := dim(kerT ) < ∞ and d(T ) := codimY (rg T ) := dim(Y/ rg(T )) < ∞. In this
case, χ(T ) := n(T )− d(T ) is called the Fredholm index.

Proof of Theorem 5.44. . . . . . . . . . . . .

Now we return to the spectrum of compact operators.

Lemma 5.46. Let H be Hilbert space, 6= {0}, and T ∈ L(H) a selfadjoint compact operator. Then
at least one the values ‖T‖ or −‖T‖ is an eigenvalue of T . In particular, if T 6= 0, then T has at
least one eigenvalue distinct from 0.
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Proof. If ‖T‖ = 0, the assertion is clear. Now assume that ‖T‖ 6= 0. Recall that ‖T‖ =
sup{|〈Tx , x〉| : x ∈ X, ‖x‖ = 1} (Theorem 4.45).
By Lemma 5.27 the numbers m = inf{〈Tx , x〉 : x ∈ X, ‖x‖ = 1} and M = inf{〈Tx , x〉 : x ∈
X, ‖x‖ = 1} belong to the spectrum of T . Since T is compact and ‖T‖ 6= 0, it follows that
∅ 6= {±‖T‖} ∩ σ(T ) = {±‖T‖} ∩ σp(T ).

Theorem 5.47 (Spectral theorem for compact selfadjoint operators). Let H be a Hilbert
space and T ∈ L(H) a compact selfadjoint operator.

(i) There exists an orthonormal system (en)Nn=1 of eigenvectors of T with eigenvalues (λn)Nn=1
where N ∈ N ∪ {∞} such that

Tx =
N∑
n=1

λn〈x , en〉 en, x ∈ H. (5.6)

The λn can be chosen such that |λ1| ≥ |λ2| ≥ · · · > 0. The only possible accumulation point
of the sequence (λn)n∈N is 0.

(ii) If P0 is the orthogonal projection on kerT , then

x = P0x+
N∑
n=1
〈x , en〉 en, x ∈ H. (5.7)

(iii) If λ ∈ ρ(T ), λ 6= 0

(λ− T )−1x = λ−1P0x+
N∑
n=1

〈x , en〉
λn − λ

en, x ∈ H.

Proof. (i) Let X1 = X and T1 = T . If T 6= 0, then there exists a λ1 ∈ σp(T1) such that |λ1| =
‖T1‖ 6= 0. Let B1 be an orthonormal basis of ker(λ1 − T1). Note that B1 is finite because T is
compact (Theorem 5.42). Let X1 := ker(λ1 − T )⊥ = rg(λ1 − T ) = rg(λ1 − T ). Here we used that
T is selfadjoint and consequently λ ∈ σp(T ) ⊆ R. By Theorem 5.42, X2 is T1-invariant, hence
T2 := T1|X2 ∈ L(X2). Obviously, T2 is selfadjoint and compact. If T2 6= 0, then there exists a
λ2 ∈ σp(T2) such that |λ2| = ‖T2‖ 6= 0. Let B2 be an orthonormal basis of ker(λ2 − T2). Note
that B1 is finite because T is compact (Theorem 5.42). Hence B1 ∪ B2 is an orthonormal basis
of span{ker(λ1 − T ), ker(λ2 − T )}. Let X3 := span{ker(λ1 − T ), ker(λ2 − T )}⊥ and T3 := T2|X3 .
Continuing like this we obtain a sequence of Banach spaces Xn and a sequence of compact selfadjoint
operators Tn ∈ L(Xn). Let x ∈ X. Define

xn+1 = x−
∑

en∈B1∪...Bn

〈x , en〉 en ∈ Xn+1.

It follows that

‖Tx− T
∑

en∈B1∪...Bn

〈x , en〉 en ‖ = ‖Tn+1xn+1‖ ≤ |λn+1|‖x‖ −→ 0, n→∞.
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This implies that

Tx =
N∑
n=1
〈x , en〉T en =

N∑
n=1

λn〈x , en〉 en .

(ii) Note that . . .
(iii)

Corollary 5.48. Let H be a Hilbert space and T ∈ L(H) a compact selfadjoint operator. There
exists a sequence (Pn)Nn=1 of pairwise orthogonal projections with N ∈ N ∪ {∞} and a sequence
|λ1| ≥ |λ2| ≥ . . . such that

T =
N∑
n=1

λnPn (5.8)

where the series converges to T in the operator norm. If (λn)n is an infinite sequence, then
lim
n→∞

λn = 0. The representation (5.8) is unique if the λn are pairwise distinct.

Proof. If the series is a finite sum, the assertion is clear. Now assume that the series is an infinite.
Note that for every k ∈ N the operator

∑∞
n=k λnPn is normal and that the norm of a normal

operator is equal to maximum of the moduli of the elements of its spectrum (Theorem 5.20). Since
|λk+1| → 0 for k →∞ the claim follows from

∥∥∥T − k∑
n=1

λnPn

∥∥∥ = sup{|λn| : n ≥ k + 1} = |λk+1|.

The representation (5.8) allows us to define the root of a positive compact selfadjoint operator.

Theorem 5.49. Let H be a Hilbert space and K ∈ L(H) a compact operator.

(i) T is positive ⇐⇒ all eigenvalues of T are positive.
T is strictly positive ⇐⇒ all eigenvalues of T are strictly positive.

(ii) If T is positive and k ∈ N then there exists exactly one positive compact selfadjoint operator
R such that Rk = T .

Note that the theorem does not imply that there cannot be non-compact operators A ∈ L(H) such
that A2 = T . In Corollary 5.60 we will show that every bounded positive selfadjoint operator has
a unique positive root.

Proof of Theorem 5.49. Recall that a linear operator T is positive if and only if 〈Tx , x〉 ≥ 0 for all
x ∈ H. Let P0, λn and en as in (5.7). Then (i) follows from

〈Tx , x〉 =
〈∑

n

λn〈x , en〉 en , P0x+
∑
n

λn〈x, en , e〉n
〉

=
∑
n

λn|〈x , en〉|2 ≥ 0.
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For the proof of (ii) define R =
∑
n λ

1/k
n 〈· , en〉 en. Obviously Rk = T . To show uniqueness, assume

that there exists a compact selfadjoint positive linear operator S such that Sk = T . Since S
is compact, it has a representation S =

∑
n µnQn with pairwise orthogonal projections Qn. By

assumption

T = Sk =
∑
n

µknQn.

Hence the µn are the kth roots the eigenvalues λn of T , so S = R.

Definition 5.50. Let H be a Hilbert space and T ∈ L(H) a positive selfadjoint compact operator.
Then |T | := (T ∗T ) 1

2 . The non-zero eigenvalues sn of |T | are the singular values of T .

Obviously |T | and |T ∗| are positive selfadjoint compact operators.

Lemma 5.51. (i) ‖ |T |x ‖ = ‖Tx‖ and ‖ |T ∗|y ‖ = ‖T ∗y‖ and for x ∈ H1 and y ∈ H2.

(ii) s is a singular value of T if and only if s2 is an eigenvalue of T ∗T and TT ∗.

Proof. (i) For all x ∈ H1

‖ |T |x ‖2 = 〈|T |x , |T |x〉 = 〈|T |2x , x〉 = 〈T ∗Tx , x〉 = ‖Tx‖2.

An analogous calculation shows ‖ |T ∗|y ‖ = ‖T ∗y‖ and for y ∈ H2.
(ii) follows from the uniqueness of the representation (5.8).

Note that |T | can be defined more generally for positive selfadjoint operators on a Hilbert space H,
see Definition 5.61.
A representation similar to (5.6) exists for arbitrary compact operators.

Theorem 5.52. Let H1, H2 be Hilbert spaces and T ∈ L(H1, H2) a compact operator.

(i) Let s1 ≥ s2 ≥ · · · > 0 be the singular values of T and (ϕn)Nn=1 ⊆ H1 and (ψn)Nn=1 ⊆ H2 such
that

Tx =
N∑
n=1

sn〈x , ϕn〉ψn, x ∈ H1,

T ∗y =
N∑
n=1

sn〈y , ψn〉ϕn, y ∈ H2.

If there are infinitely many sn, then lim
n→∞

sn = 0.

(ii) The non-zero eigenvalues of |T | and |T ∗| coincide and are equal to the sn. The s2
n are the

eigenvalues of T ∗T and TT ∗. Moreover, the ψn = 1
sn
Tϕn are eigenvectors of T ∗.

Proof. (i) Let (ϕn)n∈N ⊆ H1 a ONS such that, see Theorem 5.47,

|T |x =
N∑
n=1

sn〈x , ϕn〉ϕn, T ∗Tx =
N∑
n=1

s2
n〈x , ϕn〉ϕn.
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Let ψn := 1
xn
Tϕn. Then (ψn)n∈N is an ONS in H2 because

〈ψn , ψm〉 = 1
s2
n

〈Tϕn , Tϕm〉 = 1
s2
n

〈T ∗Tϕn , ϕm〉 = 1
s2
n

s2
nδnm = δnm.

Moreover

TT ∗ψn = 1
sn
TT ∗Tϕn = s2

n

sn
Tϕn = s2

nψn.

Hence σp(T ∗T ) \ {0} = {s2
n : 1 ≤ n ≤ N} ⊆ σp(TT ∗) \ {0}. Similarly the reverse inclusion can be

shown, so that σp(T ∗T ) \ {0} ⊆ σp(TT ∗) \ {0}.
(ii) . . .

Theorem 5.53 (Min-Max-Principle). Let H1, H2 be Hilbert spaces, K ∈ L(H1, H2) a compact
operator with singular values s1 ≥ s2 ≥ s3 ≥ . . . . Then s1 = ‖K‖ and for n ≥ 2

sn+1 = inf
x1,...xn∈H1

sup
{
‖Kx‖ : x ∈ H1, x ⊥ span{x1, . . . , xn}, ‖x‖ = 1

}
.

Proof. . . .

5.5 Hilbert-Schmidt operators
Definition 5.54. Let H1, H2 be Hilbert spaces and K ∈ L(H1, H2). K is called a Hilbert-Schmidt
operator if and only if there exists an ONB (eλ)λ∈Λ of H1 such that∑

λ∈Λ

‖K eλ ‖2 <∞.

The set of all Hilbert-Schmidt operators from H1 to H2 is denoted by HS(H1, H2).

Theorem 5.55. Let H1, H2 be Hilbert spaces.

(i) A operator K ∈ L(H1, H2) is a Hilbert-Schmidt operator if and only if K∗ is a Hilbert-Schmidt
operator. In this case:∑

α∈A
‖K eα ‖2 =

∑
β∈B

‖K eβ ‖2 =
∑
λ∈Λ

‖K eλ ‖2 <∞

for all ONBes (eα)α∈A of H1 and (eβ)β∈B of H2.

(ii) Every Hilbert-Schmidt operator is compact.

(iii) Let K ∈ L(H1, H2) be a compact operator with singular values x1 ≥ x2 ≥ s3 ≥ . . . . Then K
is a Hilbert-Schmidt operator if and only if K∗ is a Hilbert-Schmidt operator if and only if∑

n

s2
n <∞.



114 5.5. Hilbert-Schmidt operators

Theorem 5.55 (i) shows that for K ∈ HS(H1, H2) the Hilbert-Schmidt norm

‖K‖HS :=
(∑
α∈A
‖K eα ‖2

) 1
2

for an ONB (eα)α∈A.

is well-defined.

Proof of Theorem 5.55. (i) Let K be a Hilbert-Schmidt operator and (eλ)λ∈Λ an ONB of H1 such
that

∑
λ∈Λ ‖K eλ ‖2 <∞. For an arbritray ONB (ψβ)β∈B of H2 we find, using Parseval’s equality

(Theorem 4.31) First we show that K∗ is also a Hilbert-Schmidt operator.

∑
β∈B

‖K∗ψβ‖2 =
∑
β∈B

∥∥∥∥∥∑
λ∈Λ

〈K∗ψβ , eλ〉 eλ

∥∥∥∥∥
2

=
∑
λ∈Λ

∑
β∈B

|〈K∗ψβ , eλ〉|2

=
∑
λ∈Λ

∑
β∈B

|〈ψβ ,K eλ〉|2 =
∑
λ∈Λ

‖Kψλ‖2 <∞.

In particular, the Hilbert-Schmidt norm of K∗ does not depend on the chosen ONB of H2. Applying
the same proof to K∗, it follows that the Hilbert-Schmidt norm of K = K∗∗ does not depend on
the chosen ONB of H1. For the proof of ‖K‖ ≤ ‖K‖HS we observe that every x ∈ H1 with ‖x‖ = 1
can be extended to a ONB of H1. Hence

‖K‖HS ≥ ‖Kx‖ ≥ sup{‖Ky‖ : y ∈ H1, ‖y‖ = 1} = ‖K‖.

(ii) Let (eλ)λ∈Λ an ONS of H1 and (en)n∈N a subset containing all eλ with K eλ 6= 0 (this family is
at most countable by Lemma 4.27). For n ∈ N let Pn be the orthogonal projection on {e1, . . . , en}.
Note that all Pn are compact because they have finite-dimensional range. Since K is a Hilbert-
Schmidt operator, we find that

‖K −KPn‖2 = ‖K(id−Pn)‖2 ≤ ‖K(id−Pn)‖2HS =
∞∑

m=n+1
‖K en ‖2 −→ ∞,

in particular K is compact because it is the norm limit of compact operators.
(iii) Assume that K is compact. By Theorem 5.52 we can choose ONSs (ϕn)λ∈N of H1 and (ψn)λ∈N
of H2 such that Kx =

∑
n∈N sn〈x , ϕn〉ψn where s1 ≥ s2 ≥ · · · ≥ 0 are the singular values of K.

If K is a Hilbert-Schmidt operator, then

N∑
n=1

s2
n =

N∑
n=1
‖Kϕn‖2 ≤ ‖K‖2HS <∞.

Now assume that
∑N
n=1 s

2
n <∞ and choose an arbitrary ONB of H1 containing (ϕn)n∈N. It follows

that

∑
λ∈Λ

‖Kϕλ‖2 =
N∑
n=1
‖Kϕn‖2 ≤ ‖K‖2HS =

N∑
n=1

s2
n <∞,

implying that K is a Hilbert-Schmidt operator.
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Lemma 5.56. The finite-rank operators are dense in the Hilbert-Schmidt operators.

Proof. Let H be a Hilbert space and S ∈ HS(H). In particular, S is compact and there exist
ONBs (ϕn)n∈N and (ψn)n∈N such that S =

∑N
n=1 sn〈· , ϕn〉ψn. For M ∈ N let us define SM =∑M

n=1 sn〈· , ϕn〉ψn. Then ‖S − SM‖2 ≤ ‖S − SM‖2HS =
∑N
n=M+1 s

2
n → 0 for M →∞.

An important class of examples is given in the following theorem.

Theorem 5.57. Let H = L2(0, 1) and T ∈ L(H). Then the following is equivalent:

(i) T is a Hilbert-Schmidt operator.

(ii) There exists a k ∈ L2(0, 1)2 such that

(Tx)(t) =
∫ 1

0
k(s, t)x(s) ds.

In this case we write Tk for T .
If one of the equivalent conditions holds, then

‖T‖ =
(∫ 1

0

∫ 1

0
|k(s, t)|2 ds. dt

)2
= ‖k‖L2(0,1)2 .

Proof. (ii) =⇒ (i) Let (en)n be an ONB of L2(0, 1). Then also (en)n is an ONB of L2(0, 1) (where
en denotes the to en complex conjugated function) and we find

∞∑
n=1
‖T en ‖2 =

∞∑
n=1

∫ 1

0

∣∣∣∣∫ 1

0
k(s, t) en(s) ds

∣∣∣∣2 dt =
∞∑
n=1

∫ 1

0
|〈k(·, t) , en〉|2 dt

=
∫ 1

0

∞∑
n=1
|〈k(·, t) , en〉|2 dt (5.9)

=
∫ 1

0
‖k(·, t)‖2 dt (5.10)

=
∫ 1

0

∫ 1

0
|k(s, t)|2 ds dt = ‖k‖L2(0,1)2 .

In (5.9) we have used the monotone convergence theorem to exchange the sum and the integral
(Theorem A.18) and in (5.10) we used Parseval’s equality (Theorem 4.31). It follows that T is a
Hilbert-Schmidt operator and that ‖T‖HS = ‖k‖L2(0,1)2 .
(i) =⇒ (ii) By the proof we have an isometry

Ψ : L2(0, 1)2 → HS(L2(0, 1)), Ψk = Tk.

We will show that the range of Ψ is dense in HS(H). By Lemma 5.56 it suffices to show that rg(Ψ)
contains the finite-rank operators. Let T be of finite rank. Then T is of the form T =

∑n0
n=1〈· , xn〉yn

so that for every f ∈ H

Tf(t) =
n0∑
n=1
〈f , xn〉yn(t) =

n0∑
n=1

∫ 1

0
f(s)xn(s)yn(t) ds =

∫ 1

0

( n0∑
n=1

xn(s)yn(t)
)
f(s) ds.
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This shows that T ∈ rg Ψ. Fix S ∈ HS(H) and choose a sequence (Sn)n∈N in the range of Ψ.
Since Ψn is an isometry, it follows that (Ψ−1Sn)n∈N is Cauchy sequence in H, hence its limit exists.
Using the continuity of Ψ we find

S = lim
n→∞

Sn = lim
n→∞

ΨΨ−1Sn = Ψ
(

lim
n→∞

Ψ−1Sn

)
∈ rg(Ψ).

Theorem 5.58. Let H1, H2 be Hilbert spaces.

(i)
(

HS(H1, H2), ‖ · ‖HS
)

is a normed spaces. The norm is induced by the inner product

〈S , T 〉HS =
∑
α

〈S eα , T eα〉, S, T ∈ HS(H1, H2),

for an arbitrary ONB (eα)α∈A of H1.

(ii) Let T ∈ HS(H1, H2) and A a bounded linear operator between appropriate Hilbert spaces.
Then AT and TA are Hilbert-Schmidt operators and

‖AT‖HS ≤ ‖A‖ ‖T‖HS , ‖TA‖HS ≤ ‖A‖ ‖T‖HS .

(iii) HS(H) is a two-sided ideal in L(H).

Proof. Note that (a+ b)2 = a2 + b2 + 2ab = a2 + b2 − (a− b)2 + a2 + b2 ≤ 2(a2 + b2) for a, b ∈ R.
(i) Let S, T ∈ HS(H1, H2) and λ ∈ C. Then obviously λS ∈ HS(H1, H2). To show that S + T ∈
HS(H1, H2) fix an ONS (eλ)λ∈Λ of H1. Using the above remark is follows that∑

λ∈Λ

‖(S + T ) eλ ‖2 ≤
∑
λ∈Λ

(‖S eλ ‖+ ‖T eλ ‖)2 ≤ 2
∑
λ∈Λ

‖S eλ ‖2 + ‖T eλ ‖2 <∞.

It follows that 〈· , ·〉HS is well-defined. The properties of an inner product are clear. In particular,
‖T‖HS = 〈T , T 〉HS for T ∈ HS(H1, H2).
(ii) Note that ∑

λ∈Λ

‖AT eλ ‖2 ≤ ‖A‖2
∑
λ∈Λ

‖T eλ ‖2 = ‖A‖2‖T‖2HS ,

so AT is a Hilbert-Schmidt operator. It follows that TA = (A∗T ∗)∗ is also a Hilbert-Schmidt
operator with norm ‖TA‖HS = ‖(A∗T ∗)∗‖HS = ‖A∗T ∗‖HS ≤ ‖A∗‖ ‖T ∗‖HS ≤= ‖A‖ ‖T‖HS .
(iii) is a consequence of (i) and (ii).

5.6 Polar decomposition
Theorem 5.59. Let H be a Hilbert space and T ∈ L(H) a selfadjoint operator with T ≥ 0. Then
there exists exactly one R ∈ L(H) such that R ≥ 0 R2 = T .
In addition, if S ∈ L(H) commutes with T , then S commutes with R.

the operator R is called the root of T and is denoted by
√
T .
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Proof. Without restriction we can assume ‖T‖ ≤ 1, hence 0 ≤ T ≤ id. Now assume that a solution
R ∈  L(H) of R2 = T exists. Let A := id−T and X := id−R. Note that

id−A = T = R2 = (1−X)2 = id−2X +X2.

Note that 0 ≤ R ≤ id if and only if 0 ≤ X ≤ id. Hence R is a non-negative solution of R2 = T if
and only if X is a non-negative solution of

X = 1
2(A+X2). (5.11)

Step 1. Construction of a solution of (5.11).
We define

X0 := id, Xn := 1
2(A+X2

n−1), n ∈ N.

Note that every Xn is a polynomial in A with positive coefficients and that XnXm = XmXn for
all n,m ∈ N. Since A is positive, this implies that all Xn are positive. We will show the following
properties of the sequence (Xn)n∈N by induction.

(i) Xn−Xn−1 is a polynomial in A with positive coefficients, so that in particular Xn−Xn−1 ≥ 0.

(ii) ‖Xn‖ ≤ 1.

All assertions are clear in the case n = 0 (with X−1 := 0). Now assume that the assertions are true
for some n ∈ N. Note that

Xn+1 −Xn = 1
2(A+X2

n)− 1
2(A+X2

n−1) = 1
2(X2

n −X2
n−1)

= 1
2(Xn −Xn−1)(Xn +Xn−1).

Since by induction hypothesis both terms in the second line are polynomials in A with positive
coefficients, (i) is proved for n+ 1. (ii) follows from ‖Xn+1‖ ≤ 1

2 (‖A‖+ ‖Xn+1‖) ≤ 1.
Since (Xn)n∈N is uniformely bounded monotonically increasing sequence in, there exists an X ∈
L(H) such that X = s- lim

n→∞
Xn and ‖X‖ ≤ lim infn→∞ ‖Xn‖ ≤ 1 (see Exercise 4.25).

Now let S ∈ L(H) with ST = TS. By definition of A, then also SA = AS and XnS = XnS for all
Xn since the Xn are polynomials in A. For every x ∈ H we therefore obtain

0 ≤ ‖SXx−XSx‖ = lim
n→∞

‖SXnx−XnSx‖ = lim
n→∞

‖SXnx− SXnx‖ = 0.

Since all Xn commute with T , it follows that XnX = XnX for all n ∈ N, so that for all x ∈ X

‖(X2
n −X2)x‖ = ‖(Xn −X)(Xn +X)x‖ ≤ 2‖(Xn −X)2x‖ −→ 0, n→∞,

which shows that X2 = s- lim
n→∞

X2
n. Therefore X solves (5.11) because

X = s- lim
n→∞

Xn = s- lim
n→∞

1
2(A+X2

n) = 1
2(A+ s- lim

n→∞
X2
n) = 1

2(A+X2).
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Setting R = id−X we obtain a bounded selfadjoint solution of R2 = T with 0 ≤ R ≤ id.
Step 2. Uniqueness of the solution.
Let R′ ∈ L(H) be solution of R2 = T with R′ ≥ 0. Then R and R′ commute because

R′A = R′(R′)2 = (R′)2R′ = AR′.

It follows that

(R−R′)R(R−R′) + (R−R′)R′(R−R′) = (R2 −R′2)(R−R′) = 0.

Since both operators on the left hand side are non-negative, it follows that both of them are 0 and
therefore

(R−R′)4 = (R−R′)R(R−R′)− (R−R′)R′(R−R′) = 0.

Since R−R′ is normal, it follows that ‖(R−R′)‖4 = ‖(R−R′)‖4.

Corollary 5.60. If S, T ∈ L(H) are positive and ST = TS, then also ST is positive.

Proof. By Theorem 5.59 the root of T exists, is selfadjoiunt and commutes with S. Hence for all
x ∈ H

〈STx , x〉 = 〈S
√
T
√
Tx , x〉 = 〈

√
TS
√
Tx , x〉 = 〈S

√
Tx ,
√
Tx〉 ≥ 0.

Definition 5.61. For T ∈ L(H) we define |T | := (T ∗T ) 1
2 .

Definition 5.62. Let H1, H2 be Hilbert spaces and U ∈ L(H1, H2). U is called a partial isometry
if U |(kerU)⊥ is an isometry. kerU ⊥ is called its initial space.

Note that U is an partial isometry if and only if

U |(kerU)⊥ : (kerU)⊥ → rg(U)

is unitary.

Theorem 5.63 (Polar decomposition). Let H1, H2 be Hilbert spaces and T ∈ L(H1, H2). Then
there exists a partial isometry U ∈ L(H1, H2) such that T = U |T |. If in addition the initial space
of U is (kerT )⊥, then U is unique.

Proof. Note that ‖ |T |x ‖2 = ‖Tx‖2 for all x ∈ H1 because

‖ |T |x ‖2 = 〈|T |x , |T |x〉 = 〈(T ∗T ) 1
2x , (T ∗T ) 1

2x〉 = 〈T ∗Tx , x〉 = 〈Tx , Tx〉 = ‖Tx‖2.

We define

U : rg(|T |)→ rg(T ), U(|T |x) = Tx.

U is well-defined because for x, y ∈ H1 with |T |x = |T |y it follows that ‖Tx−Ty‖ = ‖|T |x−|T |y‖ = 0
hence Tx = Ty. U is and isometry because ‖Tx‖ = ‖ |T |x ‖ for all x ∈ H as shown above. In
particular, ‖U‖ = 1 and has a unique continuous extension to rg(|T |)→ rg(T ). Now we extend U

to H1 by setting Ux = 0 for all x ∈ rg(|T |)⊥ = ker(|T |) = kerT .
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Appendix A

Lp spaces

Spaces of integrable functions play an important role in applications. As the norm of a function
f : [a.b]→ K one could consider

‖f‖ :=
∫ b

a

|f(t)| dt,

or more generally, for some 1 ≤ p <∞

‖f‖p :=
(∫ b

a

|f(t)|p dt
) 1

p

.

It can be shown that ‖ ·‖p is a norm on C([a, ]). However the space of continuous functions C([a, b])
is not complete for the norm ‖ · ‖1. For example, let

fn : [0, 2]→ R, fn(t) =
{
tn, 0 ≤ t ≤ 1,
1, 1 < t ≤ 2.

All fn are continuous and it is easy to check that ‖fn − fm‖1 → 0 for n,m→∞. So the fn form a
Cauchy sequence, but it is not convergent. (If it were, then there must exist a continuous function
g such that ∫ 2

0
|fn(t)− g(t)|dt =

∫ 1

0
|fn(t)− g(t)|dt+

∫ 2

1
|fn(t)− g(t)|dt −→ 0

for n → ∞. Hence g(t) = 0 for t ∈ (0, 1) and g(t) = 0 for t ∈ (1, 2) which is impossible for a
continuous function by the intermediate value theorem.
If we extend the space of functions to the Riemann integrable functions R([a, b]), then the sequence
above does converge to χ[1,2]. But there are several other problems with the space of Riemann
integrabel functions.
For example, let Q ∩ [0, 1] = {qn : n ∈ N}. Then all characteristic functions χn := χ{q1, ...,qn} are
Riemann integrable, ‖χn‖1 = 0, the χn form a Cauchy sequence, the pointwise limit exists and is
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χQ∩[0,1] which is not Riemann integrabel. This example shows that ‖ · ‖1 is only a seminorm on
R([a, b]), that Cauchy sequences do not need to converge and that in general pointwise limit and
integral cannot be exchanged. The pointwise limit of a sequence of Riemann integrable functions
does not need to be Riemann integrable.
Recall that the Riemann integral of a function f : [a, b] → R is obtained as the limit of Riemann
sums when the interval [a, b] is divided in small pieces. Lebesgue’s approach is to divide the range
of the function in small pieces and then measure the “size” of the pre-image. Hence admissible are
functions whose pre-images of intervals can be measured in some sense.

A.1 A reminder on measure theory
Definition A.1. Let T be a set and Σ ⊂ PT a family of subsets of T .

(i) Σ ⊂ PT is called a ring if for all A,B ∈ Σ also A ∪B and A \B belong to Σ.
(ii) Σ ⊂ PT is called a σ-ring if it is a ring and

⋃
n∈NAn ∈ Σ for all (An)n∈N ⊆ Σ.

(iii) Σ ⊂ PT is called an algebra if Σ is a ring and T ∈ Σ, that is

(a) ∅ ∈ Σ,
(b) A ∈ Σ =⇒ T \A ∈ Σ,
(c) A,B ∈ Σ =⇒ A ∪B ∈ Σ.

(iv) Σ ⊂ PT is called a σ-algebra if it is a algebra and
⋃
n∈NAn ∈ Σ for all (An)n∈N ⊆ Σ.

Note that for A,B ∈ Σ also A ∩B = A \ (T \B) ∈ Σ if Σ is an algebra.

Remark. Σ is indeed a ring in the algebraic sense if one sets A + B := (A ∪ B) \ (A ∩ B) and
A ·B := A ∩B.

Definition A.2. Let T be a set with a σ-algebra Σ. A measure on Σ is a function µ : Σ→ [0,∞]
such that

(i) µ(∅) = 0,
(ii) (An)n∈N ⊆ A with pairwise disjoint An =⇒ µ(

⋃∞
n=1An) =

∑∞
n=1 µ(An).

Obviously, the intersection of rings is again a ring and PT is a ring. Hence, given a family U of
subsets of T , there exists a smallest ring containing U , namely the intersection of all rings that
contain U . This ring is called the ring generated by U . Analogously the σ-ring, the algebra and the
σ-algebra generated by U are obtained.

Example A.3. The smallest σ-algebra containing all intervals of R is called the Borel sets.
More generally, let (T,O) be a topological space. Then the Borel sets is the σ-algebra generated
by O.

The aim is to assign a measure µ(U) to every Borel set U ⊆ R such that the measure of intervals
is its length.
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Definition A.4. Let T be a set with a ring Σ of sets. A pre-measure µ on (T,Σ) is a function

µ : Σ→ [0,∞]

such that µ(∅) = 0 and

(An)n∈N ⊆ Σ, pairwise disjoint and
⋃
n∈N

An ∈ Σ =⇒ µ(
⋃
n∈N

An) =
∑
n∈N

µ(An).

Note that a pre-measure is monotonic: if A,B ∈ Σ and A ⊆ B, then µ(A) ≤ µ(B).

Example A.5. Let A be the set of all finite unions of finite intervals and define µ(A) :=
∫
R χA dx

where χA is the characteristic function of A. Then µ is a pre-measure on A.

Proof. Obviously A is a ring, for every A ∈ A the characteristic function χA is Riemann inte-
grable and µ(∅) = 0. Now let (An)n∈N ⊆ A be pairwise disjoint with

⋃
n∈NAn ∈ A. Obviously,

µ(
⋃n
n=1An) =

∑n
n=1 µ(An) for every n ∈ N. For n ∈ N define Bn := A\ (A1∪· · ·∪An). Obviously,

Bn ∈ A and

µ(A) = µ(
n⋃
k=1

Ak) + µ(Bn).

To prove that µ(A) = µ(
⋃∞
k=1Ak) it suffices to show that lim

n→∞
µ(Bn) = 0. Fix ε > 0. Since B ∈ A

there exists an compact set Cn ⊆ Bn with µ(Bn \ Cn) < 2−nε. Let Dn := C1 ∩ · · · ∩ Cn. Then all
Dn are compact and Dn ⊆ Cn ⊆ Bn. By construction, B1 ⊇ B2 ⊇ B3 . . . , hence

µ(Bn \Dn) = µ(Bn \ (C1 ∩ · · · ∩ Cn) = µ(
n⋃
k=1

(Bn \ Ck)) ≤ µ(
n⋃
k=1

(Bk \ Ck))

≤
n∑
k=1

µ(Bk \ Ck) <
n∑
k=1

2−kε = ε.

On the other hand,
⋂∞
n=1Dn ⊆

⋂∞
n=1Bn = ∅. Since all Dn are compact and D1 ⊇ D2 ⊇ . . . , there

exists an K ∈ N such that Dn = ∅, n ≥ K. Hence µ(Bn) = µ(Bn \Dn) < ε for all n ≥ k.

In order to measure all Borel sets, we have to show that the pre-measure of Example A.5 can be
extended to the Borel sets.

Theorem A.6 (Hahn). Let T be a set, A a ring on T and µ̃ a pre-measure on A. Let Σ(A) be
the σ-algebra generated by A. Then

µ(A) := inf
{ ∞∑
n=1

µ̃(An) : (An)n∈N ⊆ Σ, A ⊆
∞⋃
n=1

An

}
.

If µ̃ is σ-finite, i. e., if there exist An ∈ Σ with µ(An) < ∞ and T =
⋃∞
n=1An, then the extension

µ is unique.
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For the proof, we first show that µ̃ can be extended to an outer measure µ∗ on PT . Then, by the
lemma of Carathéodory, the restriction of the outer measure to the set of the µ∗-measurable sets is
a measure.

Definition A.7. Let A be a σ-algebra on T . An outer measure on A is a function µ∗ : A → [0,∞]
such that

(i) µ∗(∅) = 0,
(ii) A,B ∈ A with A ⊆ B =⇒ µ∗(A) ≤ µ∗(B).
(iii) (An)n∈N ⊆ A =⇒ µ∗(

⋃∞
n=1An) ≤

∑∞
n=1 µ

∗(An).

A set A ∈ A is called µ∗-measurable if

µ∗(Z) = µ∗(Z ∩A) + µ∗(Z \A), Z ∈ A.

Lemma A.8. With the assumptions of Hahn’s theorem (Theorem A.6)

µ∗(A) := inf
{ ∞∑
n=1

µ̃(An) : (An)n∈N ⊆ A, A ⊆
∞⋃
n=1

An

}
defines an outer measure on PT . In addition, µ(A) = µ∗(A) for A ∈ A.

Proof. Properties (i) and (ii) of an outer measure are clear. Now let (An)n∈N ⊆ PT and ε > 0.
Then there exists a family (Bjn)n,j∈N ⊆ A such that An ⊆

⋃∞
j=1B

j
n and

∞∑
j=1

µ(Bjn) ≤ µ∗(An) + ε

2n , n ∈ N.

By construction A :=
⋃
n∈NAn ⊆

⋃
n,j∈NB

j
n and

µ∗(A) ≤
∞∑

n,j=1
µ(Bjn) ≤

∑
n=1

µ∗(An) + ε.

Note that (Bjn)n,j∈N is countable, hence we have proved µ∗(A) ≤
∑∞
n=1 µ

∗(An).
Now let A ∈ A. Clearly, µ(A) ≤ µ∗(A) holds. Now fix ε > 0 and choose (An)n∈N ⊆ A such that
A ⊆

⋃
n∈NAn and

∞∑
n=1

µ(An) ≤ µ∗(A) + ε. n ∈ N.

Since A =
⋃
n∈N(An ∩A) and µ is a pre-measure on A, it follows that

µ(A) ≤
∞∑
n=1

µ(An ∩A) ≤
∞∑
n=1

µ(An) ≤ µ∗(A) + ε. n ∈ N.

Since this is true for all ε > 0, it follows that µ(A) ≤ µ∗(A).
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Lemma A.9 (Carathéodory). Let µ∗ be an outer measure on PT . Then the set M of all µ∗-
measurable sets is a σ-algebra and µ∗ is a measure on M.

Proof. . . . . . .

Proof of Theorem A.6. It suffices to show that the set of the µ∗-measurable sets contains A . . .

Hahn’s theorem gives the desired measure on the Borel sets.

Definition A.10 (Lebesgue completion). Let (T,Σ, µ) be a measure space. A ⊆ T is a zero
set if there exists a B ⊆ T with µ(B) = 0 and A ⊆ B (note that A does not necessarily belong to
Σ). The σ-algebra generated by Σ and the zero sets is called the Lebesgue completion.

The measure on the completion of the Borel sets in R is the Lebesgue measure, usually denoted by
λ. .

A.2 Integration
In the following, I is always an interval in R.

Definition A.11. A function f : I → R is called measurable if for every (a, b) ⊆ R its preimage
f−1((a, b)) is a Borel set.

More generally, let (T,ΣT , µT ) and (S,ΣS , µS) be measure spaces. A function f : T → S is called
measurable if for every U ∈ ΣS also f−1(U) ∈ ΣT .

Example A.12. Let E be a Borel set. Then the characteristic function χE is measurable.

Definition A.13. Let (T,Σ, µ) be a measure space. A function f : T → C is called a simple
function if there are Ek ∈ Σ and αk ∈ C such that

f =
n∑
k=1

αkχEk
.

It is easy to see that simple functions are measurable. Note, however, that the sum representation
of a simple function is not unique.

The next theorem lists important properties of measurable functions.

Theorem A.14. Let I be an interval in R and fn, f, g : I → R be functions.

(i) If f and g are measurable, then so are f + g, fg, f
g (if it exists), max{f, g} and min{f, g}.

(ii) Every continuous function is measurable.
(iii) If all fn are measurable and f is their pointwise limit (i. e. f(t) = lim

n→∞
fn(t) = f(t), t ∈ I),

then f is measurable.
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(iv) If f is measurable, then there exists a sequence (ϕn)n∈N of simple functions that converges
pointwise to f . If in addition f ≥ 0, then the sequence can be chosen such that ϕn(t)↗ f(t),
t ∈ I.

(v) If f is measurable and bounded, then there exists a sequence (ϕn)n∈N of simple functions that
converges uniformly to f .

The theorem says that the set of the measurable functions are a vector space and that it is stable
under taking pointwise limits.
Next we introduce the integral for positive functions.

Definition A.15. Let (T,Σ, µ) be a measure space.

(i) Let f =
∑n
k=1 αkχEk

with Ek ∈ Σ and αk ∈ [0,∞] a simple function. We define its integral
as ∫

T

f dµ =
n∑
k=1

αkµ(Ek).

(ii) Let f : T → [0,∞] be a measurable function. Choose a sequence (ϕn)n∈N of simple functions
with ϕ1 ≤ ϕ2 ≤ . . . that converges pointwise to f . We define the integral of f by∫

T

f dµ = lim
n→∞

∫
T

ϕn dµ.

Of course, it must be proved that the integral in (i) does not depend on the sum representation of
the simple function, and that the limit in (ii) does not depend on the chosen sequence of simple
functions.

Definition A.16. Let I be an interval in R.

(i) A function f : I → [0,∞] is called (Lebesgue) integrable if
∫
I
f dλ <∞.

(ii) A function f : I → R is called (Lebesgue) integrable if f+ := max{f, 0} and f− := max{−f, 0}
are integrable. In this case ∫

I

f dλ :=
∫
I

f+ dλ−
∫
I

f− dλ.

(iii) A function f : I → C is called (Lebesgue) integrable if Re(f) and Im(f) are integrable. In this
case ∫

I

f dλ :=
∫
I

Re(f) dλ+ i
∫
I

Im(f) dλ.

The Lebesgue integral has the following properties.

Lemma A.17. (i) If f, g are Lebesgue integrable and α ∈ K, then∫
I

(αf + g) dλ = α

∫
I

f dλ+
∫
I

g dλ.
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(ii) If f is Lebesgue integrable then ∣∣∣ ∫
I

f dλ
∣∣∣ ≤ ∫

I

|f | dλ.

For Lebesgue integrals much stronger convergence theorems hold than for the Riemann integral.
The most important convergence theorems are the following.

Theorem A.18 (Monotone convergence theorem). Let (fn)n∈N be a sequence of measurable
functions fn : I → [0,∞] with 0 ≤ f1 ≤ f2 ≤ · · · . Then

f : I → [0,∞], f(t) := lim
n→∞

fn(t)

is measurable and ∫
I

f dλ = lim
n→∞

∫
I

fn dλ.

The monotone convergence theorem is also called Beppo Levi theorem.
A sequence (fn)n∈N converges to f λ-a.e. if the set, where the sequence does not converge to f ,
has measure zero.

Theorem A.19 (Dominated convergence theorem). Let (fn)n∈N be a sequence of measurable
functions and assume that there exists a measurable function f such that f(t) = lim

n→∞
fn(t) λ-a.e.

If there exists an integrable function g with |fn| ≤ g λ-a.e., then f is integrable and∫
I

f dλ = lim
n→∞

∫
I

fn dλ.

The dominated convergence theorem is also called Lebesgue’s convergence theorem.

Theorem A.20 (Fatou’s lemma). Let (fn)n∈N be a sequence of integrable functions and assume
that there exists a measurable function f such that f(t) = lim

n→∞
fn(t) λ-a.e. If there exists a C such

that
∫
I
fn dλ ≤ C for all n ∈ N, then f is integrable and∫

I

f dλ ≤ lim inf
n→∞

∫
I

fn dλ.

A.3 Lp spaces
In the following, Ω is always an open subset of Rn.

Definition A.21. For 1 ≤ p <∞ we define

Lp(Ω) :=
{
f : Ω→ K : f measurable,

∫
Ω
|f |p dλ <∞

}
,

‖f‖p :=
(∫

Ω
|f |p

) 1
p

, f ∈ Lp(Ω).
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Definition A.22. For a measurable function f : Ω→ K we define the essential supremum

ess sup f := inf{C ∈ R : f(t) ≤ C for λ-almost all t},
ess inf f := − ess sup(−f)

and

L∞(Ω) := {f : Ω→ K : f measurable, ess sup |f | <∞},
‖f‖∞ := ess sup |f |, f ∈ L∞(Ω).

It is easy to see that L∞(Ω) is a vector space. For 1 ≤ p <∞ this follows from∫
Ω
|f + g|p dλ ≤

∫
Ω

(|f |+ |g|)p dλ ≤
∫

Ω
(2 max{|f |, |g|})p dλ

≤ 2p
∫

Ω
max{|f |p, |g|p} dλ ≤ 2p

∫
Ω
|f |p + |g|p dλ

= 2p(‖f‖pp + ‖g‖pp) <∞.

That λf ∈ Lp for λ ∈ K and f ∈ Lp is clear.
That ‖ · ‖p is a seminorm on Lp follows from the Minkowski inequality:

Theorem A.23 (Minkowski inequality). Let 1 ≤ p ≤ ∞ and f, g ∈ Lp(Ω). Then

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

For the proof of the Minkowski inequality, Hölder’s inequality is used.

Theorem A.24. Let 1 ≤ p ≤ ∞ and q the conjugated exponent, i. e., 1
p + 1

q = 1. If f ∈ Lp(Ω)
and g ∈ Lq(Ω), then fg ∈ L1(Ω) and

‖fg‖1 ≤ ‖f‖p‖g‖q.

Note that Lp(Ω) is only a seminormed space, because there are non-zero functions f with ‖f‖p = 0.

Theorem A.25. (Lp(Ω), ‖ · ‖p) is complete.

Definition A.26. Let Np(Ω) := {f ∈ Lp : ‖f‖p = 0}. Then Lp := Lp(Ω)/N (Ω) is a complete
normed space.

Usually an equivalence class [f ] ∈ Lp(Ω) is simply denoted by f .
Often one is interested in dense subspaces of Lp(Ω).

Theorem A.27. Let 1 ≤ p <∞ and Ω ∈ Rn open. Then the test functions

C∞0 (Ω) := D(Ω) := {ϕ ∈ C∞(Ω) : supp(ϕ) ⊂ Ω is compact}.

form a dense subset of Lp(Ω).
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Appendix B

Exercises

Exercises for Chapter 1
1. Banach’s fixed point theorem. Let M be a metric space. A map f : M → M is called a

contraction if there exists a γ < 1 such that

d(f(x), f(y)) ≤ γ d(x, y), x, y ∈M.

Show that every contraction f on a complete normed space M has exactly one fixed point, that
is, there exists exactly one x0 ∈M such that f(x0) = x0.

2. Let X be a normed space. Then the following is equivalent:

(i)X is complete.
(ii)Every absolutely convergent series in X converges in X.

3. Let X be a normed space. Show:

(a) Every finite-dimensional subspace of X is closed.
(b) If V is a finite-dimensional subspace of X and W is a closed subspace of X, then

V +W := {v + w : v ∈ V, w ∈W}

is a closed subspace of X.

4. Let T be a set and `∞(T ) be the space of all functions x : T → K with

‖x‖∞ := sup{|x(t)| : t ∈ T} <∞.

Show that (`∞(T ), ‖ · ‖∞) is a Banach space.

5. Let the sequence spaces d, c0, c be defined as in Example 1.15.

(a) Show that (c0, ‖ · ‖∞) and (c, ‖ · ‖∞) are Banach spaces.
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(b) Show that (d, ‖ · ‖∞) is a normed space, but that it is not complete.

6. Sea X un espacio normado con dimX ≥ 1 y S, T operadores lineales en X tales que ST −
TS = id. Muestre que al menos uno de estos operadores no es acotado. Ayuda: Muestre que
STn+1 − Tn+1S = (n+ 1)Tn.

7. Sean X y Y espacios normados con X de dimensión finita. Muestre que toda función lineal
T : X → Y es acotada.

8. (a) Sea X = C([a, b]) con la norma ‖ · ‖∞. Muestre que

T : X → C, Tx =
∫ b

a

x(t) dt

es un operador lineal y acotado. ¿Cuál es su norma?
(b) Ahora considere X con la norma

‖x‖p :=
(∫ b

a

|x(t)|p dt
)1/p

, x ∈ X,

para 1 ≤ p <∞. ¿Sigue siendo T acotado? Si es aśı, calcule su norma.

9. Sea 1 ≤ p < ∞. Para z = (zn)n∈N ∈ `∞ sea T : `p → `p definido por (Tx)n = xnzn para
x = (xn)n∈N ∈ `p. Muestre que T ∈ L(`p) y calcule ‖T‖.

Exercises for Chapter 2
1. Demuestre el teorema de Hahn-Banach para espacios vectoriales complejos.

Sugerencia: Para un espacio vectorial sobre los complejos X muestre que:

(a) Sea ϕ : X → R un funcional R-lineal, entonces

Vϕ : X → C, Vϕ(x) := ϕ(x)− iϕ(ix),

es un funcional C-lineal sobre X con ReVϕ = ϕ.
(b) Sea λ : X → C un funcional C-lineal con Reλ = ϕ, entonces Vϕ = λ.
(c) Sea p un funcional sublineal sobre X y ϕ, Vϕ definido como en el punto anterior, entonces

|ϕ(x)| ≤ p(x) ⇐⇒ |Vϕ(x)| ≤ p(x), x ∈ X.

(d) ‖ϕ‖ = ‖Vϕ‖.

2. En X = `2(N) considere el subespacio

U = {(xn)n∈N : xn = 0 excepto para un número finito de ı́ndices n}.
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Sea V el complemento algebraico de U en X, i. e., U es un subespacio tal que U + V = X y
U ∩ V = {0}. Muestre que

ϕ : X → K, ϕ(x) =
∞∑
n=0

un para x = u+ v con u ∈ U, v ∈ V.

es un funcional lineal bien definido y no acotado.

3. (a) Sea c ⊆ `∞ el conjunto de las sucesiones convergentes. Muestre que el funcional

ϕ0 : c→ K, x = (xn)n∈N 7→ lim
n→∞

xn

es continuo y calcule su norma.
(b) Sea `∞(N,R) el conjunto de todas las sucesiones acotadas en R con la norma del supremo.

Muestre que existe ϕ ∈ (`∞(N,R))′ tal que

lim inf
n→∞

xn ≤ ϕ(x) ≤ lim sup
n→∞

xn, x = (xn)n∈N ∈ `∞.

4. Sea X un espacio normado, f : X → K un funcional lineal no nulo y K = ker f

(a) Muestre que dim(X/K) = 1.
(b) Muestre que f es continuo si y solo si ker f es cerrado.

5. Un isomorfismo entre espacios normados X y Y es un homeomorfismo lineal. Pruebe las sigu-
ientes afirmaciones.

(a) Si T : X → Y es un isomorfismo [isométrico] entre los espacios normados X y Y , entonces
T ′ : Y ′ → X ′ es un isomorfismo [isométrico]. Si X y Y son espacios de Banach, el converso
también vale.

(b) Si un espacio normado Y es isomorfo a un espacio de Banach reflexivo X, entonces Y es
un espacio de Banach reflexivo.

6. Sea X un espacio normado separable y (x′n)n∈N una sucesión acotada en X ′. Entonces existe
una subsucesión (x′nk

)k∈N y x′0 ∈ X ′ tal que

lim
k→∞

x′nk
(x) = x′0(x), x ∈ X.

Es cierto esto sin la hipótesis de que X sea separable?

7. Sea X un espacio normado y M un subespacio de X. Sea

L = {f ∈ X ′ | f(x) = 0 para todo x ∈M}.

Muestre que L es un subespacio cerrado de X ′ y que M ′ es isométricamente isomorfo a X ′/L.

8. Sea X un espacio compacto, CR(X) el conjunto de funciones continuas real-evaluadas sobre X
y Y ⊂ X un subconjunto cerrado.
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(a) Considere el mapa ρ : CR(X)→ CR(Y ) definido por ρ(f) = f |Y . Muestre que I := ker(ρ)
es un subespacio cerrado de CR(X).

(b) Sea ρ̃ : CR(X)/I → CR(Y ) el mapa inducido en el espacio cociente. Pruebe que ρ̃ es una
isometŕıa.

(c) Demuestre que rg(ρ) es completo.
(d) Use el teorma de Stone-Weierstraß para concluir el teorema de Tietze: Sea X un espacio

compacto de Hausdorff y Y ⊆ X un subconjunto cerrado. Entonces cada función continua
f : Y → R tiene una extensión continua f̃ : X → R con ‖f̃‖C(X) = ‖f‖C(Y ).

9. Muestre que en l1 la convergencia débil y la convergencia en norma coinciden.

Exercises for Chapter 3
1. (a) Todo espacio métrico completo con infinitos elementos y ningún punto aislado es no enu-

merable.
(b) Toda base algebraica de un espacio de Banach infinito dimensional es no enumerable.

2. (a) Sea X un espacio de Banach, Y un espacio normado y (Tn)n∈N ⊆ L(X,Y ). Suponga que
para todo x ∈ X el ĺımite Tx := lim

n∈N
Tnx existe. Entonces T ∈ L(X,Y ).

(b) Sean X,Y espacios de Banach, Y reflexivo, y (Tn)n∈N ⊆ L(X,Y ) tal que (ϕ(Tnx))n∈N
converge para todo x ∈ X y ϕ ∈ Y ′. Entonces existe un T ∈ L(X,Y ) tal que Tn

w−→ T .

3. Muestre que la hipótesis de completitud en el principio de acotación uniforme es necesaria.

4. Sea [a, b] ⊆ R, n ∈ N y tome a ≤ t
(n)
1 < · · · < t

(n)
n ≤ b y α

(n)
k ∈ K, k = 1, . . . , n. Para

f ∈ C([a, b]) se define

Qn(f) :=
n∑
k=1

α
(n)
k f(t(n)

k ).

Muestre que los siguientes enunciados son equivalentes:

(a) Qn(f)→
∫ b

a

f(t) dt, n→∞, para todo f ∈ C[a, b].

(b) Qn(p)→
∫ b

a

p(t) dt, n→∞, para todo polinomio p : [a, b]→ K y

sup
n∈N

∑n
k=1 |α

(n)
k | <∞.

Sean X, Y, Z espacios de Banach y T : X ⊇ D(T )→ Y un operador lineal.
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(a) Sea S : X ⊇ D(S) → Y un operador lineal. Entonces la suma de operadores S + T se
define como

D(S + T ) := D(S) ∩ D(T ), (S + T )x := Sx+ Tx.

(b) Sea R : Y ⊇ D(R) → Z un operador lineal. Entonces el producto de operadores o com-
posición RT se define como

D(RT ) := {x ∈ D(T ) : Tx ∈ D(R)}, (RT )x := R(Tx).

5. Sean X, Y, Z espacios de Banach, R ∈ L(X,Y ), T : X ⊇ D(T ) → Y , S : Y ⊇ D(S) → Z
operadores lineales cerrados. Muestre que:

(a) R+ T es un operador lineal cerrado.
(b) SR es cerrado.
(c) Si S es cont́ınuamente invertible (i. e., S−1 : rg(S)→ Y existe y es cont́ınuo), entonces ST

es cerrado.

Muestre además que estas afirmaciones siguen siendo válidas cambiando “cerrado” por “clausurable”

6. Sea X = `2(N) y

T : X ⊇ D(T )→ X, Tx = (nxn)n∈N para x = (xn)n∈N.

Diga si T es cerrado con:

(a) D(T ) = {x = (xn)n∈N ∈ `2(N) : (nxn)n∈N ∈ `2(N)},
(b) D(T ) = d = {x = (xn)n∈N ∈ `2(N) : xn 6= 0 para solo finitos n}.

7. Sea X un espacio de Banach, n ∈ N y T un operador lineal densamente definido de X en Kn.
Muestre que T es cerrado si y solo si T ∈ L(X,Kn).

8. Sean X y Y espacios normados y T : X ⊇ D(T )→ Y un operador lineal cerrado.

(a) Sea K ⊂ X compacto. Muestre que T (K) es cerrado en Y .
(b) Muestre que si F es un compacto en Y entonces T−1(F ) es cerrado en X.
(c) ¿Si A es cerrado en X, es cierto que T (A) es cerrado?

9. Sea X un espacio normado. Una sucesión (xn)n∈N ⊆ X es una sucesión débil de Cauchy si para
todo ϕ ∈ X ′ la sucesión (ϕ(xn))n∈N es una sucesión de Cauchy en K.

(a) Sea x = (xn)n∈N una sucesión acotada en X. Muestre que x es una sucesión débil de
Cauchy si y solo si existe un subconjunto denso U ′ de X ′ tal que (ϕ(xn))n∈N es una
sucesión de Cauchy para todo ϕ ∈ U ′.

(b) Toda sucesión débil de Cauchy en X es acotada.
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10. Sea X un espacio de Banach, (xn)n∈N ⊆ X, (ϕn)n∈N ⊆ X ′, y x0 ∈ X, ϕ0 ∈ X ′ tal que
xn

‖·‖−−→ x0 y ϕn
w∗−−→ ϕ0. Muestre que lim

n→∞
ϕn(xn) = ϕ0(x0).

11. Sea X un espacio normado.

(a) Muestre que (X, ‖ · ‖)′ = (X, σ(X,X ′))′. Es decir: un funcional lineal ϕ : X → K es
continua con respecto a la topoloǵıa inducida por ‖ · ‖ si y sólo si es continua con respecto
a la topoloǵıa débil.

(b) Sean (xn)n∈N ⊆ X, x0 ∈ X y (ϕn)n∈N ⊆ X ′, ϕ0 ∈ X ′ tal que xn
w−→ x0 y ϕn

w∗−−→ ϕ0.
Muestre

‖x0‖ ≤ lim inf
n→∞

‖xn‖, ‖ϕ0‖ ≤ lim inf
n→∞

‖ϕn‖.

(c) Sean S = {x ∈ X : ‖x‖ = 1} la esfera unitaria y K = {x ∈ X : ‖x‖ = 1} la bola unitaria
cerrada en X. ¿Siempre son débilmente cerradas (prueba o contraejemplo)?

12. Para n ∈ N sea en = (0, . . . , 1, 0, . . . ) la sucesión que tiene 1 en la posición n y 0 en el resto.

(a) Muestre que (en)n∈N no es convergente débilmente en `1.
(b) Muestre que (en)n∈N es w∗ convergente en `1.

13. Sea X un espacio vectorial y M ⊆ X un subconjunto convexo, balanceado y absorbente.
Muestre que el funcional de Minkowski pM es una seminorma en X.

Exercises for Chapter 4
1. Sea X un espacio pre-Hilbert, U ⊆ H un subespacio denso y x0 ∈ X tal que 〈x0 , u〉 = 0 para

todo u ∈ U . Muestre que x0 = 0.

2. Sea w ∈ C([0, 1],R). Para x, y ∈ C([0, 1]) se define

〈x , y〉w :=
∫ 1

0
x(t)y(t)w(t) dt.

Halle una condición necesaria y suficiente spobre w para que 〈· , ·〉w sea un producto interno.
Bajo qué condición la norma inducida por 〈· , ·〉w es equivalente a la norma usual de L2?

3. Let H be Hilbert space, (xn)n∈N ⊆ H and x0 ∈ H. Then the following is equivalent:

(a) xn → x0.

(b) ‖xn‖ → x0 and xn
w−→ x0.
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4. Ejemplo de una proyección no acotada. Sea H = l2 y ei el vector usual eji = δji . Defina

L1 := span{e2n+1 : n ∈ N0}

y

L2 := span

{
e1 + 1

2e2, e3 + 1
22 e4, e5 + 1

23 e6, . . .

}
.

(a) Muestre que L1 ∩ L2 = {0}.
(b) Muestre que L1 ⊕ L2 = H.
(c) Muestre que L1 ⊕ L2 6= H.
(d) Defina el operador P0 : L1 ⊕ L2 → L1 ⊕ L2, P0(x + y) = x. Muestre que P0 es una

proyección no acotada.

5. Para λ ∈ R defina fλ : R→ C, fλ(s) = eiλs y sea X = span{fλ : λ ∈ R}. Muestre que

〈f , g〉 := lim
T→∞

1
2T

∫ T

−T
f(s)g(s) ds

define un producto interior en X. Muestre que la completación de X no es separable. (‖fλ −
fλ′‖ =?)

Los elementos en la completación de X se llaman funciones casi periódicas.

6. ¿Existe algún producto interno 〈· , ·〉 en C[0, 1] tal que 〈x, x〉 = ‖x‖2∞ para todo x ∈ C[0, 1] ?

7. Sea X un espacio pre-Hilbert. Muestre los siguientes resultados

(a) Sean x, y ∈ X con x ⊥ y, entonces

‖x+ y‖2 = ‖x‖2 + ‖y‖2.

¿El converso es cierto en general? ¿Hay algún caso para el que se tenga?
(b) Si x 6= 0, y 6= 0 y x ⊥ y muestre que el conjunto {x, y} es linealmente independiente.

¿Como se puede generalizar este resultado?
(c) x ⊥ y, si y solo si ‖x+ αy‖ ≥ ‖x‖ para todo escalar α.

8. Let H be a Hilbert space, Y ⊆ H a subspace and ϕ0 ∈ Y ′. Show that there exists exactly one
extension ϕ ∈ H ′ of ϕ0 with ‖ϕ0‖ = ‖ϕ‖.

9. Sea X un espacio pre-Hilbert y U ⊆ X un subespacio. Muestre que

(a) U 6= U⊥⊥. ¿Se tiene alguna contenencia?
(b) U ⊕ U⊥ 6= X

10. Sea 1 ≤ p ≤ ∞. Para f ∈ Lp(R) y s ∈ R defina Ts : Lp(R)→ Lp(R) como (Tsf)(t) := f(t− s).
Claramente los Ts son isometrias lineales.
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(a) Sea 1 ≤ p <∞. Muestre que Ts
s−→ id para s→ 0. Los Ts convergen en norma?

(b) Los Ts convergen en norma o convergen fuertemente en el caso p =∞?

11. Muestre que Wm(Ω), Hm(Ω) y Hm
0 (Ω) son espacios de Hilbert.

Para el problema 4.10: Para Ω ⊆ R definimos el conjunto de funciones de prueba

D(Ω) := {ϕ ∈ C∞(Ω) : supp(ϕ) ⊆ Ω es compacto}.

Para un multi-́ındice α = (α1, . . . , αn) ∈ Nn se define |α| = α1 + · · ·+αn y Dαϕ = ∂α1
1 . . . ∂αn

n ϕ
si la derivada existe.

Sea f ∈ L2(Ω). Una función g ∈ L2(Ω) se llama la derivada débil α-ésima de f si

〈g , ϕ〉 = (−)|α|〈f ,Dαϕ〉, ϕ ∈ D(Ω).

Note que la derivada débil es única si existe; se denota por D(α)f .
Para m ∈ N definimos el espacio de Sobolev

Wm(Ω) := {f ∈ L2(Ω) : D(α)f ∈ L2(Ω), |α| ≤ m}.

Wm(Ω) es un producto interior con

〈f , g〉Wm :=
∑
|α|≤m

〈D(α)f ,D(α)g〉2.

Además, definimos los espacios

Hm(Ω) := Cm(Ω) ∩Wm(Ω) and Hm
0 (Ω) := D(Ω)

donde la clausura es tomada con respecto a la norma inducida por 〈· , ·〉Wm .

12. Sea H un espacio de Hilbert and B : H ×H → K sesquilineal. En H ×H considere la norma
‖(x, y)‖ :=

√
‖x‖2 + ‖y‖2.

(a) Muestre que las siguientes son equivalentes:
(i) B es cont́ınua.
(ii) B is parcialmente cont́ınua, es decir, para cada x0 fijo, y 7→ B(x0, y) es cont́ınua para

cada y0 fijo, x 7→ B(x, y0) es cont́ınua.
(iii) B es acotado, es decir, existe M ∈ R tal que ‖B(x, y)‖ ≤M‖x‖‖y‖ para todo x, y ∈ H.

(b) Si B es cont́ınuo, entonces existe T ∈ L(H) tal que

B(x, y) = 〈Tx , y〉, x, y ∈ H.

(c) Si además existe m > 0 tal que B(x, x) ≥ m‖x‖2, x ∈ H, entonces T es invertible y
‖T−1‖ ≤ m−1.
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13. Sea H un espacio de Hilbert. Muestre que para toda sucesión (xn)n ⊆ H acotada, existe una
subsucesión (xnk

)k tal que la sucesión (ym)m donde,

ym = 1
m

m∑
k=1

xnk
,

converge.

14. Sea X un espacio normado, (xn)n∈N ⊆ X y x ∈ X. Las siquientes son equivalentes:

(a)
∑
n∈N xn converge incondicionalmente a x.

(b) Para todo ε > 0 existe un conjunto finito A ⊆ N tal que para todo conjunto finito B con
A ⊆ B ⊆ N ∥∥∥∑

b∈B

xb − x
∥∥∥ < ε.

15. Sea H un espacio de Hilbert. Si P : H → H es un operador lineal, las siquientes son equiva-
lentes:

(a) P es una proyección ortogonal.
(b) P 2 = P y 〈Px , y〉 = 〈x , Py〉.

16. Sea H un espacio de Hilbert, V,W ⊆ H subespacios cerrados y PV , PW sus correspondientes
proyecciones ortogonales.

(a) Muestre que

V ⊆W ⇐⇒ PV = PV PW = PWPV .

(b) Muestre que las siguientes afirmaciones son equivalentes:
(i) PV PW = 0.

(ii) V ⊥W .
(iii) PV + PW es una proyección ortogonal.

Muestre que rg(PV + PW ) = V ⊕W si alguna de las condiciones anteriores se tiene.

17. Sea H un espacio de Hilbert y P0, P1 las proyecciones ortogonales sobre H0, H1 ⊆ H. Entonces
las siguientes afirmaciones son equivalenteas:

(a) H0 ⊆ H1,
(b) ‖P0x‖ ≤ ‖P1x‖, x ∈ H.
(c) 〈P0x , x〉 ≤ 〈P1x , x〉, x ∈ H.
(d) P0P1 = P0.
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18. Sea H un espacio de Hilbert separable, (xn)n∈N una base ortonormal de H, y, (yn)n∈N una
sucesión tal que:

∞∑
n=1
||xn − yn|| < 1

y z ⊥ yn, para todo n ∈ N, entonces z = 0.

19. Sea H un espacio de Hilbert complejo y T : H → H un operador lineal acotado. Muestre que T
es normal si y solo si ||T ∗x|| = ||Tx|| para todo x ∈ H. En este caso, muestre que ||T 2|| = ||T ||2.

20. Haar functions. Let ψ = χ[0, 1/2) − χ[1/2, 1). For n, k ∈ Z define

ψn,k : R→ R, ψn,k(t) = 2k/2 ψ(2kt− n).

For k ∈ N0 and n ∈ {0, 1, 2, . . . , 2k − 1} let

h2k+n : [0, 1]→ R,


h2k+n(t) = ψk,n(t), for t ∈ [0, 1),

h2k+n(1) = lim
t→1−

ψk,n(t).

and h0(t) = 1, t ∈ [0, 1].

(a) (hj)j∈N0 is a orthonormal system in L2[0, 1] and (ψn,k)n,k∈Z is a orthonormal system in
L2(R).

(b) T : L2[0, 1]→ L2[0, 1], T f =
∑2k−1
j=0 〈f , hj〉hj is a orthonormal projection on the subspace

U = {f ∈ L2[0, 1] : f const. in intervals [r2−k, (r + 1)2−k) with r ∈ N0}.

(c) For f ∈ C[0, 1], the series
∑∞
j=0〈f , hj〉hj converges uniformely to f .

(d) (hj)j∈N0 is an orthonormal basis of L2[0, 1].
(e) (ψk,n)k,n∈Z is an orthonormal basis of L2(R).

21. Sea H un espacio de Hilbert, V,W ⊆ H subespacios cerrados y PV , PW sus correspondientes
proyecciones ortogonales.

(a) Muestre que

V ⊆W ⇐⇒ PV = PV PW = PWPV .

(b) Muestre que las siguientes afirmaciones son equivalentes:
(i) PV PW = 0.
(ii) V ⊥W .
(iii) PV + PW es una proyección ortogonal.

Muestre que rg(PV + PW ) = V ⊕W si alguna de las condiciones anteriores se tiene.



Chapter B. Exercises 137

22. Sea H un espacio de Hilbert y P0, P1 las proyecciones ortogonales sobre H0, H1 ⊆ H. Entonces
las siguientes afirmaciones son equivalenteas:

(i)H0 ⊆ H1,
(ii)‖P0x‖ ≤ ‖P1x‖, x ∈ H.
(iii)〈P0x , x〉 ≤ 〈P1x , x〉, x ∈ H.
(iv)P0P1 = P0.

23. Sea H un espacio de Hilbert separable, (xn)n∈N una base ortonormal de H, y, (yn)n∈N una
sucesión tal que:

∞∑
n=1
||xn − yn|| < 1

y z ⊥ yn, para todo n ∈ N, entonces z = 0.

24. Sea H un espacio de Hilbert complejo y T : H → H un operador lineal acotado. Muestre que T
es normal si y solo si ||T ∗x|| = ||Tx|| para todo x ∈ H. En este caso, muestre que ||T 2|| = ||T ||2.

25. Sea H un espacio de Hilbert y (Tn)n∈N una sucesión acotada y monótonamente creciente de
operadores autoadjuntos. Muestre que la sucesión converge en el sentido fuerte a un operador
autoadjunto.

26. Sea (Pn)n∈N una sucesión monótona de proyecciones ortogonales en un espacio de Hilbert H.
Muestre que (Pn)n∈N converge en el sentido fuerte a una proyección ortogonal P y además

(a) rg P =
⋃
n∈N rgPn si Pn es creciente.

(b) rg P =
⋂
n∈N rgPn si Pn es decreciente.

27. Sean H1, H2 y H3 espacios de Hilbert y S(H1 → H2) y T (H2 → H3) operadores lineales
densamente definidos.

(a) Si T ∈ L(H2, H3) entonces TS es densamente definido y (TS)∗ = S∗T ∗.
(b) Si S es inyectivo y S−1 ∈ L(H2, H1) entonces TS es densamente definido y (TS)∗ = S∗T ∗.

(c) Si S es inyectivo y S−1 ∈ L(H2, H1) entonces S∗ es inyectivo y (R∗)−1 = (R−1)∗

28. Sean H1, H2 espacios de Hilbert y U : H1 ×H2 → H2 ×H1, U(x, y) = (−y, x). Entonces

(a) U es unitario.
(b) Si T (H1 → H2) es densamente definido,

G(T ∗) = [U(G(T ))]⊥ = U(G(T )⊥).

(c) T ∗ es cerrado.
(d) Si T es clausurable, T ∗ es densamente definido y T ∗∗ = T .
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Exercises for Chapter 5
1. (a) Sea X = C([0, 1]) y a ∈ C([0, 1]). Muestre que

A : X → X, (Ax)(t) = a(t)x(t)

es un operador lineal acotado. Encuentre ‖A‖, σ(A), σp(A), σc(A) y σr(A).
(b) Sea H = {f ∈ C([0, 1]) : x(0) = 0} y

S : H → H, (Sx)(t) =
∫ t

0
x(s) ds.

Encuentre σ(S), σp(S), σc(S) y σr(S).

2. Sea (λn)n∈N ⊆ C una sucesión acotada, y,

T : `1 → `1, T ((xn)n∈N) = (λnxn)n∈N.

Encuentre σ(T ), σp(T ), σc(T ) y σr(T ). Muestre además que, para todo K ⊆ C compacto no
vaćıo, existe un operador T ∈ L(`1) cuyo espectro es K.

3. Sea X un espacio de Banach S, T ∈ L(X). Muestre que σ(ST ) \ {0} = σ(TS) \ {0}.

Hint. Muestre que id−ST es invertible si y solo si id−TS es invertible, encontrando una
relación entre (id−TS)−1 y (id−ST )−1. Suponga ||T || ||S|| < 1 y mire si la relación en este
caso es válida en general.

4. Encuentre el espectro puntual, el espectro continuo y el espectro residual de los operadores:

R : `2(N)→ `2(N), R(x1, x2, x3, . . . ) = (0, x1, x2, x3, . . . ),
L : `2(N)→ `2(N), L(x1, x2, x3, . . . ) = (x2, x3, x4, . . . ),
T : `∞(N)→ `∞(N), T (x1, x2, x3, . . . ) = (x2, x3, x4, . . . ).
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B. G. Teubner, Stuttgart, fourth edition, 2006. Theorie und Anwendung. [Theory and
application].

[Kat95] Tosio Kato. Perturbation theory for linear operators. Classics in Mathematics. Springer-
Verlag, Berlin, 1995. Reprint of the 1980 edition.

[Les] Jaime Lesmes. Análisis funcional. 2 edición.

[Mac09] Barbara D. MacCluer. Elementary functional analysis, volume 253 of Graduate Texts in
Mathematics. Springer, New York, 2009.

[RS80] Michael Reed and Barry Simon. Methods of modern mathematical physics. I. Academic
Press Inc. [Harcourt Brace Jovanovich Publishers], New York, second edition, 1980. Func-
tional analysis.

[Rud87] Walter Rudin. Real and complex analysis. McGraw-Hill Book Co., New York, third edition,
1987.

[Rud91] Walter Rudin. Functional analysis. International Series in Pure and Applied Mathematics.
McGraw-Hill Inc., New York, second edition, 1991.

[Wei80] Joachim Weidmann. Linear operators in Hilbert spaces, volume 68 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 1980. Translated from the German by Joseph
Szücs.
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