Functional Analysis

Taller 8

Hilbert spaces.

Fecha de entrega: 21 de marzo de 2012

- 1. Sea X un espacio pre-Hilbert, $U \subseteq H$ un subespacio denso y $x_0 \in X$ tal que $\langle x_0, u \rangle = 0$ para todo $u \in U$. Muestre que $x_0 = 0$.
- 2. Sea $w \in C([0,1],\mathbb{R})$. Para $x,y \in C([0,1])$ se define

$$\langle x, y \rangle_w := \int_0^1 x(t) \overline{y(t)} w(t) dt.$$

Halle una condición necesaria y suficiente spobre w para que $\langle \cdot, \cdot \rangle_w$ sea un producto interno. Bajo qué condición la norma inducida por $\langle \cdot, \cdot \rangle_w$ es equivalente a la norma usual de L_2 ?

- 3. Sea X un espacio vectorial y $M\subseteq X$ un subconjunto convexo, balanceado y absorbente. Muestre que el funcional de Minkowski p_M es una seminorma en X.
- 4. Ejemplo de una proyección no acotada. Sea $\mathcal{H} = l_2$ y e_i el vector usual $e_i^j = \delta_i^j$. Defina

$$L_1 := \overline{span\{e_{2n+1} : n \in \mathbb{N}_0\}}$$

у

$$L_2 := \overline{span\left\{e_1 + \frac{1}{2}e_2, e_3 + \frac{1}{2^2}e_4, e_5 + \frac{1}{2^3}e_6, \dots\right\}}.$$

- (a) Muestre que $L_1 \cap L_2 = \{0\}$.
- (b) Muestre que $\overline{L_1 \oplus L_2} = \mathcal{H}$.
- (c) Muestre que $L_1 \oplus L_2 \neq \mathcal{H}$.
- (d) Defina el operador $P_0: L_1 \oplus L_2 \to L_1 \oplus L_2, P_0(x+y) = x$. Muestre que P_0 es una proyección no acotada.