Análisis funcional

Taller 3

Hahn Banach, Espacios duales.

Fecha de entrega: 12 de Febrero de 2012

- Demuestre el teorema de Hahn-Banach para espacios vectoriales complejos.
 Sugerencia: Para un espacio vectorial sobre los complejos X muestre que:
 - (a) Sea $\varphi: X \to \mathbb{R}$ un funcional \mathbb{R} -lineal, entonces

$$V_{\varphi}: X \to \mathbb{C}, \quad V_{\varphi}(x) := \varphi(x) - i\varphi(ix),$$

es un funcional \mathbb{C} -lineal sobre X con $\text{Re}V_{\varphi} = \varphi$.

- (b) Sea $\lambda: X \to \mathbb{C}$ un funcional \mathbb{C} -lineal con Re $\lambda = \varphi$, entonces $V_{\varphi} = \lambda$.
- (c) Sea p un funcional sublineal sobre X y φ , V_{φ} definido como en el punto anterior, entonces

$$|\varphi(x)| \le p(x) \iff |V_{\varphi}(x)| \le p(x), \quad x \in X.$$

- (d) $\|\varphi\| = \|V_{\varphi}\|.$
- 2. En $X = \ell_2(\mathbb{N})$ considere el subespacio

$$U = \{(x_n)_{n \in \mathbb{N}} : x_n = 0 \text{ excepto para un número finito de índices } n\}.$$

Sea V un complemento algebraico de U en X, i. e., U es un subespacio tal que U+V=X y $U\cap V=\{0\}$. Muestre que

$$\varphi: X \to \mathbb{K}, \quad \varphi(x) = \sum_{n=0}^{\infty} u_n \quad \text{para } x = u + v \text{ con } u \in U, \ v \in V.$$

es un funcional lineal bien definido y no acotado.

3. (a) Sea $c \subseteq \ell_{\infty}$ el conjunto de las sucesiones convergentes. Muestre que el funcional

$$\varphi_0: c \to \mathbb{K}, \quad x = (x_n)_{n \in \mathbb{N}} \mapsto \lim_{n \to \infty} x_n$$

es continuo y calcule su norma.

(b) Sea $\ell_{\infty}(\mathbb{N}, \mathbb{R})$ el conjunto de todas las sucesiones acotadas en \mathbb{R} con la norma del supremo. Muestre que existe $\varphi \in (\ell_{\infty}(\mathbb{N}, \mathbb{R}))'$ tal que

$$\liminf_{n\to\infty} x_n \leq \varphi(x) \leq \limsup_{n\to\infty} x_n, \qquad x = (x_n)_{n\in\mathbb{N}} \in \ell_{\infty}.$$

- 4. Sea X un espacio normado, $f:X\to \mathbb{K}$ un funcional lineal no nulo y $K=\ker f$
 - (a) Muestre que $\dim(X/K) = 1$.
 - (b) Muestre que f es continuo si y solo si ker f es cerrado.