Análisis Funcional

Taller 11

Fecha de entrega: 24 de Abril de 2020

Proyecciones, Bases ortonormales y Operadores Normales

- 1. Sea H un espacio de Hilbert, $V,W\subseteq H$ subespacios cerrados y $P_V,\,P_W$ sus correspondientes proyecciones ortogonales.
 - (a) Muestre que

$$V \subseteq W \iff P_V = P_V P_W = P_W P_V.$$

- (b) Muestre que las siguientes afirmaciones son equivalentes:
 - (i) $P_V P_W = 0$.
 - (ii) $V \perp W$.
 - (iii) $P_V + P_W$ es una proyección ortogonal.

Muestre que $\operatorname{rg}(P_V + P_W) = V \oplus W$ si alguna de las condiciones anteriores se tiene.

- 2. Sea H un espacio de Hilbert y P_0 , P_1 las proyecciones ortogonales sobre H_0 , $H_1 \subseteq H$. Entonces las siguientes afirmaciones son equivalenteas:
 - (i) $H_0 \subseteq H_1$,
 - (ii) $||P_0x|| \le ||P_1x||, x \in H.$
 - (iii) $\langle P_0 x, x \rangle \leq \langle P_1 x, x \rangle, \quad x \in H.$
 - (iv) $P_0P_1 = P_0$.
- 3. Sea H un espacio de Hilbert separable con base ortonormal $(x_n)_{n\in\mathbb{N}}$. Sea $(y_n)_{n\in\mathbb{N}}\subseteq H$ una sucesión tal que

$$\sum_{n=1}^{\infty} ||x_n - y_n|| < 1$$

y sea $z \in H$ con $z \perp y_n$ para todo $n \in \mathbb{N}$. Demuestre que z = 0.

4. Sea H un espacio de Hilbert complejo y $T: H \to H$ un operador lineal acotado. Muestre que T es normal si y solo si $||T^*x|| = ||Tx||$ para todo $x \in H$. En este caso, muestre que $||T^2|| = ||T||^2$.