Functional Analysis

Taller 8

Topología débil.

Fecha de entrega: 27 de marzo de 2020

- 1. Sea X un espacio normado.
 - (a) Muestre que $(X, \|\cdot\|)' = (X, \sigma(X, X'))'$. Es decir: un funcional lineal $\varphi : X \to \mathbb{K}$ es continua con respecto a la topología inducida por $\|\cdot\|$ si y sólo si es continua con respecto a la topología débil.
 - (b) Sean $S = \{x \in X : ||x|| = 1\}$ la esfera unitaria y $K = \{x \in X : ||x|| \le 1\}$ la bola unitaria cerrada en X. ¿Siempre son débilmente cerradas (prueba o contraejemplo)?
- 2. Sean $1 y sea <math>X = \ell_p(\mathbb{N})$. Para m < n defina $\varphi_{m,n} \in (\ell_p(\mathbb{N}))'$ por $\varphi_{m,n}(x) = x_n + x_m$ para $x = (x_k)_{k \in \mathbb{N}} \in \ell_p(\mathbb{N})$. Sea $A := \{\varphi_{m,n} : m, n \in \mathbb{N}, m < n\} \subset (\ell_p(\mathbb{N}))'$.
 - (a) Muestre que A no contiene puntos de acumulación en la topología inducida por la norma en $(\ell_p(\mathbb{N}))'$.
 - (b) Muestre que $A \subseteq \{ \psi \in (\ell_p(\mathbb{N}))' : ||\psi|| \le 2 \}.$
 - (c) Encuentre un punto de acumulación de A en la topología débil-*.

Sea X un espacio vectorial y $M \subseteq X$. El funcional de Minkowski se define por

$$p_M: X \to [0, \infty], \quad p_M(x) = \inf \left\{ \lambda > 0 : \frac{1}{\lambda} x \in M \right\}.$$

El subconjunto M se llama

- balanceado si $\lambda M \subseteq M$ para todo $\lambda \in \mathbb{K}$ con $|\lambda| = 1$;
- absorbente si $p_M(x) < \infty$ para todo $x \in M$.
- 3. Sea X un espacio vectorial y $M\subseteq X$ un subconjunto convexo, balanceado y absorbente. Muestre que el funcional de Minkowski p_M es una seminorma en X.
- 4. Under construction.