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The notes are written and modified while I am teaching an introductory course
on functional analysis at the Universidad de los Andes, Bogotá, Colombia. They
are by no means a new presentation of basic functional analysis, they are rather a
collection of excerpts of the books of the list of references I used to prepare classes.
Many thanks to the students from my 2009 class who found a lot of mistakes in the
first draft of the notes.

Prerequisites for the course are a solid knowledge in analysis, linear algebra and
very basic notions of topology. Having attended a lecture in measure theory or an
advanced course in analysis is of advantage but not necessary.

An important part of any mathematics lecture are exercises. For each week there
is a problem sheet with exercises (stolen from various books) which hopefully help
to understand the material presented in the lecture.

Bogotá, February 2013, M.W.

These lecture notes are work in progress. They may be abandoned or changed
radically at any moment. Very likely they contain a lot of mistakes and ambiguities.
If you find mistakes or have suggestions how to improve the lecture notes, please
let me know.
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Notation

The letter K usually denotes either the real field R or the complex field C. The
positive real numbers are denoted by R+ := (0,∞).
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Chapter 1

Banach spaces

23 Jan 2012

1.1 Metric spaces

We repeat the definition of a metric space.

Definition 1.1. A metric space (M,d) is a non-empty set M together with a map

d : M ×M → R

such that for all x, y, z ∈M :

(i) d(x, y) = 0 ⇐⇒ x = y,

(ii) d(x, y) = d(y, x),

(iii) d(x, y) ≤ d(x, z) + d(z, y).

The last inequality is called triangle inequality. Usually the metric space (M,d) is
denoted simply by M .

Note that the triangle inequality together with the symmetry of d implies

d(x, y) ≥ 0, x, y ∈M,

since 0 = d(x, x) ≤ d(x, y) + d(y, x) = 2d(x, y).

It is easy to check that

|d(x, y) − d(y, z)| ≤ d(x, z), x, y, z ∈M.

A subset N ⊆M is called bounded if

diamN := sup{d(x, y) : x, y ∈ N} <∞.

Let r > 0 and x ∈M . Then

Br(x) := {y ∈M : d(x, y) < r} =: open ball with centre x and radius r,

Kr(x) := {y ∈M : d(x, y) ≤ r} =: closed ball with centre x and radius r,

Sr(x) := {y ∈M : d(x, y) = r} =: sphere with centre x and radius r.

Examples. • R with the d(x, y) = |x− y| is a metric space.

• Let X be a set and define d : X × X → R by d(x, y) = 0 for x = y and
d(x, y) = 1 for x 6= y. Then (X, d) is a metric space. d is called the discrete
metric on X .

Last Change: Thu 7 Feb 17:21:44 COT 2013
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6 1.1. Metric spaces

Let (M,d) be a metric space. Recall that the metric d induces a topology on M :
a set U ⊆ M is open if and only if for every p ∈ U there exists an ε > 0 such
that Bε(p) ⊆ U . In particular, the open balls are open and closed balls are closed
subsets of M . Let x ∈ M . A subset U ⊆ M is called a neighbourhood of x if there
exists an open set Ux such that x ∈ Ux ⊆ U .
It is easy to see that the topology generated by d has the Hausdorff property, that
is, for every x 6= y ∈ M there exist neighbourhoods Ux of x and Uy of y with
Ux ∩ Uy = ∅.
Recall that a set N ⊆ M is called dense in M if N = M , where N denotes the
closure of N .

Definition 1.2. A sequence (xn)n∈N ⊆ M converges to x ∈ M if and only if
lim
n→∞

d(xn, x) = 0, that is,

∀ ε > 0 ∃N ∈ N : n ≥ N =⇒ d(xn, x) < ε.

The limit x is unique. A sequence (xn)n∈N is a Cauchy sequence in M if and only
if

∀ ε > 0 ∃N ∈ N : m,n ≥ N =⇒ d(xn, xm) < ε.

Definition 1.3. A metric space in which every Cauchy sequence is convergent, is
called a complete metric space.

Definition 1.4. Let (X,OX) and (Y,OY ) be topological spaces.

(i) A function f : X → Y is called continuous if and only if f−1(U) is open in X
for every U open in Y .

(ii) An bijective function f : X → Y is called a homeomorphism if and only if f
and f−1 are contiunous.

The following lemma is often useful.

Lemma 1.5. Let (M,d) be a complete metric space and N ⊆M . Then N is closed
in M if and only if (N, d|M ) is complete.

Remarks. • Every convergent sequence is a Cauchy sequence.

• Every Cauchy sequence is bounded. Recall that a sequence (xn)n∈N is bounded
if the set {xn : n ∈ N} is bounded.

Not every metric space is complete, but every metric space can be completed in the
following sense.

Definition 1.6. Let (M,dM ) and (N, dN ) be metric spaces. A map f : M → N is
called an isometry if and only if dN (f(x), f(y)) = dM (x, y) for all x, y ∈ M . The
spaces M and N are called isometric if there exists a bijective isometry f : M → N .

Note that an isometry is necessarily injective since x 6= y implies f(x) 6= f(y)
because d(f(x), f(y)) = d(x, y) 6= 0, and that every isometry is continuous.

Theorem 1.7. Let (M,d) be a metric space. Then there exists a complete metric

space (M̂, d̂) and an isometry ϕ : M → M̂ such that ϕ(M) = M̂ . M̂ is called
completion of M ; it is unique up to isometry.

Last Change: Thu 7 Feb 17:21:44 COT 2013
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Chapter 1. Banach spaces 7

Proof. Let

CM := {(xn)n∈N ⊆M : (xn)n∈N is a Cauchy sequence in M}

be the set of all Cauchy sequences in M . We define the equivalence relation ∼ on
CM by

x ∼ y ⇐⇒ d(xn, yn) → 0, n→ ∞

for all x = (xn)n∈N, y = (yn)n∈N ∈ CM . It is easy to check that ∼ is indeed a
equivalence relation (reflexivity and symmetry follow directly from properties (i)
and (ii) of the definition of a metric and transitivity of ∼ is a consequence of the
triangle inequality).

Let M̂ := CM/ ∼ the set of all equivalence classes. The equivalence class containing

x = (xn)n∈N is denoted by [x]. On M̂ we define

d̂ : M̂ × M̂ → R, d̂([x], [y]) = lim
n→∞

d(xn, yn). (1.1)

We have to show that d̂ is well-defined.
Let (xn)n∈N ∈ [x] and (yn)n∈N ∈ [y]. Then

|d(xn, yn) − d(xm, ym)| ≤ |d(xn, yn) − d(xm, yn)| + |d(xm, yn) − d(xm, ym)|
≤ d(xn, xm) + d(yn, ym) → 0, m, n→ ∞.

Since (d(xn, yn))n∈N is a Cauchy sequence in the complete space R, the limit in
(1.1) exists.
Moreover, for (x̃n)n∈N ∈ [x] and (ỹn)n∈N ∈ [y] it follows that

|d(xn, yn) − d(x̃n, ỹn)| ≤ |d(xn, yn) − d(x̃n, yn)| + |d(x̃n, yn) − d(x̃n, ỹn)|
≤ d(xn, x̃n) + d(yn, ỹn) → 0, n→ ∞.

Hence d̂ is well-defined.

Let

ϕ : M → M̂, ϕ(x) = [(x)n∈N].

We will show that (M̂, d̂) is a complete metric space, that ϕ is an isometry and that

ϕ(M) = M̂ in several steps.

Step 1: (M̂, d̂) is a metric space.

Proof. Let [x], [y], [z] ∈ M̂ . Then

• 0 = d̂([x], [y]) = lim
n→∞

d(xn, yn) ⇐⇒ x ∼ y ⇐⇒ [x] = [y].

• d̂([x], [y]) = lim
n→∞

d(xn, yn) = lim
n→∞

d(yn, xn) = d̂([y], [x]).

• d̂([x], [y]) = lim
n→∞

d(xn, yn) ≤ lim
n→∞

d(xn, zn)+d(zn, yn) = d̂([x], [z])+d̂([z], [y]).

Step 2: ϕ is an isometry.
Proof. This follows immediately from the definition.

Step 3: ϕ(M) = M̂ .

Proof. Let (xn)n∈N ∈ [x] ∈ M̂ and ε > 0. Then there exists an N ∈ N such that
d(xn, xm) < ε

2 , m,n ≥ N . Let z := xN ∈M . Then

d̂(ϕ(z), [x]) = lim
n→∞

d(xN , xn) ≤ ε

2
< ε.

Last Change: Thu 7 Feb 17:21:44 COT 2013
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Next we show that (M̂, d̂) is complete. Let (x̂n)n∈N be a Cauchy sequence in M̂ .

Since ϕ(M) is dense in M̂ there exists a sequence z = (zn)n∈N ⊆M such that

d̂(x̂n, zn) <
1

n
, n ∈ N.

The sequence z is a Cauchy sequence in M because

d(zn, zm) = d̂(ϕ(zn), ϕ(zm)) ≤ d̂(ϕ(zn), x̂n) + d̂(x̂n, x̂m) + d̂(x̂m, ϕ(zm))

<
1

n
+ d̂(x̂n, x̂m) +

1

m
→ 0, m, n→ ∞.

The sequence (x̂n)n∈N converges to [z] because

d̂(x̂n, z) ≤ d̂(x̂n, ϕ(zn)) + d̂(ϕ(zn), z) <
1

n
+ lim
m→∞

d(zn, zm) → 0, n→ ∞.

We have shown that ϕ(M) is a dense subset of the complete metric space (M̂, d̂)
and that ϕ is an isometry.

Finally, we have to show that M̂ is unique (up to isometry). Let (N, dN ) be complete
metric space and ψ : M → N an isometry such that ψ(M) = N . Then the map

T : ϕ(M) → ψ(M), T (ϕ(x)) = ψ(x)

can be extended to a surjective isometry T : ϕ(M) = M̂ → N by

Tx = T ( lim
n→∞

xn) := lim
n→∞

Txn

for x = lim
n→∞

xn with xn ∈ ϕ(M), n ∈ N.

Examples. • Cn with d(x, y) = max{|xj − yj | : j = 1, . . . , n} is a complete
metric space.

• Cn with d(x, y) =
√
|x1 − y1|2 + · · · + |xn − yn|2 is a complete metric space.

• Let C([a, b]) be the set of all continuous functions on the interval [a, b]. For
f, g ∈ C([a, b]) let

d1(f, g) := max{|f(x) − g(x)| : x ∈ [a, b]},

d2(f, g) :=

∫ b

a

|f(x) − g(x)| dx.

Then d1 and d2 are metrics on C([a, b]). (C([a, b]), d1) is complete, (C([a, b]), d2)
is not complete.

Remark. The completion of (C([a, b]), d2) is L1(a, b) (the set of all Lebesgue inte-
grable functions on (a, b)).

Definition 1.8. A metric space is called separable if it contains a countable dense
subset.

25 Jan 2012

Proposition 1.9. Let (M,d) be a separable metric space and N ⊆M . Then N is
separable.

Last Change: Thu 7 Feb 17:21:44 COT 2013
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Chapter 1. Banach spaces 9

Proof. We have to show that there exists a countable set B ⊆ N such that B ⊇ N
where the closure is taken with respect to the metric on M . By assumption on
M there exists a countable set A := {xn : n ∈ N} ⊆ M such that A = M . Let
J := {(n,m) ∈ N × N : ∃y ∈ N with d(xn, y) < 1

m}. For every (n,m) ∈ J choose
a yn,m ∈ N and define B := {yn,m : (n,m) ∈ J}. Obviously, B is a countable
subset of N . To show that B is dense in N it suffices to show that for every y ∈ N
and k ∈ N there exists a b ∈ B such that d(b, y) < 1

k . By definition of A there
exists a xn ∈ A such that d(xn, y) < 1

2k . In particular, (n, 2k) ∈ J . It follows that
d(yn,2k, y) ≤ d(yn,2k, xn) + d(xn, y) < 1

k .

1.2 Normed spaces

Definition 1.10. Let X be a vector space over K. A norm on X is a map

‖ · ‖ : X → R

such that for all x, y ∈ X , α ∈ K

(i) ‖x‖ = 0 ⇐⇒ x = 0,

(ii) ‖αx‖ = |α| ‖x‖,

(iii) ‖x+ y‖ ≤ ‖x‖ + ‖y‖.

Remarks. • Note that the implication ⇐ in (i) follows from (ii) because ‖0‖ =
‖2 · 0‖ = 2‖0‖.

• Note that ‖x‖ ≥ 0 for all x ∈ X because 0 = ‖x − x‖ ≤ 2‖x‖. The last
inequality follows from the triangle inequality (iii) and (ii) with α = −1.

Remark. A function [ · ] : X → R which satisfies only (ii) and (iii) of Definition 1.10
is called a seminorm. As seen in the remark above for norms, a seminorm is non-
negative and satisfies [0] = 0.

Remark. A norm on X induces a metric on X by setting

d(x, y) := ‖x− y‖, x, y ∈ X.

Hence a norm induces a topology on X via the metric and we have the concept of
convergence etc. on a normed space.

Definition 1.11. A complete normed space is called a Banach space.

Obviously, every subspace of a normed space is a normed space by restriction of the
norm. A subspace of a Banach space is a Banach space if and only if it is closed.

Proposition 1.12. Let X be a normed space. Then the following is equivalent:

(i) X is complete.

(ii) Every absolutely convergent series in X converges in X.

Proof. Exercise 1.2.

Example 1.13 (Quotient space). Let X be a Banach space and M ⊆ X a closed
subspace. On X we have the equivalence relation

x ∼ y ⇐⇒ x− y ∈M.

Last Change: Thu 7 Feb 17:21:44 COT 2013
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For x ∈ X we denote the equivalence class of X/M containing x by [x]. Then X/M
is a vector space if we set

[x] + [y] := [x+ y], α[x] := [αx], x, y ∈ X, α ∈ K.

For x ∈ X let dist(x,M) := inf{‖x−m‖ : m ∈M}.

• (X/M, ‖ · ‖∼) is a normed space with

‖ · ‖∼ : X/M → R, ‖[x]‖∼ := dist(x,M).

Proof. First we show that ‖ · ‖∼ is well-defined. For x, y ∈ X with x− y ∈M
we find

dist(x,M) = inf{‖x−m‖ : m ∈M} = inf{‖y − (

∈M︷ ︸︸ ︷
y − x+m)‖ : m ∈M}

= inf{‖y −m‖ : m ∈M} = dist(y,M).

Property (ii) in the definition of a norm is easily checked. For property (iii)
let [x], [y] ∈ X/M . Then

‖[x] + [y]‖∼ = ‖[x+ y]‖∼ = inf{‖x+ y −m‖ : m ∈M}
= inf{‖x−mx + y −my‖ : mx,my ∈M}
≤ inf{‖x−mx‖ : mx ∈M} + inf{‖y −my‖ : my ∈M}
= ‖[x]‖∼ + ‖[y]‖∼.

It is clear that [x] = 0 implies ‖[x]‖∼ = 0. Now assume that ‖[x]‖∼ = 0.
We have to show that x ∈ M . By definition of dist there exists a sequence
(mn)n∈N such that ‖x−mn‖ → 0, that is, (mn)n∈N converges to x. Since M
is closed, it follows that x ∈M .

• Let X be a Banach space and M a closed subspace. Then X/M is Banach
space with the norm defined in Example 1.13.

Proof. We already saw that X/M is normed space. It remains to prove com-
pleteness. Let ([xn])n∈N be a Cauchy sequence.
First we show that we can assume ‖[xn]−[xm]‖∼ ≤ 2−n for all m ≥ n: Choose
N1 ∈ N such that ‖[xN1

]−[xm]‖∼ ≤ 2−1 for all m ≥ N1. Next chooseN2 > N1

such that ‖[xN2
] − [xm]‖∼ ≤ 2−2 for all m ≥ N2. Continuing this process,

we obtain a subsequence with the desired property. Since a Cauchy sequence
converges if and only if it contains a convergent subsequence, it suffices to
prove convergence of the subsequence constructed above.
By definition of the quotient norm we can assume that ‖xn−xn+1‖ ≤ ‖[xn−
xn+1]‖∼ + 2−n < 21−n. Then (xn)n∈N is Cauchy sequence in X because for
all n > m

‖xn − xm‖ =
∥∥∥
n−1∑

j=m

xn+1 − xn

∥∥∥ ≤
n−1∑

j=m

‖xn+1 − xn‖ < 2

n−1∑

j=m

2−j.

Therefore x := lim
n→∞

xn exists and

‖[xn] − [x]‖∼ = ‖[xn − x]‖∼ ≤ ‖xn − x‖ → 0, n→ ∞.

Remark 1.14. (i) In the proof above we used that, by definition of ‖ · ‖∼, for
every x ∈ X and every ε > 0 there exists an x̃ ∈ [x] such that ‖x̃‖ < ‖[x]‖∼+ε.
Equivalently, there exists an m ∈M such that ‖x+m‖ < ‖[x]‖∼ + ε.

Last Change: Thu 7 Feb 17:21:44 COT 2013
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(ii) Obviously, ‖x‖ ≥ ‖[x]‖∼ for every x ∈ X .

Examples 1.15. (i) Finite dimensional normed spaces. Cn and Rn are complete
normed spaces with

‖ · ‖∞ : Kn → R, ‖x‖∞ = max{|xj | : j = 1, . . . , n}.

Let 1 ≤ p <∞. Then Cn and Rn are complete normed spaces with

‖ · ‖p : Cn → R, ‖x‖p =
( n∑

j=1

|xj |p
) 1

p

.

The triangle inequality ‖x + y‖p ≤ ‖x‖p + ‖y‖p is called the Minkowski inequality
(see Section 1.3).

(ii) Let T be a set and define

ℓ∞(T ) := {x : T → K bounded map}.

Obviously, ℓ∞(T ) is a vector space. Let

‖x‖∞ := sup{|x(t)| : t ∈ T }, x ∈ ℓ∞,

be the supremum norm. Then (ℓ∞(T ), ‖ · ‖∞) is a Banach space.

Proof. Exercise 1.4.

(iii) Sequence spaces. 30 Jan 2012

• ℓ∞ := ℓ∞(N) is a Banach space.

• For 1 ≤ p <∞ let

ℓp := ℓp(N) :=
{

(xn)n∈N ⊆ K :

∞∑

n=1

|xn|p <∞
}

and

‖x‖p :=
( ∞∑

n=1

|xn|p
) 1

p

, x ∈ ℓp.

With the usual component-by-component addition and multiplication with a
scalar, ℓp is a vector space and (ℓp, ‖ · ‖p) is a Banach space.

Proof. First we show that ℓp is a vector space. For α ∈ K and x, y ∈ ℓp we
have

∞∑

n=1

|αxn|p = |α|p
∞∑

n=1

|xn|p <∞

and

∞∑

n=1

|xn + yn|p ≤
∞∑

n=1

(
2 max{|xn|, |yn|}

)p
= 2p

∞∑

n=1

(
max{|xn|, |yn|}

)p

≤ 2p
∞∑

n=1

|xn|p + |yn|p = 2p(‖x‖pp + ‖y‖pp) <∞.

Last Change: Thu 7 Feb 17:21:44 COT 2013
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Hence ℓp is a K-vector space. Properties (i) and (ii) in the definition of a norm
are easily verified. The triangle inequality is the Minkowski inequality (see
Section 1.3).
To show that (ℓp, ‖ · ‖p) is complete, let (xn)n∈N be a Cauchy sequence in ℓp.
Set xn = (xn,m)m∈N. Then the sequence of the m-th components is a Cauchy
sequence in K because

|xn,m − xk,m| < ‖xn − xk‖p, m ∈ N.

Since K is complete, the limit ym := lim
n→∞

xn,m exists. Let y := (ym)m∈N. We

will show that y ∈ ℓp and that xn
‖·‖p−−−→ y. Let ε > 0 and N ∈ N such that

‖xn − xk‖ < ε for all k, n ≥ N . For every M ∈ N

M∑

j=1

|xn,j − xk,j |p ≤ ‖xn − xk‖pp < εp.

Taking the limit k → ∞ on the left hand side yields

M∑

j=1

|xn,j − yj |p < εp.

Taking the limit M → ∞ on the left hand side finally gives

∞∑

j=1

|xn,j − yj |p ≤ εp <∞,

in particular, xn − y ∈ ℓp. Since ℓp is a vector space, we obtain y = xn + (y −
xn) ∈ ℓp and ‖xn − y‖p ≤ ε. That (xn)n∈N converges to y follows from the
inequality above since ε can be chosen arbitrarily.

(iv) Lp spaces: See measure theory.22 Jan 2010

(v) Subspaces of ℓ∞. Let

d := {x = (xn)n∈N ⊆ K : xn 6= 0 for at most finitely many n},
c0 := {x = (xn)n∈N ⊆ K : lim

n→∞
xn = 0},

c := {x = (xn)n∈N ⊆ K : lim
n→∞

xn exists},

Obviously, the inclusions d ( c0 ( c ( ℓ∞ hold. Moreover, it can be shown that
c0 and c are closed subspaces of ℓ∞ and that d is a non-closed subspace of ℓ∞. In
particular, (c0, ‖ · ‖∞) and (c, ‖ · ‖∞) are Banach spaces, (d, ‖ · ‖∞) is not a Banach
space (see Exercise 1.5).

(vi) Spaces of continuous functions. For metric space T (e. g. an interval in R) let

C(T ) := {f : T → K : f is continuous},
B(T ) := {f : T → K : f is bounded},

BC(T ) := C(T ) ∩B(T ).

For f ∈ B(T ) let

‖f‖∞ := sup{|f(t)| : t ∈ T }.

In Analysis 1 it was shown that (B(T ), ‖ · ‖∞) and (BC(T ), ‖ · ‖∞) are Banach
spaces. Note that C(T ) = BC(T ) for a compact metric space T .
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(vii) Spaces of differentiable functions. Let [a, b] a real interval. We can define
several norms on the vector space

C1([a, b]) := {f : [a, b] → K : f is continuously differentiable}.

• (C1([a, b]), ‖ · ‖∞) is not a Banach space.

Proof. For n ∈ N let fn : [−1, 1] → K, fn(t) := (t2 + n−2)
1
2 . Then the fn

converge to g : [−1, 1] → K, g(t) = |t| in the ‖ · ‖∞-norm. But g /∈ C1([a, b]).
Hence C1([a, b]) is not closed as a subspace of the Banach space C([a, b]), so it
is not a Banach space.

• For f ∈ C1([a, b]) let

‖f‖(1) := ‖f‖∞ + ‖f ′‖∞.

Then (C1([a, b]), ‖ · ‖(1)) is a Banach space. Note that the right hand side is
finite because by assumption f ′ is continuous.

Proof. Let (xn)n∈N be a Cauchy sequence in (C1([a, b]), ‖ · ‖(1)). Then there
exist x, y ∈ C([a, b]) such that xn → x and x′n → y in the supremum norm. A
well-known theorem in analysis implies x′ = y, hence xn → x in ‖ · ‖(1).

In the following, C1([a, b]) will always be considered to be equipped with the
norm ‖ · ‖(1) unless stated otherwise.

Theorem 1.16. Let X be a Banach space, Y a closed subspace and N a finite
dimensional subspace of X. Then Y + N is a closed subspace. In particular, every
finite-dimensional subspace is closed.

Proof. Obviously, Y +N is a subspace of X . To proof that it is closed, we proceed
by induction. Therefore we can assume without restriction that dimN = 1. Let
z ∈ X such that N = {λz : λ ∈ K} and (xn)n∈N = (yn+anz)n∈N a Cauchy sequence
in Y +N .

C ase 1. (an)n∈N is bounded. Then it contains a convergent subsequence (ank
)k∈N.

Then the sequence (ynk
)k∈N = (xnk

− ank
z)k∈N converges because it is the sum of

two convergent sequences.

C ase 2. (an)n∈N is unbounded. Then there exists a subsequence (ank
)k∈N with

lim
k→∞

|ank
| = ∞. Since (xnk

)k∈N is bounded, it follows that

∥∥∥z +
1

ank

ynk

∥∥∥ =
∥∥∥ 1

ank

xnk

∥∥∥ → 0, n→ ∞.

Hence d(z, Y ) = 0. Since Y is closed, this implies z ∈ Y , therefore N + Y = Y is
closed in X .

Finally, choosing Y = {0} shows that every finite-dimensional subspace is closed.

Note that the sum of two closed subspaces is not necessarily closed, see as the
following example shows. Another example can be found in [Hal98, § 15].

Example. In ℓ1 consider the subspaces

U := {(xn)n∈N ∈ ℓ1 : x2n = 0, n ∈ N}
V := {(xn)n∈N ∈ ℓ1 : x2n−1 = nx2n, n ∈ N}.
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Obvioulsy, U and V are closed subspaces of ℓ1. Let en be the nth unit vector in ℓ1.
Let m ∈ N. Then e2m−1 ∈ U ⊆ V + U and e2m = (e2m + 1

m e2m−1) − 1
m e2m−1 ∈

V + U . Since span{en : n ∈ N} is a dense subset of ℓ1, it follows that V + U = ℓ1.
Now we will show that V + U 6= ℓ1. Let

x = (xn)n∈N, xn =

{
1
n2 , n even,

0, n odd.

Clearly x ∈ ℓ1. Suppose that there exist v = (vn)n∈N ∈ V , u = (un)n∈N ∈ U such
that x = v + u. It follows for all m ∈ N

1

(2m)2
= x2m = v2m + u2m = v2m,

0 = x2m−1 = v2m−1 + u2m−1 = mv2m + u2m−1 =
1

4m2
+ u2m−1,

impliying that u2m−1 = − 1
4m2 , m ∈ N, hence u 6= ℓ1. Therefore x 6= V + U .

Definition 1.17. Let X be a normed space and ‖ · ‖1 and ‖ · ‖2 be norms on X .
They are called equivalent norms if there exist m,M > 0 such that

m‖x‖1 ≤ ‖x‖2 ≤M‖x‖1, x ∈ X. (1.2)

Theorem 1.18. Let ‖·‖1 and ‖·‖2 be norms on a vector space X. The the following
are equivalent:

(i) ‖ · ‖1 and ‖ · ‖2 are equivalent.

(ii) A sequence (xn)n∈N ⊆ X converges with respect to ‖ · ‖1 if and only if it
converges with respect to ‖ · ‖2 and in this case the ‖ · ‖1-limit and the ‖ · ‖2-
limit are equal.

(iii) A sequence (xn)n∈N ⊆ X converges to 0 with respect to ‖ · ‖1 if and only if it
converges with respect to ‖ · ‖2.

Proof. (i) =⇒ (ii) =⇒ (iii) is clear.

“(iii) =⇒ (i)”: Obviously it suffices to show the existence of M ∈ R such that (1.2)
is true. Assume no such M exists. Then there exists a sequence (xn)n∈N ⊆ X such

that ‖xn‖1 = 1 and ‖xn‖2 > n‖xn‖1 = n. Let yn := n−1xn. Then yn
‖·‖1−−→ 0, so by

assumption also yn
‖·‖2−−→ 0. This contradicts ‖yn‖2 > 1 for all n ∈ N.

The theorem above implies in particular, that the topologies generated by equivalent
norms coincide. Moreover, the identity map id : (X, ‖ ·‖1) → (X, ‖ ·‖2) is uniformly
continuous for equivalent norms.

Example 1.19. On C1([a, b]) define the norm

‖f‖(2) := sup{max{|x(t)|, |x′(t)|} : t ∈ [a, b]}.

and let ‖ · ‖(1) be as in Example 1.15 (7). It is not hard to see that

‖x‖(1) ≤ ‖x‖(2) ≤ 2‖x‖(1), x ∈ C1([a, b]).
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Theorem 1.20. All norms on Kn are equivalent.

Proof. Let {e1, . . . , en} be a basis of Kn. For x =
∑n
j=1 αn en define

‖x‖2 :=
( n∑

j=1

|αj |2
) 1

2

.

Obviously, ‖ · ‖2 is a norm on X and it suffices to show that every norm on X is
equivalent to ‖ · ‖2. Let ‖ · ‖ be a norm on X and x =

∑n
j=1 αn en. Using triangle

inequality for ‖ · ‖ and Hölder’s inequality, we obtain

‖x‖ =
∥∥∥
n∑

j=1

αj ej

∥∥∥ ≤
n∑

j=1

|αj |‖ ej ‖ ≤
( n∑

j=1

|αj |2
) 1

2
( n∑

j=1

‖ ej ‖2
) 1

2

= C ‖x‖2 (1.3)

with constant C :=
(∑n

j=1 ‖ ej ‖2
) 1

2

independent of x.

Note that ‖ · ‖2 : X → R is continuous, hence S := {x ∈ X : ‖x‖2 = 1} is
closed being the preimage of the closed set {1} in R. In addition, S is bounded,
therefore S is compact by the theorem of Heine-Borel. Now consider the map
T : (X, ‖·‖2) → R, T x = ‖x‖. By (1.3), T is uniformly continuous, so its restriction
to the compact set S has a minimum m and a maximum M . Since ‖ · ‖ is a norm,
m > 0 (otherwise there would exist an x ∈ S with ‖x‖ = 0, thus x = 0 but 0 /∈ S).
Therefore

m‖x‖2 = m ≤ ‖x‖ ≤M = M‖x‖2, x ∈ S,

and by the homogeneity of the norms

m‖x‖2 ≤ ‖x‖ ≤M‖x‖2, x ∈ X.

The theorem above implies that all norms a a finite-dimensional K-vector space are
equivalent. Moreover, it follows that every finite normed space is complete because
Kn with the Euclidean norm is complete and that a subset of a finite dimensional
normed space is compact if and only if it is bounded and closed (Theorem of Heine-
Borel for Kn with the Euclidean metric). In particular, the unit ball in a finite
dimensional space is compact.

This is no longer true in infinite dimensional normed spaces. In fact, the unit ball is
compact if and only if the dimensions of the space is finite. For the proof we use the
following theorem which is also of independent interest, as it shows that in a certain
sense quotient spaces can work as a substitute for the orthogonal complement in
inner product spaces (see ??).

Theorem 1.21 (Riesz’s lemma). Let X be a normed space, Y ⊆ X a closed
subspace with Y 6= X and ε > 0. Then there exists an x ∈ X such with ‖x‖ = 1
and dist(x, Y ) > 1 − ε.

Proof. If Y = {0} or ε ≥ 1, the assertion is clear. Now assume 0 < ε < 1. Note
that in this case 1

1−ε > 1. Since Y is closed and different from X , the quotient
space X/Y is not trivial. Hence there exists an ξ ∈ X such that ‖[ξ]‖∼ = 1. By
Remark 1.14 there exists y ∈ Y such that

1 = ‖[ξ]‖∼ ≤ ‖ξ + y‖ < 1

1 − ε
.
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Let x = ‖ξ + y‖−1(ξ + y). Obviously, ‖x‖ = 1 and for every z ∈ Y

‖x− z‖ = ‖ξ + y‖−1
∥∥∥ξ + y − ‖ξ + y‖z︸ ︷︷ ︸

∈Y

∥∥∥ ≥ ‖ξ + y‖−1 ‖[ξ]‖∼ = ‖ξ + y‖−1 > 1 − ε.

Hence d(x, Y ) = inf{‖x− z‖ : z ∈ Y } > 1 − ε.

Theorem 1.22. For a normed space X the following are equivalent:

(i) dimX <∞,

(ii) BX := {x ∈ X : ‖x‖ ≤ 1} is compact.

(iii) Every bounded sequence in X contains a convergent subsequence.

Proof. “(i) =⇒ (ii)” follows from Theorem 1.20.

“(ii) =⇒ (i)”: Assume that BX is compact. Then there are x1, . . . , xn ∈ X with
‖xj‖ ≤ 1, j = 1, . . . , n, such that

BX ⊆
n⋃

j=1

B 1
2
(xj). (1.4)

Let U = span{x1, . . . , xn}. If U 6= X , then, by Riesz’s lemma, there exists an
x ∈ X such that ‖x‖ = 1 and dist(x, U) > 1

2 , in contradiction to (1.4). Therefore
dimX = dimU ≤ n.

“(ii) =⇒ (iii)”: If BX is compact, then obviously for every α ≥ 0 also αBX :=
{αx : x ∈ BX} is compact. Since every bounded sequence is a subset of some αBX ,
it must contain a convergent subsequence.

“(iii) =⇒ (i)”: Assume that dimX = ∞. Choose x1 ∈ X with ‖x1‖ = 1 and set
U1 := span{x1} 6= X . By Riesz’s lemma there exists an x2 ∈ X with ‖x2‖ = 1
and dist(x2, U1) > 1

2 , in particular ‖x1 − x2‖ > 1
2 . Set U2 := span{x1, x2} 6= X .

Continuing this way, we obtain a sequence x = (xn)n∈N ⊆ X with ‖xn−xm‖ > 1
2 for

all n,m ∈ N with n 6= m. Therefore, the sequence x does not contain a convergent
subsequence, hence BX is not compact (Recall that a compact metric space is
sequentially compact).

Let X be a vector space and Λ a set. A family (xλ)λ∈Λ ⊆ X is called linearly
independent if every finite subset is linearly independent. A Hamel basis (or an
elgebraic basis) of X is a family (xλ)λ∈Λ ⊆ X that is linearly independent and such
that every element x ∈ X is a (finite!) linear combination of the xλ. The existence
of a Hamel basis can be shown with Zorn’s lemma.

Definition 1.23. Let X be a normed space. A family (xn)n∈N is a Schauder basis
of X if every x ∈ X can be written uniquely as

∞∑

n=1

αnxn with αn ∈ K.

Definition 1.24. Let (X, ‖ · ‖) be a normed space over K. A subset Y ⊆ X is said
to be a total subset of X if

span(Y ) = X,

that is, if the set of all linear combinations of elements of Y is dense in X .
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Theorem 1.25. A normed space (X, ‖ · ‖) is separable if and only if it contains a
countable total subset.

Proof. Let A be a dense countable subset of X . Then obviously spanA = X , that
is, A is a total subset of X .

Now assume that A is countable total subset of X . Let B := {λan : n ∈ N, λ ∈ Q̃}
where Q̃ := Q if X is a R-vector space and Q̃ := Q+ iQ if X is a C-vector space. In
both cases B is countable. We will show that B = X . Let x ∈ X and ε > 0. Since
A is a total subset of X , there exist a1, . . . , an ∈ A and λ1, . . . , λn ∈ K such that

‖x−
n∑

j=1

λjaj‖ <
ε

2
.

Since Q̃ is dense in K, there exist µ1, . . . , µn ∈ Q̃ such that

|µj − λj | <
ε

2

( n∑

j=1

‖aj‖
)−1

, j = 1, . . . , n.

Then y :=
∑n

j=1 µjaj ∈ spanA and

‖x− y‖ ≤
∥∥∥x−

n∑

j=1

λjaj

∥∥∥ +
∥∥∥y −

n∑

j=1

λjaj

∥∥∥ < ε

2
+
∥∥∥

n∑

j=1

|µj − λj |aj
∥∥∥

≤ ε

2
+

n
max
j=1

|µj − λj |
n∑

j=1

‖an‖ <
ε

2
+
ε

2
= ε.

Note that every normed space with a Schauder basis is separable, but not every
separable normed space has a Schauder basis.

Examples 1.26. (i) ℓp is separable for 1 ≤ p <∞.

Proof. Let en := (0, . . . , 0, 1, 0 . . . ) be the nth unit vector in ℓp. We will show that
{en : n ∈ N} is a total subset of ℓp. Let x = (xn)n∈N ⊆ ℓp. Then

∥∥∥x−
n∑

j=1

xjej

∥∥∥
p

=
∥∥∥

∞∑

j=n+1

xjej

∥∥∥
p
→ 0, n→ ∞.

(ii) ℓ∞ is not separable.

Proof. Recall that the set A := {(xn)n∈N : xn ∈ {0, 1}} i s not countable. Obviously,
A ⊆ ℓ∞. Let B be a dense subset of ℓ∞. Then for every x ∈ A there exists an
bx ∈ B such that ‖x− bx‖∞ < 1

2 . Since ‖x− y‖∞ = 1 for x 6= y ∈ A, it follows that
B has at least the cardinality of A, that is, there exists no countable dense subset
of ℓp.

(iii) C[a, b] is separable since by the theorem of Weierstraß the set of polynomials

{[a, b] → R, x 7→ xn : n ∈ N}

is a total subset of C[a, b].

Last Change: Thu 7 Feb 17:21:44 COT 2013

D
R
A

F
T
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1.3 Hölder and Minkowski inequality

In this section we prove Hölder’s inequality and Minkowski’s inequality. For the
proof we use Young’s inequality.

Theorem 1.27. Let p, q ∈ (1,∞) such that

1

p
+

1

q
= 1.

Then for all a, b ≥ 0:

ab ≤ 1

p
ap +

1

q
bq. (1.5)

Proof. If ab = 0, then inequality (1.5) is clear. Now assume ab > 0. Since the
logarithm is concave and 1

p + 1
q = 1 is follows that

ln
(1

p
ap +

1

q
bq
)
≥ 1

p
ln(ap) +

1

q
ln(bq) = ln(a) + ln(b) = ln(ab).

Application of the monotonically increasing function exp : R → R yields (1.5).

Theorem 1.28 (Hölder’s inequality). Let 1 ≤ p ≤ ∞ and q = p
p−1 , i. e.,

1

p
+

1

q
= 1

(setting 1
∞ = 0). If x ∈ ℓp and y ∈ ℓq, then z = (xnyn)n∈N ∈ ℓ1 and

‖z‖1 ≤ ‖x‖p ‖y‖q. (1.6)

Proof. If x = 0 or y = 0 then the inequality (1.6) clearly holds. Also the cases p = 1
and p = ∞ are clear.
Now assume x, y 6= 0 and 1 < p <∞. The Young inequality (1.6) with

a =
|xj |
‖x‖p

, b =
|yj |
‖y‖q

yields

|xj | |yj|
‖x‖p ‖y‖q

≤ 1

p

|xj |p
‖x‖pp

+
1

q

|yj |q
‖y‖qq

.

Taking the sum over gives

1

‖x‖p ‖y‖q

∞∑

j=1

|xjyj | ≤ 1

p

1

‖x‖pp

∞∑

j=1

|xj |p

︸ ︷︷ ︸
=‖x‖p

p︸ ︷︷ ︸
=1

+
1

q

1

‖y‖qq

∞∑

j=1

|yj |q

︸ ︷︷ ︸
=‖y‖q

q︸ ︷︷ ︸
=1

=
1

p
+

1

q
= 1.

In the special case p = q = 2 we obtain the Cauchy-Schwarz inequality.

Corollary 1.29 (Cauchy-Schwarz inequality). For x = (xn)n∈N, y = (yn)n∈N ∈
ℓ2 the Hölder inequality implies

|〈x , y〉| :=
∣∣∣
∞∑

j=1

xjyj

∣∣∣ ≤ ‖x‖2 ‖y‖2.
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Theorem 1.30 (Minkowski inequality). For 1 ≤ p ≤ ∞ and x, y ∈ ℓp Minkowski’s
inequality holds:

‖x+ y‖p ≤ ‖x‖p + ‖y‖p. (1.7)

Proof. If x + y = 0 then (1.7) clearly holds. Also the cases p = 1 and p = ∞ are
easy to check.
Now assume x + y 6= 0 and 1 < p < ∞. Let q ∈ (1,∞) such that 1

p + 1
q = 1. The

triangle inequality in K and Hölder’s inequality (1.6) yield for all M ∈ N:

M∑

j=1

|xj + yj|p =

M∑

j=1

|xj + yj | · |xj + yj|p−1

≤
M∑

j=1

|xj | |xj + yj |p−1 +

M∑

j=1

|yj | |xj + yj |p−1

≤
( M∑

j=1

|xj |p
) 1

p
( M∑

j=1

|xj + yj |
p︷ ︸︸ ︷

(p−1)q
)1
q

+
( M∑

j=1

|yj |p
) 1

p
( M∑

j=1

|xj + yj |
p︷ ︸︸ ︷

(p−1)q
) 1
q

≤
(
‖x‖p + ‖x‖p

)( M∑

j=1

|xj + yj |p
) 1
q
.

Note that
(∑M

j=1 |xj + yj |p
) 1
q 6= 0 for M large enough. Hence the above inequality

yields

( M∑

j=1

|xj + yj|p
) 1

p ≤ ‖x‖p + ‖x‖p

using p− p
q = p

(
1 − 1

q

)
= 1. Taking the limit M → ∞ finally proves (1.7).
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Chapter 2

Bounded maps; the dual

space

2.1 Bounded linear maps

Definition 2.1. Let X,Y be normed spaces over the same field K. The set of all
linear continuous maps X → Y is denoted by L(X,Y ), i. e.,

L(X,Y ) = {T : X → Y : T linear and continuous}

and L(X) := L(X,X).

Recall that the following is equivalent:

(i) T : X → Y is continuous

(ii) lim
n→∞

Txn = T limn→∞ xn for every convergent sequence (xn)n∈N ∈ X

(iii) ∀x0 ∈ X ∀ ε > 0 ∃ δ > 0 : ‖x− x0‖ < δ =⇒ ‖Tx− Tx0‖ < ε

(iv) U ⊆ Y open =⇒ T−1(U) = {x ∈ X : f(x) ∈ U} open in X .

Definition 2.2. Let X,Y be normed spaces over the same field K. For a linear
map T : X → Y define the operator norm

‖T ‖ := sup{‖Tx‖ : x ∈ X, ‖x‖ = 1}.

If ‖T ‖ <∞ then T is called a bounded linear operator and ‖T ‖ is the operator norm
of ‖T ‖.

Remark 2.3. (i) For a continuous linear map T : X → Y

‖Tx‖ ≤ ‖T ‖ ‖x‖, x ∈ X.

Proof. The inequality is obvious for x = 0 or ‖x‖ = 1. For x ∈ X \ {0} let
x̃ = ‖x‖−1x. By definition of ‖T ‖ we find ‖Tx‖ = ‖x‖ ‖T x̃‖ ≤ ‖x‖ ‖T ‖. Note
that the inequality is also true if T is unbounded and x 6= 0.
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(ii) The following is easy to check:

‖T ‖ = sup{‖Tx‖ : x ∈ X, ‖x‖ = 1}
= sup{‖Tx‖ : x ∈ X, ‖x‖ ≤ 1}

= sup
{‖Tx‖

‖x‖ : x ∈ X, x 6= 0
}

= inf{M ∈ R : ∀x ∈ X ‖Tx‖ ≤M‖x‖}.

Remark 2.4. (i) For S, T ∈ L(X,Y ) and λ ∈ K we define

(λT + S) : X → Y, (λT + S)x := λTx+ Sx.

Since the sum and composition of continuous functions is continuous, and
(λT + S obviously is linear, L(X,Y ) is a vector space.

It will be shown in Theorem 2.6 that ‖ · ‖ is indeed a norm. Note the the
operator norm depends on the norms on X and Y . This is can be made
explicit using the notation ‖T ‖L(X,Y ), or similar notation.

(ii) Let X,Y, Z be normed spaces and T ∈ L(X,Y ), S ∈ L(Y, Z). Then

ST : X → Z, STx := S(Tx).

Obviously, ST ∈ L(X,Z) as composition of continuous linear functions and
‖ST ‖ ≤ ‖S‖ ‖T ‖ because by Remark 2.3

‖STx‖ ≤ ‖S‖ ‖Tx‖ ≤ ‖S‖ ‖T ‖ ‖x‖, x ∈ X.

In particular, L(X) is an algebra.

Theorem 2.5. Let X,Y be normed spaces, T : X → Y linear. The following is
equivalent:

(i) T is continuous.

(ii) T is continuous in 0.

(iii) T is bounded.

(iv) T is uniformly continuous.

Proof. The implications (iii) =⇒ (iv) =⇒ (i) =⇒ (ii) are obvious.

“ (ii) =⇒ (iii)”: Assume that T is not bounded. Then there exists a sequence
(xn)n∈N ⊆ X such that ‖xn‖ = 1 and ‖Txn‖ > n for all n ∈ N. Let yn := n−1xn.
Then yn → 0 but ‖Tyn‖ > 1 for all n ∈ N in contradiction to the continuity of T
in 0.

Theorem 2.6. Let X,Y be normed spaces.

(i) L(X,Y ) is a normed space.

(ii) If Y is Banach space, then L(X,Y ) is a Banach space.

Proof. (i) In Remark 2.4 we have seen that L(X,Y ) is a vector space. From defi-
nition of the operator norm it is clear that ‖T ‖ = 0 if and only if T = 0 and that
‖λT ‖ = |λ| ‖T ‖ for all λ ∈ K. To prove the triangle inequality let S, T ∈ L(X,Y )
and x ∈ X .

‖(S + T )x‖ = ‖Sx+ Tx‖ ≤ ‖Sx‖ + ‖Tx‖ ≤ ‖S‖ + ‖T ‖.

Taking the supremum over all x ∈ X with ‖x‖ = 1 yields ‖S + T ‖ ≤ ‖S‖ + ‖T ‖.
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(ii) Let (Tn)n∈N be a Cauchy sequence in L(X,Y ). For x ∈ X , the sequence
(Tnx)n∈N is a Cauchy sequence in Y because

‖Tnx− Tmx‖ ≤ ‖Tn − Tm‖ ‖x‖.

Since Y is complete, we can define

T : X → Y, Tx := lim
n→∞

Tnx.

It is easy to check that T is linear. That T is bounded and Tn → T follows as in
Example 1.13(2): For ε > 0 exists an N ∈ N such that

‖Tn − Tm‖ < ε

2
, n,m ≥ N.

In particular, for all x ∈ X it follows for n ≥ N that

‖Tx− Tnx‖ ≤ ‖Tx− Tmx‖ + ‖Tmx− Tnx‖ ≤ ‖Tx− Tmx‖ +
ε

2
, m ∈ N. (2.1)

Taking the limit m → ∞ on the right hand side yields ‖Tx − Tnx‖ ≤ ε
2 < ε. It

follows that T − Tn is a bounded linear map. Since L(X,Y ) is a vector space, also
T = Tn + (T − Tn) is a bounded linear map. In addition, (2.1) shows that Tn → T ,
n→ ∞.

Examples 2.7. In the following examples, the linearity of the operator under con-
sideration is easy to check.

(i) Let X be a normed space. Then the identity id : X → X is bounded and
‖ id ‖ = 1.

(ii) Let 1 ≤ p ≤ ∞. The left shift and the right shift on ℓp are defined by

R : ℓp → ℓp, (x1, x2, x3 . . . )n∈N 7→ (0, x1, x2, . . . ),

L : ℓp → ℓp, (x1, x2, x3 . . . )n∈N 7→ (x2, x3, . . . ).

Obviously, R and L are well-defined and linear. Moreover, R is an isometry
because ‖Rx‖p = ‖x‖p; in particular ‖R‖ = 1.
The left shift is not an isometry because, e. g., ‖L(1, 0, 0, . . . )‖p = ‖0‖p = 0 <
1 = ‖(1, 0, 0, . . . )‖p. It is easy to see that ‖Lx‖p ≤ ‖x‖p, x ∈ ℓp, implying
that ‖L‖ ≤ 1. Since ‖L(0, 1, 0, 0 . . . )‖p = ‖(1, 0, 0 . . . )‖p = ‖(0, 1, 0, 0 . . . )‖p
we also have ‖L‖ ≥ 1, so that altogether ‖L‖ = 1.
Note that LR = idℓp but RL 6= idℓp .

(iii) T : C1([0, 1], ‖·‖C1) → C([a, b], ‖·‖∞), T x = x′ with ‖x‖C1 := ‖x‖∞+‖x′‖∞.
The operator T is bounded and ‖T ‖ = 1.

Proof. The operator T is bounded with ‖T ‖ ≤ 1 because ‖Tx‖∞ = ‖x′‖∞ ≤
‖x‖∞ + ‖x′‖∞ ≤ ‖x‖C1 for all x ∈ X .
To proof that ‖T ‖ ≥ 1 let xn : [0, 1] → R, xn(t) := 1

n exp(−nt). Obviously,
xn ∈ C1([0, 1]), ‖xn‖C1 = 1

n + 1 and ‖Txn‖∞ = 1. It follows that

‖T ‖ = sup
{ ‖Tx‖∞

‖x‖
C1

: x ∈ C1([0, 1]) \ {0}
}
≥ sup

{ ‖Txn‖∞

‖xn‖C1
: n ∈ N

}

= sup
{

1
1+ 1

n

: n ∈ N
}

= 1.

(iv) T : C1([0, 1], ‖ · ‖∞) → C([a, b], ‖ · ‖∞), T x = x′ is not bounded.
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Proof. As in the example above let xn : [0, 1] → R, xn(t) := 1
n exp(−nt). It

follows that

sup
{‖Tx‖∞

‖x‖∞
: x ∈ C1([0, 1]) \ {0}

}
≥ sup

{‖Txn‖∞
‖xn‖∞

: n ∈ N
}

= sup
{

1
1
n

: n ∈ N
}

= ∞

6 Feb 2012

Lemma 2.8. let X,Y be normed spaces, X finite-dimensional. Then every linear
map T : X → Y is bounded.

Proof. Let e1, . . . , en be a basis of X . Since on X all norms are equivalent, we can
assume that

∥∥∥
n∑

j=1

αj ej

∥∥∥ =

n∑

j=1

|αj |.

Let M := max{‖T ej ‖ : j = 1, . . . , n}. Then T is bounded with ‖T ‖ ≤ M because
for x =

∑n
j=1 αj ej ∈ X

‖Tx‖Y =
∥∥∥

n∑

j=1

αjT ej

∥∥∥
Y
≤

n∑

j=1

|αj | ‖T ej ‖Y ≤M
n∑

j=1

|αj | = M‖x‖X .

Theorem 2.9. Let X,Y be normed spaces, Y a Banach space. Let D ⊆ X be a
dense subspace of X and T ∈ L(D,Y ). Then there exists exactly one continuous

extension T̂ : X → Y of T . The extension is bounded with ‖T̂‖ = ‖T ‖.

Proof. For x ∈ X choose a sequence (xn)n∈N ⊆ D which converges to x. The se-
quence is a Cauchy sequence in D, hence, by the uniform continuity of T , (Txn)n∈N

is a Cauchy sequence in Y , and therefore it converges in Y because Y is complete.
Let (ξn)n∈N be another Cauchy sequence in D which converges to x. By what was
said before, (Tξn) converges in Y . Then lim

n→∞
‖Txn− Tξn‖ = lim

n→∞
‖T (xn− ξn)‖ ≤

lim
n→∞

‖T ‖ ‖(xn − ξn)‖ = ‖T ‖ lim
n→∞

‖(xn − ξn)‖ = 0, the following operator is well

defined:

T̃ : X → Y, T̃x := lim
n→∞

Txn for any (xn)n∈N ⊆ D which converges to x.

It is not hard to see that T̃ is a linear extension of T and that ‖T̃‖ ≥ ‖T ‖. To see

that indeed equality holds, we only need to observe that by definition of T̃

{‖Tx‖ : x ∈ D, ‖x‖ = 1} = {‖T̃x‖ : x ∈ X, ‖x‖ = 1},

hence the suprema of both sets without the closure are equal (and equal to the

supremum of the closed sets). Since T̃ is linear and bounded by ‖T ‖, it is continuous.
Assume that S is an arbitrary continuous extension of T . For x ∈ X and a sequence
(xn)n∈N ⊆ D which converges to x we find

Sx = lim
n→∞

Sxn = lim
n→∞

Txn = lim
n→∞

T̂ xn = T̂ x.

Therefore, T̂ is the unique continuous extension of T .

Finally we give a criterion for the invertibility of a bounded linear operator.
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Theorem 2.10 (Neumann series). Let X be a normed space and T ∈  L(X) such
that

∑∞
n=0 T

n converges. Then id−T is invertible in L(X) and

(id−T )−1 =

∞∑

n=0

T n. (2.2)

In particular, if X is a Banach space and ‖T ‖ < 1, then id−T is invertible and

‖(id−T )−1‖ ≤ (1 − ‖T ‖)−1.

Proof. The proof is analogous to the proof for the convergence of the geometric
series. We define the partial sums Sm :=

∑m
n=0 T

n, m ∈ N0. Then

(id−T )Sm = Sm(id−T ) = id−Tm+1, m ∈ N0. (2.3)

Note that:

(i) Tm → 0 for m→ ∞ because
∑∞

m=0 T
m converges.

(ii) Sm → ∑∞
n=0 T

n for m→ ∞ by assumption.

(iii) For fixed R ∈ L(X) the maps L(X) → L(X), S 7→ RS and S 7→ SR
respectively are continuous.

Hence taking the limit m→ ∞ in (2.3) gives

(id−T )

∞∑

n=0

T n =
( ∞∑

n=0

T n
)

(id−T ) = id

implying that id−T is invertible and that (2.2) holds.

Now assume that X is a Banach space and that ‖T ‖ < 1. Then
∑∞

n=0 T
n converges

in norm because ‖T n‖ ≤ ‖T ‖n. In particular,
(∑m

j=0 T
j
)
m∈N

is a Cauchy sequence

in L(X). Since L(X) is complete by assumption on X and Theorem 2.6 the series
converges. By the first part of the proof, id−T is invertible and formula (2.2)
holds.

Application 2.11 (Volterra integral equation). Let k ∈ C([0, 1]2) and y ∈
C([0, 1]). We ask if the equation

x(s) −
∫ s

0

k(s, t)x(t) dt = y(s), s ∈ [0, 1]. (2.4)

has solution x ∈ C([0, 1]). If a solution exists, is it unique? Can the norm of the
solution be estimated in terms of y?

Solution. Note that equation (2.4) can be written as an equation in the Banach
space C([0, 1]):

x−Kx = y

where

K : C([0, 1]) → C([0, 1]), (Kx)(s) :=

∫ s

0

k(s, t)x(t) dt, s ∈ [0, 1].
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Obviously, K is a well-defined linear operator and for all x ∈ C([0, 1], s ∈ [0, 1]

|Kx(s)| =

∣∣∣∣
∫ s

0

k(s, t)x(t) dt

∣∣∣∣ ≤
∫ s

0

|k(s, t)| |x(t)| dt ≤ s ‖k‖∞ ‖x‖∞,

|K2x(s)| =

∣∣∣∣
∫ s

0

k(s, t)

∫ t

0

k(t, t1)x(t1) dt1 dt

∣∣∣∣ ≤ ‖k‖2∞ ‖x‖∞
∫ s

0

∫ t

0

dt1 dt

= ‖k‖2∞ ‖x‖∞
s2

2
.

Repeating this process, it follows that

|Knx(s)| ≤ sn

n!
‖k‖n∞ ‖x‖∞, s ∈ [0, 1], x ∈ C([0, 1]), n ∈ N,

which shows that ‖Kn‖ ≤ ‖k‖∞

n! . In particular,
∑∞

n=0K
n converges so that id−K

is invertible by Theorem 2.10. Hence equation (2.4) has exactly one solution x ∈
C([0, 1]), given by

x =

∞∑

n=0

Kny.

Moreover, ‖x‖∞ =
∥∥∥
∑∞

n=0K
ny

∥∥∥
∞

≤ ∑∞
n=0 ‖Kn‖ ‖y‖∞ ≤ ∑∞

n=0
‖k‖∞

n! ‖y‖∞ =

e ‖k‖∞‖y‖∞.

2.2 The dual space and the Hahn-Banach theorem

Definition 2.12. Let X be a normed space. X ′ := L(X,K) is the dual space of
X ; elements in the dual space are called functionals.

Note that in general the algebraic dual space, i. e., the space of all linear maps
X → K in general is larger than the topological dual space defined above.
Theorem 2.6 implies immediately:

Proposition 2.13. The dual space of a normed space X with the norm

‖x′‖ = sup{|x′(x)| : x ∈ X, ‖x‖ ≤ 1}, x′ ∈ X ′,

is a Banach space.

8 Feb 2012

Definition 2.14. Let X be normed space. p : X → R is a a seminorm if

(i) p(λx) = |λ|p(x), λ ∈ K, x ∈ X,

(ii) p(x+ y) ≤ p(x) + p(y), x, y ∈ X .

A seminorm p is called bounded if there exists an M ∈ R such that

p(x) ≤M‖x‖, x ∈ X.

If p satisfies

(i’) p(λx) = λp(x), λ ≥ 0, x ∈ X

instead of (i), then it is called a sublinear functional.
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For example, every norm on X is sublinear. If ϕ : X → K is linear, then

X → R, x 7→ |ϕ(x)|

is sublinear.

Remark. Observe that p(x) ≥ 0 for every x ∈ X and every sublinear functional p.
Moreover, note that every seminorm is a sublinear functional.

The next fundamental theorem shows that every normed space admits non-trivial
functionals (except when X = {0}).

Theorem 2.15 (Hahn-Banach theorem). Let X be normed space and p : X →
R a seminorm. Let Y ⊆ X a subspace and ϕ0 a linear functional on Y (that is,
ϕ0 : Y → K linear) with

ϕ0(y) ≤ p(y), y ∈ Y.

Then ϕ0 has an extension to a functional ϕ on X which satisfies

|ϕ(x)| ≤ p(x), x ∈ X. (2.5)

Proof. For Y = X there is nothing to show. Now assume Y 6= X . We distinguish
between the real and the complex case. First assume that X is a real vector space.

We divide the proof in two steps.

Step 1. Let z0 ∈ X \ Y and Z := span{z0, Y }. We will show that ϕ0 can be
extended to some ψ ∈ Z ′ such that (2.5) holds for all z ∈ Z.
Obviously, every linear extension of ψ must be of the form

ψc(y + λz0) = ϕ0(y) + λc, λ ∈ R, y ∈ Y

for some c ∈ R. We have to find c such that |ψc(z)| ≤ p(z), z ∈ Z, that is,

|ψc(y + λz0)| ≤ p(y + λz0), y ∈ Y, λ ∈ R. (2.6)

By assumption on ϕ0

ϕ0(x) − ϕ0(y) = ϕ0(x− y) ≤ p(x− y) ≤ p(x+ z0) + p(y + z0), y, x ∈ Y,

implying

−ϕ0(y) − p(y + z0) ≤ −ϕ0(x) + p(x+ z0), y, x ∈ Y,

so that

a := sup{−ϕ0(x) − p(x+ z0) : x ∈ Y } ≤ inf{−ϕ0(x) + p(x+ z0) : x ∈ Y } := b.

Now let c ∈ [a, b] arbitrary. We show that then ψc is an extension of ϕ0 as desired.
Let z = y + λz0 ∈ Z with y ∈ Y and λ ∈ R. Obviously ψc is continuous in 0, hence
ψc ∈ Z ′.
We have to show (2.6). For λ = 0 equation (2.6) clearly holds. For λ 6= 0:

λ > 0 : λc ≤ λb ≤ λ
(
− ϕ0( 1

λy) + p( 1
λy + z0)

)
= −ϕ0(y) + p(y + λz0),

λ < 0 : λc ≤ λa ≤ λ
(
− ϕ0( 1

λy) − p( 1
λy + z0)

)
= −ϕ0(y) + p(y + λz0).

In both cases we obtain ψc(z) = ψc(y + λz0) = ϕ0(y) + λc ≤ p(y + λz0) = p(z).
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Application to −z yields −ψc(z) = ψc(−z) ≤ p(−z) = p(z). In summary, we have
|ψ(z)| ≤ p(z), z ∈ Z.

Step 2. Let Φ be the set of all proper extensions of ϕ0 such that |ϕ(x)| ≤ p(x) for
all x ∈ D(ϕ) (the domain of ϕ). By Step 1, Φ is not empty and partially ordered
by

ϕ1 < ϕ2 ⇐⇒ ϕ2 is an extension of ϕ1.

Every totally ordered subset Φ0 has the upper bound

D(f) =
⋃

ψ∈Φ0

D(ψ), f(x) = ψ(x) for x ∈ D(ψ).

By Zorn’s lemma, Φ contains a maximal element ϕ. This ϕ is defined on X because
otherwise, by Step 1, it would not be maximal.

Now we assume that X is a complex vector space. Consider X as a vector space
over R and define the functional

V0 : Y → R, V0(y) = Re(ϕ(y)).

It is R-linear because for all x, y ∈ Y and α ∈ R

V0(αx + y) = Re(ϕ0(αx + y)) = Re(αϕ0(x) + ϕ0(y)) = αRe(ϕ0(x)) + Re(ϕ0(y))

= αV0(x) + V0(y).

In addition, V0 is bounded by the sublinear functional p

|V0(y)| = |Re(ϕ0(y))| ≤ |ϕ0(y)| ≤ p(y), y ∈ Y.

By what we have already shown, there exists an R-linear extension V ∈ L(X,R) of
V0 with |V (x)| ≤ p(x), x ∈ X . Now define

ϕ : X → C, ϕ(x) = V (x) − iV (ix).

ϕ has the following properties:

(i) ϕ is an extension of ϕ0. To see this, let y ∈ Y .

ϕ(y) = V0(y) − iV0(iy) = Re(ϕ0(y)) − i Re(ϕ0(iy)) = Re(ϕ0(y)) − i Re(iϕ0(y))

= Re(ϕ0(y)) + i Im(ϕ0(y)) = ϕ0(y).

(ii) ϕ is C-linear. To show this, let x, y ∈ X and ζ = a+ ib with a, b ∈ R.

ϕ(x + y) = V (x+ y) − iV (i(x+ y)) = V (x) + V (y) − iV (ix) − iV (iy)

= ϕ(x) + ϕ(y),

ϕ(ζx) = ϕ(ax) + ϕ(ibx) = V (ax) − iV (iax) + V (ibx) − iV (i2bx)

= a[V (x) − iV (ix)] + b[V (ix) + iV (x)]

= (a+ ib)[V (x) − iV (ix)] = ζϕ(x).

(iii) ϕ is bounded by p. To prove this, let x ∈ X and α ∈ R such that

|ϕ(x)| = eiα ϕ(x) = Re
(
ϕ(eiα x)

)
= V

(
(eiα x)

)
≤ p

(
(eiα x)

)
= p(x).

In conclusion, ϕ is a C-linear continuous extension of ϕ0 which is bounded by p as
desired.
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Remark. If in the Hahn-Banach theorem we consider only real normed spaces and
replace the seminorm p by a sublinear functional such that ϕ0(y) ≤ q(y) for all
y ∈ Y , then ϕ0 can be extented to a functional ϕ : X → K such that −q(x) ≤
ϕ(x) ≤ q(x) for all x ∈ X , see [Rud91, Theorem 3.2].

The Hahn-Banach theorem has some important corollaries.

Corollary 2.16. Let X be a normed space, Y ⊆ X a subspace and ϕ0 ∈ Y ′. Then
there exists an extension ϕ ∈ X ′ of ϕ0 such that ‖ϕ‖ = ‖ϕ0‖.

Proof. The map p : X → R, p(x) = ‖ϕ0‖ ‖x‖ is a sublinear functional on X and
|ϕ0(y)| ≤ ‖ϕ0(y)‖ ‖y‖ = p(y) for all y ∈ Y . By the Hahn-Banach theorem, ϕ0 can
be extended to a ϕ ∈ X ′ with |ϕ(x)| ≤ p(x) = ‖ϕ0‖ ‖x‖, so that ‖ϕ‖ ≤ ‖ϕ0‖. On
other hand ‖ϕ‖ ≥ ‖ϕ0‖ holds because ϕ0 is a restriction of ϕ.

The next corollary shows that X ′ does not consist only of the trivial functional and
that it separates points in X .

Corollary 2.17. Let X be a normed space, x ∈ X, x 6= 0. Then there exists a
ϕ ∈ X ′ such that ϕ(x) = ‖x‖. In particular for all x, y ∈ X:

(i) x = 0 ⇐⇒ ∀ϕ ∈ X ′ ϕ(x) = 0,

(ii) x 6= y =⇒ ∃ϕ ∈ X ′ ϕ(x) 6= ϕ(y).

Proof. Let Y := span{x} and ϕ0 ∈ Y ′ defined by ϕ0(λx) = λ‖x‖. Then ϕ0(x) =
‖x‖ and ‖ϕ0‖ = 1. By Corollary 2.16 there exists an extension ϕ ∈ X ′ of ϕ0 with
the desired properties. Statement (i) is clear; (ii) follows when (i) is applied to
x− y.

Corollary 2.18. Let X,Y be a normed spaces.

(i) ‖x‖ = sup{ϕ(x) : ϕ ∈ X ′, ‖ϕ‖ = 1}, x ∈ X.

(ii) For T : X → Y linear

‖T ‖ = sup{ϕ(Tx) : x ∈ X, ‖x‖ = 1, ϕ ∈ Y ′, ‖ϕ‖ = 1}.

Proof. (i) For all ϕ ∈ X ′ with ‖ϕ‖ = 1: ‖x‖ = ‖ϕ‖ ‖x‖ ≥ |ϕ(x)|, hence ‖x‖ ≥
sup{ϕ(x) : ϕ ∈ X ′, ‖ϕ‖ = 1}. To show that in fact we have equality, we recall that
by Corollary 2.17 there exists a ϕ ∈ X ′ with ‖ϕ‖ = 1 and ϕ(x) = ‖x‖. Hence the
formula in (i) is proved. Note the the supremum is in fact a maximum.

(ii) Let M := sup{ϕ(Tx) : x ∈ X, ‖x‖ = 1, ϕ ∈ Y ′, ‖ϕ‖ = 1}. We have to show
M = ‖T ‖. Obviously, M = ∞ if and only if ‖T ‖ = ∞. Now assume ‖T ‖ <∞. Let
ε > 0. Then there exists an x ∈ X with ‖x‖ = 1 and ‖Tx‖ ≥ ‖T ‖ − ε. Choose a
ϕ ∈ X ′ such that ‖ϕ‖ = 1 and ϕ(Tx) = ‖Tx‖. Then M ≥ ϕ(Tx) = ‖T ‖ − ε. Since
ε is arbitrary, it follows that M ≥ ‖T ‖. The revers inequality follows from

ϕ(Tx) ≤ ‖ϕ‖ ‖Tx‖ ≤ ‖ϕ‖ ‖T ‖ ‖x‖ = ‖T ‖, x ∈ X, ‖x‖ = 1, ϕ ∈ X ′, ‖ϕ‖ = 1.

Corollary 2.19. Let X be a normed space, Y ⊆ X a closed subspace. For every
x0 ∈ X \ Y exists ϕ ∈ X ′ such that ϕ|Y = 0 and ϕ(x0) = 1.

Proof. Let π : X → X/Y be the canonical projection. Then π(y) = 0, y ∈ Y , and
π(x0) 6= 0. Since X is a normed space by Example 1.13, there exists a ψ ∈ (X/Y )′

such that ϕ(π(x0)) 6= 0 and ϕ(π(x0)) = 1. Obviously ϕ = ψ ◦ π ∈ X ′ and has the
desired properties.
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Corollary 2.20. Let X be a normed space, Y ⊆ X a subspace. Then the following
are equivalent:

(i) Y = X,

(ii)
(
ϕ|Y = 0 =⇒ ϕ = 0

)
, ϕ ∈ X ′.

Theorem 2.21. Let X be a normed space.

X ′ separable =⇒ X separable.

Proof. By Proposition 1.9 the unit sphere SX′ := {x′ ∈ X ′ : ‖x′‖ = 1} is separable.
Choose dense subset {x′n : n ∈ N} of SX′ . and xn ∈ SX := {x ∈ X : ‖x‖ = 1} with
‖x′n(xn)‖ > 1

2 . Let U = span{xn : n ∈ N}. We will show U = X . Assume this is
not true. By Corollary 2.19 there exists an x′ ∈ SX′ such that x′ 6= 0 and x′|U = 0.
Let n ∈ N such that ‖x′n − x′‖ < 1

4 . This leads to the contradiction

1

2
≤ |x′n(xn)| ≤ |x′n(xn) − x′(xn)| + |x′(xn)| ≤ ‖x′n − x′‖ + |x′(xn)| < 1

4
.

2.3 Examples of dual spaces

Theorem 2.22. (i) Let 1 ≤ p <∞ and q such that

1

p
+

1

q
= 1

with the convention 1
∞ = 0. q is called the Hölder conjugate of p.

The following map is an isometric isomorphism:

T : ℓq → (ℓp)
′, (Tx)y =

∞∑

n=0

xnyn for x = (xn) ∈ ℓq, y = (yn) ∈ ℓp.

(ii) The following map is an isometric isomorphism:

T : ℓ1 → (c0)′, (Tx)y =

∞∑

n=0

xnyn for x = (xn) ∈ ℓ1, y = (yn) ∈ c0.

Proof. (i) Let 1 < p <∞. T is well-defined by Hölder’s inequality and

|(Tx)y| =
∣∣

∞∑

n=0

xnyn
∣∣ ≤ ‖x‖q‖y‖p.

Linearity and injectivity of T is clear. The inequality above gives

‖Tx‖ ≤ ‖x‖q, x ∈ ℓq. (2.7)

It remains to show surjectivity of T and that ‖Tx‖ ≥ ‖x‖, x ∈ ℓq. To this end,3 Feb 2010
let y′ ∈ (ℓp)

′ and set xn := y′(en), n ∈ N, where en is the nth unit vector in ℓp. We
will show that x := (xn)n∈N ∈ ℓq and that Tx = y′. For y′ = 0 this is clear. Now
assume that y′ 6= 0. For n ∈ N define

tn :=

{
|xn|

q

xn
, xn 6= 0,

0, xn = 0.
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Using pq − p = q we find

N∑

n=1

|tn|p =

N∑

n=1

|xn|p(q−1), N ∈ N.

Hence, for all N ∈ N,

N∑

n=1

|xn|q =
N∑

n=1

xntn =
N∑

n=1

tny
′(en) = y′

( N∑

n=1

tn en
)
≤ ‖y′‖

∥∥
N∑

n=1

tn en
∥∥
p

= ‖y′‖
( N∑

n=1

|tn|p
) 1

p ≤ ‖y′‖
( N∑

n=1

|xn|q
) 1

p .

For N large enough, the last factor in the line above is not zero, so, using 1− 1
p = 1

q ,
we obtain

( N∑

n=1

|xn|q
) 1

q ≤ ‖y′‖

implying that x ∈ ℓq. Since (Tx) en = xn en = y′ en, n ∈ N, and {en : n ∈ N} a
total subset of ℓp, it follows that Tx = y′. In particular, with the inequality above,
‖x‖q ≤ ‖y′‖ = ‖Tx‖. Together with (2.7) it follows that ‖Tx‖ = ‖x‖, that is, T is
an isometry.

The proof for p = 1 is similar.

(ii) Well-definedness and injectivity of T are clear. Moreover ‖Tx‖ ≤ ‖x‖1 for every
x ∈ ℓ1 because

∣∣
∞∑

n=0

xnyn
∣∣ ≤ ‖y‖∞

∞∑

n=0

|xn| = ‖y‖∞‖x‖1, y ∈ c0, x ∈ ℓ1.

To show that T is surjective, let y′ ∈ (c0)′ and let xn := yn(en) where en is the nth
unit vector in c0. For n ∈ N choose αn ∈ R such that |y′(en)| = exp(iαn)y′(en). It
follows that

∞∑

n=0

|xn| =
∞∑

n=0

|y′(en)| =
∞∑

n=0

exp(iαn) y′(en) = y′
( ∞∑

n=0

exp(iαn) en
)

≤ ‖y′‖
∥∥

∞∑

n=0

exp(iαn) en
∥∥
∞

= ‖y′‖.

Hence x ∈ ℓ1 and ‖x‖1 ≤ ‖y′‖. As before, since {en : n ∈ N} is a total subset of c0,
it follows that Tx = y′ and the proof is complete. (Note however, that {en : n ∈ N}
is not dense in ℓ∞.)

The theorem above shows that

(ℓp)
′ ∼= ℓq, 1 ≤ p <∞,

(c0)′ ∼= ℓ1.

Remark. Note that (ℓ∞)′ ≇ ℓ1. To see this, assume that (ℓ∞)′ ∼= ℓ1. Since ℓ1 is
separable, Theorem 2.21 would imply that also ℓ∞ is separable, in contradiction to
Example 1.26.

Other important examples are given without proof in the following theorems.
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Theorem 2.23. Let (Ω,Σ, µ) be a σ-finite measure space. Let 1 ≤ p < ∞ and q
such that 1

p + 1
q = 1. Then

T : Lq(Ω) → (Lp(Ω))′, (Tf)(g) =

∫

Ω

fg dµ, f ∈ Lq(Ω), g ∈ Lp(Ω),

is an isometric isomorphism.

Theorem 2.24 (Riesz’s representation theorem). Let K be a compact metric
space and M(K) the set of all regular Borel measures with finite variation, that is
‖µ‖ <∞ with

‖µ‖ := sup
{ ∑

V ∈Z

|µ(V )| : Z partition of K in pairwise disjoint measurable sets
}
.

Let 1 ≤ p <∞ and q such that 1
p + 1

q = 1. Then

T : M(K) → (C(K))′, (Tµ)(g) =

∫

Ω

g dµ, µ ∈M(K), g ∈ C(K),

is an isometric isomorphism.

For a proof, see [Rud87, Theorem 6.19].
The theorems above show that

(Lp)
′ ∼= Lq, 1 ≤ p <∞,

(C(K))′ ∼= M(K).

2.4 The Banach space adjoint and the bidual

Definition 2.25. Let X,Y be normed spaces and T ∈ L(X,Y ). The Banach space
adjoint of T is

T ′ : Y ′ → X ′, (T ′y′)x := y′(Tx), y′ ∈ Y ′, x ∈ X.

Obviously, T ′ is linear and continuous as composition of continuous functions, hence
T ′ ∈ L(Y ′, X ′) and the following diagram commutes

X
T

//

x′=y′◦T

  

�

�

�

�

�

�

�

�

Y

y′

��~

~

~

~

~

~

~

~

K

Theorem 2.26. Let X,Y, Z be normed spaces.

(i) The map L(X,Y ) → L(Y ′, X ′), T 7→ T ′, is linear and isometric, that is,
‖T ′‖ = ‖T ‖. In general, it is not surjective.

(ii) (ST )′ = T ′S′ for S ∈ L(Y, Z) and T ∈ L(X,Y ).

Proof. (i) Linearity of T 7→ T ′ is clear. Immediately by the definition of T ′ we have
that

‖T ′y′‖ = ‖y′ ◦ T ‖ ≤ ‖y′‖ ‖T ‖, y′ ∈ Y ′,
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hence ‖T ′‖ ≤ ‖T ‖. By Corollary 2.18 ‖T ‖ is

‖T ‖ = sup{y′(Tx) : x ∈ X, ‖x‖ = 1, y′ ∈ Y ′, ‖y′‖ = 1}.

For every ε > 0 there exist x ∈ X, ‖x‖ = 1, y′ ∈ Y ′ such that ‖T ‖ − ε < y′(Tx) =
(T ′y′)(x) ≤ ‖T ′‖ ‖y′‖ ‖x‖ = ‖T ′‖ , so ‖T ‖ ≤ ‖T ′‖.
(ii) For all z′ ∈ Z ′ and x ∈ X we have ((ST )′z′)(x) = z′(ST (x)) = z′(S(Tx)) =
(S′z′)(Tx) = T ′(S′z′)x = (T ′S′)(z′)(x), hence (ST )′ = T ′S′.

Example 2.27. Let 1 ≤ p <∞. The adjoint of the left shift

L : ℓp → ℓp, L(x1, x2, x3, . . . ) = (x2, x3, . . . )

is the right shift.

Proof. Let 1
p + 1

q = 1 and y = (yn)n∈N ∈ lq ∼= (lp)
′. Then for all x = (xn)n∈N ∈ lp:

(L′y)x = y(Lx) =

∞∑

n=1

yn(Lx)n =

∞∑

n=1

ynxn+1 =

∞∑

n=2

yn−1xn =

∞∑

n=2

(Ry)nxn

=

∞∑

n=1

(Ry)nxn = (Ry)x.

Definition 2.28. Let X be a normed space. X ′′ := (X ′)′ is the bidual of X .

For every x ∈ X the linear map

JX(x) : X ′ → K, JX(x)x′ := x′x

is linear and bounded by ‖x‖, hence JX(x) ∈ X ′′.

Theorem 2.29. The map

JX : X → X ′′, JX(x)x′ = x′x, x′ ∈ X ′

is a linear isometry. In general, it is not surjective.

Proof. We have seen above that JX is well-defined, linear and ‖JX(x)‖ ≤ ‖x‖,
x ∈ X . Now let x ∈ X and choose ϕx ∈ X ′ such that ϕx(x) = ‖x‖ (Corollary 2.17).
It follows that ‖JX(x)ϕx‖ = |ϕx(x)| = ‖x‖, hence ‖JX(x)‖ ≥ 1.

The preceding theorem gives another easy proof that every normed space X can be
completed (see Theorem 1.7).

Corollary 2.30. Every normed space is isometrically isomorphic to a dense sub-
space of a Banach space.

Proof. By the theorem above, X is isometrically isomorphic to JX(X) ⊆ X ′′. Since
X ′′ is complete (Theorem 2.6), the closure JX(X) is a Banach space.

Definition 2.31. A Banach space is called reflexive if JX is surjective.

Examples 2.32. (i) Every finite-dimensional normed space is reflexive.

(ii) ℓp is reflexive for 1 < p <∞ by Theorem 2.22.

(iii) c0 and ℓ1 are not reflexive.
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Note that there are non-reflexive Banach spaces X such that X ∼= X ′′ (but JX is
not surjective). 15 Feb

Lemma 2.33. Let X,Y be normed spaces and T ∈ L(X,Y ). Then T ′′◦JX = JY ◦T ,
that is, the following diagram commutes:

X
T

//

JX
��

Y

JY

��

X ′′ T ′′

//Y ′′

Proof. For x ∈ X and y′ ∈ Y ′

[T ′′(JX(x))](y′) = (JX(x))(T ′y′) = T ′y′x = y′(Tx) = (JY (Tx))y′ = [(JY ◦ T )(x)]y′.

If X and Y are identified with subspaces of X ′′ and Y ′′ via the canonical maps
JX and JY , then T ′′ is an extension of T . Note that with this identification S ∈
L(Y ′, X ′) is adjoint operator of some T ∈ L(X,Y ) if and only if S′(X) ⊆ Y .

Lemma 2.34. Let X be a normed space. Then J ′
X ◦ JX′ = idX′ .

Proof. Note that JX′ : X ′ → X ′′′ and J ′
X : X ′′′ → X ′. For x ∈ X , x′ ∈ X ′

[(J ′
X ◦ JX′)x′](x) = [JX′x′](JX(x)) = [JXx]x′ = x′x.

Theorem 2.35. (i) Every closed subspace of a reflexive normed space is reflex-
ive.

(ii) A Banach space X is reflexive if and only if X ′ is reflexive.

Proof. (i) Let U be a closed subspace of a reflexive normed space X and let u′′ ∈ U ′′.
We have to find a u ∈ U such that JX(u) = u′′. Let x′′0 : X ′ → K, x′′0 (x′) =
u′′(x′|U ). Obviously, x′′0 is linear and bounded because

|x′′0 (x′)| = |u′′(x′|U )| ≤ ‖u′′‖‖x′|U‖ ≤ ‖u′′‖‖x′‖,

hence x′′0 ∈ X ′′. Since X is reflexive there exists an x0 ∈ X such that JX(x0) = x′′0 .
Assume that x0 /∈ U . Since U is closed, there exists a ϕ ∈ X ′ such that ϕ|U = 0 and
ϕ(x0) = 1 (Corollary 2.19). On the other hand ϕ(x0) = 0 by choice of x0 because

x′(x0) = x′′0 (x′) = JX(x0)x′ = u′′(x′|U ), x′ ∈ X ′,

Therefore x0 ∈ U . It remains to be shown that JU (x0) = u′′, that is

u′′(u′) = u′(x0), u′ ∈ U ′.

Let u′ ∈ U ′ and choose an arbitrary extension ϕ ∈ X ′ (Corollary 2.16). By definition
of x0 it follows that

u′′(u′) = u′′(ϕ|U ) = x′′0 (ϕ) = ϕ(x0) = u′(x0).

(ii) Let X be reflexive. We have to show that JX′ : X ′ → X ′′′ is surjective. Let
x′′′0 ∈ X ′′′. The map x′0 : X → K, x′0(x) = x′′′0 (JX(x)) is linear and bounded, hence
x′0 ∈ X ′. We will show that JX′(x′0) = x′′′0 . Let x′′ ∈ X ′′. Since X is reflexive,
there exists an x ∈ X such that JX(x) = x′′. Therefore

JX′(x′0)x′′ = x′′(x′0) = JX(x)(x′0) = x′0x = x′′′0 (JX(x)) = x′′′0 (x′′),
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hence indeed JX′(x′0) = x′′′0 .

Now assume that X ′ is reflexive. By what was is already proved, X ′′ is reflexive.
Since X is a closed subspace of X ′′ via the canonical map JX , X is reflexive by part
(i) of the theorem.

Corollary 2.36. A reflexive normed space X is separable if and only if X ′ is
separable.

Proof. That separability of X ′ implies separability ofX was shown in Theorem 2.21.
If X is separable and reflexive, then also X ′′ is separable. By Theorem 2.35 X ′ is
reflexive, so we can again apply Theorem 2.21 to obtain that X ′ is separable.

Definition 2.37. Let X be a normed space. A sequence (xn)n∈N converges weakly
to x0 ∈ X if and only if

lim
n→∞

x′(xn) = x′(x0), x′ ∈ X ′.

Notation: xn
w−→ x or w- lim

n → ∞
xn = x.

If it should be emphasised that a sequence converges with respect to the norm in the
given Banach space, then the sequence is called norm convergent. Sometimes the
notion strongly convergent is used. Note, however, that in spaces of linear operators
the term “strong convergence” has another meaning (see Defintion 3.12).
The next remark shows that strong convergence is indeed stronger than weak con-
vergence.

Remarks 2.38. (i) If the weak limit of a sequence exists, then it is unique, be-
cause, by the Hahn-Banach theorem, the dual space separates points (Corollary 2.17).

(ii) Every convergent sequence is weakly convergent with the same limit.

(iii) A weakly convergent sequence is not necessarily convergent. Consider for ex-
ample the sequence of the unit vectors (en)n∈N in c0. Let ϕ ∈ c′0

∼= ℓ1. Then
lim
n∈N

ϕ(en) = 0 but the sequence of the unit vectors does not converge in norm.

Example 2.39. Let (xn)n∈N be a bounded sequence in C([0, 1]). Then the follow-
ing is equivalent:

(i) (xn)n∈N converges weakly to y ∈ C[(0, 1)].

(ii) (xn)n∈N converges pointwise to y ∈ C[(0, 1)].

Proof. “(i) =⇒ (ii)” It is easy to see that for every t0 ∈ [0, 1] the point evaluation
x 7→ x(t0) is a bounded linear functional. Hence for all t ∈ [0, 1] the sequence
(xn(t)n∈N converges to some y(t). By assumption, [0, 1] → K, t 7→ y(t) belongs to
C([0, 1]).

“(ii) =⇒ (i)” follows from Riesz’s representation theorem (Theorem 2.24) and the
Lebesgue convergence theorem (see ??).

Theorem 2.40. Every bounded sequence in a reflexive normed space contains a
weakly convergent subsequence.

Proof. Let X be a reflexive normed space and x = (xn)n∈N ⊆ X be a bounded
sequence.
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First we assume that X is separable. By theorem 2.36, also X ′ is separable. Let
{ϕn : n ∈ N} be a dense subset of X ′. We will construct a subsequence y = (yn)n∈N

of x such that for every j ∈ N the sequence (ϕj(yn))n∈N converges. The sequence
(ϕ1(xn))n∈N is bounded, so it contains a convergent subsequence

(ϕ1(xn1,1), ϕ1(xn1,2), ϕ1(xn1,3), . . . )

Now the sequence (ϕ2(xn1,j))j∈N is bounded, so it contains a convergent subse-
quence

(ϕ2(xn2,1), ϕ2(xn2,2), ϕ2(xn2,3), . . . )

Continuing like this, we obtain a sequence of subsequences xnm
= (xnm,j)j∈N, m ∈ N

such that (ϕm(xnm,j))j∈N converges. Now the “diagonal sequence” y with ym :=
xnm,m has the desired property.

Now we will show that y is weakly convergent. Let x′ ∈ X ′ and ε > 0. Choose an
k ∈ N such that ‖x′ − ϕk‖ < ε

4M where M := sup{‖xn‖ : n ∈ N} < ∞. Let N ∈ N

such that |ϕk(yn) − ϕk(ym)| < ε
2 , m,n ≥ N . It follows for m,n ≥ N :

|x′(yn) − x′(ym)| ≤ |x′(yn) − ϕk(yn)| + |ϕk(yn) − ϕk(ym)| + |ϕk(ym) − x′(ym)|
≤ 2M‖x′ − ϕk‖ + |ϕk(yn) − ϕk(ym)|
<
ε

2
+
ε

2
= ε.

This implies that (x′(yn))n∈N is a Cauchy sequence in K, hence it converges. To
show that (yn)n∈N converges weakly, define the map

ψ : X ′ → K, ψ(x′) = lim
n→∞

x′(yn).

By what is already shown, ψ is well-defined and linear. It is also bounded because

|ψ(x′)| =
∣∣ lim
n→∞

x′(yn)
∣∣ = lim

n→∞
|x′(yn)| ≤ lim

n→∞
‖x′‖ ‖(yn)‖ ≤M‖x′‖.

Hence ψ ∈ X ′′. Since X is reflexive, there exists a y0 ∈ X such that x′(y0) =
ψ(x′) = lim

n→∞
x′(yn). Hence (yn)n∈N converges weakly to y0.

Now assume that X is not separable. Let Y := span{xn : n ∈ N} where (xn)n∈N is
the bounded sequence in X chosen at the beginning of the proof. Y is separable
(Theorem 1.25) and reflexive (Theorem 2.35). Hence, by the first step of the proof,

there exists a subsequence (yn)n∈N ⊆ Y of (xn)n∈N and a y0 such that yn
w−→ y0 in

Y . Let x′ ∈ X ′. Then x′|Y ′ ∈ Y ′, hence lim
n→∞

x′(yn) = lim
n→∞

x′|Y ′(yn) = x′|Y ′(y0) =

x′(y0). Therefore we also have yn
w−→ y0 in X .

Last Change: Fri 15 Feb 10:55:26 COT 2013



D
R
A

F
T

Chapter 3. Linear operators in Banach spaces 37

Chapter 3

Linear operators in Banach

spaces

20 Feb 2012

3.1 Baire’s theorem

Theorem 3.1 (Baire-Hausdorff). Let (X, d) be a complete metric space and
(An)n∈N be a family of open dense subsets of X. Then

⋂∞
n=1An is dense in X.

Taking complements, it is easily seen that the theorem above implies

Theorem. Let (X, d) be a complete metric space and (Bn)n∈N be a family of closed
subsets of X such that

⋃∞
n=1Bn contains an open subset. Then at least one of the

sets Bn contains a non-empty open subset.

Proof of Theorem 3.1. For r > 0 and x ∈ X let B(x, r) := {ξ ∈ X : ‖x − ξ‖ < r}.
We have to show that any open ball in X has non-empty intersection with

⋂
n∈N

An.
Let ε > 0 and x0 ∈ X .
A1 is open and dense in X , hence A1∩B(x0, ε) is open and not empty. Hence there
exist ε1 ∈ (0, 2−1ε) and x1 ∈ A1 such that B(x1, ε1) ⊆ A1 ∩B(x0, ε), hence

B(x1,
ε1
2 ) ⊆ B(x1, ε1) ⊆ A1 ∩B(x0, ε).

A2 is open and dense in X , hence A2 ∩ B(x1,
ε1
2 ) is open and not empty. Hence

there exist ε2 ∈ (0, 2−2ε) and x2 ∈ A2 such that B(x2, ε2) ⊆ A2 ∩B(x1,
ε1
2 ), hence

B(x2,
ε2
2 ) ⊆ B(x2, ε2) ⊆ A2 ∩B(x1,

ε1
2 ) ⊆ A2 ∩A1 ∩B(x0, ε1).

In this way we obtain sequences (εn)n∈N and (xn)n∈N with 0 < εn < 2−nε and

B(xn,
εn
2 ) ⊆ B(xn, εn) ⊆ An ∩B(xn−1, εn−1) ⊆ An−1 ∩ . . . A2 ∩ A1 ∩B(x0, ε1).

(3.1)

Observe that xn ∈ B(xN ,
εN
2 ) for N ∈ N and n ≥ N . This implies that (xn)n∈N

is a Cauchy sequence in X because, for fixed N ∈ N and all n,m > N we obtain
d(xm, xn) ≤ d(xm, xN ) + d(xn, xN ) < 2−N+1. Since X is complete, y := lim

n→∞
xn

exists and x0 ∈ B(xN , εN ) for every N ∈ N because for fixed N , we have that
xn ∈ B(xN ,

εN
2 ) if n ≥ N . Hence (3.1) implies

y ∈ B(xN ,
εN
2 ) ⊆ B(xN−1, εN−1) ⊆ AN−1 ∩ . . . A2 ∩A1 ∩B(x0, ε1), N ≥ 2,

so y ∈ ⋂
n∈N

An ∩B(x0, ε).
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Definition 3.2. Let (X, d) be a metric space.

• A ⊆ X is called nowhere dense in X , if A does not contain an open set.

• A ⊆ X is of first category if it is the countable union of nowhere dense sets.

• A ⊆ X is of second category if it is not of first category.

Note that A is nowhere dense if and only if X \A is dense in X .
An equivalent formulation of

Theorem 3.3 (Baire’s category theorem). A complete metric space is of second
category in itself.

Examples 3.4. Q is of first category in R. R is of second category in R.

3.2 Uniform boundedness principle
22 Feb 2012

Definition 3.5. Let (X, d) be a metric space. A family F = (fλ)λ∈Λ of maps
X → R is called uniformly bounded if there exists an M ∈ R such that

|fλ(x)| ≤M, x ∈ X, λ ∈ Λ.

The next theorem shows that a family of pointwise bounded continuous functions
on a complete metric space is necessarily uniformly continuous on a certain ball.

Theorem 3.6 (Uniform boundedness principle). Let X be a complete metric
space, Y a normed space and F ⊆ C(X,Y ) a family of continuous functions which
is pointwise bounded, i. e.,

∀x ∈ X ∃Cx ≥ 0 ∀ f ∈ F ‖f(x)‖ < Cx.

Then there exists an M ∈ R, x0 ∈ X and r > 0 such that

∀x ∈ Br(x0) ∀ f ∈ F ‖f(x)‖ < M. (3.2)

Proof. For n ∈ N let

An :=
⋂

f∈F

{x ∈ X : ‖f(x)‖ ≤ n}.

Note that for every n ∈ N the set {x ∈ X : ‖f(x)‖ ≤ n} is closed because f and ‖ ·‖
are continuous. Since all An are intersections of closed sets, they are closed. Let
x ∈ X . Since F is pointwise bounded, there exists an nx ∈ N such that x ∈ Anx

,
hence X ⊆ ∪n∈NAn. By Baire’s theorem exists an N ∈ N, x0 ∈ X , r > 0 such that
Br(x0) ⊆ AN , that is, (3.2) is satisfied with M = N .

The Banach-Steinhaus theorem is obtained in the special case of linear bounded
functions.

Theorem 3.7 (Banach-Steinhaus theorem). Let X be a Banach space, Y a
normed space and F ⊆ L(X,Y ) a family of continuous linear functions which is
pointwise bounded, i. e.,

∀x ∈ X ∃Cx ≥ 0 ∀ f ∈ F ‖f(x)‖ < Cx.

Then there exists an M ∈ R such that

‖f‖ < M, f ∈ F .
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Proof. By the uniform boundedness principle there exists an open ball Br(x0) ⊆ X
and an M ′ ∈ R such that ‖f(x)‖ < M ′ for all x ∈ Br(x0) and f ∈ F . For x ∈ X
with ‖x‖ = 1 and f ∈ F we find

‖f(x)‖ =
1

r
‖f(rx)‖ =

1

r
‖f(x0) − f(x0 − rx)‖

≤ 1

r
(‖f(x0)‖ + ‖f(x0 − rx︸ ︷︷ ︸

∈Br(x0)

)‖) ≤ 2M ′

r
=: M,

showing that F is uniformly bounded by M .

Corollary 3.8. Let X be a normed space and A ⊆ X. Then the following are
equivalent:

(i) A is bounded.

(ii) For every x′ ∈ X ′ the set {x′(a) : a ∈ A} is bounded.

Proof. “(i) =⇒ (ii)” is clear.

“(ii) =⇒ (i)” The family (JX(a))a∈A ⊆ X ′′ is pointwise bounded by assumption.
By the Banach-Steinhaus theorem there exists a M ∈ R such that

‖a‖ = ‖JX(a)‖ ≤M, a ∈ A.

Hence A is bounded.

Corollary 3.9. Every weakly convergent sequence in a normed space is bounded.

Proof. Let X be a normed space and (xn)n∈N be a weakly convergent sequence in
X . By hypothesis, for every x′ ∈ X ′ the set {x′(xn) : n ∈ N} is bounded. Therefore,
by Corollary 3.8, the set {xn : n ∈ N} is bounded.

The following theorem follows directly from Theorem 2.40 and Corollary 3.9.

Theorem 3.10. Let (X, ‖ · ‖) be a normed space, (xn)n∈N and x0 ∈ X. Then the
following is equivalent:

(i) x0 = w- lim
n → ∞

xn.

(ii) (xn)n∈N is bounded and there exists a total subset M ′ ⊆ X ′ such that

lim
n→∞

f(xn) = f(x0), f ∈M ′.

Corollary 3.11. Let X be Banach space and A′ ⊆ X ′. Then the following is
equivalent:

(i) A′ is bounded.

(ii) For all x ∈ X the set {a′(x) : a′ ∈ A′} is bounded.

Proof. The implication “(i) =⇒ (ii)” is clear. The other direction follows directly
from the Banach-Steinhaus theorem.

Note that for “(ii) =⇒ (i)” the assumption that X is a Banach space is necessary.
For example, let d = {x = (xn)n∈N : xn 6= 0 for at most finitely many n} ⊆ ℓ∞.
d is a non-complete normed space (see Example 1.15 (5)). For m ∈ N define the
linear function ϕm : d→ K by ϕm(en) = mδm,n where δm,n is the Kronecker delta.
Obviously ϕm ∈ d′ and ‖ϕm‖ = m, hence the family (ϕm) is not bounded in d′, but
for every fixed x ∈ d the set {ϕm(x) : m ∈M} is.
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Definition 3.12. Let X,Y be normed spaces, (Tn)n∈N ∈ L(X,Y ) a sequence of
bounded linear operators and T ∈ L(X,Y ).

(i) (Tn)n∈N converges to T , denoted by lim
n→∞

Tn = T , if and only if

lim
n→∞

‖Tn − T ‖ = 0.

(ii) (Tn)n∈N converges strongly to T , denoted by s- lim
n → ∞

Tn = T or Tn
s−→ T , if and

only if

lim
n→∞

‖Tnx− Tx‖ = 0, x ∈ X.

(iii) (Tn)n∈N converges weakly to T , denoted by w- lim
n → ∞

Tn = T or Tn
w−→ T , if and

only if

lim
n→∞

|ϕ(Tnx) − ϕ(Tx)| = 0, x ∈ X, ϕ ∈ Y ′.

Remark. (i) The limits are unique if they exist.

(ii) Convergence in norm implies strong convergence and the limits are equal.
Strong convergence implies weak convergence and the limits are equal.

The reverse implications are not true:

• Let X = ℓ2(N), Tn : X → X, Tnx = (x1, . . . , xn, 0, . . . ) for x = (xm)m∈N.
Then T converges strongly to id but ‖Tn − id ‖ = 1 for all n ∈ N, so that
(Tn)n∈N does not converge to id in norm.

• Let X = ℓ2(N), Tn : X → X, Tnx = (0, . . . , 0, x1, x2, . . . ) (n leading zeros)
for x = (xm)m∈N. Then T converges weakly to 0 but ‖Tnx‖ = 1 for all n ∈ N,
so that (Tn)n∈N does not converge strongly to 0.

Proposition 3.13. Let X be a Banach space, Y be a normed space and (Tn)n∈N ⊆
L(X,Y ) such that for all x ∈ X the limit Tx := lim

n∈N

Tnx exists. Then T ∈ L(X,Y ).

Proof. It is clear that T is well-defined and linear. By the uniform boundedness
principle, there exists an C ∈ R such that ‖Tn‖ < C for all n ∈ N. Now let x ∈ X
with ‖x‖ = 1. Then ‖Tx‖ = lim

n→∞
‖Tnx‖ ≤ sup

n∈N

‖Tn‖ ‖x‖ ≤ C which implies that
T ∈ L(X,Y ).

We finish this section with a result on strong convergence of positive operators on a
space of continuous functions. An operator T on a function space is called positivity
preserving if Tf ≥ 0 for every f ≥ 0 in the domain of T .

Theorem 3.14 (Korovkin). Let X = C[0, 2π] the space of the continuous func-
tions on [0, 2π] and let xj ∈ X with x0(t) = 1, x1(t) = cos(t), x2(t) = sin(t) for
t ∈ [0, 2π]. Let (Tn)n∈N ⊆ L(X) be a sequence of positivity preserving operators
such that Tnxj → xj for n → ∞ and j = 0, 1, 2. Then (Tn)n∈N converges strongly
to id, that is, Tnx→ x for all x ∈ X.

Proof. We define the auxiliary functions

yt(s) = sin2 t− s

2
, t, s ∈ [0, 2π].

Last Change: Tue 26 Feb 11:55:21 COT 2013



D
R
A

F
T

Chapter 3. Linear operators in Banach spaces 41

Note that yt(s) = 1
2 (1− cos(s) cos(t)− sin(s) sin(t)), hence yt ∈ span{x0, x1, x2}, in

particular Tnyt → yt for n→ ∞.

Now fix x ∈ X and ε > 0. Since x is uniformly continuous there exists a δ > 0 such
that for all s, t ∈ [0, 2π]

yt(s) = sin2 t− s

2
< δ =⇒ |x(t) − x(s)| < ε.

Setting α = 2‖x‖∞

δ we obtain that

|x(t) − x(s)| ≤ ε+ αyt(s), s, t ∈ [0, 2π],

because either s, t are such that yt(s) < δ, then |x(t) − x(s)| < δ by definition of δ;
or yt(s) ≥ δ, then |x(t) − x(s)| ≤ 2‖x‖∞ = αδ ≤ αyt(s). Hence we have that

−ε− αyt(s) ≤ x(t) − x(s) ≤ ε+ αyt(s), s, t ∈ [0, 2π]

=⇒ −εx0 − αyt ≤ x(t)x0 − x ≤ εx0 + αyt, t ∈ [0, 2π]

and since Tn is positive and yt is a positive function

−εTnx0 − αTnyt ≤ x(t)Tnx0 − Tnx ≤ εTnx0 + αTnyt, t ∈ [0, 2π].

Since Tnx0 → x0 and Tnyt → 1
2 (1 − cos(t)x1 − sin(t)x2) for n → ∞, we can find

N ∈ N large enough such that εTnx0 + αTnyt < εx0 + αyt + ε for all n ≥ N , hence

|x(t)Tnx0 − Tnx| ≤ εx0 + αyt + ε, t ∈ [0, 2π], n ≥ N.

Hence xTnx0 − Tnx0 converges to 0 in norm in X because by the inequality above

|x(t)(Tnx0)(t) − (Tnx)(t)| ≤ ε + αyt(t) + ε = 2ε, t ∈ [0, 2π], n ≥ N.

That Tnx→ x follows now from

‖x− xTnx0‖∞ + ‖xTnx0 − Tn‖∞ ≤ ‖x‖ ‖x0 − Tnx0‖∞ + ‖xTnx0 − Tn‖∞.

Fourier Series

Definition 3.15. Let x : R → R a 2π-periodic integrable function. The Fourier
series of x is

S(x, t) =
a0
2

+

∞∑

k=1

(ak cos(kt) + bk sin(kt)),

where

ak :=
1

π

∫ π

−π

x(s) cos(ks) ds, k ∈ N0,

bk :=
1

π

∫ π

−π

x(s) sin(ks) ds, k ∈ N.

Note that the Fourier series is a formal series only. In the following we will prove
theorems on convergence of the Fourier series.

First we will use methods from Analysis 1 to show that for a continuously differen-
tiable periodic function its Fourier series converges uniformly to the function. Next
we will use the uniform boundedness principle to show that there exist continuous
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functions whose Fourier series does not converge pointwise everywhere. Finally,
the Korovkin theorem implies that the arithmetic means of the partial sums of the
Fourier series of a periodic function converges uniformly to the function.

For a given 2π-periodic function and n ∈ N we define the nth partial sum

sn(x, t) =
a0
2

+
n∑

k=1

(ak cos(kt) + bk sin(kt)). (3.3)

Lemma 3.16.

sn(x, t) =
1

π

∫ π

−π

x(s+ t)Dn(s) ds with Dn(s) =

{
sin((n+ 1

2
)s)

2 sin( s
2
) , s 6= 0,

n+ 1
2 s = 0.

(3.4)

Dn is called Dirichlet kernel. Dn is continuous and

1

π

∫ π

−π

Dn(s) ds = 1. (3.5)

Proof. Using the trigonometric identity cos(a) cos(b)+sin(a) sin(b) = cos(a−b) and
that x is 2π-periodic we obtain

sn(x, t) =
a0
2

+

n∑

k=1

(ak cos(kt) + bk sin(kt))

=
1

π

∫ π

−π

x(s)
(1

2
+

n∑

k=1

(cos(ks) cos(kt) + sin(ks) sin(kt))
)

ds

=
1

π

∫ π

−π

x(s)
(1

2
+

n∑

k=1

cos(k(s− t))
)

ds

=
1

π

∫ π

−π

x(s + t)
(1

2
+

n∑

k=1

cos(ks)
)

ds.

Now we calculate for s 6= 0

1

2
+

n∑

k=1

cos(ks) =
1

2
+

1

2

n∑

k=1

(eıs + e−iks) =
1

2

n∑

k=−n

eıks =
e−ins

2

2n∑

k=0

eıks

=
e−ins

2

eı2ns−1

eıs−1
=

1

2

eı(n+
1
2
)s− e−ı(n+ 1

2
)s

eıs/2 − e−ıs/2
=

sin((n+ 1
2 )s)

2 sin s
2

= Dn(s).

Note that lim
s→0

Dn(s) = n+ 1
2 = 1

2 +
∑n

k=1 cos(0). For the proof of (3.5) let x = 1 a

constant function on R. Then, by (3.3),

1

π

∫ π

−π

Dn(s) ds = sn(x, t) = x(t) = 1.

Theorem 3.17. Let x : R → R be a 2π-periodic continuously differentiable func-
tion. Then the Fourier series of x converges uniformly to x.

Proof. Let x : R → R a 2π-periodic continuously differentiable function. Let ε > 0
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and h ∈ (0, π) such that h < ε
π‖x′‖∞

. Using (3.4) and (3.5) it follows that

|x(s) − sn(x, t)| =
∣∣∣ 1

π

∫ π

−π

(x(s+ t) − x(t))Dn(s) ds
∣∣∣

≤ 1

π

( ∣∣∣
∫ −h

−π

. . . ds
∣∣∣

︸ ︷︷ ︸
=:An(t)

+

∫ h

−h

| . . . | ds
︸ ︷︷ ︸

=:Bn(t)

+
∣∣∣
∫ π

h

. . . ds
∣∣∣

︸ ︷︷ ︸
=:Cn(t)

)
.

We have to show that An(t), Bn(t) and Cn(t) tend to 0 for n→ ∞ uniformly in t.
Using the mean value theorem and that π

2σ ≤ sin(σ) for σ ∈ [0, π/2] we obtain

Bn(t) =

∫ h

−h

|x(s+ t) − x(t)|
2 sin | s2 |

| sin((n+ 1
2 )s)|︸ ︷︷ ︸

≤1

ds ≤
∫ h

−h

‖x′‖ |s|
2 sin | s2 |

ds

≤ 2h‖x′‖∞
π

2
<
ε

2
.

Define the auxiliary function

ft(s) =
x(s+ t) − x(t)

2 sin( s2 )
, s ∈ [h, π], t ∈ [0, π].

The functions ft are continuously differentiable and ‖ft‖∞ ≤ 2‖x‖∞

2 sin(h/2) =: M1,

‖f ′
t‖∞ ≤ ‖x′‖∞

2 sin(h/2) =: M2. Note that the bounds do not depend on t. Integrating

by parts, we find

Cn(t) =
∣∣∣
∫ π

h

ft(s) sin((n+ 1
2 )s) ds

∣∣∣

=
∣∣∣−

cos((n+ 1
2 )s)

n+ 1
2

ft(s)
∣∣∣
π

h
+

∫ π

h

cos((n+ 1
2 )s)

n+ 1
2

f ′
t(s) ds

∣∣∣

≤ 1

n+ 1
2

(2M1 + (π − h)M2) =:
M

n+ 1
2

.

Note that M ′ does not depend on t. When we choose N such that M
n+ 1

2

< ε
2 we

obtain finally |x(s) − sn(x, t)| < ε for all t ∈ R, that is, ‖x− sn(x, · )‖∞ < ε.

Theorem 3.18. There exists a 2π-periodic continuous function x whose Fourier
series does not converge everywhere pointwise to x.

Proof. We identify the 2π-periodic functions on R with

X :=
{
x ∈ C([−π, π]) : x(−π) = x(π)

}
.

Clearly (X, ‖ · ‖∞) is a Banach space.
Note that for fixed t ∈ [−π, π] and n ∈ N

sn( · , t) : X → K

is linear and bounded, hence an element in X ′.
Assume that for every x ∈ X its Fourier series converges pointwise to x. Then
for every x ∈ X and t ∈ [−π, π] the sequence (sn(x, t))n∈N is bounded (because it
converges to x(t)). By the uniform boundedness principle there exists Ct such that
‖sn( · , t)‖ ≤ Ct for all n ∈ N. In particular, we have

‖sn( · , 0)‖ ≤ C0, n ∈ N.
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It is easy to see that

‖sn(x, 0)‖ =
1

π

∣∣∣
∫ π

−π

x(s)Dn(s) ds
∣∣∣ ≤ 1

π
‖x‖∞

∫ π

−π

|Dn(s)| ds

hence ‖sn( · , 0)‖ ≤
∫ π
−π

|Dn(s)| ds. On the other hand, the function y(s) = sign(Dn(s))
can be approximated by continuous functions ym with ‖ym‖ = 1 such that

‖sn(ym, 0)‖ =
1

π

∫ π

−π

x(s)Dn(s) ds → 1

π

∫ π

−π

sign(Dn(s))Dn(s) ds =
1

π

∫ π

−π

|Dn(s)| ds

so that finally we obtain

‖sn( · , 0)‖ =
1

π

∫ π

−π

|Dn(s)| ds < C0, n ∈ N.

However ‖sn( · , 0)‖ → ∞ for n→ ∞ because
∫ π

−π

|Dn(s)| ds = 2

∫ π

0

| sin((n+ 1
2 )s)|

2 sin s
2

ds ≥ 2

∫ π

0

| sin((n+ 1
2 )s)|

s
ds

= 2

∫ π(n+ 1
2
)

0

| sinσ|
σ

dσ ≥ 2

n−1∑

k=0

∫ (k+1)π

kπ

| sinσ|
σ

dσ

≥ 2

n−1∑

k=0

1

π(k + 1)

∫ (k+1)π

kπ

| sinσ| dσ = 4π

n−1∑

k=0

1

π(k + 1)
.

= 4

n∑

k=1

1

k
.

Hence the theorem is proved.

Finally we show that the arithmetic mean of the partial sums of the Fourier series
of a continuous function converge.

Theorem 3.19 (Fejér). As before let

X :=
{
x ∈ C([−π, π]) : x(−π) = x(π)

}

and let Tn ∈ L(X) defined by

Tnx =
1

n

n−1∑

k=0

sn(x, · ).

Then (Tn)n∈N converges strongly to id (i. e. Tnx→ x for n→ ∞, x ∈ X).

Proof. Note that the Tn are well-defined and that for all x ∈ X and t ∈ [−π, π]

Tnx(t) =
1

n

n−1∑

k=0

∫ π

−π

x(s+ t)Dk(s) ds =
1

nπ

∫ π

−π

x(s+ t))

2 sin s
2

n−1∑

k=0

sin((k +
1

2
)s) ds.

We simplify the sum in the integrand:

n−1∑

k=0

sin((k + 1
2 )s) = Im

n−1∑

k=0

ei(k+
1
2
)s = Im

(
ei

s
2

n−1∑

k=0

eiks
)

= Im
(

ei
s
2

eins−1

eis−1

)

= Im
eins−1

eis/2 − e−is/2
= Im

eins/2(eins/2 − eins/2)

eis/2 − e−is/2

= Im
2i(cos(ns/2) + i sin(ns/2)) sin(ns/2)

2i sin(s/2)
=

sin2(ns/2)

sin(s/2)
.
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If we define the Fejér kernel

Fn(s) :=

{
1
2n

sin2(ns/2)
sin(s/2) , s 6= 0,

1
2n s = 0,

we can write Tnx as

Tnx(t) =
1

π

∫
−ππFn(s)x(s + t) ds.

Note that all Fn are positive functions, hence the Tn are positive operators. To
show the theorem, it suffices to show that Tnxj → xj for x0(t) = 1, x1(t) = cos(t),
x2(t) = sin(t) (Korovkin theorem). Using (3.3) it follows that sk(x0, · ) = x0 for all
k ∈ N0 and that

s0(x1, · ) = s0(x2, · ) = 0,

sk(x2, · ) = x1, sk(x1, · ) = x2, k ∈ N.

Since Tnx0 = x0, Tnxj = n−1
n xj for j = 1, 2 and n ∈ N the theorem is proved.

3.3 The open mapping theorem

Definition 3.20. A map f between metric spaces X and Y is called open if the
image of an open set in X is an open set in Y .

Note that an open map does not necessarily map closed sets to closed sets. For
example, the projection π : R × R → R, π((s, t)) = s, is open. The set A :=
{(s, t) ∈ R× R : s ≥ 0, st ≥ 2} is closed in R× R but π(A) = (0,∞) is open in R.

Lemma 3.21. Let X,Y be Banach spaces and T ∈ L(X,Y ) such that

BY (0, r) ⊆ T (BX(0, 1)).

for some r > 0. Then for every ε ∈ (0, 1)

BY (0, (1 − ε)r) ⊆ T (BX(0, 1)).

Here BX(x0, r) := {x ∈ X : ‖x− x0‖ < r} and BY (y0, r) := {y ∈ Y : ‖y− y0‖ < r}
are open balls in X and Y respectively.

The lemma says that if T (BX(0, 1)) is dense in BY (0, r), then, for any 0 < ρ < r,
the ball BY (0, ρ) is contained in T (BX(0, 1)).

Proof. Note that the assertion is equivalent to

BY (0, r) ⊆ (1 − ε)−1T (BX(0, 1)) = T (BX(0, (1 − ε)−1)).

Fix ε > 0 and y0 ∈ BY (0, r). We have to show that there exists an x0 ∈ X with
‖x0‖ < (1 − ε)−1 and y0 = T (x0). By assumption, BY (0, r) ⊆ T (BX(0, 1)). Hence
there exists an x1 ∈ BX(0, 1) such that ‖y0 − Tx1‖ < εr. By scaling, we know
that T (BX(0, ε)) is dense in BY (0, εr). Since y0 − Tx1 ∈ BY (0, εr), there exists an
x2 ∈ BX(0, ε) such that ‖y0 − Tx1 − Tx2‖ < ε2r. Since T (BX(0, ε2)) is dense in
BY (0, ε2r), there exists an x3 ∈ BX(0, ε2) such that ‖y0−Tx1−Tx2−Tx3‖ < ε3r.
Continuing in this way, we obtain a sequence (xn)n∈N such that

‖xn‖ < εn−1, ‖y0 −
n∑

k=1

Txk‖ < rεn, n ∈ N. (3.6)
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It follows that x0 :=
∑∞

k=1 xk exists and lies in B(0, (1−ε)−1) because
∑∞
k=1 ‖xk‖ <∑∞

k=1 rε
k−1 = r(1 − ε)−1. Since T is continuous, we know that

T (x0) = T
( ∞∑

k=1

xk
)

=
∞∑

k=1

Txk.

By (3.6) it follows that
∑n

k=1 Txk converges to y0 for n→ ∞. Hence Tx0 = y0 and
the statement is proved.

In the proof of the open mapping theorem we use the following fact.

Remark. Let T : X → Y be a linear map between normed spaces X and Y and
assume that TX(B(0, 1)) is dense in BY (y, δ) for some y ∈ Y and δ > 0. Then
TX(B(0, 1)) is dense in BY (0, δ).

Proof. Obviously it suffices to show that T (BX(0, 2)) is dense in BY (0, 2δ). Since
T is linear, it follows immediately that TX(B(0, 1)) is dense in BY (−y, δ). Let
z ∈ BY (0, 2δ) and ε > 0. Note that y − z/2 ∈ BY (y, δ) and −y − z/2 ∈ BY (−y, δ).
Choose x1, x2 ∈ BX(0, 1) such that ‖Tx1−(y−z/2)‖ < ε/2 and ‖Tx2−(−y−z)‖ <
ε/2. Since x1 + x2 ∈ BX(0, 2) and

‖T (x1 + x2) − z‖ ≤ ‖Tx1 − (y − z/2)‖ + ‖Tx2 − (−y − z/2)‖ < ε,

it follows that z ∈ T (BX(0, 2)) because ε can be chosen arbitrarily small.

27 Feb 2012

Theorem 3.22 (Open mapping theorem). Let X,Y be Banach spaces and
T ∈ L(X,Y ). Then T is open if and only if it is surjective.

Proof. If T is open, then it is obviously surjective.
Now assume that T is surjective. We use the notation of the preceding lemma. By
assumption

Y =
∞⋃

k=1

T (BX(0, k)).

Since Y is complete, by Baire’s category theorem there must exist an n ∈ N and
y ∈ Y and ε > 0 such BY (y, ε) ⊆ T (BX(0, n)), in other words, T (BX(0, 1)) is dense
in BY (y/n, ε/n). By the remark above T (BX(0, 1)) is dense in BY (0, ε/n), so by
Lemma 3.21 BY (0, δ) ⊆ T (BX(0, 1)) for all δ < ε/n.

Now let U ⊆ X be an open set and u ∈ U . Then there exists an open ball BX(0, ε)
such that u+BX(0, ε) ⊆ U . By what was shown above, there exists an δ > 0 such
that Tu+BY (0, δ) ⊆ Tu+ T (BX(0, ε)) = T (u+BX(0, ε)) ⊆ T (U).

The open mapping theorem has the following important corollaries.

Corollary 3.23 (Inverse mapping theorem). Let X,Y be Banach spaces and
T ∈ L(X,Y ) a bijection. Then T−1 exists and is continuous.

Proof. By the open mapping theorem T is open, so its inverse T−1 is continuous.

Corollary 3.24. Let X,Y be Banach spaces and T ∈ L(X,Y ) injective. Then
T−1 : rg(T ) → X is continuous if and only if rg(T ) is closed.
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Proof. If rg(T ) is closed in Y then it is a Banach space. So by the previous lemma,
T : X → rg(T ) has a continuous inverse. On the other hand, if T−1 : rg(T ) → X is
continuous, then T is an isomorphism between X and rg(T ), so rg(T ) is complete,
hence closed in Y .

29 Feb 2012

Corollary 3.25. Let X be a K-vector space and ‖ · ‖1 and ‖ · ‖2 norms on X such
that X is complete with respect to both norms. Assume that there exists an α > 0
such that ‖x‖2 ≤ α‖x‖1 for all x ∈ X. Then the two norms are equivalent.

Proof. Let T : (X, ‖ · ‖1) → (X, ‖ · ‖2), T x = x. T is surjective and bounded by
α, so it is continuous. By the open mapping theorem, its inverse is continuous,
hence bounded. The statement follows now from ‖x‖1 = ‖T−1x‖1 ≤ ‖T−1‖ ‖x‖2,
x ∈ X .

3.4 The closed graph theorem

Let X,Y be normed spaces. Then X×Y is a normed space with either of the norms

‖ · ‖ : X × Y → R, ‖(x, y)‖ = ‖x‖ + ‖y‖,
‖ · ‖ : X × Y → R, ‖(x, y)‖ =

√
‖x‖2 + ‖y‖2.

Note that the two norms defined above are equivalent.

Definition 3.26. Let X,Y be normed spaces, D a subspace of X and T : D → Y
linear. T is called closed if its graph

G(T ) := {(x, Tx) : x ∈ D} ⊆ X × Y

is closed in X×Y . T is closable if G(T ) is the graph of an operator T . The operator
T is called the closure of T .

D is called the domain of T , also denoted by domT . Sometimes the notations
T : X ⊇ D → Y or T (X → Y ) are used.

Obviously, the graph G(T ) is a subspace of X × Y .

Lemma 3.27. Let X,Y normed space and D ⊆ X a subspace. Then T : X ⊇ D →
Y is closed if and only if for every sequence (xn)n∈N ⊆ D the following is true:

(xn)n∈N and (Txn)n∈N converge

=⇒ x0 := lim
n→∞

xn ∈ D and lim
n→∞

Txn = Tx0.
(3.7)

Proof. Assume that T is closed and let (xn)n∈N such that (xn)n∈N and (Txn)n∈N

converge. Then ((xn, T xn))n∈N ⊆ G(T ) converges in X × Y . Since G(T ) is closed,
lim
n→∞

(xn, T xn) = (x0, y0) ∈ G(T ). By definition of G(T ) this implies lim
n→∞

xn =

x0 ∈ D(T ) and Tx0 = y0 = lim
n→∞

Txn.

Now assume that (3.7) holds and let ((xn, T xn))n∈N ⊆ G(T ) be a sequence that
converges in X × Y . Then both (xn)n∈N and (Txn)n∈N converge, hence x0 :=
lim
n→∞

xn ∈ D and lim
n→∞

Txn = Tx0 which shows that lim
n→∞

(xn, T xn) = (x0, T x0) ∈
G(T ), hence G(T ) is closed.

Last Change: Tue 26 Feb 11:55:21 COT 2013

D
R
A

F
T

48 3.4. The closed graph theorem

Lemma 3.28. Let X,Y normed space and D ⊆ X a subspace. Then T : D → Y is
closable if and only if for every sequence (xn)n∈N ⊆ D the following is true:

lim
n→∞

xn = 0 and (Txn)n∈N converges =⇒ lim
n→∞

Txn = 0. (3.8)

The closure T of T is given by

D(T ) = {x ∈ X : ∃ (xn)n∈N ⊆ D with lim
n→∞

xn = x and (Txn)n∈N converges },

Tx = lim
n→∞

(Txn) for (xn)n∈N ⊆ D with lim
n→∞

xn = x.

(3.9)

Proof. Assume that T is closable. Then G(T ) is the graph of a linear function.
Hence for a sequence (xn)n∈N ⊆ D with lim

n→∞
xn = 0 and lim

n→∞
Txn = y for some

y ∈ Y it follows that (0, y) ∈ G(T ) = G(T ). Hence y = T0 = 0 because T is linear.

Now assume that (3.8) holds and define T as in (3.9). T is well-defined because
for sequences (xn)n∈N and (x̃n)n∈N in D with lim

n→∞
xn = lim

n→∞
x̃n = x such that

(Txn)n∈N and (T x̃n)n∈N in D converge, it follows that (xn − x̃n)n∈N converges
to 0. Since T (xn − x̃n) = T (xn − x̃n) converges, it follows by assumption that
lim
n→∞

Txn− lim
n→∞

T x̃n = lim
n→∞

T (xn− x̃n) = 0. Linearity of T is clear. By definition,

G(T ) is the closure of G(T ), so T is the closure of T .

Remarks 3.29. Let X,Y be normed spaces.

(i) Every T ∈ L(X,Y ) is closed.

(ii) If T is closed and injective, then T−1 is closed.

Proof. Closedness of {(x, Tx) : x ∈ X} ⊆ X×Y implies closeness of {(T−1y, y) :
y ∈ rg(T )} ⊆ X × Y .

(iii) If T : D ⊇ X → Y is linear and continuous, then T is closable and D(T ) =
D(T ).

Examples 3.30. (i) A continuous operator that is not closed.
Let X be normed space, S ∈ L(X) and D a dense subset of X with X \D 6= ∅.
(For example, d is dense in c0.) Then T := S|D is continuous because it is
the restriction of a continuous function, but is not closed. To see this, fix an
x0 ∈ X \D and choose a sequence (xn)n∈N ⊆ D which converges to x0. Then
(Txn)n∈N converges (to Sx0). If T were closed, this would imply that x0 ∈ D,
contradicting the choice of x0.

(ii) A closed operator that is not continuous.
Let X = C([−1, 1]), D = C1([−1, 1]) ⊆ C([−1, 1]) and T : X ⊇ D → X, Tx =
x′. Then T is closed and not continuous.

Proof. Let (xn)n∈N ⊆ D such that (xn)n∈N and (Txn)n∈N converge. From a
well-known theorem in Analysis 1 it follows that x0 := lim

n→∞
xn is differentiable

and Tx0 = x′0 = ( lim
n→∞

xn)′ = lim
n→∞

x′n = lim
n→∞

Txn.

That T is not continuous was already shown in Example 2.7 (iv) (choose
xn(t) = 1

n exp(−n(t+ 1))).
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(iii) Let X = L2(−1, 1), D = C1([0, 1]) ⊆ L2([0, 1]) and T : X ⊇ D → X, Tx =
x′. Then T is not closed.

Proof. Let xn : [−1, 1] → R, xn(t) = (t2 + n−2)
1
2 . Then (xn)n∈N ⊆ D and

xn → g for n → ∞ where g(t) = |t|, t ∈ [−1, 1]. The sequence of the
derivatives converges

x′n(t) =
t

(t2 + n−1)
1
2

→ h(t) =





1, t > 0,

−1, t < 0,

0, t = 0.

Obviously h ∈ L2(−1, 1). If T were closed, it would follow that g ∈ C1([−1, 1]),
a contradiction.

Definition 3.31. Let X,Y be Banach spaces, D ⊆ X a subspace and T : X ⊇
D → Y a linear operator. Then

‖ · ‖T : D → R, ‖x‖T = ‖x‖ + ‖Tx‖

is called the graph norm of T .

It is easy to see that ‖ · ‖T is a norm on D. Moreover, the norm defined above is
equivalent to the norm ‖x‖′T =

√
‖x‖2 + ‖Tx‖2 on D. Most of the time, the graph

norm defined in Definition 3.31 is easier to use in calculations. However, the norm
with the square root is sometimes more useful when operators in Hilbert spaces are
considered.

Lemma 3.32. Let X,Y be Banach spaces, D ⊆ X a subspace and T : X ⊇ D → Y
a closed linear operator. Then

(i) (D, ‖ · ‖T ) is a Banach space.

(ii) T̃ : (D, ‖ · ‖T ) → Y, T̃x = Tx, is continuous.

Proof. (i) To show completeness of (D, ‖ · ‖T ) let (xn)n∈N ⊆ D be a Cauchy se-
quence with respect to ‖ · ‖T . Then, by definition of the graph norm, (xn)n∈N

is a Cauchy sequence in X and (Txn)n∈N is a Cauchy sequence in Y . Since
X and Y are complete, the sequences converge. Hence, by the closeness of T ,

‖ · ‖- lim
n→∞

xn =: x0 ∈ D and xn
‖·‖T−−−→ x0.

(ii) The statement follows from ‖T̃x‖Y ≤ ‖x‖X + ‖Tx‖Y = ‖x‖T , x ∈ D.
22 Feb 2010

Lemma 3.33. Let X,Y be Banach spaces, D ⊆ X a subspace and T : X ⊇ D → Y
a closed surjective operator. Then T is open. If, in addition, T is injective, then
T−1 is continuous.

Proof. By Lemma 3.32 and the open mapping theorem (Theorem 3.22) the operator

iT̃ : (D, ‖ · ‖T ) → Y, T̃x = Tx, is open. Let U ⊆ D open with respect to the
norm in X . Then U is also open with respect to the graph norm because obviously
i : (D, ‖·‖T ) → (D, ‖·‖), ix = x, is bounded, hence continuous. Hence T (U) = T̃ (U)
is open in Y .

Now assume in addition that T is injective. Then T̃−1 : Y → (D, ‖·‖T ) is continuous

by the inverse mapping theorem. Since i is continuous, also T−1 = (T̃ ◦ i−1)−1 =

i ◦ T̃−1 is continuous.
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Lemma 3.34. Let X,Y be Banach spaces, D ⊆ X a subspace and T : X ⊇ D → Y
a closed injective linear operator such that T−1 : rg(T ) → X is continuous. Then
rg(T ) is closed.

Proof. Let (yn)n∈N be a Cauchy sequence in rg(T ) with y0 := lim
n→∞

yn. and xn :=

T−1yn, n ∈ N. Then (xn)n∈N is a Cauchy sequence in D because ‖xn − xm‖ =
‖T−1yn−T−1ym‖ ≤ ‖T−1‖ ‖yn− ym‖. Hence (xn)n∈N converges in X and its limit
x0 belongs to D and y0 = lim

n→∞
yn = Tx0 ∈ rg(T ) because T is closed.

Theorem 3.35 (Closed graph theorem). Let X,Y be Banach spaces and T :
X → Y be a closed linear operator. Then T is bounded.

Proof. Note that the projections

π1 : G(T ) → X, π1(x, Tx) = x,

π2 : G(T ) → Y, π2(x, Tx) = Tx

are continuous and that π1 is bijective. By assumption the graph G(T ) is closed
in X × Y , hence a Banach space, so π1 is open by the open mapping theorem
(Theorem 3.22). Hence T = π2 ◦ π−1

1 is continuous.
5 Mar 2012

Lemma 3.36. Let X,Y be Banach spaces, D ⊆ X a subspace and T : D → Y
linear. Then the following are equivalent:

(i) T is closed and D(T ) is closed.

(ii) T is closed and T is continuous.

(iii) D(T ) is closed and T is continuous.

Proof. (i) =⇒ (ii) follows from the closed graph theorem because by assumption D
is Banach space.
(ii) =⇒ (iii) and (iii) =⇒ (i) are clear.

Example 3.37. An everywhere defined linear operator that is not closed.

Let X be an infinite dimensional Banach space and (xλ)λ∈Λ an algebraic basis of
X . Without restriction we can assume ‖xλ‖ = 1, λ ∈ Λ. Choose N → Λ, n 7→ λn
be an injection. Then the operator

T : X → X, T (x) =
∑

n∈N

n cλn
xλn

for x =
∑

λ∈Λ

cλn
xλn

∈ X,

is well-defined. Assume that T is closed. By the closed graph theorem T must be
bounded, but ‖Txλn

‖ = ‖nxλn
‖ = n while ‖xλn

‖ = 1, n ∈ N contradicting the
boundedness of T .

3.5 Projections in Banach spaces

Definition 3.38. Let X be a vector space. P : X → X is called a projection (on
rg(P )) if P 2 = P .

Note that if P is a projection, then also id−P is a projection because (id−P )2 =
id−2P + P 2 = id−P .
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Lemma 3.39. Let X be a normed space and P ∈ L(X) a projection. Then the
following holds:

(i) Either P = 0 or ‖P‖ ≥ 1.

(ii) ker(P ) and rg(P ) are closed.

(iii) X is isomorphic to kerP ⊕ rg(P ).

Proof. (i) Note that ‖P‖ = ‖P 2‖ ≤ ‖P‖2, hence 0 ≤ ‖P‖−‖P‖2 = ‖P‖(1−‖P‖).

(ii) Since P is continuous, ker(P ) = P−1({0}) is closed. To see that rg(P ) is
closed, it suffices to show that rg(P ) = ker(id−P ). Indeed, x ∈ ker(id−P ) implies
x = Px ∈ rg(P ) and y ∈ rg(P ) implies (P − id)y = Py − y = y − y = 0, hence
y ∈ ker(id−P ).

(iii) Obviously x 7→ ((id−P )x, Px) ∈ ker(P ) ⊕ rg(P ) is well defined, linear, bi-
jective and continuous because id−P and P are continuous. By the inverse map-
ping theorem then also the inverse operator is continuous which shows that X and
ker(P ) ⊕ rg(P ) are isomorphic.

Theorem 3.40. Let X be a normed space, U ⊆ X a finite dimensional subspace.
Then there exists a linear continuous projection P of X to U with ‖P‖ ≤ dimU .

Proof. From linear algebra we know that there exist bases (u1, . . . , un) of U and
(ϕ1, . . . , ϕn) of U ′ such that ‖uk‖ = ‖ϕk‖ = 1 and ϕj(uk) = δjk, j, k = 1, . . . , n.
By the Hahn-Banach theorem the ϕk can be extended to linear functionals ψk on
X with ‖ϕk‖ = ‖ψk‖. We define

P : X → X, Px =

n∑

k=1

ϕk(x)uk.

Obviously P is a linear bounded projection on U and ‖Px‖ ≤ ∑n
k=1 ‖ϕk‖ ‖x‖ ‖uk‖ =∑n

k=1 ‖x‖ = n‖x‖.

Theorem 3.41. Let X be Banach space, U, V ⊆ X closed subspaces such that X
and U ⊕ V are algebraically isomorphic. Then the following holds:

(i) X is isomorphic to V ⊕ U with ‖(u, v)‖ = ‖u‖ + ‖v‖.

(ii) There exists a continuous linear projection of X on U .

(iii) V is isomorphic to X/U .

Proof. (i) Since U and V are Banach spaces, their sum U ⊕ V is a Banach space.
The map U ⊕ V → X, (u, v) 7→ u+ v is linear, continuous and bijective. Hence by
the inverse mapping theorem, also the inverse is continuous.

(ii) P : X → U, u+ v 7→ u is the desired projection.
(iii) The map V 7→ X/V, v 7→ [v] is linear, bijective and continuous. Since U is
closed, X/U is a Banach space. By the inverse mapping theorem it follows that V
and X/U are isomorphic.

Definition 3.42. let X be a Banach space. A closed subspace Ui of X is called
complemented if there exists a continuous linear projection on U .

Remark 3.43. Note that not every closed subspace of a Banach space is comple-
mented in the sense of the theorem above. For example, c0 is not complemented as
subspace of ℓ∞.

7 Mar 2012
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3.6 Weak convergence

Definition 3.44. Let X be a set and U = (Uλ)λ∈Λ a family of subsets of sets in
X . The smallest topology on X such that all Uλ are open is called the topology
generated by U , denoted by τ(U).

Obviously τ(U) exists and is the intersection of topologies containing all Uλ.

Lemma 3.45. Let X be a set, U = (Uλ)λ∈Λ a family of subsets of X. Then the
topology generated by U consists of all sets of the form

⋃

γ∈Γ

n⋂

k=1

Uγ,k, (3.10)

that is, of arbitrary unions of finite intersections of sets in the family U .

Proof. Let τ(U) be the topology generated by U and σ(U) the system of sets de-
scribed in (3.10). It is not hard to see that σ(U) is a topology containing U , hence
containing τ(U). On the other hand, all sets of the form (3.10) are open in τ(U),
so σ(U) ⊆ τ(U).

Definition 3.46. Let X be a set, Λ be an index set and for every λ ∈ Λ let (Yλ, τλ)
be a topological space. Consider a family F = (fλ : X → Yλ) of functions. The
smallest topology on X such that all fλ are continuous, is called the initial topology
on X , denoted by σ(X,F).

Note that τ(F) = τ
(
{f−1
λ (Uλ) : λ ∈ Λ, Uλ ∈ τλ}.

Definition 3.47. Let X be a normed space. The topology σ(X,X ′) is called the
weak topology on X . The topology σ(X ′, X) is called the weak ∗ topology on X ′

when X is identified with a subset of X ′′ by the canonical map JX .

Note that σ(X ′, X) ⊆ σ(X ′, X ′′) ⊆ σ‖·‖.

Lemma 3.48. Let X be a normed space. A sequence (xn)n∈N ⊆ X is weakly con-
vergent to some x0 ∈ X (in the sense of Definition 2.37) if and only if it converges
in the weak topology σ(X,X ′).

Proof. Assume that (xn)n∈N is weakly convergent with x0 := w- lim
n → ∞

xn and let U

be a σ(X,X ′)-open set containing x0. Then there exist ϕ1, . . . , ϕn such that

x0 ∈
n⋂

k=1

ϕ−1
j (Vj) ⊆ U

with Vj open subsets in R containing ϕj(x0). Since lim
n→∞

ϕ(xn) = ϕ(x0) for all

ϕ ∈ X ′, we can choose an N ∈ N such that ϕj(xn) ∈ Uj for all n ≥ N and all
j = 1, . . . , n. Hence xn ∈ ⋂n

k=1{ϕ−1
j (Vj)} ⊆ U for all n ≥ N .

Now assume that (xn)n∈N ⊆ X converges to x0 in the weak topology. Since by defi-
nition of σ(X,X ′) all functionals ϕ ∈ X ′ are continuous, it follows that (ϕ(xn))n∈N

converges to ϕ(x0) for every ϕ ∈ X ′.

Lemma 3.49. Let X be a normed space, (xn)n∈N ⊆ X and (ϕn)n∈N ⊆ X ′.
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(i) x0 = w- lim
n → ∞

xn =⇒ ‖x0‖ ≤ lim inf
n→∞

xn.

(ii) ϕ0 = w ∗ - lim
n→ ∞

ϕn =⇒ ‖ϕ0‖ ≤ lim inf
n→∞

ϕn.

Proof. (i) For x0 = 0 the assertion is clear. By the Hahn-Banach theorem there
exists an ϕ ∈ X ′ such that ϕ(x0) = ‖x0‖ and ‖ϕ‖ = 1. Hence

‖x0‖ = ‖ lim
n→∞

ϕ(xn)‖ ≤ lim inf
n→∞

‖ϕ‖ ‖xn‖ = lim inf
n→∞

‖xn‖.

(ii) Let ε > 0. Then there exists an x ∈ X with ‖x‖ = 1 such that ‖ϕ0‖ − ε <
‖ϕ0(x)‖. The statement follows as above:

‖ϕ0‖ − ε < ‖ϕ0(x)‖ = lim
n→∞

‖ϕn(x)‖ ≤ lim inf
n→∞

‖ϕn‖ ‖x‖ = lim inf
n→∞

‖ϕn‖.

Definition 3.50. Let X be a topological space. A function f : X → R is called
upper semicontinuous if lim sup

xn→x
f(xn) ≤ f(x). It is called lower semicontinuous if

lim inf
xn→x

f(xn) ≥ f(x).

Hence the lemma above states that ‖·‖ is lower semicontinuous in the weak topology.

Definition 3.51. For λ ∈ Λ let (Xλ, τλ) be topological spaces. Define

X :=
∏

λ∈Λ

Xλ :=
{
f : Λ →

⋃

λ∈Λ

Xλ : f(λ) ∈ Xλ, λ ∈ Λ
}
.

The product topology on X is the weakest topology such that for every λ ∈ Λ the
projection

πλ : X → Xλ, πj(f) = f(j),

is continuous.

Lemma 3.52. Let X as above with the product topology. Let O ⊆ P(X) be the
family of all sets U ⊆ X such that for every u ∈ U there exist λj ∈ Λ, Uj ⊆ Xλj

open, j = 1, . . . , n, such that

u ∈ {s ∈ X : s(λj) ∈ Uj , j = 1, . . . , n} =

n⋂

j=1

π−1
λj

(Uj)︸ ︷︷ ︸
open in O

⊆ U.

Then O is the product topology on X.

Proof. This is a special case of Lemma 3.48.

Theorem 3.53 (Banach-Alaoglu). Let X be a normed space. Then the closed
unit ball K ′

1 := {ϕ ∈ X ′ : ‖ϕ‖ ≤ 1} is weak ∗-compact.

Proof. For x ∈ X define the set Ax := {z ∈ K : |z| ≤ ‖x‖} and let A :=
∏
x∈X Ax

together with the product topology. By Tychonoff’s theorem A is compact. Note
that elements a ∈ A are maps X → K with |a(x)| ≤ ‖x‖, x ∈ X . Hence K ′

1 ⊆ A
because |ϕ(x)| ≤ ‖ϕ‖ ‖x‖ ≤ ‖x‖ for every ϕ ∈ K ′

1. The product topology on A is the
weakest topology on A such that for every x ∈ X the map πx : A→ K, a 7→ a(x) is
continuous. Hence the topology on K ′

1 induced by A is exactly the weak ∗-topology
on K ′

1. So it suffices to show that K ′
1 is closed in A with the product topology.
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Let ϕ ∈ K ′
1 and let x, y ∈ X and ε > 0. Then

U := {a ∈ A : |a(x+ y) − ϕ(x+ y)| < ε, |a(x) − ϕ(x)| < ε, |a(y) − ϕ(y)| < ε}

is an open neighbourhood of ϕ. Hence there exists an g ∈ K ′
1 ∈ U ∩K ′

1. Since g is
linear, it follows that

|ϕ(x + y) − ϕ(x) − ϕ(y)| = |ϕ(x + y) − ϕ(x) − ϕ(y) − g(x+ y) + g(x) + g(y)|
≤ |ϕ(x+ y) − g(x+ y)| + |ϕ(x) − g(x)| + |ϕ(y) − g(y)| < 3ε.

Since ε was arbitrary, this implies ϕ(x+y) = ϕ(x)+ϕ(y). Similarly it can be shown
that ϕ(λx) = λϕ(x) for λ ∈ K and x ∈ X . It follows that ϕ is linear. Since ϕ ∈ A,
it follows that ‖ϕ‖ ≤ 1, hence ϕ ∈ K ′

1.
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Chapter 4

Hilbert spaces

4.1 Hilbert spaces

Definition 4.1. Let X be a K-vector space. A map

〈· , ·〉 : X ×X → K

is a sesquilinear form on X if for all x, y, z ∈ X , λ ∈ K

(i) 〈λx+ y , z〉 = λ〈x , z〉 + 〈y , z〉,
(ii) 〈x , λy + z〉 = λ〈x , y〉 + 〈x , z〉.

The inner product is called

• hermitian ⇐⇒ 〈x , y〉 = 〈y , x〉, x, z ∈ X ,

• positive semidefinite ⇐⇒ 〈x , x〉 ≥ 0, x ∈ X ,

• positive (definite) ⇐⇒ 〈x , x〉 > 0, x ∈ X \ {0}.

Definition 4.2. A positive definite hermitian sesquilinear form on a K-vector X
is called an inner product on X and (X, 〈· , ·〉) is called an inner product space (or
pre-Hilbert space).

Note that 〈x , x〉 ∈ R, x ∈ X , for a hermitian sesquilinear form X because 〈x , x〉 =
〈x , x〉. 14 Mar 2012

Lemma 4.3 (Cauchy-Schwarz inequality). Let X be a K-vector space with
inner product 〈· , ·〉. Then for all x, y ∈ X

|〈x , y〉|2 ≤ |〈x , x〉| |〈y , y〉|, (4.1)

with equality if and only if x and y are linearly dependent.

Proof. For x = 0 or y = 0 there is nothing to show. Now assume that y 6= 0. For
all λ ∈ K

0 ≤ 〈x+ λy , x+ λy〉 = 〈x , x〉 + λ〈y , x〉 + λ〈x , y〉 + |λ|2〈y , y〉.

In particular, when we choose λ = − 〈x ,y〉
〈y ,y〉 we obtain

0 ≤ 〈x+ λy , x+ λy〉 = 〈x , x〉 − |〈y , x〉|2
〈y , y〉 − |〈x , y〉|2

〈y , y〉 +
|〈x , y〉|2
〈y , y〉

= 〈x , x〉 − |〈x , y〉|2
〈y , y〉
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which proves (4.1). If there exist α, β ∈ K such that αx + βy = 0, then obviously
equality holds in (4.1). On the other hand, if equality holds, then 〈x+λy , x+λy〉 = 0
with λ chosen as above, so x and y are linearly dependent.

Note that (4.1) is true also in a space X with a semidefinite hermitian sesquilinear
form but equality in (4.1) does not imply that x and y are linearly dependent.

Lemma 4.4. An inner product space (X, 〈· , ·〉) becomes a normed space by setting

‖x‖ := 〈x , x〉 1
2 , x ∈ X.

Proof. The only property of a norm that does not follow immediately from the
definition of ‖ · ‖ is the triangle inequality. To prove the triangle inequality, choose
x, y ∈ X . Using the Cauchy-Schwarz inequality, we find

‖x+ y‖2 = ‖x‖2 + 2 Re〈x , y〉 + ‖y‖2 ≤ ‖x‖2 + 2|〈x , y〉| + ‖y‖2

≤ ‖x‖2 + 2‖x‖ ‖y‖ + ‖y‖2 = (‖x‖ + ‖y‖)2.

In the following, we will always consider inner product spaces endowed with the
topology induced by the norm.

Definition 4.5. A complete inner product space is called a Hilbert space.

Lemma 4.6. Note that the scalar product on a inner product space X is a continu-
ous map X×X → K when X×X is equipped with the norm ‖(x, y)‖ = ‖x‖X+‖y‖X.

Proof. The statement follows from

|〈x1 , x2〉 − 〈y1 , y2〉| = |〈x1 , x2 − y2〉 − 〈y1 − x1 , y2〉|
≤ ‖x1‖ ‖x2 − y2‖ − ‖y1 − x1‖ ‖y2‖.

The polarisation formula allows to express the inner product of two elements of X
in terms of their norms.

Theorem 4.7 (Polarisation formula). Let X be an inner product space over K

and x, y ∈ X. Then

〈x , y〉 =
1

4

(
‖x+ y‖2 − ‖x− y‖2

)
, if K = R,

〈x , y〉 =
1

4

(
‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2

)
, if K = C.

Proof. Straightforward calculation.

A necessary and sufficient criterion for a normed space to be an inner product space
is the following.

Theorem 4.8 (Parallelogram identity). Let X be normed space. Then the
norm on X is generated by an inner product if and only if for all x, y ∈ X the
parallelogram identity is satisfied:

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.

In this case, the inner product is given by the polarisation formula.
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Proof. Assume that the norm is generated by the inner product 〈· , ·〉 and let ‖x‖ =

〈x , x〉 1
2 . Then for all x, y ∈ X parallelogram identity holds:

‖x+ y‖2 + ‖x− y‖2 = ‖x‖2 + ‖y‖2 + 2 Re〈x , y〉 + ‖x‖2 + ‖y‖2 − 2 Re〈x , y〉
= 2‖x‖2 + 2‖y‖2.

Now assume that the norm on X is such that the parallelogram identity holds and
for x, y ∈ X define 〈x , y〉 by the polarisation formula. We prove that 〈· , ·〉 is an
inner product on X in the case K = C. The case K = R can be proved analogously.

• Positivity.

4〈x , x〉 = ‖x+ x‖2 − ‖x− x‖2 + i ‖x+ ix‖2 − i ‖x− ix‖2

= 4‖x‖2 + i ‖x+ ix‖2 − i ‖ix+ x‖2 = 4‖x‖2 ≥ 0.

• Hermiticity.

4〈x , y〉 = ‖x+ y‖2 − ‖x− y‖2 + i ‖x+ iy‖2 − i ‖x− iy‖2

= ‖y + x‖2 − ‖y − x‖2 + i ‖ − ix+ y‖2 − i ‖ix+ y‖2 = 4〈y , x〉.

• Additivity.

4(〈x , y〉 + 〈x , z〉)
= ‖x+ y‖2 − ‖x− y‖2 + i ‖x+ iy‖2 − i ‖x− iy‖2

+ ‖x+ z‖2 − ‖x− z‖2 + i ‖x+ iz‖2 − i ‖x− iz‖2

=
∥∥∥x+

y + z

2
+
y − z

2

∥∥∥
2

−
∥∥∥x− y + z

2
− y − z

2

∥∥∥
2

+
∥∥∥x+

y + z

2
− y − z

2

∥∥∥
2

−
∥∥∥x− y + z

2
+
y − z

2

∥∥∥
2

+ i
∥∥∥x+ i

y + z

2
+ i

y − z

2

∥∥∥
2

− i
∥∥∥x− i

y + z

2
− i

y − z

2

∥∥∥
2

+ i
∥∥∥x+ i

y + z

2
− i

y − z

2

∥∥∥
2

− i
∥∥∥x− i

y + z

2
+ i

y − z

2

∥∥∥
2

= 2
∥∥∥x+

y + z

2

∥∥∥
2

+ 2
∥∥∥y − z

2

∥∥∥
2

− 2
∥∥∥x− y + z

2

∥∥∥
2

− 2
∥∥∥y − z

2

∥∥∥
2

+ 2i
∥∥∥x+ i

y + z

2

∥∥∥
2

+ 2i
∥∥∥y − z

2

∥∥∥
2

− 2i
∥∥∥x− i

y + z

2

∥∥∥
2

− 2i
∥∥∥y − z

2

∥∥∥
2

= 2
∥∥∥x+

y + z

2

∥∥∥
2

− 2
∥∥∥x− y + z

2

∥∥∥
2

+ 2i
∥∥∥x+ i

y + z

2

∥∥∥
2

− 2i
∥∥∥x− i

y + z

2

∥∥∥
2

= 2 · 4〈x , y + z

2
〉.

If we choose z = 0 we find 〈x , y〉 = 2〈x , y2 〉, hence

〈x , y〉 + 〈x , z〉 = 2
〈
x ,
y + z

2

〉
= 〈x , y + z〉.

• Homogeneity. From the additivity we obtain 〈λx , y〉 = λ〈x , y〉 for all λ ∈ Q.
Note that 〈ix , y〉 = i〈x , y〉, hence homogeneity is proved for λ ∈ Q + iQ.
Hence for fixed x, y ∈ C the two continuous functions C → C, λ 7→ λ〈x , y〉
and C → C, λ 7→ 〈λx , y〉 must be equal because they are equal on the dense
subset Q + iQ of C.
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Theorem 4.9. The completion of an inner product space is an inner product space.

Proof. By continuity of the norm, the parallelogram identity holds on the comple-
tion X of an inner product space X . So X is an inner product space.

Examples 4.10. (i) Rn and Cn with the Euclidean inner product

〈x , y〉 =

n∑

k=1

xkyk, x = (xk)nk=1, y = (yk)nk=1,

are inner product spaces.

(ii) ℓ2(N) with

〈x , y〉 =

∞∑

k=1

xkyk, x = (xk)k∈N, y = (yk)k∈N,

is an inner product space.

(iii) Let R([0, 1]) be the vector space of the Riemann integrable functions on the
interval [0, 1]. Then

〈f , g〉 =

∫ 1

0

f(t)g(t) dt, f, g ∈ R([0, 1]),

defines a sesquilinear form on R([0, 1]) which is not positive definite, since,
for example, χ{0} 6= 0, but 〈χ{0} , χ{0}〉 = 0.

The restriction of 〈· , ·〉 to the space of the continuous functions C([0, 1]) is an
inner product which is not complete (its closure is the space L2([0, 1])).

4.2 Orthogonality

Definition 4.11. Let X be an inner product space.

(i) Elements x, y ∈ X are called orthogonal, denoted by x ⊥ y, if and only if
〈x , y〉 = 0

(ii) Subsets A,B ⊆ X are called orthogonal, denoted by A ⊥ B, if and only if
〈a , b〉 = 0 for all a ∈ A, b ∈ B.

(iii) The orthogonal complement of a set M ⊆ X is

M⊥ := {x ∈ X : x ⊥ m, m ∈M}.

Remarks 4.12. (i) Pythagoras’ theorem holds: ‖x+y‖2 = ‖x‖2+‖y‖2 if x ⊥ y.

(ii) For every set M ⊆ X its orthogonal complement M⊥ is a closed subspace of
X .

(iii) A ⊆ (A⊥)⊥ for every subset A ⊆ X .

(iv) A⊥ = (spanA)⊥ for every subset A ⊆ X .

19 Mar 2012

21 Mar 2012

26 Mar 2012

Theorem 4.13 (Projection theorem). Let H be a Hilbert space, M ⊆ H a
nonempty closed and convex subset and x0 ∈ H. Then there exists exactly one
y0 ∈M such that ‖x0 − y0‖ = dist(x0,M).
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Proof. Recall that dist(x0,M) := inf{‖x0 − y‖ : y ∈ M}. If x0 ∈ M then the
assertion is clear (choose y0 = x0).

Now assume that x0 /∈M . Without restriction we may assume x0 = 0.

Existence of y0. Let d := dist(x0,M) = inf{‖y‖ : y ∈ M}. Then there exists a
sequence (yn)n∈N ⊆ M such that lim

n→∞
‖yn‖ = d. We will show that (yn)n∈N is a

Cauchy sequence. Note that ‖ yn+ym2 ‖2 ≥ d2 because yn+ym
2 ∈ M by the convexity

of M . Hence the parallelogram identity (Theorem 4.8) yields
∥∥∥yn − ym

2

∥∥∥
2

≤
∥∥∥yn − ym

2

∥∥∥
2

+
∥∥∥yn + ym

2

∥∥∥
2

− d2

=
1

2
(‖yn‖2 + ‖ym‖2) − d2 −→ 0, n,m→ ∞.

Since X is a Banach space, (yn)n∈N converges to some y0 ∈ X , and since M is
closed, y0 ∈M .

Uniqueness of y0. Assume that there are y0, ỹ0 ∈M such that ‖y0‖ = ‖ỹ0‖ = d =
dist(x0,M). The parallelogram identity yields

d2 ≤
∥∥∥y0 + ỹ0

2

∥∥∥
2

≤
∥∥∥y0 + ỹ0

2

∥∥∥
2

+
∥∥∥y0 − ỹ0

2

∥∥∥
2

=
1

2
(‖y0‖2 + ‖ỹ0‖2) = d2.

It follows that ‖y0 − ỹ0‖ = 0, so y0 = ỹ0.

Lemma 4.14. Let M be a closed and convex subset of a Hilbert space H and fix
x0 ∈ H. For y0 ∈M the following are equivalent:

(i) ‖x0 − y0‖ = dist(x0,M),
(ii) Re〈x0 − y0 , y − y0〉 ≤ 0, y ∈M .

Proof. (i) =⇒ (ii) For t ∈ [0, 1] and y ∈M let yt := y0 + t(y − y0). Then yt ∈M
by the convexity of M and by assumption on y0

‖x0 − y0‖2 ≤ ‖x0 − yt‖2 = ‖x0 − y0 − t(y − y0)‖2

= ‖x0 − y0‖2 − 2tRe〈x0 − y0 , y − y0〉 + t2‖y − y0‖2.
So for all t ∈ (0, 1]

2 Re〈x0 − y0 , y − y0〉 ≤ t‖y − y0‖2

which implies Re〈x0 − y0 , y − y0〉 ≤ 0.

(ii) =⇒ (i) Let y ∈M . By assumption

‖x0 − y‖2 = ‖(x0 − y0) + (y0 − y)‖2

= ‖x0 − y0‖2 + ‖y0 − y‖2 + 2 Re〈x0 − y0 , y0 − y〉 ≥ ‖x0 − y0‖2.

Lemma 4.15. Let U be a closed subspace of a Hilbert space H and fix x0 ∈ H. For
y0 ∈ U the following are equivalent:

(i) ‖x0 − y0‖ = dist(x0, U),
(ii) x0 − y0 ⊥ U .

Proof. (i) =⇒ (ii) Let y ∈ U . If y = 0, then obviously 〈x0−y0 , y〉 = 0. If ‖y‖ = 1,
let λ = ‖y‖−1〈x0 − y0 , y〉. By assumption

‖x0 − y0‖2 ≤ ‖x0 − y0 − λy‖2

= ‖x0 − y0‖2 − λ〈x0 − y0 , y〉 − λ〈y , x0 − y0〉 + |λ|2‖y‖2

= ‖x0 − y0‖2 + (1 − 2‖y‖−2)|〈x0 − y0 , y〉|2

= ‖x0 − y0‖2 − |〈x0 − y0 , y〉|2
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so 〈x0 − y0 , y〉 = 0. By linearity of U then x0 − y0 ⊥ y for all y ∈ U .

(ii) =⇒ (i) Let y ∈ U . By assumption

‖x0 − y‖2 = ‖(x0 − y0) + (y0 − y)‖2 = ‖x0 − y0‖2 + ‖y0 − y‖2 ≥ ‖x0 − y0‖2.

Recall that a linear operator P : X → X on a Banach space X is called a projection
if and only if P 2 = P (see Definition 3.38).

Theorem 4.16. Let H be a Hilbert space, U ⊆ H a closed subspace with U 6=
{0}. Then there exists a projection PU ∈ L(H) on U such that ‖PU‖ = 1 and
ker(PU ) = U⊥. Also id−PU is continuous projection with ‖ id−PU‖ = 0 if U = H
and ‖ id−PU‖ = 1 if U 6= H. If U ⊕ U⊥ is equipped with the norm ‖(u, v)‖ =

(‖u‖2 + ‖v‖2) 1
2 , then H = U ⊕ U⊥.

Definition 4.17. PU as in the theorem is called the orthogonal projection on U .

Proof of Theorem 4.16. Fix x0 ∈ H and let PU (x0) := y0 the unique element y0 ∈ U
such that ‖x0 − y0‖ = dist(x0, U). Then rg(PU ) = U and P 2

U = PU , hence PU is a
projection on U .
By Lemma 4.15, PU (x0) is the unique element in U such that x0 − PU (x0) ∈ U⊥.

Re〈x0 − PU (x0) , y − PU (x0)〉 ≤ 0, y ∈ U.

We will show that PU is linear. Let x1, x2 ∈ H and λ ∈ K. Since U⊥ is a subspace,
we obtain

λx1 − x2 − (λPU (x1) − PU (x2)) = λ(x1 − PU (x1)) − (x2 − PU (x2)) ∈ U⊥.

Hence, by definition of PU ,

PU (λx1 − x2) = λPU (x1) − PU (x2).

We already know that rg(PU ) = U . ker(PU ) = U⊥ because

PU (x) = 0 ⇐⇒ x0 ∈ U⊥.

Therefore id−PU is a projection with rg(id−PU ) = U⊥ and ker(id−U) = U . By
Pythagoras’ theorem we obtain

‖x0‖2 = ‖PU (x0) + (id−PU )(x0)‖2 = ‖PU (x0)‖2 + ‖(id−PU )(x0)‖2.

In particular, H = U ⊕ U⊥ with norm as in the statement, and ‖PU‖ ≤ 1 and
‖ id−PU‖ ≤ 1. Lemma 3.39 implies ‖PU‖ = 1, ‖ id−PU‖ = 1 if U 6= H and
‖ id−PU‖ = 0 if U = H .

Lemma 4.18. Let U be a subspace of a Hilbert space H. Then U = U⊥⊥.

Proof. By the projection theorem (Theorem 4.16), for every closed subspace V

PV = id−PV ⊥ = id−(id−PV ⊥⊥) = PV ⊥⊥ ,

hence V = V ⊥⊥. Application to V = U shows the statement.

Definition 4.19. Let X,Y be vector spaces. A map X → Y is called antilinear or
conjugate linear if f(λx+ y) = λf(x) + f(y) for all λ ∈ K and x, y ∈ X .
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Theorem 4.20 (Fréchet-Riesz representation theorem). Let H be a Hilbert
space. Then the map

Φ : H → H ′, y 7→ 〈· , y〉

is an isometric antilinear bijection.

Proof. Obviously Φ(0) = 0 ∈ H ′. The Cauchy-Schwarz inequality yields

‖Φ(y)(x)‖ = |〈x , y〉| ≤ ‖x‖ ‖y‖, x, y ∈ H,

hence ‖Φ(y)‖ ≤ ‖y‖ If y 6= 0, then set x = ‖y‖−1y. Note that ‖x‖ = 1 and
‖Φ(y)x‖ = ‖y‖, implying that ‖Φ(y)‖ = ‖y‖. So we have shown that Φ is well-
defined and an isometry. In particular, Φ is injective.
To show that Φ is surjective, fix an ϕ ∈ H ′. If ϕ = 0, then ϕ = Φ(0). Otherwise
we can assume that ‖ϕ‖ = 1. Since ker{ϕ} is closed, there exists a decomposition
H = kerϕ ⊕ (kerϕ)⊥. Note that rg(ϕ) = K, hence dim(kerϕ)⊥ = 1. Choose
y0 ∈ (kerϕ)⊥ with ϕ(y0) = 1. Then (kerϕ)⊥ = span{y0}. For x = u + λy0 ∈
kerϕ⊕ (kerϕ)⊥,

〈x , ‖y0‖−2y0〉 = λ = λϕ(y) + ϕ(u) = ϕ(x),

hence ϕ = 〈· , ‖y0‖−1y0〉. Since Φ is an isometry, it follows that 1 = ‖ϕ‖ =
∥∥∥ ‖y0‖
‖y0‖2

∥∥∥ =
1

‖y0‖
, so ‖y0‖ = 1.

Corollary 4.21. (i) Every Hilbert space is reflexive.

(ii) The dual H ′ of a Hilbert space H is an inner product space by

〈Φ(x) ,Φ(y)〉H′ = 〈y , x〉H
with Φ : H → H ′ as in Theorem 4.20.

Proof. (ii) is clear. Let Ψ : H ′ → H ′′ as in Theorem 4.20. Then it is easy to check
that Ψ ◦ Φ = JH , so JH is surjective, implying that H is reflexive.

Corollary 4.22. Let H be a Hilbert space.

(i) A sequence (xn)n∈N ⊆ H converges weakly to x0 ∈ H if and only if

〈xn − x0 , y〉 → 0, y ∈ H.

(ii) Every bounded sequence (xn)n∈N ⊆ H contains a weakly convergent subse-
quence.

Proof. (i) follows from the Riesz-Fréchet theorem, and (ii) follows with Theorem 2.40.

4.3 Orthonormal systems

Definition 4.23. Let H be a Hilbert space. A family S = (xλ)λ∈Λ of vectors in
H is called an orthonormal system if 〈xλ , xλ′〉 = δλλ′ . A orthonormal system S is
an orthonormal basis (or a complete orthonormal system) if and only if for every
orthonormal system T

S ⊆ T =⇒ S = T.
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Examples 4.24. (i) The unit vectors (en)n∈N in ℓ2(N) are a orthonormal sys-
tem.

(ii) Let H = L2(−π, π). An orthonormal system in H is

S =
{ 1√

2π

}
∪
{ 1√

π
sin(n · ) : n ∈ N

}
∪
{ 1√

π
cos(n · ) : n ∈ N

}
.

Lemma 4.25 (Gram-Schmidt). Let H be a Hilbert space and (xn)n∈N a family of
linearly independent vectors. Then there exists a orthonormal system S = (sn)n∈N

such that spanS = span{xn : n ∈ N}.

Proof. Let s1 := ‖x1‖−1x1. Next set y2 := x2 − 〈x1 , s1〉s1. Note that y2 6= 0
because x2 and x1 are linearly independent. Let s2 := ‖y2‖−1y2. Then s1 ⊥ s2 and
‖s1‖ = ‖s2‖ = 1. Now for k ≥ 1 let

yn+1 := xn+1 −
n∑

k=1

〈xk , sk〉sk, sn+1 := ‖yn+1‖−1yn+1.

Since x1, . . . , xn+1 are linearly independent, sn+1 is well-defined. By construction,
sn+1 ⊥ sj for j = 1, . . . n. Note that for every n ∈ N, sn ∈ span{x1, . . . , xn} and

xn ∈ spanS, hence spanS = {xn : n ∈ N}.

Example. Let H = L2((0, 1)) and xn ∈ H defined by xn(t) = tn. Application

of the Gram-Schmidt orthogonalisation yields polynomials sn(t) =
√
n+ 1

2Pn(t)

where Pn(t) = 1
2nn!

dn

dtn (t2 − 1)n is the nth Legendre polynomial.

Theorem 4.26 (Bessel inequality). Let H be a Hilbert space, {sn : n ∈ N} a
orthonormal system in H. Then

∞∑

n=1

|〈x , sn〉|2 ≤ ‖x‖2, x ∈ H.

Proof. For N ∈ N let xN := x −∑N
n=1〈x , sn〉sn. Since xN ⊥ sn for n = 1, . . . , N ,

Pythagoras’ theorem yields

‖x‖2 = ‖xN‖2 +
∥∥∥

N∑

n=1

〈x , sn〉sn
∥∥∥
2

= ‖xN‖2 +
N∑

n=1

|〈x , sn〉|2 ≥
N∑

n=1

|〈x , sn〉|2.

‘
9 Abr 2012

Lemma 4.27. Let H be a Hilbert space, S = (sλ)λ∈Λ a orthonormal system in H.
Then for every x ∈ H the set

Sx := {λ ∈ Λ : 〈x , sλ〉 6= 0}

is at most countable.

Proof. By the Bessel inequality, for every n ∈ N the set

Sx,n :=
{
λ ∈ Λ : |〈x , sλ〉| ≥

1

n

}

is finite. Hence Sx =
⋃∞
n=1 Sx,n is at most countable.
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Definition 4.28. Let X be a normed space, (xλ)λ∈Λ ⊆ X . Then
∑

λ∈Λ xλ con-
verges unconditionally to x ∈ H if and only if Λ0 := {λ ∈ Λ : xλ 6= 0} is at most
countable and

∑∞
n=1 xλn

= x for every enumeration Λ0 = {λn : n ∈ N}.

Recall that in finite dimensional Banach spaces unconditional convergence is equiv-
alent to absolute convergence. In every infinite dimensional Banach space, however,
there exists a unconditionally convergent series that does not converge absolutely
(Dvoretzky-Rogers theorem).

Corollary 4.29 (Bessel inequality). Let H be a Hilbert space and S ⊆ H a
orthonormal system. Then

∑

s∈S

|〈x , s〉| ≤ ‖x‖2, x ∈ H.

Proof. For fixed x ∈ H , the set Sx = {s ∈ S : 〈x , s〉 6= 0} is at most count-
able (Lemma 4.27), so the claim follows from the Bessel inequality for countable
orthonormal systems.

Theorem 4.30. Let H be a Hilbert space and S ⊆ H a orthonormal system. Then

P : H → H, Px =
∑

s∈S

〈x , s〉s

is an orthogonal projection on spanS and the series is unconditionally convergent.

Proof. First we proof that the series in the definition of P is unconditionally conver-
gent (this proves then well-definedness of P ). Fix x ∈ H . For fixed x ∈ H , the set
Sx = {s ∈ S : 〈x , s〉 6= 0} is at most countable (Lemma 4.27). Let Sx = {sn : n ∈ N}
be an enumeration of Sx. Then

(∑n
k=1〈x , sk〉sk

)
n∈N

is a Cauchy sequence because

∥∥∥
M∑

k=N

〈x , sk〉sk
∥∥∥
2

=

M∑

k=N

|〈x , sk〉|2 −→ 0, M, K → ∞

by Bessel’s inequality. Since H is complete, y :=
∑∞

k=1〈x , sk〉sk exists. Let π :
N → N be a permutation. Then also yπ :=

∑∞
k=1〈x , sπ(k)〉sπ(k) exists. We have to

show that y = yπ. For all z ∈ H

〈y , z〉 =

∞∑

n=1

〈y , sn〉〈sn , z〉 =

∞∑

n=1

〈y , sπ〉〈sπ , z〉 = 〈yπ , z〉.

We have used that
∑∞

n=1〈y , sn〉〈sn , z〉 is absolute convergent and can therefore be
rearranged, because, by Hölder’s inequality and Bessel’s inequality

( ∞∑

n=1

|〈y , sn〉〈sn , z〉|
)2

≤
( ∞∑

n=1

|〈y , sn〉|2
)( ∞∑

n=1

|〈sn , z〉|2
)
≤ ‖y‖2‖z‖2 <∞.

Since y−yπ ⊥ z, z ∈ H , it follows that y = yπ. Therefore the series in the definition
of P is unconditionally convergent and P is well-defined.

It is clear that P is a linear and ‖P‖ ≤ 1 follows from Corollary 4.29. Let x ∈ H .

We have to show that x− Px ∈ spanS
⊥

(Theorem 4.16). This is clear because

〈
x−

∑

s∈S

〈x , s〉 , s0
〉

=
〈
x−

∑

s∈Sx

〈x , s〉 , s0
〉

= 0, s0 ∈ S.
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Theorem 4.31. Let H be a Hilbert space and S ⊆ H a orthonormal system. Then
the following is equivalent.

(i) S is a complete orthonormal system.

(ii) x ⊥ S =⇒ x = 0, x ∈ H.

(iii) H = spanS.

(iv) x =
∑

s∈S

〈x , s〉s, x ∈ H.

(v) 〈x , y〉 =
∑

s∈S

〈x , s〉〈s , y〉, x, y ∈ H.

(vi) Parseval’s equality holds: ‖x‖2 =
∑

s∈S

|〈x , s〉|2, x ∈ H.

Proof. (i) =⇒ (ii) If there exists an x ∈ H such that x ∈ S⊥ \ {0}, then S′ :=
S ∪ {‖x‖−1x} is a orthonormal system with S ( S′, contradicting the maximality
of S.

(ii) =⇒ (iii) follows from Lemma 4.18.

(iii) =⇒ (iv) By theorem 4.30, x 7→ ∑
s∈S〈x , s〉s is the orthogonal projection on

spanS = H .

(iv) =⇒ (v) straightforward.

(v) =⇒ (vi) Choose x = y.

(vi) =⇒ (i) Assume there exists an orthonormal system S′ ) S. Then for every
s′ ∈ S′ \ S we get the contradiction

1 = ‖s′‖2 =
∑

s∈S

|〈s′ , s〉|2 = 0.

11 Abr 2012
Now we show that the orthonormal systems in Example 4.24 are complete.

Examples 4.32. (i) The set of the unit vectors {en : n ∈ N} in ℓ2(N) are a
complete orthonormal system in ℓ2(N) because {en : n ∈ N} = ℓ2(N).

(ii) Let Γ be a set and define

ℓ2(Γ) :=
{
f : Γ → K : f(γ) 6= 0 for at most countably many γ ∈ Γ and

∑

γ∈Γ

|f(γ)|2 <∞
}
.

Then 〈f , g〉 =
∑
γ∈Γ f(γ)g(γ) is a well-defined inner product (note that

only countably many terms are 6= 0 and the sum is absolutely convergent
by Hölder’s inequality). As in the case Γ = N it can be shown that ℓ2(Γ) is a
Hilbert space and (fλ)λ∈Γ where fλ(γ) = δλγ (Kronecker delta) is a complete
orthonormal system in ℓ2(Γ).

(iii) Let H = L2(0, 1) and

S =
{ 1√

2π

}
∪
{ 1√

π
sin(n · ) : n ∈ N

}
∪
{ 1√

π
cos(n · ) : n ∈ N

}
.

Note that spanS is the set of all trigonometric polynomials. Without restric-
tion we can assume that K = R. By the theorem of Fejér, the trigonometric
polynomials are dense in C2π := {f ∈ C([−π, π]) : f(−π) = f(π)} with re-
spect to ‖ · ‖∞, hence also with respect to ‖ · ‖2. Since C2π is ‖ · ‖2-dense in
L2([−π, π]), S is a total subset of L2([−π, π]).
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Lemma 4.33. Let H be an infinite dimensional Hilbert space. Then the following
is equivalent.

(i) H is separable.

(ii) Every complete orthonormal system in H is countable.

(iii) There exists an countable complete orthonormal system in H.

Proof. (i) =⇒ (ii) Assume S ⊆ H is an uncountable complete orthonormal system

in H . Let ε ∈ (0, 2−
1
2 ) and s 6= s′ ∈ S. Then Bε(s) ∩ Bε(s

′) = ∅ because by
Pythagoras ‖s − s′‖ =

√
‖s‖2 + ‖s′‖2 =

√
2. Let A be a dense subset of H . For

every s ∈ S there exists an as ∈ A such that as ∈ Bε(s). In particular, as 6= as′ if
s 6= s′, so A cannot be countable, thus H is not separable.

(ii) =⇒ (iii) The existence of a complete orthonormal system in H follows from
Zorn’s lemma. By assumption, it must be complete.

(iii) =⇒ (i) Let S be a countable orthonormal system in H . Then spanS = H by
Theorem 4.31 and H is separable by Theorem 1.25.

Lemma 4.34. Let H be Hilbert space and S and T be complete orthonormal system
in H. Then |S| = |T |.

Proof. The statement is proved in linear algebra if |S| < ∞. Now assume that S
is not finite. For x ∈ S the set Tx := {y ∈ T : 〈x , y〉 6= 0} is at most countable
by Lemma 4.27. By Theorem 4.31 (ii) T ⊆ ⋃

x∈S Tx, hence |T | ≤ |S||N| = |S|.
Analogously, |S| ≤ |T ||N| = |T |. By the Schröder-Bernstein theorem then |S| =
|T |.

Theorem 4.35. Let H be a Hilbert space and S an orthonormal basis of H. Then
H ∼= ℓ2(S) (see Example 4.32 (ii)).

Proof. Define T : H → ℓ2(S) by Tx(s) = 〈x , s〉, x ∈ H , s ∈ S. T is well-defined
by Bessel’s inequality. Then T : H → ℓ2(S) is linear and isometric by Parseval’s
equality. To show that T is surjective, let y ∈ ℓ2(S) and define x :=

∑
s∈S y(s)s.

Then x ∈ H (Theorem 4.30) and Tx = y.

Note that by construction 〈Tx , T y〉 = 〈x , y〉, x, y ∈ H .

Corollary 4.36. If H is a separable Hilbert space, then H ∼= ℓ2(N).

Corollary 4.37 (Fischer-Riesz theorem). L2[0, 1] ∼= ℓ2(N).

4.4 Linear operators in Hilbert spaces

Definition 4.38. Let H1, H2 be Hilbert spaces and Φj : Hj → H ′
j the canonical

isomorphism in the Fréchet-Riesz representation theorem (Theorem 4.20). Let T ∈
L(H1, H2). Its (Hilbert space) adjoint operator is T ∗ := Φ−1

1 T ′Φ2 ∈ L(H2, H1)
where T ′ is the Banach space adjoint of T (see Definition 2.25).

Hence T ∗ is characterised by

〈Tx , y〉 = 〈x , T ∗y〉, x ∈ H1, y ∈ H2.

Theorem 4.39. Let H1, H2, H3 be Hilbert spaces, S, T ∈ L(H1, H2), R ∈ L(H2, H3)
and λ ∈ K.
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(i) (λS + T )∗ = λS∗ + T ∗.

(ii) (RT )∗ = T ∗R∗.

(iii) T ∗ ∈ L(H2, H1) and ‖T ∗‖ = ‖T ‖.

(iv) T ∗∗ = T .

(v) ‖TT ∗‖ = ‖T ∗T ‖ = ‖T ‖2.

(vi) kerT = (rg(T ∗))⊥, kerT ∗ = (rg(T ))⊥.

(vii) If T is invertible, then (T−1)∗ = (T ∗)−1.

Proof. (i)–(iv) are clear. For the proof of (v) note that for ‖x‖ = 1

‖Tx‖2 = 〈Tx , Tx〉 = 〈x , T ∗Tx〉 ≤ ‖x‖ ‖T ∗Tx‖ ≤ ‖T ∗T ‖ ≤ ‖T ∗‖ ‖T ‖ = ‖T ‖2.

Taking the supremum over all x ∈ H with ‖x‖ = 1 shows the desired equalities.

(vi) kerT = (rgT ∗)⊥ because for x ∈ H

Tx = 0 ⇐⇒ ∀y ∈ H2 〈Tx , y〉 = 0 ⇐⇒ ∀y ∈ H2 〈x , T ∗y〉 = 0

⇐⇒ x ⊥ rg(T ∗).

Then also kerT ∗ = (rg(T ∗∗))⊥ = (rg(T ))⊥.

Definition 4.40. Let H1, H2 be Hilbert spaces, T ∈ L(H1, H2).

(i) T is called unitary if T is invertible and TT ∗ = idH2
and T ∗T = idH1

.

(ii) T is called normal if H1 = H2 and TT ∗ = T ∗T .

(iii) T is called selfadjoint if H1 = H2 and T = T ∗.

Remarks. (i) T selfadjoint =⇒ T normal.

(ii) T ∈ L(H1, H2) =⇒ TT ∗ and T ∗T are selfadjoint.

Next we show that a length preserving linear map between Hilbert spaces also
preserves angles.

Lemma 4.41. Let H1, H2 be Hilbert spaces and T ∈ L(H1, H2).

(i) T is an isometry ⇐⇒ 〈Tx , T y〉 = 〈x , y〉, x, y ∈ H1.

(ii) T is unitary ⇐⇒ T is a surjective isometry.

Proof. (i) The direction “⇐” is clear; “⇒” follows from the polarisation formula
(Theorem 4.7).

(ii) “⇒” Since T is unitary, if follows that rg(T ) ⊇ rg(TT ∗) = rg(idH2
) = H2, so

T is surjective. T is an isometry because for all x, y ∈ H1

〈Tx , T y〉 = 〈T ∗Tx , y〉 = 〈x , y〉,

“⇐” Assume that T as a surjective isometry. Since

〈x , y − T ∗Ty〉 = 〈x , y〉 − 〈Tx , T y〉 = 0, x, y ∈ H1,

it follows that T ∗Ty = y, so T ∗T = idH1
. In particular T ∗ is surjective. Now we

will show that T ∗ is an isometry. Let ξ, η ∈ H2. Then there exist x, y ∈ H1 such
that Tx = ξ and Ty = η. It follows that

〈T ∗ξ , T ∗η〉 = 〈T ∗Tx , T ∗Ty〉 = 〈x , y〉 = 〈Tx , T y〉 = 〈ξ , η〉.

By the same argument as for T we conclude that idH2
= T ∗∗T ∗ = TT ∗.
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Examples 4.42. (i) Let H1, H2 be Hilbert spaces with dimH1 = dimH2 = n <
∞. After choice of bases, a linear operator T : H1 → H2 has a representation
(aij)

n
ij=1 ∈Mn(C). The matrix corresponding to T ∗ is then (aji)

n
ij=1.

(ii) Let H = L2[0, 1]. For k ∈ L∞([0, 1] × [0, 1]) define

Tk : L2[0, 1] → L2[0, 1], (Tkf)(t) =

∫ 1

0

k(s, t)f(s) ds.

Then Tk ∈ L2[0, 1] and

T ∗
k : L2[0, 1] → L2[0, 1], (Tkf)(t) =

∫ 1

0

k(s, t)f(s) ds,

that is T ∗
k = Tk.

Theorem 4.43 (Hellinger-Toeplitz). Let H be a Hilbert space, T : H → H a
linear operator such that

〈Tx , y〉 = 〈x , T y〉, x, y ∈ H.

Then T is bounded, hence selfadjoint.

Proof. It suffices to show that T is closed because D(T ) = H is closed. Let
(xn)n∈N ⊆ H with xn → 0 and Txn → y. Observe that

‖y‖2 = lim
n→∞

〈Txn , y〉 = lim
n→∞

〈xn , T y〉 = 〈 lim
n→∞

xn , T y〉 = 〈0 , T y〉 = 0,

so y = 0. This implies that T is closable, hence closed since D(T ) = H .

Theorem 4.44. Let H be a complex Hilbert space. For T ∈ L(H) the following is
equivalent.

(i) 〈Tx , x〉 ∈ R, x ∈ H.

(ii) T is selfadjoint.

Proof. (ii) =⇒ (i) follows from

〈Tx , x〉 = 〈x , Tx〉 = 〈Tx , x〉, x ∈ H.

(i) =⇒ (ii) Let x, y ∈ H and λ ∈ C.

A := 〈T (λx+ y) , λx+ y〉 = |λ|2〈Tx , x〉 + 〈Ty , y〉 + λ〈Tx , y〉 + λ〈Ty , x〉,

B := 〈T (λx+ y) , λx+ y〉 = |λ|2〈Tx , x〉 + 〈Ty , y〉 + λ〈y , Tx〉 + λ〈x , T y〉.

By assumption, A = B, so in the special cases λ = 1 and λ = i we obtain

〈Tx , y〉 + 〈Ty , x〉 = 〈y , Tx〉 + 〈x , T y〉,
〈Tx , y〉 − 〈Ty , x〉 = −〈y , Tx〉 + 〈x , T y〉,

so finally 〈Tx , y〉 = 〈x , T y〉.
16 Abr 2012

Theorem 4.45. Let H be a Hilbert space, T ∈ L(H) selfadjoint. Then

‖T ‖ = sup
‖x‖≤1

|〈Tx , x〉|.
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Proof. Let M := sup‖x‖≤1 |〈Tx , x〉|. Obviously M ≤ ‖T ‖ because for ‖x‖ ≤ 1

|〈Tx , x〉| ≤ ‖T ‖‖x‖2 ≤ ‖T ‖.

To show the reverse inequality fix x, y ∈ H . Observe that

〈T (x+ y) , x+ y〉 − 〈T (x− y) , x− y〉 = 2〈Tx , y〉 + 2〈Ty , x〉
= 2〈Tx , y〉 + 2〈y , Tx〉 = 4 Re〈Tx , y〉.

Hence, by the parallelogram identity (Theorem 4.8), for ‖x‖ ≤ 1, ‖y‖ ≤ 1,

Re〈Tx , y〉 ≤ 1

4

(
|〈T (x+ y) , x+ y〉| + |〈T (x− y) , x− y〉|

)

≤ 1

4

(
M‖x+ y‖2 +M‖x− y‖2

)
=
M

2
(‖x‖2 + ‖y‖2) ≤M.

Now choose λ ∈ C, |λ| = 1 such that λ〈Tx , y〉 = |〈Tx , y〉|, so

|〈Tx , y〉| = 〈T (λx) , y〉 = |Re〈T (λx) , y〉| ≤M, ‖x‖ ≤ 1, ‖y‖ ≤ 1.

In particular, ‖〈· , T x〉‖ ≤M , so ‖Tx‖ ≤ 1 for ‖x‖ ≤ 1. This shows ‖T ‖ ≤M .

Corollary 4.46. Let H be a Hilbert space and T ∈ L(H) selfadjoint. If 〈Tx , x〉 =
0, x ∈ H, then T = 0.

Note that the condition 〈Tx , x〉 = 0 automatically implies that T is selfadjoint in
the case of a complex Hilbert space. In a real Hilbert spaces H the assumption
that T is selfadjoint is necessary for the statement in the corollary. For example, let

T =
((

0 1
−1 0

))
: R2 → R2 the rotation about 90◦. Then T 6= 0 but 〈Tx , x〉 = 0

for all x ∈ R2.

Lemma 4.47. Let H be a Hilbert space, T ∈ L(H) a normal operator. Then

‖Tx‖ = ‖T ∗x‖, x ∈ H,

in particular, kerT = kerT ∗.

Proof. 0 = 〈T ∗Tx− TT ∗x , x〉 = ‖Tx‖2 − ‖T ∗x‖2.

Definition 4.48. Let H be a Hilbert space. A bounded selfadjoint operator T ∈
L(H) is called non-negative, denoted by T ≥ 0, if 〈Tx , x〉 ≥ 0 for all x ∈ H . It
is called positive, denoted by T > 0, if 〈Tx , x〉 > 0 for all x ∈ H \ {0}. We write
T ≤ S if and only if S − T ≥ 0. A sequence (Tn)n∈N ∈ L(H) is increasing if and
only if Tn ≤ Tn+1, n ∈ N. A sequence (Tn)n∈N ∈ L(H) is decreasing if and only if
(−Tn)n∈N ∈ L(H) is increasing.

Theorem 4.49. Let H be a Hilbert space. Every monotonic bounded sequence of
selfadjoint linear operators on H converges strongly.

Proof. Let (Tn)n∈N be a bounded monotonic sequence of selfadjoint operators.
Without restriction we assume that it is increasing. Let

snm : H ×H → K, snm(x, y) = 〈(Tn − Tm)x , y〉
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is a positive semidefinite sesquilinear form on H if n ≥ m. Let M be a bound of
(Tn)n∈N. Note that then ‖Tn−Tm‖ ≤ 2M . Then, using Cauchy-Schwarz inequality,
we find for n ≥ m and x ∈ H with ‖x‖ = 1

‖(Tn − Tm)x‖2 = 〈(Tn − Tm)x , (Tn − Tm)x〉 = snm(x, (Tn − Tm)x)

≤ snm(x, x)
1
2 snm((Tn − Tm)x, (Tn − Tm)x)

1
2

= 〈(Tn − Tm)x , x〉 1
2 〈(Tn − Tm)x , (Tn − Tm)2x〉 1

2

≤ 〈(Tn − Tm)x , x〉 1
2 ‖Tn − Tm‖ 1

2 ‖Tn − Tm‖
≤ (2M)

3
2 〈(Tn − Tm)x , x〉 1

2 .

By assumption (〈Tnx , x〉)n∈N is a monotonically increasing bounded sequence in R,
hence convergent. It follows that (Tnx)n∈N is a Cauchy sequence, hence T converges
strongly to some T ∈ L(H) (Proposition 3.13). That T is selfadjoint follows from

〈Tx , y〉 = lim
n→∞

〈Tnx , y〉 = lim
n→∞

〈x , Tny〉 = 〈x , T y〉, x, y ∈ H.

4.5 Projections in Hilbert spaces

Proposition 4.50. Let H be a Hilbert space, P ∈ L(H) a projection. If P 6= 0
then the following is equivalent.

(i) P is an orthogonal projection.

(ii) ‖P‖ = 1.

(iii) P is selfadjoint.

(iv) P is normal.

(v) 〈Px , x〉 ≥ 0, x ∈ H.

Proof. (i) =⇒ (ii) follows from Theorem 4.16.

(ii) =⇒ (i) Let x ∈ kerP and y ∈ rg(P ). Then for all λ ∈ K

‖λy‖2 = ‖P (x+ λy)‖2 ≤ ‖x+ λy‖2 = ‖x‖2 + |λ|2‖y‖2 + 2 Re(λ〈x , y〉).

In particular, 0 ≤ ‖x‖2 + 2λRe〈x , y〉 for all λ ∈ R, and 0 ≤ ‖x‖2 + 2iλ Im〈x , y〉 for
all λ ∈ iR, hence Re〈x , y〉 = Im〈x , y〉 = 0.

(i) =⇒ (iii) Observe that 〈Px , y〉 = 〈x , Py〉 for all x, y ∈ H because

〈Px , y〉 = 〈Px , y − Py + Py〉 = 〈Px , Py〉,
〈x , Py〉 = 〈x− Px+ Px , Py〉 = 〈Px , Py〉.

(iii) =⇒ (iv) is clear.

(iv) =⇒ (i) By Lemma 4.47, kerP = kerP ∗ = (rgP )⊥.

(i) =⇒ (v) For all x ∈ H : 〈Px , x〉 = 〈Px , x− Px+ Px〉 = 〈Px , Px〉 ≥ 0.

(v) =⇒ (i) Let x ∈ kerP , y ∈ rgP . Since for all λ ∈ R

0 ≤ 〈P (x + λy) , x+ λy〉 = 〈λy , x+ λy〉 = λ2‖y‖2 + λ〈y , x〉,

it follows that 〈x , y〉 = 0.

Lemma 4.51. Let H Hilbert space H. A linear operator P : H → H is an orthog-
onal projection if and only if P 2 = P and 〈x , Py〉 = 〈y , Px〉 for all x, y ∈ H.
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Proof. Assume that P is an orthogonal projection. Then P 2 = P and by Proposi-
tion 4.50 P is selfadjoint.

If P 2 = P and 〈x , Py〉 = 〈y , Px〉 for all x, y ∈ H , then P is a projection. By
the theorem of Hellinger-Toeplitz (Theorem 4.43) P is selfadjoint, hence P is an
orthogonal projection by Proposition 4.50.

Lemma 4.52. Let H be a Hilbert space, U1, U2 ⊆ H closed subspaces and P1, P2

the corresponding orthogonal projections. Then the following is equivalent:

(i) P1P2 = P2P1 = 0.

(ii) U1 ⊥ U2.

(iii) P1 + P2 is an orthogonal projection.

If one of the equivalent conditions above hold, then rg(P1 + P2) = U1 ⊕ U2.

Proof. (i) =⇒ (ii) By assumption, U2 = rgP2 ⊆ kerP1 = (rgP1)⊥ = U⊥
1 , hence

U1 ⊥ U2.

(ii) =⇒ (i) By assumption, rgP2 = U2 ⊆ U⊥
1 = kerP1, hence P1P2 = 0. Since (ii)

is symmetric in U1 and U2, it follows also that P2P1 = 0.

(i),(ii) =⇒ (iii) Observe that P1P2 = P2P1 = 0, so P1 +P2 is a projection because

(P1 + P2)2 = P 2
1 + P1P2 + P2P1 + P 2

2 = P1 + P2.

Since the sum of two selfadjoint operators is selfadjoint, P1+P2 is selfadjoint, hence,
by Proposition 4.50 an orthogonal projection.
(iii) =⇒ (i) Since P1 + P2 is an orthogonal projection, it follows that

P1P2 + P2P1 = (P1 + P2)2 − (P1 + P2) = 0.

In particular 0 = (P1P2+P2P1)P2x = (id +P2)P1P2x. Note that for y ∈ H \{0} the
vectors (id−P2)y and P2y are linearly independent, hence (id +P2)y = (id−P2)y+
2P2y is zero if and only if (id−P2)y = 0 and P2y = 0, hence y = 0. Therefore
rgP1P2 ⊆ ker(id +P2) = {0}.

Lemma 4.53. Let H be a Hilbert space and P1 and P2 orthogonal projections on
subspaces U1 and U2.

(i) P1P2 is an orthogonal projection if and only if P1P2 = P2P1. In this case,
P1P2 is an projection on U1 ∩ U2.

(ii) P1 − P2 is an orthogonal projection if and only if P1P2 = P2P1 = P2.

Proof. (i) If P1P2 is an orthonormal projection, then, by Proposition 4.50, P1P2 is
selfadjoint, that is P1P2 = (P1P2)∗ = P ∗

2 P
∗
1 = P2P1. On the other hand, if P1 and

P2 commute, then it is easy to verify that (P1P2)2 = P1P2 and (P1P2)∗ = P1P2,
hence P1P2 is an orthogonal projection. In this case, rg(P1P2) = rg(P2P1), so
rg(P1P2) ⊆ U1 ∩ U2. On the other hand, P1P2x = x for every x ∈ U1 ∩ U2, so also
rg(P1P2) ⊇ U1 ∩ U2 holds.

(ii) Using Lemma 4.52 we obtain

P1 − P2 orthonormal projection ⇐⇒ 1 − (P1 − P2) orthonormal projection

⇐⇒ (1 − P1) + P2 orthonormal projection

⇐⇒ P2(1 − P1) = (1 − P1)P2 = 0

⇐⇒ P2P1 = P1P2 = P2.
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Lemma 4.54. Let H be a Hilbert space and P1, P2 orthogonal projections on H0,
H1 ⊆ H. Then the following is equivalent.

(i) H0 ⊆ H1,

(ii) ‖P0x‖ ≤ ‖P1x‖, x ∈ H.

(iii) 〈P0x , x〉 ≤ 〈P1x , x〉, x ∈ H.

(iv) P0P1 = P0.

Proof. (ii) ⇐⇒ (iii) Let x ∈ H and P an orthogonal projection. Then 〈Px , x〉 =
〈P 2x , x〉 = 〈Px , Px〉 = ‖Px‖2.
(i) ⇐⇒ (iv)

P0P1 = P0 ⇐⇒ P0(id−P1) = 0 ⇐⇒ rg(id−P1) ⊆ kerP0

⇐⇒ (rgP1)⊥ ⊆ (rgP0)⊥ ⇐⇒ H⊥
1 ⊆ H⊥

0

⇐⇒ H0 ⊆ H1.

(iv) =⇒ (ii) For all x ∈ H : ‖P0x‖ = ‖P0P1x‖ ≤ ‖P0‖‖P1x‖ ≤ ‖P1x‖.

(iii) =⇒ (i) Let x ∈ H⊥
1 = kerP1. Then 0 = 〈P1x , x〉 ≥ 〈P0x , x〉 ≥ 0, hence

〈P0x , x〉 = 0. It follows that P0|H⊥

1
= 0 (Corollary 4.46), hence H⊥

1 ⊆ kerP0 =

H⊥
0 .

Lemma 4.55. Let H be a Hilbert space and (Pn)n∈N a sequence of orthogonal
projections with 〈Pmx , x〉 ≤ 〈Pnx , x〉 for all x ∈ X and m < n. Then (Pn)n∈N

converges strongly to an orthogonal projection.

Proof. By Theorem 4.49 we already know that s- limPn =: P exists and is a selfad-
joint operator. It remains to be shown that P is a projection, that is, that P 2 = P .
For x ∈ H and n ∈ N

P 2x = (P − Pn + Pn)(P − Pn + Pn)x = (P − Pn)Px+ Pn(P − Pn)x+ P 2
nx.

Note that (P − Pn)Px → 0, n → ∞, and also Pn(P − Pn)x because ‖Pn‖ = 1,
n ∈ N. Since P 2

nx = Pnx→ Px, it follows that P 2 = P .

4.6 The adjoint of an unbounded operator

In sections 2.4 and section 4.4 we have defined the adjoint of bounded linear opera-
tors between Banach or Hilbert spaces. Now we define the adjoint of an unbounded
linear operator. Recall that T (X → Y ) denotes a possibly unbounded linear oper-
ators defined on a subspace D(T ) ⊆ X .

Definition 4.56. Let X,Y be Banach spaces and D(T ) ⊆ X a dense subspace.
For a linear map T : X ⊇ D(T ) → Y we define

D(T ′) := {ϕ ∈ Y ′ : x 7→ ϕ(Tx) is a bounded linear functional on D(T )},

Since D(T ) is dense in X , the map D(T ) → K, x 7→ ϕ(Tx) has a unique continuous
extension T ′ϕ ∈ X ′ for ϕ ∈ D(T ′). Hence the Banach space adjoint T ′

T ′ : Y ′ ⊇ D(T ′) → X ′, (T ′ϕ)(x) = ϕ(Tx), x ∈ D(T ), ϕ ∈ D(T ′).

is well-defined.
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Theorem 4.57. Let X,Y be Banach spaces, D(T ) ⊆ X a dense subspace and
T : X ⊇ D(T ) → Y be a linear operator. Then T ′ is closed.

Proof. Let G(T ′) = {(y′, T ′y′) : ϕ ∈ D(T ′)} ⊆ Y ′ ×X ′ be the graph of T ′.
Note that (y′, x′) ∈ G(T ′) if and only if x′x = y′(Tx) for all x ∈ D(T ). Now let
((y′n, x

′
n))n∈N ⊆ G(T ′) a convergent sequence with lim

n→∞
(y′n, x

′
n) = (y′0, x

′
0). For all

x ∈ D(T ) it follows that

x′0x = lim
n→∞

x′nx = lim
n→∞

y′n(Tx) = lim
n→∞

y′0(Tx),

thus (y′0, x
′
0) ∈ G(T ′) which implies that T ′ is closed.

Definition 4.58. Let X,Y be Banach spaces. For linear operators S, T from X to
Y we write S ⊆ T if T is an extension of S, that is, if D(S) ⊆ D(T ) and T |D(S) = S.

Theorem 4.59. Let X,Y, Z be Banach spaces.

(i) Let (S,D(S)) and (T,D(T )) be densely defined linear operators X → Y . If
S ⊆ T then T ′ ⊆ S′.

(ii) Assume S(X → Y ) and T (Y → Z) are densely defined such that also TS is
densely defined. Then S′T ′ ⊆ (TS)′.

(iii) Assume S(X → Y ) and T (X → Y ) are densely defined such that also T + S
is densely defined. Then (S′ + T ′) ⊆ (S + T )′.

Proof. (i) is clear from the definition of the adjoint operator.

(ii) Let z′ ∈ D(S′T ′). Then T ′z′ ∈ D(S′) and the map

D(S) → K, x 7→ (T ′z′)(Sx)

is continuous. Then also its restriction

D(TS) → K, x 7→ (T ′z′)(Sx) = z′(TSx)

is continuous. Note that by assumption D(TS) is dense in X , hence z′ ∈ D((TS)′)
and (TS)′z′ = S′T ′z′.

(iii) Let y′ ∈ D(T ′ + S′) = D(T ′) ∩ D(S′). Then the map

D(T + S) → K, x 7→ y′(Tx) + y′(Sx) = y′((T + S)x)

is continuous. Since by assumption D(T + S) is dense in X , y′ ∈ D((T + S)′) and
(T + S)′y′ = (T ′ + S′)y′.

If S and T are bounded, then “=” holds in (ii) and (iii) (Theorem 2.26). Note
that for unbounded linear operators T ′ + S′ = (T + S)′ is not necessarily true. For
example, if T (X → Y ) is a densely defined unbounded linear operator such that
also T ′ is densely defined with D(T ′) 6= Y ′. Then D(T ′ − T ′) 6= Y ′ = D(T − T )′.

Corollary 4.60. Let X be a Banach space, T a densely defined linear operator in
X with bounded inverse T−1 ∈ L(X). Then T ′ is invertible and

(T ′)−1 = (T−1)′.

Proof. By Theorem 4.59 (ii) it follows that (T−1)′T ′ ⊆ (TT−1)′ = id′
X = idX , hence

(T−1)′T ′ = idD(T ′).
Again by Theorem 4.59 (ii) we find T ′(T−1)′ ⊆ (T−1T )′ = id′

D(T ) = idX , so it

suffices to show D(T ′(T−1)′) = D(T ′). Let ϕ ∈ D(T ′) and η = (T−1)′ϕ. For every

x ∈ D(T ) it follows that η(Tx) = ((T−1)′ϕ)(Tx) = ϕ(T−1′Tx) = ϕ(x), which
implies η ∈ D(T ′), hence D(T ′(T−1)′) = D(T ′).
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More general is Theorem 4.65 due to Phillips.

Definition 4.61. Let X be a Banach space. For subspaces A ⊆ X and B ⊆ X ′ we
define the annihilators

A◦ := {ϕ ∈ X ′ : ϕ(x) = 0, x ∈ A} ⊆ X ′,
◦B := {x ∈ X : ϕ(x) = 0, ϕ ∈ B} ⊆ X.

Remark 4.62. The sets A◦ and ◦B are closed subspaces and ◦(A◦) = A. If X is
reflexive, then also (◦B)◦ = B.

Proof. Obviously, A◦ and ◦B are subspaces. Let (x′n)n∈N ⊆ A◦ be a convergent
sequence. Then x′0 := lim

n→∞
x′n ∈ A◦ because x′0x = lim

n→∞
x′nx = 0 for all x ∈ A.

Let (xn)n∈N ⊆ ◦B be a convergent sequence. Then x0 := lim
n→∞

xn ∈ ◦B because

ϕx0 = lim
n→∞

ϕxn = 0 for all ϕ ∈ B.

Now we show that ◦(A◦) = A. Since obviously A ⊆ ◦(A◦), also A ⊆ ◦(A◦). Assume
that there exists an a ∈ ◦(A◦) \ A. By a corollary to the Hahn-Banach theorem
(Corollary 2.19) there exists a ϕ ∈ X ′ such that ϕ|A = 0 and ϕ(a) 6= 0. Therefore
ϕ ∈ A◦, so by definition of ◦(A◦), also ϕ(a) = 0.

(◦B)◦ = B follows if we identify X with X ′′ using the canonical map JX .

Lemma 4.63. Let X,Y be Banach space, Y 6= {0} and T (X → Y ) a densely
defined closed linear operator and y0 ∈ Y \ {0}. Then there exists a ϕ ∈ D(T ′) such
that ϕ(y0) 6= 0, in particular, D(T ′) 6= {0}.

Proof. By assumption, the graph G(T ) of T is closed and (0, y0) 6= G(T ). Hence, by
a corollary to the Hahn-Banach theorem (Corollary 2.19) there exists ψ ∈ (X×Y )′

such that ψ|G(T ) = 0 and ψ((0, y0)) 6= 0. Let ϕ : Y → K, ϕ(y) = ψ((0, y)).
Obviously ϕ ∈ Y ′ and ϕ(y0) 6= 0. Moreover, ϕ ∈ D(T ′) because for all x ∈ D(T )

ϕ(Tx) = ψ((0, T x)) = ψ((x, Tx) − (x, 0)) = ψ((x, Tx)) − ψ((x, 0))

= −ψ((x, 0)).

Theorem 4.64. Let X and Y be Banach spaces. For a densely defined closed linear
operator T (X → Y ) the following holds:

(i) rg(T )◦ = rg(T )
◦

= kerT ′.

(ii) rgT = ◦(kerT ′).

(iii) rgT = Y ⇐⇒ T ′ is injective.

(iv) ◦(rgT ′) ∩ D(T ) = kerT.

(v) rgT ′ ⊆ (kerT )◦.

Proof. (i) The first equality is clear. The second equality follows from

ϕ ∈ rg(T )◦ ⇐⇒ ∀ y ∈ rg(T ) ϕ(y) = 0

⇐⇒ ∀ x ∈ D(T ) ϕ(Tx) = 0

⇐⇒ ϕ ∈ D(T ′), T ′ϕ = 0

⇐⇒ ϕ ∈ ker(T ′).

(ii) rgT = ◦((rgT )◦) = ◦(kerT ′) by (i) and Remark 4.62.
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(iii) By (ii), rgT = Y if and only if ◦(kerT ′) = Y . This is the case if and only if
ϕ(y) = 0 for all ϕ ∈ kerT ′ and y ∈ Y , that is, if and only if kerT ′ = {0}.

(iv) Let x ∈ ker(T ) and x′ ∈ rgT ′. Choose y′ ∈ D(T ′) with T ′y′ = x′. Then
x′x = (T ′y′)x = y′(Tx) = y′(0) = 0, hence x ∈ ◦(rg T ′).
Now let x ∈ ◦(rgT ′) ∩D(T ). Then y′(Tx) = (T ′y′)x = 0 for all y′ ∈ Y ′. Since T is
closed, it follows by Lemma 4.63 that Tx = 0, hence x ∈ kerT .

(v) Let x′ ∈ rg(T ′) and x ∈ kerT . Choose y′ ∈ D(T ′) such that T ′y′ = x′. Then
x′x = (T ′y′)x = y′(Tx) = y′(0) = 0. It follows that rg(T ′) ⊆ (kerT )◦, and since
(kerT )◦ is closed, the statement is proved.

Theorem 4.65 (Phillips). Let X,Y be a Banach spaces, T (X → Y ) a densely
defined injective linear operator with rg(T ) = Y . Then

(T ′)−1 = (T−1)′ (4.2)

and T−1 is bounded if and only if T is closed and (T ′)−1 is bounded on X ′. (T−1

denotes the inverse of T : D(T ) → rg(T ), similar for (T ′)−1.)

Proof.

Theorem 4.66 (Closed range theorem). Let X,Y be reflexive Banach spaces
and T : X ⊇ D(T ) → Y a closed densely defined linear operator. The following is
equivalent:

(i) rg(T ) is closed.

(ii) rg(T ′) is closed.

(iii) T : X ⊇ D(T ) → rg(T ) is open.

(iv) T ′ : Y ′ ⊇ D(T ′) → rg(T ′) is open.

(v) rg(T ) = ◦(kerT ′).

(vi) rg(T ′) = (kerT )◦.

Proof. (i) ⇐⇒ (iii) Since T is closed, (D(T ), ‖ · ‖T ) is a Banach space and

T̃ : (D(T ), ‖ · ‖T ) → rgT, T̃x = Tx

is continuous (Lemma 3.32). Observe that also i : (D(T ), ‖ · ‖T ) → X, x 7→ x is

continuous and that T = T̃ ◦ i−1 : X ⊇ D(T ) → Y . Note that rgT is a Banach
space.
If rgT is closed, then T̃ : (D, ‖ · ‖T ) → rgT is open by the open mapping theorem

(Theorem 3.22), then also T = T̃ ◦ i−1 : X ⊇ D(T ) → rgT is open as composition
of open maps. If T : D(T ) → rgT is open, then it is surjective, hence rgT is closed.

Note that T ′ is closed (Theorem 4.57), hence (ii) ⇐⇒ (iv) is proved analogously.

(i) ⇐⇒ (v) follows from theorem 4.64 (ii).
(ii) ⇐⇒ (vi) follows from theorem 4.64 (ii)

rg(T ′) = ◦(kerT ′′) = (kerT )◦.

(iii) ⇐⇒ (iv) Recall that T is open if and only if there exists an , r > 0 such that
the image of the open ball in X with centre 0 and radius r contains the open unit
ball in Y . That is, there exists a r > 0 such that T (BX(0, r)) ⊇ BY (0, 1). Assume
that T is open and let r as above.
To show that T ′ is open, we have to show that for every x′0 ∈ rg(T ′) with ‖x′0‖ < 1,
there exists a y′0 ∈ D(T ′) with T ′y′0 = x′0 and ‖y′0‖ < r. Define a linear functional

Last Change: Thu 4 Apr 11:51:53 COT 2013



D
R
A

F
T

Chapter 4. Hilbert spaces 75

ϕ on rg(T ) as follows: for y ∈ rgT with ‖y‖ < 1 choose x ∈ D(T ) such that
‖x‖ < r and Tx = y. Set ϕ(y) = x′0x and extend ϕ linearly to rgT . Note that
|ϕ(y)| = |x′0x| ≤ ‖x′0‖‖x‖ ≤ r‖y‖, ϕ is bounded, so by the theorem of Hahn-Banach
it can be extended to a functional y′0 ∈ Y ′ with ‖y′0‖ ≤ r. Note that

D(T ) → K, 7→ y′0(Tx) = ϕ(Tx) = x′0x

is continuous, so y′0 ∈ D(T ).

(iv) ⇐⇒ (iii) Follows analogously if we note that T ′′ = T by the reflexivity of X
and Y .

Definition 4.67. Let H1, H2 be Hilbert spaces and D(T ) ⊆ H1 a dense subspace.
For a linear map T : H1 ⊇ D(T ) → H2 its Hilbert space adjoint T ∗ is defined by

D(T ∗) := {y ∈ H2 : x 7→ 〈Tx , y〉 is a bounded on D(T )},
T ∗ : H2 ⊇ D(T ∗) → H1, T ∗y = y∗,

where y∗ ∈ H1 such that 〈Tx , y〉 = 〈x , y∗〉 for all x ∈ D(T ).
Note that for y ∈ D(T ∗) the map x 7→ 〈Tx , y〉 is continuous and densely defined
and can therefore be extended uniquely to an element ϕy ∈ H ′

1. By the Riesz
representation theorem (Theorem 4.20) there exists exactly one y∗ ∈ H1 as desired.

Definition 4.68. Let H1, H2 be Hilbert spaces and D(T ) ⊆ H1, D(S) ⊆ H2 sub-
spaces. The linear maps T : H1 ⊇ D(T ) → H2 and S : H2 ⊇ D(S) → H1 are called
formally adjoint if

〈Tx , y〉H2
= 〈x , Sy〉H1

, x ∈ D(T ), y ∈ D(S).

Note that the formal adjoint of a non-densely defined linear operator is not unique;
in particular, the operator trivial operator with D = {0} is formally adjoint to every
linear operator.
If T is densely defined, then its adjoint T ∗ is its maximal formally adjoint operator.

Lemma 4.69. Let H1 and H2 be Hilbert spaces and define

U : H1 ×H2 → H2 ×H1, (x, y) 7→ (y,−x).

If T (H1 → H2) is a densely defined linear operator, then

G(T ∗) = U(G(T )⊥) = [U(G(T ))]⊥. (4.3)

Proof. Observe that U is unitary, hence U(G(T )⊥) = [U(G(T ))]⊥. The first equal-
ity in (4.3) follows from

(y0, x0) ∈ G(T ∗) ⇐⇒ 〈Tx , y0〉Y = 〈x , x0〉X , x ∈ D(T )

⇐⇒ 〈Tx , y0〉 − 〈x , x0〉 = 0, x ∈ D(T )

⇐⇒ 〈(Tx,−x) , (y0, x0)〉H2×H1
= 0, x ∈ D(T )

⇐⇒ 〈U(x, Tx) , (y0, x0)〉H2×H1
= 0, x ∈ D(T )

⇐⇒ (y0, x0) ∈ [U(G(T ))]⊥.

Theorem 4.70. Let H1 and H2 be Hilbert spaces. For a densely defined linear
operator T (X → Y ) the following holds:

(i) T ∗ is closed.

Last Change: Thu 4 Apr 11:51:53 COT 2013

D
R
A

F
T

76 4.6. The adjoint of an unbounded operator

(ii) If T is closable, then T ∗ is densely defined and T ∗∗ = T .

Proof. (i) follows immediately from (4.3).

(ii) Let y0 ∈ D(T ∗)⊥. Then 〈y0 , y〉 = 0 for all y ∈ D(T ). This implies

0 = 〈(0, y0) , (−z, y)〉H1×H2
= 〈(0, y0) , U(y, z)〉H1×H2

, (y, z) ∈ G(T ∗).

Hence by Lemma 4.69,

(0, y0) ∈ [U−1(G(T ∗))]⊥ = G(T )⊥⊥ = G(T ) = G(T ).

It follows that y0 = T0 = 0, so D(T ∗) = Y . Let

V : H2 ×H1 → H1 ×H2, V (y, x) = (x,−y).

Obviously V U = − idH1×H2
and application of Lemma 4.69 to T ∗ yields

G(T ∗∗) = [V (G(T ∗))]⊥ = [V U(G(T )⊥)]⊥ = [−(G(T )⊥)]⊥ = G(T )⊥⊥ = G(T )

= G(T ).

hence T ∗∗ = T .

Theorem 4.71. Let H1, H2, H3 be Hilbert spaces.

(i) Let T (H1 → H2) and S(H1 → H2) be densely defined linear operators. If
S ⊆ T then T ∗ ⊆ S∗.

(ii) Assume S(H1 → H2) and T (H2 → H3) are densely defined with TS = H1.
Then S∗T ∗ ⊆ (TS)∗.

(iii) Assume S(H1 → H2) and T (H1 → H2) are densely defined with T + S = H1.
Then (T ∗ + S∗) ⊆ (S + T )∗.

If S and T are bounded, then “=” holds in (ii) and (iii).

Proof. As is in the Banach space case.

Corollary 4.72. Let H be a Hilbert space, T a densely defined linear operator in
H with bounded inverse T−1 ∈ L(H). Then T ∗ is invertible and

(T ∗)−1 = (T−1)∗ =: T−∗.

Proof. By Theorem 4.71 (ii) it follows that (T−1)∗T ∗ ⊆ (TT−1)∗ = idH∗ = idH ,
hence (T−1)∗T ∗ = idD(T∗).
Again by Theorem 4.71 (ii) we find T ∗(T−1)∗ ⊆ (T−1T )∗ = id∗

D(T ) = idH , so it

suffices to show D(T ∗(T−1)∗) = D(T ∗). Let y ∈ D(T ∗) and z = (T−1)∗y. For
every x ∈ D(T ) it follows that 〈Tx , z〉 = 〈Tx , (T−1)∗y〉 = 〈T−1Tx , y〉 = 〈x , y〉, so
z ∈ D(T ∗) which implies D(T ∗(T−1)∗) = D(T ∗).

Theorem 4.73. Let H1, H2 be Hilbert spaces, T (H1 → H2) a densely defined closed
linear operator. Then the following holds.

(i) rg(T )⊥ = rg(T )
⊥

= kerT ∗.

(ii) rg(T ) = (kerT ∗)⊥.

(iii) rg(T ∗)⊥ = kerT .
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(iv) rg(T ∗) = (kerT )⊥.

Proof. (i) Note that y ∈ rg(T )⊥ if and only if 〈Tx , y〉 for all x ∈ D(T ). This is
equivalent to y ∈ D(T ∗) and T ∗y = 0.

(ii) By (i) rg(T ) = rg(T )
⊥⊥

= (kerT ∗)⊥.

(iii) By Theorem 4.70 T ∗ is closed and densely defined and T ∗∗ = T . Application
of (i) to T ∗ shows rg(T ∗)⊥ = kerT .

(iv) Application of (ii) to T ∗ shows rg(T ∗) = (kerT )⊥.

Example 4.74. Let H = L2[0, 1]. Let

D(T1) := W 1
2 (0, 1) = {x ∈ L2[0, 1] : x absolutely continuous, x′ ∈ L2[0, 1]},

D(T2) := D(T1) ∩ {x ∈ L2[0, 1] : x(0) = x(1)}
D(T3) := D(T1) ∩ {x ∈ L2[0, 1] : x(0) = x(1) = 0}.

For k = 1, 2, 3 let

Tk : H ⊇ D(Tk) → H, Tkx = ix′.

Obviously, the Tk are well-defined and D(Tk) is dense in H (Theorem ??). We will
show: T ∗

1 = T3, T ∗
3 = T1, T ∗

2 = T2, in particular all Tk are closed.

Proof. Let x, y ∈ D(T1). Then, using integration by parts,

〈T1x , y〉 =

∫ 1

0

ix′(t)y(t) dt = ix(t)y(t)
∣∣∣
1

0
−
∫ 1

0

ix(t)y′(t) dt

= ix(1)y(1) − ix(0)y(0) + 〈x , T1y〉.

In particular we obtain

〈Tx , y〉 = 〈x , T y〉, x ∈ D(T1), y ∈ D(T3),

〈Tx , y〉 = 〈x , T y〉, x, y ∈ D(T2).

This shows that

D(T3) ⊆ D(T ∗
1 ), D(T2) ⊆ D(T ∗

2 ) and D(T1) ⊆ D(T ∗
3 )

and T ∗
1 |D(T3) = T3, T

∗
3 |D(T3) = T1 and T ∗

2 |D(T3) = T2.
To prove the inclusion D(T ∗

1 ) ⊆ D(T3) let g ∈ D(T ∗
1 ) and ϕ = T ∗

1 g. Define Φ(t) =∫ t
0
ϕ(s) ds. Then Φ is absolutely continuous and Φ′ = ϕ. For x ∈ D(T1)

∫ 1

0

ix′(t)g(t) dt = 〈T1x , g〉 = 〈x , ϕ〉 =

∫ 1

0

ix(t)ϕ(t) dt

= x(t)Φ(t)
∣∣∣
1

0
−
∫ 1

0

ix′(t)Φ(t) dt

= x(1)Φ(1) −
∫ 1

0

ix′(t)Φ(t) dt.

Note that Φ(1) = 0 as can be seen if x is chosen to be a constant function. Hence

∫ 1

0

ix′(t)(g(t)iΦ(x)) dt = 0, x ∈ D(T1),

implying that g + iΦ ∈ rg(T1)⊥ = {0}. It follows that g is absolutely continuous
and g(0) = iϕ(0) = 0, g(1) = iϕ(1) = 0, so g ∈ D(T3).

Analogously, T ∗
2 = T2 and T ∗

3 = T1 can be shown.
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Definition 4.75. Let H be a Hilbert spaces, D(T ) ⊆ H a dense subspace and
T : H ⊇ D(T ) → H a linear map.

(i) T is called symmetric if T ⊆ T ∗.

(ii) T is called selfadjoint if T = T ∗.

(iii) T is called essentially selfadjoint if T = T ∗.

The operator T2 in the example above is selfadjoint, the operator T3 is symmetric.
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Chapter 5

Spectrum of linear operators

If not stated explicitely otherwise, all Hilbert and Banach spaces in this chapter are
assumed to be complex vector spaces.

5.1 The spectrum of a linear operator

Definition 5.1. Let X be a Banach space and T (X → X) a densely defined linear
operator.

ρ(T ) := {λ ∈ C : λ id−T is bijective} resolvent set of T,

σ(T ) := C \ ρ(T ) spectrum of T.

The spectrum of T is further divided in point spectrum σp(T ), continuous spectrum
σc(T ) and residual spectrum σr(T ):

σp(T ) := {λ ∈ C : λ id−T is not injective},
σc(T ) := {λ ∈ C : λ id−T is injective, rg(T − λ id) 6= X, rg(T − λ id) = X},
σr(T ) := {λ ∈ C : λ id−T is injective, rg(T − λ id) 6= X}.

It follows immediately from the definition that

σ(T ) = σp(T ) ∪̇σc(T ) ∪̇σr(T ).

In the following, we often write λ− T instead of λ id−T .

Definition 5.2. (i) Elements λ ∈ σp(T ) are called eigenvalues of T .

(ii) For λ ∈ σp(T ) we define the geometric eigenspace of T in λ, Nλ(T ), and the
algebraic eigenspace of T in λ, Aλ(T ), by

Nλ(T ) := ker(T − λ),

Aλ(T ) := {x ∈ X : (T − λ)nx = 0 for some n ∈ N}.

(iii) For λ ∈ ρ(T ) the resolvent of T in λ is (λ id−T )−1 := R(λ, T ). The map

ρ(T ) → L(X), λ 7→ R(λ, T )

is the resolvent map.
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80 5.2. The resolvent

Remark 5.3. If T is closed, then (T −λ)−1 is closed if it exists. Therefore, by the
closed graph theorem,

ρ(T ) = {λ ∈ C : T − λ is injective and (T − λ)−1 ∈ L(X)}.

Remark 5.4. Often the resolvent set of a linear operator is defined slightly differ-
ently: Let T (X → X) is a densely defined linear operator. Then λ ∈ ρ(T ) if and
only if λ−T is bijective and (λ−T )−1 ∈ L(X). With this definition it follows that
ρ(T ) = ∅ for every non-closed T (X → X) because one of the following cases holds:

(i) λ− T is not bijective =⇒ λ /∈ ρ(T );

(ii) λ− T is bijective, then (λ− T )−1 is defined everywhere and not closed, so it
cannot be bounded, which implies λ /∈ ρ(T ).

Remark 5.5. If dimX < ∞, then σc(T ) = σr(T ) = ∅ and σp(T ) is the set of all
eigenvalues of T .

Theorem 5.6 (Spectral mapping theorem for polynomials). Let X be a
Banach space, T ∈ L(X) and P ∈ C[X ] a polynomial. Then

σ(P (T )) = P (σ(T )).

Proof. Let λ ∈ C. Then there exists a polynomial Q such that P (X) − P (λ) =
(X − λ)Q(X). In particular, P (T ) − P (λ) = (T − λ)Q(T ) = Q(T )(T − λ). Hence,
if λ ∈ σ(T ), then (T − λ) is not bijective, so P (T ) − P (λ) is not bijective which
implies P (σ(T )) ⊆ σ(P (T )).
Now assume µ ∈ σ(P (T )). There exist a, λ1, . . . , λn ∈ C such that P (X) − µ =
a(X − λ1) · · · (X − λn). Since P (T ) − µ is not invertible, at least one of the terms
λj − T cannot be invertible, that is at least one λj must belong to the spectrum of
T and µ = P (λj) ∈ P (σ(T )).

5.2 The resolvent

In this section we will study the resolvent map ρ(T ) → L(X), λ 7→ R(λ, T ) =
(λ− T )−1. We will show that its domain is open and that it is analytic.

Lemma 5.7. Let X be a Banach space and T (X → X) a closed linear operator.

(i) ‖R(λ0, T )‖ ≥ 1

dist(λ0, σ(T ))
for all λ0 ∈ ρ(T ).

(ii) For λ0 ∈ ρ(T ) and λ ∈ C with |λ− λ0| < ‖R(λ0, T )‖−1

R(λ, T ) =
∞∑

n=0

(λ0 − λ)n(R(λ0, T ))n+1.

Note that (ii) shows that locally around a λ0 ∈ ρ(T ) the resolvent has a power series
expansion with coefficients depending only on λ0 and T .

Proof of Lemma 5.7. Recall that for a bounded linear operator S ∈ L(X) with
‖S‖ < 1 the operator (id−S)−1 ∈ L(X) and it is given explicitly by the Neumann
series (Theorem 2.10)

(id−S)−1 =

∞∑

n=0

Sn.
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Let λ0 ∈ ρ(T ). For λ ∈ C we find

λ− T = λ0 − T − (λ0 − λ) =
[

id−(λ0 − λ)(λ0 − T )−1
]
(λ0 − T ).

If |λ0 − λ| < ‖(λ0 − T )−1‖−1, then the term in brackets is invertible, hence so is
λ− T and we obtain

(λ− T )−1 = (λ0 − T )−1
[

id−(λ0 − λ)(λ0 − T )−1
]−1

= (λ0 − T )−1
( ∞∑

n=0

(λ0 − λ)n(λ0 − T )−n
)

=
∞∑

n=0

(λ0 − λ)n(λ0 − T )−(n+1)

which proves (ii). If µ ∈ C with |µ| < ‖(T − λ0)−1‖−1, then λ0 + µ ∈ ρ(T ), hence
dist(λ0, σ(T )) ≥ ‖(T − λ0)−1‖−1, so also (i) is proved.

As a corollary we obtain the following theorem.

Theorem 5.8. Let X be a Banach space and T (X → X) a closed linear operator.

(i) σ(T ) is closed.

(ii) If T ∈ L(X), then σ(T ) is compact.

Proof. (i) C \ σ(T ) = ρ(T ) is open by Lemma 5.7.

(ii) Let λ ∈ C with |λ| > ‖T ‖. Then λ − T = λ(id−λ−1T ) is invertible since
‖λ−1T ‖ < 1 (Neumann series, Theorem 2.10), hence λ ∈ ρ(T ) It follows that
{λ ∈ C : |λ| > ‖T ‖} ⊇ ρ(T ). Since σ is closed and bounded, it is compact.

Next we prove the so-called resolvent identities.

Theorem 5.9. Let X be a Banach space and T (X → X), S(X → X) a linear
operators with D(S) = D(T ).

(i) 1st resolvent identity:

R(λ, T ) −R(µ, T ) = (µ− λ)R(λ, T )R(µ, T ), λ, µ ∈ ρ(T ).

In particular, the resolvents commute.

(ii) 2nd resolvent identity:

R(λ, T ) −R(λ, S) = R(λ, T )(T − S)R(λ, S), λ ∈ ρ(T ) ∩ ρ(S).

Proof. (i) follows from a straightforward calculation:

R(λ, T ) −R(µ, T ) = (λ− T )−1 − (µ− T )−1

= (λ− T )−1
[
µ− T − (λ− T )

]
(µ− T )−1

= (µ− λ)R(λ, T )R(µ, T ).

(ii) is shown similarly:

R(λ, T ) −R(λ, S) = (λ− T )−1 − (λ− S)−1

= (λ− T )−1
[
λ− S − (λ− T )

]
(λ− S)−1

= R(λ, T )(T − S)R(λ, S),
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Next we study properties of the resolvent map ρ(T ) → L(X), λ 7→ R(λ, T ). By
Lemma 5.7 we already now that its domain is open and that it is analytic, that is,
locally it has a power series representation.

Definition 5.10. Let Ω ∈ C be an open set, X a Banach space and f : Ω → X .

(i) f is called holomorphic in z0 ∈ Ω if and only if the limit

lim
z→z0

f(z) − f(z0)

z − z0

exists in the norm topology. f is called holomorphic if and only if it is holo-
morphic in every z0 ∈ Ω.

(ii) f is called weakly holomorphic in z0 ∈ Ω if and only if the limit

lim
z→z0

f(z) − f(z0)

z − z0

exists in the weak topology. f is called weakly holomorphic if and only if it
is weakly holomorphic in every z0 ∈ Ω. Hence, for every ϕ ∈ X ′ the map
Ω → C, z 7→ ϕ(f(z)) is holomorphic in the usual sense.

Lemma 5.11. Let X be a Banach space. A sequence (xn)n∈N ⊆ X is a Cauchy
sequence if and only if the sequence (ϕ(xn))n∈N ⊆ X is uniformly Cauchy for ϕ ∈ X ′

with ‖ϕ‖ ≤ 1 (that is, for every ε > 0 exists a N ∈ N such that |ϕ(xn)−ϕ(xm)| < ε
for all m,n ≥ N and all ϕ ∈ X ′ with ‖ϕ‖ ≤ 1).

Proof. Assume that (xn)n∈N ⊆ X is a Cauchy sequence and let ε > 0. Then
there exists a N ∈ N such that ‖xn − xm‖ < ε for m,n ≥ N . It follows that
‖ϕ(xn) − ϕ(xm)‖ ≤ ‖ϕ‖‖xn − xm‖ < ε for all m,n ≥ N and all ϕ ∈ X ′ with
‖ϕ‖ ≤ 1.

Now let ε > 0 and assume that there exists an N ∈ N such that |ϕ(xn)−ϕ(xm)| < ε
for all m,n ≥ N and all ϕ ∈ X ′ with ‖ϕ‖ ≤ 1. Recall that the map JX : X → X ′′

is an isometry. It follows for m,n ≥ N

‖xn − xm‖ = ‖JXxn − JXxm‖ = sup{|(JXxn − JXxm)ϕ| : ϕ ∈ X ′, ‖ϕ‖ ≤ 1}
= sup{|ϕ(xn) − ϕ(xm)| : ϕ ∈ X ′, ‖ϕ‖ ≤ 1} < ε.

Recall the following fundamental theorem of complex analysis.

Theorem 5.12 (Cauchy’s integral formula). Let Ω ∈ C open and let f : Ω → C

holomorphic. Let z0 ∈ Ω and r > 0 such that Kr(z0) := {z ∈ C : |z − z0| ≤ r} ⊆ Ω.
Then

f(a) =
1

2πi

∫

Γr(z0)

f(z)

z − a
dz, a ∈ Br(z0) (5.1)

where Γr(z0) is the positively oriented boundary of Kr(z0). More generally, for
n ∈ N0,

f (n)(a) =
n!

2πi

∫

Γr(z0)

f(z)

(z − a)n+1
dz, a ∈ Br(z0). (5.2)

Theorem 5.13 (Dunford). Let X be a Banach space and let Ω ∈ C open. A map
f : Ω → X is holomorphic if and only if it is weakly holomorphic.
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Proof. Clearly, holomorphy of f implies weak holomorphy. Now assume that f is
weakly holomorphic. Let z0 ∈ Ω. Choose r > 0 such that Kr(z0) = {z ∈ C :
|z − z0| ≤ r} ∈ Ω. and let Γr(z0) be the positively oriented boundary of Kr(z0).
For every ϕ ∈ X ′ Cauchy’s integral formula (5.1) yields

ϕ(f(a)) =
1

2πi

∫

Γr(z0)

ϕ(f(z))

z − a
dz, a ∈ Br(z0).

For a ∈ Br(z0) and 0 < |h| < r− |z0 − a| it follows that a+ h ∈ Kr(z0), hence with
Cauchy’s integral formula we obtain

1

h

(
ϕ(f(a+ h)) − ϕ(f(a))

)
− (ϕ ◦ f)′(a)

=
1

2πi

∫

Γr(z0)

1

h

[ 1

z − a− h
− 1

z − a
− h

(z − a)2

]
ϕ(f(z)) dz

=
1

2πi

∫

Γr(z0)

[ 1

(z − a)(z − a− h)
− 1

(z − a)2

]
ϕ(f(z)) dz

=
h

2πi

∫

Γr(z0)

ϕ(f(z))

(z − a)2(z − a− h)
dz.

Since z 7→ ϕ(f(z)) is holomorphic in a neighbourhood of Γr(z0), it is in particular
continuous. Hence there exists Cϕ such that

|ϕ(f(z))| < Cϕ, z ∈ Γr(z0).

By a corollary to the theorem of Banach-Steinhaus (Corollary 3.8), there exists
C > 0 such that

‖f(z)‖ < C, z ∈ Γr(z0).

Hence we obtain

∣∣∣ 1

h

(
ϕ(f(a+ h)) − ϕ(f(a))

)
− d

dz
(ϕ ◦ f)(a)

∣∣∣ ≤ h‖ϕ‖C′.

This implies that

lim
h→0

ϕ
( 1

h

(
f(a+ h) − f(a)

))
= lim
h→0

1

h

(
ϕ(f(a+ h)) − ϕ(f(a))

)
= (ϕ ◦ f)′(a),

uniformly for ϕ ∈ X ′, ‖ϕ‖ ≤ 1. Therefore, by Lemma 5.11, lim
h→0

1
h

(
f(a+ h)− f(a)

)

exists.

Theorem 5.14 (Dunford). Let X be a Banach space, Ω ⊆ C open and T : Ω →
L(X). Then the following is equivalent:

(i) T is holomorphic in the operator norm.

(ii) T is strongly holomorphic.

(iii) T is weakly holomorphic.

Proof. (i) =⇒ (ii) follows from the definition. (ii) ⇐⇒ (iii) follows form Theo-
rem 5.13. It remains to prove (iii) =⇒ (i). As in the proof of Theorem 5.13 we
obtain for x ∈ X and ϕ ∈ X ′

1

h

(
ϕ(T (a+h)x−T (a)x)

)
− d

dz
|z=a(ϕT (z)x) =

h

2πi

∫

Γr(z0)

ϕ(T (z)x)

(z − a)2(z − a− h)
dz.
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Since z 7→ ϕ(T (z)x) is holomorphic in a neighbourhood of Γr(z0), it is continuous,
so there exists Cx,ϕ such that

|ϕ(T (z)x)| < Cx,ϕ, z ∈ Γr(z0).

By a corollary to the theorem of Banach-Steinhaus (Corollary 3.8), there exists
Cx > 0 such that

‖T (z)x‖ < Cx, z ∈ Γr(z0),

and by the theorem of Banach-Steinhaus (Theorem 3.7), there exists C > 0 such
that

‖T (z)‖ < C, z ∈ Γr(z0).

This implies that

lim
h→0

1

h

(
ϕ(T (a+ h)x− T (a)x)

)
= ϕ

(
lim
h→0

1

h
(T (a+ h)x− T (a)x)

)

exists, uniformly for ϕ ∈ X ′, ‖ϕ‖ ≤ 1. Therefore, by Lemma 5.11,

lim
h→0

1

h
(T (a+ h)x− T (a)x)

exists and convergence is uniform for x ∈ X with ‖x‖ = 1. Analogously as in the
proof of Lemma 5.11 it follows the existence of

lim
h→0

1

h
(T (a+ h) − T (a)).

Theorem 5.15. Let X be a Banach space, T (X → X) a densely defined closed
linear operator. Then the resolvent map

ρ(T ) → L(X), λ 7→ R(λ, T ) = (λ− T )−1

is holomorphic.

Proof. Let λ0 ∈ ρ(T ) and λ ∈ C with |λ − λ0| < ‖R(λ0, T )‖. For fixed x ∈ X and
ϕ ∈ X ′ we have by Lemma 5.7

ϕ(R(λ, T )x) = ϕ
(( ∞∑

n=0

(λ− λ0)n(R(λ0, T ))n+1
)
x
)

=

∞∑

n=0

(λ− λ0)nϕ
(
(R(λ0, T ))n+1x

)

where we used that the operator series converges and ϕ is continuous. Since the last
sum is absolutely convergent, it follows that λ→ ϕ(R(λ, T )x) is analytic locally at
λ0, hence holomorphic. Since weak holomorphy is equivalent to holomorphy in the
operator norm (Theorem 5.14), the theorem is proved.

The preceding theorem allows us to apply theorems of complex analysis to the
resolvent map.

Theorem 5.16. Let X be a Banach space and T ∈ L(X). Then σ(T ) 6= ∅.
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Proof. Assume σ(T ) = ∅. Observe that this implies X 6= {0} and T−1 ∈ L(X). Let
λ ∈ C with |λ| > ‖T ‖. Then λ ∈ ρ(T ) and using the Neumann series

‖R(λ, T )‖ =
∥∥∥

∞∑

n=0

λnT−(n+1)
∥∥∥ ≤

∞∑

n=0

|λn|‖T ‖−(n+1) =
1

‖T ‖ − |λ| .

In particular, ‖R(λ, T )‖ → 0 for |λ| → ∞. Hence for every x ∈ X and ϕ ∈ X ′ the
map λ→ ϕ(R(λ, T )x) is holomorphic and bounded in C, so constant by the Liouville
theorem. Since ϕ(R(λ, T )x) → 0 for |λ| → ∞, it follows that ϕ(R(λ, T )x) = 0 for
all λ ∈ C, x ∈ X and ϕ ∈ X ′. By a corollary to the Hahn-Banach theorem
(Corollary 2.16) it follows that R(λ, T )x = 0 for all x ∈ X and λ ∈ C, hence
R(λ, T ) = 0, λ ∈ C. This contradicts the fact that 1 = ‖TT−1‖ ≤ ‖T ‖‖T−1‖ =
0.

The following example shows that for unbounded linear operators the cases σ(T ) = ∅
and σ(T ) = C are possible.

Examples 5.17. (i) Let X = C([0, 1]) and

T : X ⊇ C1([0, 1]) → X, Tx = x′.

Then T is unbounded and closed and σ(T ) = σp(T ) = C.

(ii) Let X = {x ∈ C([0, 1]) : x(0) = 0}, D(T ) = {x ∈ X ∩C1([0, 1]) : x′ ∈ X} and

T : X ⊇ D(T ) → X, Tx = x′.

Then T is unbounded and closed and σ(T ) = ∅.

Proof. (i) Obviously, T is unbounded and densely defined. If (xn)n∈N ⊆ D(T ) such
that xn → x and Txn → y ∈ X , then, by a theorem of Analysis 1, x is differentiable,
hence in D(T ) and Tx = x′ = y which implies that T is closed.
For every λ ∈ C the differential equation x′ − λx = 0 has the solution xλ(t) = eλt.
Note that xλ ∈ D(T ) and (T − λ)xλ = 0, so λ ∈ σp(T ).

(ii) Obviously, T is unbounded and densely defined. If (xn)n∈N ⊆ D(T ) such that
xn → x and Txn → y ∈ X , then, by a theorem of Analysis 1, x is differentiable
and x′ = y. Moreover, x(0) = lim

n→∞
xn(0) = 0, so in D(T ) and Tx = x′ = y which

implies that T is closed.
For every λ ∈ C and every y ∈ X the initial value problem x′ − λx = y, x(0) has
exactly one solution xλ given by

xλ(t) = eλt
∫ t

0

e−λs y(s) ds.

Obviously xλ ∈ C1[0, 1], xλ(0) = 0 and x′λ(0) = λxλ(0) + y(0) = 0. Hence T − λ is
bijective, in particular λ ∈ ρ(T ).

Note that in the last example the continuity of (T − λ) can be seen immediately:

‖(T − λ)−1y‖∞ = ‖xλ‖∞ = sup
{∣∣∣ eλt

∫ t

0

e−λs y(s) ds
∣∣∣ : t ∈ [0, 1]

}

≤ ‖y‖∞ max{1, eλ}
∫ 1

0

e−λs ds.

28 Abr 2012
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Definition 5.18. Let X be a Banach space The spectral radius of T ∈ L(X) is

r(T ) := lim sup ‖T n‖ 1
n .

Theorem 5.19. Let X be a Banach space, T ∈ L(X) and r(T ) its spectral radius.

(i) r(T ) ≤ ‖Tm‖1/m ≤ ‖T ‖ for all m ∈ N, in particular r(T ) = lim
m→∞

‖Tm‖1/m.

(ii) σ(T ) ⊆ {λ ∈ C : |λ| ≤ r(T )}.

(iii) If X is a complex Banach space, then there exists a λ ∈ σ(T ) such that
|λ| = r(T ), in particular

r(T ) = max{|λ| : λ ∈ σ(T )}.

(iv) If X is Hilbert space and T is normal, then r(T ) = ‖T ‖.

(v) If X is a complex Hilbert space and T is normal with r(T ) = 0, then T = 0.

Proof. (i) Let m ∈ N arbitrary. For every n ∈ N there exist pn, qn ∈ N0 with
qn < m and n = pnm+ qn. Let M := max{1, ‖T ‖, . . . , ‖Tm−1‖}. Then

‖T n‖ = ‖T pnm+qn‖ ≤ ‖T pnm‖ ‖T qn‖ ≤M‖Tm‖pn .

This implies r(T ) = lim sup
n→∞

‖T n‖ 1
n ≤ lim sup

n→∞
M

1
2 ‖Tm‖ 1

m
− qm

nm = ‖Tm‖ 1
m .

(ii) By the formula of Hadamard, the radius of convergence of
∑∞
n=0 z

n+1‖T n‖
is (lim sup

n→∞
‖T n‖ 1

n )−1 = r(T )−1. Hence for all λ ∈ C, |λ| > r(T ), the series
∑∞

n=0 λ
−(n+1)T n =: A converges in norm. By Theorem 2.10 (Neumann series), A is

the inverse of λ−T . Because T is closed, it follows that {λ ∈ C : |λ| > r(T )} ⊆ ρ(T ),
or equivalently {λ ∈ C : |λ| ≤ r(T )} ⊆ σ(T ).

(iii) Let r0 := max{|λ| : λ ∈ σ(T )}. It follows from (ii) that r0 ≤ r(T ). Now
choose any µ ∈ C with |µ| > r0. We have to show that |µ| > r(T ). Observe that
by definition of R(T ) and by the formula of Hadamard

(λ− T )−1 =

∞∑

n=0

λ−(n+1)T n, |λ| > r(T ), (5.3)

where the series on the right hand side converges in norm. In particular, for every
ϕ ∈ L(X)′

ϕ(λ− T )−1 =

∞∑

n=0

λ−(n+1)ϕ(T n), |λ| > r(T ).

Hence λ 7→ ϕ(T − λ)−1 defines an analytic function for |λ| > r(T ). It follows
from complex analysis that then the equality in (5.3) holds for all λ in the largest
open ring where λ 7→ ϕ(λ − T ) is analytic, that is for all λ > r(T ). In particular,∑∞

n=0 µ
−(n+1)ϕ(T n) converges for every ϕ ∈ L(X)′, hence it is weakly convergent,

and therefore (µ−(n+1)ϕ(T n))n∈N converges to 0. It follows that (µ−(n+1)T n)n∈N is
weakly convergent to 0, hence it is bounded (Corollary 3.9). Let M ∈ R such that

‖µ−(n+1)‖T n‖ < M , n ∈ N. Then ‖‖T n‖ 1
n < M

1
nµ1+ 1

n for all n ∈ N, in particular

r(T ) = lim
n→∞

‖‖T n‖ 1
n ≤ µ.

(iv) Recall that ‖TT ∗‖ = ‖T ‖2 for a normal operator T (Theorem 4.39). Hence

‖T 2‖2 = ‖T 2(T ∗)2‖ = ‖(TT ∗)2‖ = ‖(TT ∗)‖2 = ‖T ‖4,
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hence ‖T 2‖ = ‖T ‖2. By induction, it can be shown that hence ‖T 2n‖ = ‖T ‖2n for
all n ∈ N, implying that

r(T ) = lim
n→∞

‖T n‖ 1
n = lim

n→∞
‖T 2n‖ 1

2n = lim
n→∞

‖T ‖ = ‖T ‖.

(v) follows directly from (iv).

Note that in general r(T ) < ‖T ‖, for example r(T ) = 0 for every nilpotent linear
operator.

5.3 The spectrum of the adjoint operator

Lemma 5.20. (i) Let X be a Banach space and T (X → X) a densely defined
closed linear operator. Then σ(T ′) = σ(T ) and R(λ, T )′ = R(λ, T ′) for λ ∈
ρ(T ).

(ii) Let H be a Hilbert space and T (H → H) a densely defined closed linear
operator. Then σ(T ∗) = σ(T ) = {λ ∈ C : λ ∈ σ(T )} and R(λ, T )∗ =
R(λ∗, T ∗) for λ ∈ ρ(T ).

Proof. The assertions follow from Theorem 4.65.

Lemma 5.21. Let X be a Banach space and T (X → X) densely defined and closed.

(i) λ ∈ σp(T ) =⇒ λ ∈ σp(T ′) ∪ σr(T ′).

(ii) λ ∈ σr(T ) =⇒ λ ∈ σp(T ′).

Proof. (i) If λ ∈ σp(T ), then ker(λ − T ) ) {0}, rg(λ− T ′) ⊆ ker(T )◦ 6= X . It
follows that λ ∈ σp(T ′) or λ ∈ σr(T

′).

(i) If λ ∈ σr(T ), then rg(λ− T ) 6= X . By Theorem 4.64 rg(λ− T ) = X if and only
if (λ− T )′ = λ− T ′ is not injective, hence λ ∈ σp(T ′).

Theorem 5.22. Let H be a complex Hilbert space, T (H → H) a symmetric oper-
ator and λ ∈ C \ R.

(i) ‖(λ− T )x‖ ≥ | Im(λ)| ‖x‖ for all x ∈ D(T ).
In particular T − λ : D(T ) → rg(T − λ) is invertible with continuous inverse
and the point spectrum of T is real.

(ii) If T is closed, then rg(λ− T ) is closed.

Proof. (i) For all x ∈ D(T )

‖(λ− T )x‖ ‖x‖ ≥
∣∣〈(λ − T )x , x〉

∣∣ =
∣∣〈(Reλ− T )x , x〉 + i〈Imλx , x〉

∣∣
≥ | Imλ|‖x‖.

In particular, λ− T is injective, which implies that λ /∈ σp(T ).
(i) If (λ− T ) is continuous and closed, to its domain rg(λ− T ) is closed.

Theorem 5.23. Let H be a complex Hilbert space and T (H → H) a symmetric
operator. Then the following is equivalent.

(i) T is selfadjoint.

(ii) rg(λ− T ) = H for all z ∈ C \ R.

Last Change: Wed 17 Apr 11:33:04 COT 2013

D
R
A

F
T

88 5.3. The spectrum of the adjoint operator

(iii) rg(±i − T ) = H.

(iv) There exist z± ∈ C with Im z+ > 0 and Im z− < 0 such that rg(z± − T ) = H.

(v) σ(T ) ⊆ R.

(vi) T is closed and ker(±i − T ∗) = H.

Proof. (i) =⇒ (ii) Let λ ∈ C \ R. Then rg(λ− T ) 6= H is closed by Theorem 5.22
and λ∗ /∈ σp(T ). It follows by Theorem 4.73 that

rg(λ− T ) = rg(λ− T )⊥⊥ = ker(λ∗ − T ∗)⊥ = ker(λ∗ − T )⊥ = {0}⊥ = H.

(ii) =⇒ (i) By assumption, T is symmetric, hence T ⊆ T ∗, so it suffices to show
that D(T ∗) ⊆ D(T ). Let λ ∈ C \ R. Then λ − T and λ − T are bijective. For
x ∈ D(T ∗) there exists a y ∈ D(T ) such that (λ−T ∗)x = (λ−T )y. Since T ⊆ T ∗, it
follows that Ty = T ∗, hence x−y ∈ ker(λ−T ∗) = {0} which implies x = y ∈ D(T ).

(ii) =⇒ (iii) =⇒ (iv) is obvious.

(iv) =⇒ (v) Let z± ∈ C with Im z+ > 0 and Im z− < 0 such that rg(z±−T ) = H .
By Theorem 5.22, it follows that z± − T is injective and its inverse is bounded by
|ℑz±|. Hence, by Lemma 5.7, every λ ∈ C with |λ − z±| < |ℑz±| belongs to ρ(T ).
Given any λ ∈ C \R, repeating the argument above finitely many times shows that
λ ∈ ρ(T ).

(v) =⇒ (ii) is obvious.

(vi) =⇒ (iii) Since T is closed, the range of ±i − T is closed by Theorem 5.22.
Therefore rg(±i − T ) = rg(±i − T )⊥⊥ = ker(∓i − T ∗)⊥ = {0}⊥ = H .

(i) =⇒ (vi) Since T = T ∗, it is closed and C\R ⊆ ρ(T ), in particular ker(±i−T ) =
{0}.

Analogously, we find a characterisation of essentially selfadjoint operators.

Theorem 5.24. Let H be a complex Hilbert space and T (H → H) a symmetric
operator. Then the following is equivalent.

(i) T is essentially selfadjoint.

(ii) rg(λ− T ) = H for all z ∈ C \ R.

(iii) rg(±i − T ) = H.

(iv) There exist z± ∈ C with Im z+ > 0 and Im z− < 0 such that rg(z± − T ) = H.

(v) σ(T ) ⊆ R.

(vi) ker(±i − T ∗) = H.

Definition 5.25. Let X be a Banach space and T (X → X) densely defined and
closed. λ ∈ C is called approximate eigenvalue if there exists a sequence (xn)n∈N ⊆
X such that ‖xn‖ = 1 for all n ∈ N and lim

n→∞
(T − λ)xn = 0. The set of all

approximate eigenvalues is denoted by σap(T ).

Proposition 5.26. (i) Every approximate eigenvalue belongs to σ(T ).

(ii) Every boundary point of σ(T ) ⊆ C is an approximate eigenvalue of T .

(iii) If X is a Hilbert space and if T is selfadjoint, then every λ ∈ σ(T ) is an
approximate eigenvalue of T .
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Proof. (i) Let λ be an approximate eigenvalue of T . Choose a sequence (xn)n∈N ⊆
D(T ) such that ‖xn‖ = 1 for all n ∈ N and (λ− T )xn → 0. Assume that λ ∈ ρ(T ).
Then R(λ, T ) = (λ− T )−1 is bounded, therefore

lim
n→∞

xn = lim
n→∞

R(λ− T )(λ− T )xn = R(λ− T ) lim
n→∞

(λ − T )xn = 0,

in contradiction to ‖xn‖ = 1 for all n ∈ N.

(ii) Let λ be a boundary point of σ(T ). Then there exists a sequence (λn)n∈N ⊆
ρ(T ) which converges to λ. For every n ∈ N choose xn ∈ X such that ‖xn‖ = 1
and ‖R(λn, T )xn‖ ≥ 1

2‖R(λn, T )‖. From Lemma 5.7 we know that ‖R(λn, T )‖ ≥
1

dist(λn,σ(T )) . Set yn := ‖R(λn, T )‖−1R(λn, T )xn. Then yn ∈ D(T ) and ‖yn‖ = 1

for all n ∈ N. Moreover

‖(λ− T )yn‖ ≤ ‖(λ− λn)yn‖ + ‖(λn − T )yn‖
= |λ− λn| + ‖R(λn − T )xn‖−1

≤ |λ− λn| + 2‖R(λn − T )‖−1 −→ 0, n→ ∞.

Hence λ ∈ σap(T ).

(iii) By Theorem 5.23 the spectrum of a selfadjoint operator is real, so σ(T ) =
∂σ(T ) ⊆ σap(T ) ⊆ σ(T ).

Lemma 5.27. Let H be Hilbert space and T ∈ L(H) selfadjoint. Then σ(T ) ⊆
[m,M ] where m := inf{〈Tx , x〉 : ‖x‖ = 1} and M := sup{〈Tx , x〉 : ‖x‖ = 1}.
Moreover, m,M ∈ σ(T ).

Proof. Let λ ∈ R, λ < m. Then λ− T is injective because for all x ∈ X

‖(λ− T )x‖‖x‖ ≥ 〈(λ − T )x , x〉 ≥ (λ−m)‖x‖2. (5.4)

In particular, rg(λ−T ) = D((λ−T )−1) is closed because (λ−T )−1 : rg(λ−T ) → H
is closed and continuous by (5.4). Hence rg(λ−T ) = rg(λ− T ) = ker(λ−T )⊥ = H .
It follows that (−∞, m) ∈ ρ(T ). Analogously (M, ∞) ∈ ρ(T ) is shown.

Now we show that m ∈ σ(T ). By Proposition 5.26 it suffices to show that m ∈
σap(T ). By definition of m there exists a sequence (xn)n∈N such that ‖xn‖ = 1 for
all n ∈ N and 〈Txn , xn〉 ց m. Since s(x, y) := 〈(T − m)x , y〉 defines a positive
semidefinite sesquilinear form, Cauchy-Schwarz inequality implies

‖(T −m)xn‖2 = |s(xn, (T −m)xn)| ≤ s(xn, xn)
1
2 s((T −m)xn)

1
2

= 〈(T −m)xn , xn〉
1
2 〈(T −m)2xn , (T −m)xn〉

1
2 .

Since the first term in the product tends to 0 for n → ∞ and the second term is
bounded by (‖T ‖ −m)

3
2 < ∞, it follows that ‖(T −m)xn‖ tends to 0 for n → ∞.

This shows that m ∈ σap(T ). The proof of M ∈ σ(T ) is analogous.
30 Abr 2012

5.4 Compact operators

Recall that a metric space M is compact if and only if every open cover of M
contains a finite cover. M is called totally bounded if and only if every for every
ε > 0 there exists a covering of M with finitely many open balls of radius ε. M is
called precompact (or precompact) if and only if M is compact. It can be shown that
a totally bounded metric M is compact if and only if M is complete. In particular,
a subset of a complete metric space is totally bounded if and only if its closure is
compact. A subset of a metric space is called relatively compact if and only if its
closure is compact.
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Definition 5.28. Let X,Y be normed spaces. An operator T ∈ L(X,Y ) is called
compact if for every bounded set A ⊆ X the set T (A) is relatively compact. The
set of all compact operators from X to Y is denoted by K(X,Y ).

Remark 5.29. Sometimes compact operators are called completely continuous.

Remarks 5.30. (i) Every compact linear operator is bounded.

(ii) T ∈ L(X,Y ) is compact if and only if for every bounded sequence (xn)n∈N

the sequence (Txn)n∈N contains a convergent subsequence.

(iii) T ∈ L(X,Y ) is compact if and only if T (BX(0, 1)) is relatively compact.

(iv) Let T ∈ L(X,Y ) with finite dimensional rg(T ). The T is compact.

(v) The identity map id ∈ L(X) is compact if and only if X is finite-dimensional.

Theorem 5.31. Let X,Y be Banach spaces. Then K(X,Y ) is a closed subspace
of L(X,Y ).

Proof. Obviously, 0 ∈ K(X,Y ) and Remark 5.30 (ii) implies that the linear com-
bination of compact operators is compact. Now let (Tn)n∈N ⊆ K(X,Y ) a Cauchy
sequence. Since L(X,Y ) is complete, there exists a T ∈ L(X,Y ) such that Tn → T .
We have to show T ∈ K(X,Y ). Take an arbitrary bounded sequence (xn)n∈N ⊆ X
and choose M ∈ R such that ‖xn‖ ≤M , n ∈ N. Since T1 is compact, there exists a

subsequence (x
(1)
n ) such that (T1x

(1)
n )n∈N converges. Continuing like this, for every

k ≥ 2 we find a subsequence (x
(k)
n ) of (x

(k−1)
n ) such that (Tkx

(k)
n )n∈N converges. Let

(yn)n∈N = (x
(n)
n )n∈N the diagonal sequence. Then, for every k ∈ N, the sequence

(Tkyn)n∈N converges. Let ε > 0. Choose k ∈ N such that ‖T − Tk‖ < ε
3M and

N ∈ N such that ‖Tkxn − Tkxm‖ ≤ ε
3 for m,n ≥ N . Then, for all m,n ≥ N ,

‖Tyn − Tym‖ ≤ ‖Tyn − Tkyn‖ + ‖Tkyn − Tkym‖ + ‖Tkym − Tym‖

≤ Mε

3M
+
ε

3
+
Mε

3M
= ε.

Hence (Tyn)n∈N is Cauchy sequence in the Banach space Y , hence convergent.

Lemma 5.32. Let X,Y, Z be Banach spaces, S ∈ L(X,Y ) and T ∈ L(Y, Z). Then
TS is compact if at least one of the operators S or T is compact.

Proof. Let (xn)n∈N be a bounded sequence in X . If S is compact, then there exists
a subsequence (xnk

)k∈N such that (Sxnk
)k∈N converges. By continuity of T , also

(TSxnk
)k∈N converges.

Now assume that T is compact. Since S is bounded, (Sxn)k∈N is bounded, hence
there exists a subsequence (xnk

)k∈N such that (TSxnk
)k∈N converges.

Theorem 5.33 (Schauder). Let X,Y be Banach space and T ∈ L(X,Y ). Then
T is compact if and only if T ′ is compact.

For the proof we use the Ascoli-Arzelá theorem.

Theorem 5.34 (Arzelá-Ascoli). Let (M,d) be a compact metric space and A ⊆
C(M) a family of real or complex valued continuous functions on M such that

(i) A is bounded,
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(ii) A is closed,

(iii) A is equicontinuous, that is,

∀ ε > 0 ∃ δ > 0 ∀ f ∈ A d(x, y) < δ =⇒ |f(x) − f(y) < ε.

Then A is compact.

Proof. See, e. g., [Rud91] or [Yos95].

Proof of Theorem 5.33. First assume that T is compact. Let KX(0, 1) := {x ∈
X : ‖x‖ < 1} be the closed unit ball in X . By assumption K := T (KX(0, 1)) is
compact in Y and bounded by ‖T ‖. Now let (ϕn)n∈N ⊆ Y ′ be a bounded sequence
and M ∈ R such that ‖ϕn‖ ≤M , n ∈ N. We define the functions

fn : K → K, fn(y) := ϕn(y).

Then (fn)n∈N is bounded by M and equicontinuous because |f(y1) − f(y2)| ≤
C‖y1 − y2‖, y1, y2 ∈ K. By the Ascoli-Arzelá, (fn)n∈N is compact, so there exists a
convergent subsequence (fnk

)k∈N. Then also (T ′ϕnk
)k∈N converges because

‖T ′ϕnk
− T ′ϕnm

‖ = sup{‖ϕnk
(Tx) − ϕnm

(Tx)‖ : x ∈ KX(0, 1)}
= sup{‖ϕnk

(y) − ϕnm
(y)‖ : y ∈ K} = ‖fnk

− fnm
‖.

Now assume that T ′ is compact. Then T ′′ ∈ L(X ′′, Y ′′) is compact. By Lemma 5.32
T ′′ ◦JX is compact. Recall that JY ◦T = T ◦JX (Lemma 2.33), so JY ◦T : X → Y ′′

is compact. Since Y is closed in Y ′′, T : X → Y is compact.

Example 5.35. Let k ∈ C([0, 1]2) and

Tk : C([0, 1]) → C([0, 1]), (Tkx)(t) =

∫ 1

0

k(s, t)x(s) ds.

Then Tk is compact.

Proof. Obviously Tk is well-defined and bounded. Let (xn)n∈N ⊆ C([0, 1]) a bounded
sequence with bound M . Hence (Tkxn)n∈N is bounded. To show that it is equicon-
tinuous fix ε > 0. Since k is uniformly continuous, there exists a δ > 0 such that
|k(s, t)−k(s′, t′)| < ε if ‖(s, t)− (s′, t′)‖ < δ. Now for t1, t2 ∈ [0, 1] with |t1− t2| < δ
and n ∈ N we obtain

|Tkxn(t1) − Tkxn(t2)| ≤
∫ 1

0

|k(s, t1) − k(s, t2)||xn(s)| ds < ε‖xn‖∞ ≤Mε.

By the Ascoli-Arzelá theorem it follows that (Tkxn)n∈N is relatively compact, hence
it contains a convergent subsequence.

Let X be vector space and T : X → X a linear operator. Then obviously

{0} ⊆ kerT ⊆ kerT 2 ⊆ kerT 3 ⊆ . . . ,

X ⊇ rgT ⊇ rgT 2 ⊇ rgT 3 ⊇ . . . .

Lemma 5.36. Let X a vector space and T : X → X a linear operator.

(i) Assume that kerT k+1 = kerT k for some k ∈ N0. Then kerT n = kerT k for
all integer n ≥ k.
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(ii) Assume that rgT k+1 = rgT k for some k ∈ N0. Then rgT n = rgT k for all
integer n ≥ k.

Proof. We prove the lemma by induction. The case when n = k is clear by assump-
tion.

(i) Assume that n > k and kerT n = kerT k. Then

kerT n+1 = {x ∈ X : T n+1x = 0} = {x ∈ X : Tx ∈ kerT k} = kerT k+1 = kerT k.

(i) Assume that n > k and rgT n = rgT k. Then

rgT n+1 = T (rgT n) = T (rgT k) = rgT k+1 = rgT k.

Definition 5.37. Let X be a vector space and T : X → X a linear operator. We
define

ascent of T := α(T ) :=

{
min{k ∈ N0 : kerT k = kerT k+1}, if the minimum exists,

∞ else

descent of T := δ(T ) :=

{
min{k ∈ N0 : rgT k = rgT k+1}, if the minimum exists,

∞ else.

Lemma 5.38. Let X be a vector space and T : X → X a linear operator. If
both the ascent α(T ) and the descent δ(T ) are finite, then α(T ) = δ(T ) =: p and
X = rg(T p) ⊕ ker(T p).

Proof. Let p := α(T ) and q := δ(T ). We divide the proof in several steps.

Step 1. rg(T p) ∩ ker(T n) = {0} for every n ∈ N0.

To see this, choose x ∈ rg(T p) ∩ ker(T n). Then there exists a y ∈ X such that
x = T py, so 0 = T nx = T p+ny. Hence y ∈ kerT p+n = kerT p by Lemma 5.36 i. It
follows that x = T py = 0.

Step 2. X = rg(T n) + ker(T q) for every n ∈ N0.

For the proof fix x ∈ X . Then T qx ⊆ rg(T q) = rg(T q+n). Hence there exists y ∈ X
such that T qx = T q+ny. Then T q(x−T ny) = 0, and therefore x = T ny+(x−T ny) ∈
rg(T n) + ker(T q).

Step 3. α(T ) ≤ δ(T ) = q.

Let x ∈ kerT q+1. We have to show x ∈ kerT q. By step 2, with n = p, there
exist x1 ∈ rg(T p) and x2 ∈ ker(T q) such that x = x1 + x2. Hence x1 = x − x2 ⊆
ker(T q+1) ∩ rg(T p) = {0} by step 1. Therefore x = x2 ∈ ker(T q).

Step 4. δ(T ) ≤ α(T ) = p.

By step 1 and step 2, we have that X = rg(T p) ⊕ ker(T q). Since rg(T p+1) ∩
ker(T q) ⊆ rg(T p) ∩ ker(T q) = {0}, we also have X = rg(T q+1) ⊕ ker(T q), implying
rgR(T p+1) = rg(T p), hence δ ≤ p.

Theorem 5.39. Let X be a Banach space, T ∈ L(X) a compact operator and
λ ∈ C \ {0}.

(i) ker(λ − T )n is finite dimensional for every n ∈ N0.

(ii) If U ⊆ X is a closed subspace with U ∩ ker(λ − T )n = {0}, then (λ − T )(U)
is closed and λ− T : U → rg((λ− T )|U has a bounded inverse.
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(iii) rg(λ− T )n is closed for every n ∈ N0.

Proof. Note that (λ− T )n = λn −∑n
n=1

(
n
k

)
λn−kT k and the operator sum is com-

pact. Hence it suffices to show the assertions for n = 1.
(i) Observe that T |ker(λ−T ) = λ id |ker(λ−T ). Hence λ id |ker(λ−T ) is compact. By
Remark 5.30 (v) this is case if and only if ker(λ− T ) is finite dimensional.

(ii) Since U ∩ ker(λ − T ) = {0}, the restriction (λ − T )|U is invertible. We will

show that its inverse is bounded. Assume
(
(λ−T )|U

)−1
is not bounded. Then there

exists a sequence (xn)n∈N such that ‖xn‖ = 1 for all n ∈ N and lim
n→∞

(λ−T )xn = 0.

Since T is compact, there exists a convergent subsequence (Txnk
)k∈N. Hence

λxnk
= Txnk

+ (λ− T )xnk︸ ︷︷ ︸
→0

−→ lim
n→∞

Txnk
=: y.

Note that y ∈ U because U is closed. Moreover, y ∈ ker(λ − T ) because

(λ− T )y = (λ− T ) lim
n→∞

xnk
= lim

n→∞
(λ − T )xnk

= 0.

Hence y ∈ ker(λ − T ) ∩ U = {0} in contradiction to ‖y‖ = lim
n→∞

‖λxn‖ = λ 6= 0.

Hence
(
(λ − T )|U

)−1
: rg(λ − T )|U → U is bounded. Since it is also closed, its

domain rg(λ − T )|U must be closed.

(iii) By (i) we already know that dim ker(λ − T ) < ∞. Then by the following
lemma 5.40 there exists a closed subspace U ⊆ X such that X = ker(λ − T ) ⊕ U .
Hence rg(λ− T ) = rg((λ − T )|U ) is closed by (ii).

Lemma 5.40. Let X be a Banach space and M ⊆ X a finite dimensional subspace.
Then there exists a closed subspace U of X such that X = M ⊕ U .

Proof. Let x1, . . . , xn a basis of M . Then there exist ϕ1, . . . , ϕn ∈ M ′ such that
‖ϕk‖ = 1 and ϕk(xj)δkj for all j, k = 1, . . . , n. By the Hahn-Banach theorem the
ϕk can be extended to functionals ψk ∈ X ′ with ‖ψk‖ = 1, k = 1, . . . , n. Let
P : X → X,Px =

∑n
j=1 ϕj(x)x. Obviously P = P 2, hence P is a projection. Note

that M = P (X). Hence X = rg(P ) ⊕ kerP = M ⊕ kerP .

Theorem 5.41. Let X be a Banach space, T ∈ L(X) a compact operator and
λ ∈ C\{0}. Then α(λ−T ) = δ(λ−T ) = p <∞ and X = ker(λ−T )p⊕ rg(λ−T )p.

The number p = α(λ − T ) = δ(λ− T ) is called the Riesz index of λ− T .

Proof. By Lemma 5.38 it suffices to show that α(T ) and δ(T ) are finite.

Assume that α is not finite. Since in this case ker(λ − T ) ( ker(λ − T )2 ( . . . we
can find a sequence (xn)n∈N ⊆ X such that for all n ∈ N

‖xn‖ = 1, xn ∈ ker(λ− T )n, and ‖xn − z‖ ≥ 1

2
for all z ∈ ker(λ− T )n−1.

The last condition can be satisfied by the Riesz lemma (Theorem 1.21) because
ker(λ− T )n is closed for all n ∈ N. Then for all 1 ≤ m < n

‖Txn − Txm‖ = ‖λxn−λxm − (λ− T )xn + (λ − T )xm︸ ︷︷ ︸
∈ker(λ−T )n−1

‖ ≥ 1

2
.

Therefore (Txn)n∈N does not contain a convergent subsequence in contradiction to
T being compact.

Last Change: Wed 17 Apr 11:33:04 COT 2013

D
R
A

F
T

94 5.4. Compact operators

Assume that δ is not finite. Since in this case rg(λ− T ) ) rg(λ− T )2 ) . . . we can
choose a sequence (xn)n∈N ⊆ X such that for all n ∈ N

‖xn‖ = 1, xn ∈ rg(λ− T )n, and ‖xn − z‖ ≥ 1

2
for all z ∈ rg(λ− T )n+1.

The last condition can be satisfied by the Riesz lemma because rg(λ−T )n is closed
for all n ∈ N by Theorem 5.39. Then for all 1 ≤ m < n

‖Txn − Txm‖ = ‖λxn−λxm − (λ− T )xn + (λ − T )xm︸ ︷︷ ︸
∈rg(λ−T )n+1

‖ ≥ 1

2
.

Therefore (Txn)n∈N does not contain a convergent subsequence in contradiction to
T being compact.

Theorem 5.42 (Spectrum of a compact operator). Let X be a Banach space.
For a compact operator T ∈ L(X) the following holds.

(i) If λ ∈ C \ {0}, then λ either belongs to ρ(T ) or it is an eigenvalue of T , that
is C \ {0} ⊆ ρ(T ) ∪ σp(T ).

(ii) The spectrum of T is at most countable and 0 is the only possible accumulation
point.

(iii) If λ ∈ σ(T ) \ {0}, then the dimension of the algebraic eigenspace Aλ(T ) is
finite and Aλ(T ) = ker(λ− T )p where p is the Riesz index of λ− T .

(iv) X = ker(λ − T )p ⊕ rg(λ − T )p for λ ∈ σ(T ) \ {0} where p is the Riesz index
of λ− T and ker(λ− T )p and rg(λ− T )p are T -invariant.

(v) σp(T ) \ {0} = σp(T ′) \ {0} and σ(T ) = σ(T ′). If H is a Hilbert space then

σp(T ) \ {0} = {λ ∈ C : λ ∈ σp(T ∗)} \ {0} = σp(T ∗) \ {0}, where the bar

denotes complex conjugation, and σ(T ) = {λ ∈ C : λ ∈ σ(T ∗)} = σ(T ∗).

Proof. (i) Let λ ∈ C \ {0}. By Theorem 5.41 the Riesz index p of λ− T is finite. If
p = 0, then X = rg(λ−T ) by the proof of Lemma 5.38 (step 2), hence λ ∈ ρ(T ). If
p 6= 0, then λ ∈ σp(T ).

(ii) It suffices to show that for every ε > 0 the set {λ ∈ σ(T ) : |λ| > ε} is finite.
Assume there exists an ε > 0 such that the set is not finite. Then there exists a
sequence (λn)n∈N such that λn 6= λm for n 6= m and |λn| > ε, n ∈ N. Since σ(T )\{0}
consists of eigenvalues, we can choose eigenvectors xn of T with eigenvalues λn.
Note that the xn are linearly independent because λn 6= λm for n 6= m. Let
Un := span{x1, . . . , xn}. Note that all Un are T -invariant, closed and that U1 (

U2 ( U3 ( . . . . Using the Riesz Lemma, we can choose a sequence (yn)n∈N such
that for all n ∈ N

‖yn‖ = 1, yn ∈ Un, and ‖yn − z‖ ≥ 1

2
for all z ∈ Un−1.

Let 1 ≤ m < n. Note that Tym ∈ Um. Let yn =
∑n

j=1 αjxj for some αj ∈ C. Then

(λn − T )yn = αn(λn − T )xn +

n∑

j=1

αj(T − λn)xj =

n∑

j=1

αj(λj − λn)xj ∈ Un−1.

Hence

‖Tyn − Tym‖ = ‖λnyn−(λn − T )yn − Tym︸ ︷︷ ︸
∈Un−1

‖ ≥ 1

2
. (5.5)
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Therefore (Txn)n∈N does not contain a convergent which contradicts the assumption
that T is compact.

(iii) and (iv) follow from Theorem 5.42.

(v) By Schauder’s theorem T ′ is compact (theorem 5.33) Hence for λ ∈ C it follows
that

λ ∈ ρ(T ) ⇐⇒ ker(λ− T ) = {0} and rg(λ− T ) = X

⇐⇒ ◦ rg(λ− T ′) = {0} and ◦ ker(λ− T ′) = X

⇐⇒ rg(λ− T ′) = X ′ and ker(λ− T ′) = {0}
⇐⇒ λ ∈ ρ(T )

Theorem 5.43 (Fredholm alternative; Riesz-Schauder theory). Let X be a
Banach space, T ∈ L(X) a compact operator and λ ∈ C \ {0}. Then exactly one of
the following is true:

(i) For every y ∈ X the equation (λ− T )x = y has exactly one solution x ∈ X.

(ii) (λ− T )x = 0 has a non-trivial solution x ∈ X.

Proof. (i) is equivalent to λ ∈ ρ(T ) and (ii) is equivalent to λ ∈ σp(T ). Since λ 6= 0,
the latter is equivalent to λ ∈ σ(T ). The assertion follows from Theorem 5.42.

A more precise formulation of the Fredholm alternative is the following.

Theorem 5.44. Let X be a Banach space, T ∈ L(X) a compact operator and
λ ∈ C \ {0}. For x, y,∈ X and ϕ, η ∈ X ′ consider the equations

(A) (λ− T )x = y, (C) (λ− T ′)ϕ = η,

(B) (λ− T )x = 0, (D) (λ − T ′)ϕ = 0.

Then

(i) For y ∈ X the following is equivalent:

(a) (A) has a solution x.

(b) ϕ(y) = 0 for every solution ϕ of (D).

(ii) For η ∈ X ′ the following is equivalent:

(a) (C) has a solution ϕ.

(b) η(x) = 0 for every solution x of (B).

(iii) Fredholm alternative: Exactly one of the following holds:

(a) For all y ∈ X and η ∈ X ′ the equations (A) and (C) have exactly one
solution (in particular (B) and (D) have only the trivial solutions).

(b) (B) and (D) have non-trivial solutions. In this case dim(ker(λ − T )) =
dim(ker(λ− T ′)) > 0 and (A) and (C) have solutions if and only if

ϕ(y) = 0 for all solutions ϕ of (D),

η(x) = 0 for all solutions x of (B).

Definition 5.45. Let X,Y be Banach spaces. T ∈ L(X) is called Fredholm oper-
ator if rg(T ) is closed and n(T ) := dim(kerT ) < ∞ and d(T ) := codimY (rgT ) :=
dim(Y/ rg(T )) <∞. In this case, χ(T ) := n(T )−d(T ) is called the Fredholm index.

Last Change: Wed 17 Apr 11:33:04 COT 2013

D
R
A

F
T

96 5.4. Compact operators

Proof of Theorem 5.44. . . . . . . . . . . . .

Now we return to the spectrum of compact operators.

Lemma 5.46. Let H be Hilbert space, 6= {0}, and T ∈ L(H) a selfadjoint compact
operator. Then at least one the values ‖T ‖ or −‖T ‖ is an eigenvalue of T . In
particular, if T 6= 0, then T has at least one eigenvalue distinct from 0.

Proof. If ‖T ‖ = 0, the assertion is clear. Now assume that ‖T ‖ 6= 0. Recall that
‖T ‖ = sup{|〈Tx , x〉| : x ∈ X, ‖x‖ = 1} (Theorem 4.45).
By Lemma 5.27 the numbers m = inf{〈Tx , x〉 : x ∈ X, ‖x‖ = 1} and M =
inf{〈Tx , x〉 : x ∈ X, ‖x‖ = 1} belong to the spectrum of T . Since T is compact and
‖T ‖ 6= 0, it follows that ∅ 6= {±‖T ‖} ∩ σ(T ) = {±‖T ‖} ∩ σp(T ).

Theorem 5.47 (Spectral theorem for compact selfadjoint operators). Let
H be a Hilbert space and T ∈ L(H) a compact selfadjoint operator.

(i) There exists an orthonormal system (en)Nn=1 of eigenvectors of T with eigen-
values (λn)Nn=1 where N ∈ N ∪ {∞} such that

Tx =

N∑

n=1

λn〈x , en〉 en, x ∈ H. (5.6)

The λn can be chosen such that |λ1| ≥ |λ2| ≥ · · · > 0. The only possible
accumulation point of the sequence (λn)n∈N is 0.

(ii) If P0 is the orthogonal projection on kerT , then

x = P0x+

N∑

n=1

〈x , en〉 en, x ∈ H. (5.7)

(iii) If λ ∈ ρ(T ), λ 6= 0

(λ− T )−1x = λ−1P0x+
N∑

n=1

〈x , en〉
λn − λ

en, x ∈ H.

Proof. (i) Let X1 = X and T1 = T . If T 6= 0, then there exists a λ1 ∈ σp(T1)
such that |λ1| = ‖T1‖ 6= 0. Let B1 be an orthonormal basis of ker(λ1 − T1). Note
that B1 is finite because T is compact (Theorem 5.42). Let X1 := ker(λ1 − T )⊥ =
rg(λ1 − T ) = rg(λ1 − T ). Here we used that T is selfadjoint and consequently
λ ∈ σp(T ) ⊆ R. By Theorem 5.42, X2 is T1-invariant, hence T2 := T1|X2

∈ L(X2).
Obviously, T2 is selfadjoint and compact. If T2 6= 0, then there exists a λ2 ∈ σp(T2)
such that |λ2| = ‖T2‖ 6= 0. LetB2 be an orthonormal basis of ker(λ2−T2). Note that
B1 is finite because T is compact (Theorem 5.42). Hence B1∪B2 is an orthonormal
basis of span{ker(λ1−T ), ker(λ2−T )}. Let X3 := span{ker(λ1−T ), ker(λ2−T )}⊥
and T3 := T2|X3

. Continuing like this we obtain a sequence of Banach spaces Xn

and a sequence of compact selfadjoint operators Tn ∈ L(Xn). Let x ∈ X . Define

xn+1 = x−
∑

en∈B1∪...Bn

〈x , en〉 en ∈ Xn+1.

It follows that

‖Tx− T
∑

en∈B1∪...Bn

〈x , en〉 en ‖ = ‖Tn+1xn+1‖ ≤ |λn+1|‖x‖ −→ 0, n→ ∞.
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This implies that

Tx =

N∑

n=1

〈x , en〉T en =

N∑

n=1

λn〈x , en〉 en .

(ii) Note that . . .

(iii)

Corollary 5.48. Let H be a Hilbert space and T ∈ L(H) a compact selfadjoint
operator. There exists a sequence (Pn)Nn=1 of pairwise orthogonal projections with
N ∈ N ∪ {∞} and a sequence |λ1| ≥ |λ2| ≥ . . . such that

T =
N∑

n=1

λnPn (5.8)

where the series converges to T in the operator norm. If (λn)n is an infinite se-
quence, then lim

n→∞
λn = 0. The representation (5.8) is unique if the λn are pairwise

distinct.

Proof. If the series is a finite sum, the assertion is clear. Now assume that the
series is an infinite. Note that for every k ∈ N the operator

∑∞
n=k λnPn is normal

and that the norm of a normal operator is equal to maximum of the moduli of the
elements of its spectrum (Theorem 5.19). Since |λk+1| → 0 for k → ∞ the claim
follows from

∥∥∥T −
k∑

n=1

λnPn

∥∥∥ = sup{|λn| : n ≥ k + 1} = |λk+1|.

The representation (5.8) allows us to define the root of a positive compact selfadjoint
operator.

Theorem 5.49. Let H be a Hilbert space and K ∈ L(H) a compact operator.

(i) T is positive ⇐⇒ all eigenvalues of T are positive.
T is strictly positive ⇐⇒ all eigenvalues of T are strictly positive.

(ii) If T is positive and k ∈ N then there exists exactly one positive compact
selfadjoint operator R such that Rk = T .

Note that the theorem does not imply that there cannot be non-compact operators
A ∈ L(H) such that A2 = T . In Corollary 5.60 we will show that every bounded
positive selfadjoint operator has a unique positive root.

Proof of Theorem 5.49. Recall that a linear operator T is positive if and only if
〈Tx , x〉 ≥ 0 for all x ∈ H . Let P0, λn and en as in (5.7). Then (i) follows from

〈Tx , x〉 =
〈∑

n

λn〈x , en〉 en , P0x+
∑

n

λn〈x, en , e〉n
〉

=
∑

n

λn|〈x , en〉|2 ≥ 0.

For the proof of (ii) define R =
∑
n λ

1/k
n 〈· , en〉 en. Obviously Rk = T . To show

uniqueness, assume that there exists a compact selfadjoint positive linear operator
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S such that Sk = T . Since S is compact, it has a representation S =
∑

n µnQn
with pairwise orthogonal projections Qn. By assumption

T = Sk =
∑

n

µknQn.

Hence the µn are the kth roots the eigenvalues λn of T , so S = R.

Definition 5.50. Let H be a Hilbert space and T ∈ L(H) a positive selfadjoint

compact operator. Then |T | := (T ∗T )
1
2 . The non-zero eigenvalues sn of |T | are the

singular values of T .

Obviously |T | and |T ∗| are positive selfadjoint compact operators.

Lemma 5.51. (i) ‖ |T |x ‖ = ‖Tx‖ and ‖ |T ∗|y ‖ = ‖T ∗y‖ and for x ∈ H1 and
y ∈ H2.

(ii) s is a singular value of T if and only if s2 is an eigenvalue of T ∗T and TT ∗.

Proof. (i) For all x ∈ H1

‖ |T |x ‖2 = 〈|T |x , |T |x〉 = 〈|T |2x , x〉 = 〈T ∗Tx , x〉 = ‖Tx‖2.

An analogous calculation shows ‖ |T ∗|y ‖ = ‖T ∗y‖ and for y ∈ H2.
(ii) follows from the uniqueness of the representation (5.8).

Note that |T | can be defined more generally for positive selfadjoint operators on a
Hilbert space H , see Definition 5.61.

A representation similar to (5.6) exists for arbitrary compact operators.

Theorem 5.52. Let H1, H2 be Hilbert spaces and T ∈ L(H1, H2) a compact oper-
ator.

(i) Let s1 ≥ s2 ≥ · · · > 0 be the singular values of T and (ϕn)Nn=1 ⊆ H1 and
(ψn)Nn=1 ⊆ H2 such that

Tx =

N∑

n=1

sn〈x , ϕn〉ψn, x ∈ H1,

T ∗y =

N∑

n=1

sn〈y , ψn〉ϕn, y ∈ H2.

If there are infinitely many sn, then lim
n→∞

sn = 0.

(ii) The non-zero eigenvalues of |T | and |T ∗| coincide and are equal to the sn.
The s2n are the eigenvalues of T ∗T and TT ∗. Moreover, the ψn = 1

sn
Tϕn are

eigenvectors of T ∗.

Proof. (i) Let (ϕn)n∈N ⊆ H1 a ONS such that, see Theorem 5.47,

|T |x =

N∑

n=1

sn〈x , ϕn〉ϕn, T ∗Tx =

N∑

n=1

s2n〈x , ϕn〉ϕn.

Let ψn := 1
xn
Tϕn. Then (ψn)n∈N is an ONS in H2 because

〈ψn , ψm〉 =
1

s2n
〈Tϕn , Tϕm〉 =

1

s2n
〈T ∗Tϕn , ϕm〉 =

1

s2n
s2nδnm = δnm.
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Moreover

TT ∗ψn =
1

sn
TT ∗Tϕn =

s2n
sn
Tϕn = s2nψn.

Hence σp(T ∗T ) \ {0} = {s2n : 1 ≤ n ≤ N} ⊆ σp(TT ∗) \ {0}. Similarly the reverse
inclusion can be shown, so that σp(T ∗T ) \ {0} ⊆ σp(TT ∗) \ {0}.

(ii) . . .

Theorem 5.53 (Min-Max-Principle). Let H1, H2 be Hilbert spaces, K ∈ L(H1, H2)
a compact operator with singular values s1 ≥ s2 ≥ s3 ≥ . . . . Then s1 = ‖K‖ and
for n ≥ 2

sn+1 = inf
x1,...xn∈H1

sup
{
‖Kx‖ : x ∈ H1, x ⊥ span{x1, . . . , xn}, ‖x‖ = 1

}
.

Proof. . . .

5.5 Hilbert-Schmidt operators

Definition 5.54. Let H1, H2 be Hilbert spaces and K ∈ L(H1, H2). K is called
a Hilbert-Schmidt operator if and only if there exists an ONB (eλ)λ∈Λ of H1 such
that

∑

λ∈Λ

‖K eλ ‖2 <∞.

The set of all Hilbert-Schmidt operators from H1 to H2 is denoted by HS(H1, H2).

Theorem 5.55. Let H1, H2 be Hilbert spaces.

(i) A operator K ∈ L(H1, H2) is a Hilbert-Schmidt operator if and only if K∗ is
a Hilbert-Schmidt operator. In this case:

∑

α∈A

‖K eα ‖2 =
∑

β∈B

‖K eβ ‖2 =
∑

λ∈Λ

‖K eλ ‖2 <∞

for all ONBes (eα)α∈A of H1 and (eβ)β∈B of H2.

(ii) Every Hilbert-Schmidt operator is compact.

(iii) Let K ∈ L(H1, H2) be a compact operator with singular values x1 ≥ x2 ≥
s3 ≥ . . . . Then K is a Hilbert-Schmidt operator if and only if K∗ is a Hilbert-
Schmidt operator if and only if

∑

n

s2n <∞.

Theorem 5.55 (i) shows that for K ∈ HS(H1, H2) the Hilbert-Schmidt norm

‖K‖HS :=

( ∑

α∈A

‖K eα ‖2
) 1

2

for an ONB (eα)α∈A.

is well-defined.
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Proof of Theorem 5.55. (i) Let K be a Hilbert-Schmidt operator and (eλ)λ∈Λ an
ONB of H1 such that

∑
λ∈Λ ‖K eλ ‖2 < ∞. For an arbritray ONB (ψβ)β∈B of H2

we find, using Parseval’s equality (Theorem 4.31) First we show that K∗ is also a
Hilbert-Schmidt operator.

∑

β∈B

‖K∗ψβ‖2 =
∑

β∈B

∥∥∥∥∥
∑

λ∈Λ

〈K∗ψβ , eλ〉 eλ

∥∥∥∥∥

2

=
∑

λ∈Λ

∑

β∈B

|〈K∗ψβ , eλ〉|2

=
∑

λ∈Λ

∑

β∈B

|〈ψβ ,K eλ〉|2 =
∑

λ∈Λ

‖Kψλ‖2 <∞.

In particular, the Hilbert-Schmidt norm of K∗ does not depend on the chosen
ONB of H2. Applying the same proof to K∗, it follows that the Hilbert-Schmidt
norm of K = K∗∗ does not depend on the chosen ONB of H1. For the proof of
‖K‖ ≤ ‖K‖HS we observe that every x ∈ H1 with ‖x‖ = 1 can be extended to a
ONB of H1. Hence

‖K‖HS ≥ ‖Kx‖ ≥ sup{‖Ky‖ : y ∈ H1, ‖y‖ = 1} = ‖K‖.

(ii) Let (eλ)λ∈Λ an ONS of H1 and (en)n∈N a subset containing all eλ with K eλ 6=
0 (this family is at most countable by Lemma 4.27). For n ∈ N let Pn be the
orthogonal projection on {e1, . . . , en}. Note that all Pn are compact because they
have finite-dimensional range. Since K is a Hilbert-Schmidt operator, we find that

‖K −KPn‖2 = ‖K(id−Pn)‖2 ≤ ‖K(id−Pn)‖2HS =

∞∑

m=n+1

‖K en ‖2 −→ ∞,

in particular K is compact because it is the norm limit of compact operators.

(iii) Assume that K is compact. By Theorem 5.52 we can choose ONSs (ϕn)λ∈N of
H1 and (ψn)λ∈N of H2 such that Kx =

∑
n∈N

sn〈x , ϕn〉ψn where s1 ≥ s2 ≥ · · · ≥ 0
are the singular values of K.

If K is a Hilbert-Schmidt operator, then

N∑

n=1

s2n =
N∑

n=1

‖Kϕn‖2 ≤ ‖K‖2HS <∞.

Now assume that
∑N

n=1 s
2
n < ∞ and choose an arbitrary ONB of H1 containing

(ϕn)n∈N. It follows that

∑

λ∈Λ

‖Kϕλ‖2 =

N∑

n=1

‖Kϕn‖2 ≤ ‖K‖2HS =

N∑

n=1

s2n <∞,

implying that K is a Hilbert-Schmidt operator.

Lemma 5.56. The finite-rank operators are dense in the Hilbert-Schmidt operators.

Proof. Let H be a Hilbert space and S ∈ HS(H). In particular, S is compact

and there exist ONBs (ϕn)n∈N and (ψn)n∈N such that S =
∑N

n=1 sn〈· , ϕn〉ψn. For

M ∈ N let us define SM =
∑M

n=1 sn〈· , ϕn〉ψn. Then ‖S − SM‖2 ≤ ‖S − SM‖2HS =∑N
n=M+1 s

2
n → 0 for M → ∞.

An important class of examples is given in the following theorem.

Theorem 5.57. Let H = L2(0, 1) and T ∈ L(H). Then the following is equivalent:
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(i) T is a Hilbert-Schmidt operator.

(ii) There exists a k ∈ L2(0, 1)2 such that

(Tx)(t) =

∫ 1

0

k(s, t)x(s) ds.

In this case we write Tk for T .
If one of the equivalent conditions holds, then

‖T ‖ =
(∫ 1

0

∫ 1

0

|k(s, t)|2 ds. dt
)2

= ‖k‖L2(0,1)2 .

Proof. (ii) =⇒ (i) Let (en)n be an ONB of L2(0, 1). Then also (en)n is an ONB
of L2(0, 1) (where en denotes the to en complex conjugated function) and we find

∞∑

n=1

‖T en ‖2 =

∞∑

n=1

∫ 1

0

∣∣∣∣
∫ 1

0

k(s, t) en(s) ds

∣∣∣∣
2

dt =

∞∑

n=1

∫ 1

0

|〈k(·, t) , en〉|2 dt

=

∫ 1

0

∞∑

n=1

|〈k(·, t) , en〉|2 dt (5.9)

=

∫ 1

0

‖k(·, t)‖2 dt (5.10)

=

∫ 1

0

∫ 1

0

|k(s, t)|2 ds dt = ‖k‖L2(0,1)2 .

In (5.9) we have used the monotone convergence theorem to exchange the sum and
the integral (Theorem ??) and in (5.10) we used Parseval’s equality (Theorem 4.31).
It follows that T is a Hilbert-Schmidt operator and that ‖T ‖HS = ‖k‖L2(0,1)2 .

(i) =⇒ (ii) By the proof we have an isometry

Ψ : L2(0, 1)2 → HS(L2(0, 1)), Ψk = Tk.

We will show that the range of Ψ is dense in HS(H). By Lemma 5.56 it suffices to
show that rg(Ψ) contains the finite-rank operators. Let T be of finite rank. Then
T is of the form T =

∑n0

n=1〈· , xn〉yn so that for every f ∈ H

Tf(t) =

n0∑

n=1

〈f , xn〉yn(t) =

n0∑

n=1

∫ 1

0

f(s)xn(s)yn(t) ds =

∫ 1

0

( n0∑

n=1

xn(s)yn(t)

)
f(s) ds.

This shows that T ∈ rg Ψ. Fix S ∈ HS(H) and choose a sequence (Sn)n∈N in the
range of Ψ. Since Ψn is an isometry, it follows that (Ψ−1Sn)n∈N is Cauchy sequence
in H , hence its limit exists. Using the continuity of Ψ we find

S = lim
n→∞

Sn = lim
n→∞

ΨΨ−1Sn = Ψ
(

lim
n→∞

Ψ−1Sn

)
∈ rg(Ψ).

Theorem 5.58. Let H1, H2 be Hilbert spaces.

(i)
(

HS(H1, H2), ‖ · ‖HS
)

is a normed spaces. The norm is induced by the inner

product

〈S , T 〉HS =
∑

α

〈S eα , T eα〉, S, T ∈ HS(H1, H2),

for an arbitrary ONB (eα)α∈A of H1.
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(ii) Let T ∈ HS(H1, H2) and A a bounded linear operator between appropriate
Hilbert spaces. Then AT and TA are Hilbert-Schmidt operators and

‖AT ‖HS ≤ ‖A‖ ‖T ‖HS, ‖TA‖HS ≤ ‖A‖ ‖T ‖HS.

(iii) HS(H) is a two-sided ideal in L(H).

Proof. Note that (a+ b)2 = a2 + b2 + 2ab = a2 + b2− (a− b)2 + a2 + b2 ≤ 2(a2 + b2)
for a, b ∈ R.

(i) Let S, T ∈ HS(H1, H2) and λ ∈ C. Then obviously λS ∈ HS(H1, H2). To show
that S + T ∈ HS(H1, H2) fix an ONS (eλ)λ∈Λ of H1. Using the above remark is
follows that

∑

λ∈Λ

‖(S + T ) eλ ‖2 ≤
∑

λ∈Λ

(‖S eλ ‖ + ‖T eλ ‖)2 ≤ 2
∑

λ∈Λ

‖S eλ ‖2 + ‖T eλ ‖2 <∞.

It follows that 〈· , ·〉HS is well-defined. The properties of an inner product are clear.
In particular, ‖T ‖HS = 〈T , T 〉HS for T ∈ HS(H1, H2).

(ii) Note that

∑

λ∈Λ

‖AT eλ ‖2 ≤ ‖A‖2
∑

λ∈Λ

‖T eλ ‖2 = ‖A‖2‖T ‖2HS,

so AT is a Hilbert-Schmidt operator. It follows that TA = (A∗T ∗)∗ is also a
Hilbert-Schmidt operator with norm ‖TA‖HS = ‖(A∗T ∗)∗‖HS = ‖A∗T ∗‖HS ≤
‖A∗‖ ‖T ∗‖HS ≤= ‖A‖ ‖T ‖HS.

(iii) is a consequence of (i) and (ii).

5.6 Polar decomposition

Theorem 5.59. Let H be a Hilbert space and T ∈ L(H) a selfadjoint operator with
T ≥ 0. Then there exists exactly one R ∈ L(H) such that R ≥ 0 R2 = T .

In addition, if S ∈ L(H) commutes with T , then S commutes with R.

the operator R is called the root of T and is denoted by
√
T .

Proof. Without restriction we can assume ‖T ‖ ≤ 1, hence 0 ≤ T ≤ id. Now assume
that a solution R ∈  L(H) of R2 = T exists. Let A := id−T and X := id−R. Note
that

id−A = T = R2 = (1 −X)2 = id−2X +X2.

Note that 0 ≤ R ≤ id if and only if 0 ≤ X ≤ id. Hence R is a non-negative solution
of R2 = T if and only if X is a non-negative solution of

X =
1

2
(A+X2). (5.11)

Step 1. Construction of a solution of (5.11).

We define

X0 := id, Xn :=
1

2
(A+X2

n−1), n ∈ N.

Note that everyXn is a polynomial in A with positive coefficients and that XnXm =
XmXn for all n,m ∈ N. Since A is positive, this implies that all Xn are positive.
We will show the following properties of the sequence (Xn)n∈N by induction.
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(i) Xn−Xn−1 is a polynomial in A with positive coefficients, so that in particular
Xn −Xn−1 ≥ 0.

(ii) ‖Xn‖ ≤ 1.

All assertions are clear in the case n = 0 (with X−1 := 0). Now assume that the
assertions are true for some n ∈ N. Note that

Xn+1 −Xn =
1

2
(A+X2

n) − 1

2
(A+X2

n−1) =
1

2
(X2

n −X2
n−1)

=
1

2
(Xn −Xn−1)(Xn +Xn−1).

Since by induction hypothesis both terms in the second line are polynomials in
A with positive coefficients, (i) is proved for n + 1. (ii) follows from ‖Xn+1‖ ≤
1
2 (‖A‖ + ‖Xn+1‖) ≤ 1.

Since (Xn)n∈N is uniformely bounded monotonically increasing sequence in, there
exists an X ∈ L(H) such that X = s- lim

n→ ∞
Xn and ‖X‖ ≤ lim infn→∞ ‖Xn‖ ≤ 1 (see

Exercise 4.25).

Now let S ∈ L(H) with ST = TS. By definition of A, then also SA = AS and
XnS = XnS for all Xn since the Xn are polynomials in A. For every x ∈ H we
therefore obtain

0 ≤ ‖SXx−XSx‖ = lim
n→∞

‖SXnx−XnSx‖ = lim
n→∞

‖SXnx− SXnx‖ = 0.

Since all Xn commute with T , it follows that XnX = XnX for all n ∈ N, so that
for all x ∈ X

‖(X2
n −X2)x‖ = ‖(Xn −X)(Xn +X)x‖ ≤ 2‖(Xn −X)2x‖ −→ 0, n→ ∞,

which shows that X2 = s- lim
n → ∞

X2
n. Therefore X solves (5.11) because

X = s- lim
n → ∞

Xn = s- lim
n → ∞

1

2
(A+X2

n) =
1

2
(A+ s- lim

n→ ∞
X2
n) =

1

2
(A+X2).

Setting R = id−X we obtain a bounded selfadjoint solution of R2 = T with 0 ≤
R ≤ id.

Step 2. Uniqueness of the solution.

Let R′ ∈ L(H) be solution of R2 = T with R′ ≥ 0. Then R and R′ commute
because

R′A = R′(R′)2 = (R′)2R′ = AR′.

It follows that

(R−R′)R(R− R′) + (R −R′)R′(R−R′) = (R2 −R′2)(R −R′) = 0.

Since both operators on the left hand side are non-negative, it follows that both of
them are 0 and therefore

(R−R′)4 = (R −R′)R(R−R′) − (R−R′)R′(R −R′) = 0.

Since R−R′ is normal, it follows that ‖(R−R′)‖4 = ‖(R−R′)‖4.

Corollary 5.60. If S, T ∈ L(H) are positive and ST = TS, then also ST is
positive.
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Proof. By Theorem 5.59 the root of T exists, is selfadjoiunt and commutes with S.
Hence for all x ∈ H

〈STx , x〉 = 〈S
√
T
√
Tx , x〉 = 〈

√
TS

√
Tx , x〉 = 〈S

√
Tx ,

√
Tx〉 ≥ 0.

Definition 5.61. For T ∈ L(H) we define |T | := (T ∗T )
1
2 .

Definition 5.62. Let H1, H2 be Hilbert spaces and U ∈ L(H1, H2). U is called a
partial isometry if U |(kerU)⊥ is an isometry. kerU ⊥ is called its initial space.

Note that U is an partial isometry if and only if

U |(kerU)⊥ : (kerU)⊥ → rg(U)

is unitary.

Theorem 5.63 (Polar decomposition). Let H1, H2 be Hilbert spaces and T ∈
L(H1, H2). Then there exists a partial isometry U ∈ L(H1, H2) such that T = U |T |.
If in addition the initial space of U is (kerT )⊥, then U is unique.

Proof. Note that ‖ |T |x ‖2 = ‖Tx‖2 for all x ∈ H1 because

‖ |T |x ‖2 = 〈|T |x , |T |x〉 = 〈(T ∗T )
1
2x , (T ∗T )

1
2x〉 = 〈T ∗Tx , x〉 = 〈Tx , Tx〉 = ‖Tx‖2.

We define

U : rg(|T |) → rg(T ), U(|T |x) = Tx.

U is well-defined because for x, y ∈ H1 with |T |x = |T |y it follows that ‖Tx−Ty‖ =
‖|T |x− |T |y‖ = 0 hence Tx = Ty. U is and isometry because ‖Tx‖ = ‖ |T |x ‖ for
all x ∈ H as shown above. In particular, ‖U‖ = 1 and has a unique continuous
extension to rg(|T |) → rg(T ). Now we extend U to H1 by setting Ux = 0 for all

x ∈ rg(|T |)⊥ = ker(|T |) = kerT .
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Appendix A

Exercises

Exercises for Chapter 1

1. Banach’s fixed point theorem. Let M be a metric space. A map f : M →M
is called a contraction if there exists a γ < 1 such that

d(f(x), f(y)) ≤ γ d(x, y), x, y ∈M.

Show that every contraction f on a complete normed space M has exactly one
fixed point, that is, there exists exactly one x0 ∈M such that f(x0) = x0.

2. Let X be a normed space. Then the following is equivalent:

(i)X is complete.

(ii)Every absolutely convergent series in X converges in X .

3. Let X be a normed space. Show:

(a) Every finite-dimensional subspace of X is closed.

(b) If V is a finite-dimensional subspace of X and W is a closed subspace of
X , then

V +W := {v + w : v ∈ V, w ∈W}

is a closed subspace of X .

4. Let T be a set and ℓ∞(T ) be the space of all functions x : T → K with

‖x‖∞ := sup{|x(t)| : t ∈ T } <∞.

Show that (ℓ∞(T ), ‖ · ‖∞) is a Banach space.

5. Let the sequence spaces d, c0, c be defined as in Example 1.15.

(a) Show that (c0, ‖ · ‖∞) and (c, ‖ · ‖∞) are Banach spaces.

(b) Show that (d, ‖ · ‖∞) is a normed space, but that it is not complete.

6. Sea X un espacio normado con dimX ≥ 1 y S, T operadores lineales en X tales
que ST−TS = id. Muestre que al menos uno de estos operadores no es acotado.
Ayuda: Muestre que ST n+1 − T n+1S = (n+ 1)T n.
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7. Sean X y Y espacios normados con X de dimensión finita. Muestre que toda
función lineal T : X → Y es acotada.

8. (a) Sea X = C([a, b]) con la norma ‖ · ‖∞. Muestre que

T : X → C, T x =

∫ b

a

x(t) dt

es un operador lineal y acotado. ¿Cuál es su norma?

(b) Ahora considere X con la norma

‖x‖p :=
(∫ b

a

|x(t)|p dt
)1/p

, x ∈ X,

para 1 ≤ p <∞. ¿Sigue siendo T acotado? Si es aśı, calcule su norma.

9. Sea 1 ≤ p < ∞. Para z = (zn)n∈N ∈ ℓ∞ sea T : ℓp → ℓp definido por (Tx)n =
xnzn para x = (xn)n∈N ∈ ℓp. Muestre que T ∈ L(ℓp) y calcule ‖T ‖.

Exercises for Chapter 2

1. Demuestre el teorema de Hahn-Banach para espacios vectoriales complejos.

Sugerencia: Para un espacio vectorial sobre los complejos X muestre que:

(a) Sea ϕ : X → R un funcional R-lineal, entonces

Vϕ : X → C, Vϕ(x) := ϕ(x) − iϕ(ix),

es un funcional C-lineal sobre X con ReVϕ = ϕ.

(b) Sea λ : X → C un funcional C-lineal con Reλ = ϕ, entonces Vϕ = λ.

(c) Sea p un funcional sublineal sobre X y ϕ, Vϕ definido como en el punto
anterior, entonces

|ϕ(x)| ≤ p(x) ⇐⇒ |Vϕ(x)| ≤ p(x), x ∈ X.

(d) ‖ϕ‖ = ‖Vϕ‖.

2. En X = ℓ2(N) considere el subespacio

U = {(xn)n∈N : xn = 0 excepto para un número finito de ı́ndices n}.

Sea V el complemento algebraico de U en X , i. e., U es un subespacio tal que
U + V = X y U ∩ V = {0}. Muestre que

ϕ : X → K, ϕ(x) =
∞∑

n=0

un para x = u+ v con u ∈ U, v ∈ V.

es un funcional lineal bien definido y no acotado.

3. (a) Sea c ⊆ ℓ∞ el conjunto de las sucesiones convergentes. Muestre que el
funcional

ϕ0 : c→ K, x = (xn)n∈N 7→ lim
n→∞

xn

es continuo y calcule su norma.
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(b) Sea ℓ∞(N,R) el conjunto de todas las sucesiones acotadas en R con la
norma del supremo. Muestre que existe ϕ ∈ (ℓ∞(N,R))′ tal que

lim inf
n→∞

xn ≤ ϕ(x) ≤ lim sup
n→∞

xn, x = (xn)n∈N ∈ ℓ∞.

4. Sea X un espacio normado, f : X → K un funcional lineal no nulo y K =
ker f

(a) Muestre que dim(X/K) = 1.

(b) Muestre que f es continuo si y solo si ker f es cerrado.

5. Un isomorfismo entre espacios normados X y Y es un homeomorfismo lineal.
Pruebe las siguientes afirmaciones.

(a) Si T : X → Y es un isomorfismo [isométrico] entre los espacios normados
X y Y , entonces T ′ : Y ′ → X ′ es un isomorfismo [isométrico]. Si X y Y
son espacios de Banach, el converso también vale.

(b) Si un espacio normado Y es isomorfo a un espacio de Banach reflexivo X ,
entonces Y es un espacio de Banach reflexivo.

6. Sea X un espacio normado separable y (x′n)n∈N una sucesión acotada en X ′.
Entonces existe una subsucesión (x′nk

)k∈N y x′0 ∈ X ′ tal que

lim
k→∞

x′nk
(x) = x′0(x), x ∈ X.

Es cierto esto sin la hipótesis de que X sea separable?

7. Sea X un espacio normado y M un subespacio de X . Sea

L = {f ∈ X ′ | f(x) = 0 para todo x ∈M}.

Muestre que L es un subespacio cerrado de X ′ y que M ′ es isométricamente
isomorfo a X ′/L.

8. Sea X un espacio compacto, CR(X) el conjunto de funciones continuas real-
evaluadas sobre X y Y ⊂ X un subconjunto cerrado.

(a) Considere el mapa ρ : CR(X) → CR(Y ) definido por ρ(f) = f |Y . Muestre
que I := ker(ρ) es un subespacio cerrado de CR(X).

(b) Sea ρ̃ : CR(X)/I → CR(Y ) el mapa inducido en el espacio cociente. Pruebe
que ρ̃ es una isometŕıa.

(c) Demuestre que rg(ρ) es completo.

(d) Use el teorma de Stone-Weierstraß para concluir el teorema de Tietze: Sea
X un espacio compacto de Hausdorff y Y ⊆ X un subconjunto cerrado.
Entonces cada función continua f : Y → R tiene una extensión continua
f̃ : X → R con ‖f̃‖C(X) = ‖f‖C(Y ).

9. Muestre que en l1 la convergencia débil y la convergencia en norma coinciden.

Last Change: Tue 5 Feb 10:58:45 COT 2013

D
R
A

F
T

108

Exercises for Chapter 3

1. (a) Todo espacio métrico completo con infinitos elementos y ningún punto
aislado es no enumerable.

(b) Toda base algebraica de un espacio de Banach infinito dimensional es no
enumerable.

2. (a) Sea X un espacio de Banach, Y un espacio normado y (Tn)n∈N ⊆ L(X,Y ).
Suponga que para todo x ∈ X el ĺımite Tx := lim

n∈N

Tnx existe. Entonces
T ∈ L(X,Y ).

(b) Sean X,Y espacios de Banach, Y reflexivo, y (Tn)n∈N ⊆ L(X,Y ) tal que
(ϕ(Tnx))n∈N converge para todo x ∈ X y ϕ ∈ Y ′. Entonces existe un

T ∈ L(X,Y ) tal que Tn
w−→ T .

3. Muestre que la hipótesis de completitud en el principio de acotación uniforme
es necesaria.

4. Sea [a, b] ⊆ R, n ∈ N y tome a ≤ t
(n)
1 < · · · < t

(n)
n ≤ b y α

(n)
k ∈ K, k = 1, . . . , n.

Para f ∈ C([a, b]) se define

Qn(f) :=
n∑

k=1

α
(n)
k f(t

(n)
k ).

Muestre que los siguientes enunciados son equivalentes:

(a) Qn(f) →
∫ b

a

f(t) dt, n→ ∞, para todo f ∈ C[a, b].

(b) Qn(p) →
∫ b

a

p(t) dt, n→ ∞, para todo polinomio p : [a, b] → K y

sup
n∈N

∑n
k=1 |α

(n)
k | <∞.

Sean X, Y, Z espacios de Banach y T : X ⊇ D(T ) → Y un operador lin-
eal.

(a) Sea S : X ⊇ D(S) → Y un operador lineal. Entonces la suma de operadores
S + T se define como

D(S + T ) := D(S) ∩ D(T ), (S + T )x := Sx+ Tx.

(b) Sea R : Y ⊇ D(R) → Z un operador lineal. Entonces el producto de
operadores o composición RT se define como

D(RT ) := {x ∈ D(T ) : Tx ∈ D(R)}, (RT )x := R(Tx).

5. Sean X, Y, Z espacios de Banach, R ∈ L(X,Y ), T : X ⊇ D(T ) → Y , S : Y ⊇
D(S) → Z operadores lineales cerrados. Muestre que:

(a) R+ T es un operador lineal cerrado.

(b) SR es cerrado.

(c) Si S es cont́ınuamente invertible (i. e., S−1 : rg(S) → Y existe y es
cont́ınuo), entonces ST es cerrado.
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Muestre además que estas afirmaciones siguen siendo válidas cambiando “cer-
rado” por “clausurable”

6. Sea X = ℓ2(N) y

T : X ⊇ D(T ) → X, Tx = (nxn)n∈N para x = (xn)n∈N.

Diga si T es cerrado con:

(a) D(T ) = {x = (xn)n∈N ∈ ℓ2(N) : (nxn)n∈N ∈ ℓ2(N)},

(b) D(T ) = d = {x = (xn)n∈N ∈ ℓ2(N) : xn 6= 0 para solo finitos n}.

7. Sea X un espacio de Banach, n ∈ N y T un operador lineal densamente definido
de X en Kn. Muestre que T es cerrado si y solo si T ∈ L(X,Kn).

8. Sean X y Y espacios normados y T : X ⊇ D(T ) → Y un operador lineal
cerrado.

(a) Sea K ⊂ X compacto. Muestre que T (K) es cerrado en Y .

(b) Muestre que si F es un compacto en Y entonces T−1(F ) es cerrado en X .

(c) ¿Si A es cerrado en X , es cierto que T (A) es cerrado?

9. Sea X un espacio normado. Una sucesión (xn)n∈N ⊆ X es una sucesión débil de
Cauchy si para todo ϕ ∈ X ′ la sucesión (ϕ(xn))n∈N es una sucesión de Cauchy
en K.

(a) Sea x = (xn)n∈N una sucesión acotada en X . Muestre que x es una sucesión
débil de Cauchy si y solo si existe un subconjunto denso U ′ de X ′ tal que
(ϕ(xn))n∈N es una sucesión de Cauchy para todo ϕ ∈ U ′.

(b) Toda sucesión débil de Cauchy en X es acotada.

10. Sea X un espacio de Banach, (xn)n∈N ⊆ X , (ϕn)n∈N ⊆ X ′, y x0 ∈ X , ϕ0 ∈ X ′

tal que xn
‖·‖−−→ x0 y ϕn

w∗−−→ ϕ0. Muestre que lim
n→∞

ϕn(xn) = ϕ0(x0).

11. Sea X un espacio normado.

(a) Muestre que (X, ‖ · ‖)′ = (X, σ(X,X ′))′. Es decir: un funcional lineal
ϕ : X → K es continua con respecto a la topoloǵıa inducida por ‖ · ‖ si y
sólo si es continua con respecto a la topoloǵıa débil.

(b) Sean (xn)n∈N ⊆ X , x0 ∈ X y (ϕn)n∈N ⊆ X ′, ϕ0 ∈ X ′ tal que xn
w−→ x0 y

ϕn
w∗−−→ ϕ0. Muestre

‖x0‖ ≤ lim inf
n→∞

‖xn‖, ‖ϕ0‖ ≤ lim inf
n→∞

‖ϕn‖.

(c) Sean S = {x ∈ X : ‖x‖ = 1} la esfera unitaria y K = {x ∈ X : ‖x‖ = 1}
la bola unitaria cerrada en X . ¿Siempre son débilmente cerradas (prueba
o contraejemplo)?

12. Para n ∈ N sea en = (0, . . . , 1, 0, . . . ) la sucesión que tiene 1 en la posición n y
0 en el resto.
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(a) Muestre que (en)n∈N no es convergente débilmente en ℓ1.

(b) Muestre que (en)n∈N es w∗ convergente en ℓ1.

13. Sea X un espacio vectorial y M ⊆ X un subconjunto convexo, balanceado y
absorbente. Muestre que el funcional de Minkowski pM es una seminorma en X.

Exercises for Chapter 4

1. Sea X un espacio pre-Hilbert, U ⊆ H un subespacio denso y x0 ∈ X tal que
〈x0 , u〉 = 0 para todo u ∈ U . Muestre que x0 = 0.

2. Sea w ∈ C([0, 1],R). Para x, y ∈ C([0, 1]) se define

〈x , y〉w :=

∫ 1

0

x(t)y(t)w(t) dt.

Halle una condición necesaria y suficiente spobre w para que 〈· , ·〉w sea un pro-
ducto interno. Bajo qué condición la norma inducida por 〈· , ·〉w es equivalente
a la norma usual de L2?

3. Let H be Hilbert space, (xn)n∈N ⊆ H and x0 ∈ H . Then the following is
equivalent:

(a) xn → x0.

(b) ‖xn‖ → x0 and xn
w−→ x0.

4. Ejemplo de una proyección no acotada. Sea H = l2 y ei el vector usual eji = δji .
Defina

L1 := span{e2n+1 : n ∈ N0}
y

L2 := span

{
e1 +

1

2
e2, e3 +

1

22
e4, e5 +

1

23
e6, . . .

}
.

(a) Muestre que L1 ∩ L2 = {0}.

(b) Muestre que L1 ⊕ L2 = H.

(c) Muestre que L1 ⊕ L2 6= H.

(d) Defina el operador P0 : L1 ⊕ L2 → L1 ⊕ L2, P0(x + y) = x. Muestre que
P0 es una proyección no acotada.

5. Para λ ∈ R defina fλ : R → C, fλ(s) = eiλs y sea X = span{fλ : λ ∈ R}.
Muestre que

〈f , g〉 := lim
T→∞

1

2T

∫ T

−T

f(s)g(s) ds

define un producto interior en X . Muestre que la completación de X no es
separable. (‖fλ − fλ′‖ =?)

Los elementos en la completación de X se llaman funciones casi periódicas.

6. ¿Existe algún producto interno 〈· , ·〉 en C[0, 1] tal que 〈x, x〉 = ‖x‖2∞ para todo
x ∈ C[0, 1] ?
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7. Sea X un espacio pre-Hilbert. Muestre los siguientes resultados

(a) Sean x, y ∈ X con x ⊥ y, entonces

‖x+ y‖2 = ‖x‖2 + ‖y‖2.

¿El converso es cierto en general? ¿Hay algún caso para el que se tenga?

(b) Si x 6= 0, y 6= 0 y x ⊥ y muestre que el conjunto {x, y} es linealmente
independiente.

¿Como se puede generalizar este resultado?

(c) x ⊥ y, si y solo si ‖x+ αy‖ ≥ ‖x‖ para todo escalar α.

8. Let H be a Hilbert space, Y ⊆ H a subspace and ϕ0 ∈ Y ′. Show that there
exists exactly one extension ϕ ∈ H ′ of ϕ0 with ‖ϕ0‖ = ‖ϕ‖.

9. Sea X un espacio pre-Hilbert y U ⊆ X un subespacio. Muestre que

(a) U 6= U⊥⊥. ¿Se tiene alguna contenencia?

(b) U ⊕ U⊥ 6= X

10. Sea 1 ≤ p ≤ ∞. Para f ∈ Lp(R) y s ∈ R defina Ts : Lp(R) → Lp(R) como
(Tsf)(t) := f(t− s). Claramente los Ts son isometrias lineales.

(a) Sea 1 ≤ p < ∞. Muestre que Ts
s−→ id para s → 0. Los Ts convergen en

norma?

(b) Los Ts convergen en norma o convergen fuertemente en el caso p = ∞?

11. Muestre que Wm(Ω), Hm(Ω) y Hm
0 (Ω) son espacios de Hilbert.

Para el problema 4.10: Para Ω ⊆ R definimos el conjunto de funciones de prueba

D(Ω) := {ϕ ∈ C∞(Ω) : supp(ϕ) ⊆ Ω es compacto}.

Para un multi-́ındice α = (α1, . . . , αn) ∈ Nn se define |α| = α1 + · · · + αn y
Dαϕ = ∂α1

1 . . . ∂αn
n ϕ si la derivada existe.

Sea f ∈ L2(Ω). Una función g ∈ L2(Ω) se llama la derivada débil α-ésima de f
si

〈g , ϕ〉 = (−)|α|〈f ,Dαϕ〉, ϕ ∈ D(Ω).

Note que la derivada débil es única si existe; se denota por D(α)f .

Para m ∈ N definimos el espacio de Sobolev

Wm(Ω) := {f ∈ L2(Ω) : D(α)f ∈ L2(Ω), |α| ≤ m}.

Wm(Ω) es un producto interior con

〈f , g〉Wm :=
∑

|α|≤m

〈D(α)f ,D(α)g〉2.

Además, definimos los espacios

Hm(Ω) := Cm(Ω) ∩Wm(Ω) and Hm
0 (Ω) := D(Ω)

donde la clausura es tomada con respecto a la norma inducida por 〈· , ·〉Wm .
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12. Sea H un espacio de Hilbert and B : H × H → K sesquilineal. En H × H
considere la norma ‖(x, y)‖ :=

√
‖x‖2 + ‖y‖2.

(a) Muestre que las siguientes son equivalentes:

(i) B es cont́ınua.

(ii) B is parcialmente cont́ınua, es decir, para cada x0 fijo, y 7→ B(x0, y)
es cont́ınua para cada y0 fijo, x 7→ B(x, y0) es cont́ınua.

(iii) B es acotado, es decir, existe M ∈ R tal que ‖B(x, y)‖ ≤ M‖x‖‖y‖
para todo x, y ∈ H .

(b) Si B es cont́ınuo, entonces existe T ∈ L(H) tal que

B(x, y) = 〈Tx , y〉, x, y ∈ H.

(c) Si además existe m > 0 tal que B(x, x) ≥ m‖x‖2, x ∈ H , entonces T es
invertible y ‖T−1‖ ≤ m−1.

13. Sea H un espacio de Hilbert. Muestre que para toda sucesión (xn)n ⊆ H
acotada, existe una subsucesión (xnk

)k tal que la sucesión (ym)m donde,

ym =
1

m

m∑

k=1

xnk
,

converge.

14. Sea X un espacio normado, (xn)n∈N ⊆ X y x ∈ X . Las siquientes son equiva-
lentes:

(a)
∑
n∈N

xn converge incondicionalmente a x.

(b) Para todo ε > 0 existe un conjunto finito A ⊆ N tal que para todo conjunto
finito B con A ⊆ B ⊆ N

∥∥∥
∑

b∈B

xb − x
∥∥∥ < ε.

15. Sea H un espacio de Hilbert. Si P : H → H es un operador lineal, las siquientes
son equivalentes:

(a) P es una proyección ortogonal.

(b) P 2 = P y 〈Px , y〉 = 〈x , Py〉.

16. Sea H un espacio de Hilbert, V,W ⊆ H subespacios cerrados y PV , PW sus
correspondientes proyecciones ortogonales.

(a) Muestre que

V ⊆W ⇐⇒ PV = PV PW = PWPV .

(b) Muestre que las siguientes afirmaciones son equivalentes:

(i) PV PW = 0.

(ii) V ⊥W .

(iii) PV + PW es una proyección ortogonal.

Muestre que rg(PV + PW ) = V ⊕W si alguna de las condiciones anteriores se
tiene.
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17. Sea H un espacio de Hilbert y P0, P1 las proyecciones ortogonales sobre H0,
H1 ⊆ H . Entonces las siguientes afirmaciones son equivalenteas:

(a) H0 ⊆ H1,

(b) ‖P0x‖ ≤ ‖P1x‖, x ∈ H .

(c) 〈P0x , x〉 ≤ 〈P1x , x〉, x ∈ H .

(d) P0P1 = P0.

18. Sea H un espacio de Hilbert separable, (xn)n∈N una base ortonormal de H, y,
(yn)n∈N una sucesión tal que:

∞∑

n=1

||xn − yn|| < 1

y z ⊥ yn, para todo n ∈ N, entonces z = 0.

19. Sea H un espacio de Hilbert complejo y T : H → H un operador lineal acotado.
Muestre que T es normal si y solo si ||T ∗x|| = ||Tx|| para todo x ∈ H . En este
caso, muestre que ||T 2|| = ||T ||2.

20. Haar functions. Let ψ = χ[0, 1/2) − χ[1/2, 1). For n, k ∈ Z define

ψn,k : R → R, ψn,k(t) = 2k/2 ψ(2kt− n).

For k ∈ N0 and n ∈ {0, 1, 2, . . . , 2k − 1} let

h2k+n : [0, 1] → R,





h2k+n(t) = ψk,n(t), for t ∈ [0, 1),

h2k+n(1) = lim
t→1−

ψk,n(t).

and h0(t) = 1, t ∈ [0, 1].

(a) (hj)j∈N0
is a orthonormal system in L2[0, 1] and (ψn,k)n,k∈Z is a orthonor-

mal system in L2(R).

(b) T : L2[0, 1] → L2[0, 1], T f =
∑2k−1

j=0 〈f , hj〉hj is a orthonormal projection
on the subspace

U = {f ∈ L2[0, 1] : f const. in intervals [r2−k, (r + 1)2−k) with r ∈ N0}.

(c) For f ∈ C[0, 1], the series
∑∞

j=0〈f , hj〉hj converges uniformely to f .

(d) (hj)j∈N0
is an orthonormal basis of L2[0, 1].

(e) (ψk,n)k,n∈Z is an orthonormal basis of L2(R).

21. Sea H un espacio de Hilbert, V,W ⊆ H subespacios cerrados y PV , PW sus
correspondientes proyecciones ortogonales.

(a) Muestre que

V ⊆W ⇐⇒ PV = PV PW = PWPV .

(b) Muestre que las siguientes afirmaciones son equivalentes:

(i) PV PW = 0.

(ii) V ⊥W .
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(iii) PV + PW es una proyección ortogonal.

Muestre que rg(PV + PW ) = V ⊕W si alguna de las condiciones anteriores se
tiene.

22. Sea H un espacio de Hilbert y P0, P1 las proyecciones ortogonales sobre H0,
H1 ⊆ H . Entonces las siguientes afirmaciones son equivalenteas:

(i)H0 ⊆ H1,

(ii)‖P0x‖ ≤ ‖P1x‖, x ∈ H .

(iii)〈P0x , x〉 ≤ 〈P1x , x〉, x ∈ H .

(iv)P0P1 = P0.

23. Sea H un espacio de Hilbert separable, (xn)n∈N una base ortonormal de H, y,
(yn)n∈N una sucesión tal que:

∞∑

n=1

||xn − yn|| < 1

y z ⊥ yn, para todo n ∈ N, entonces z = 0.

24. Sea H un espacio de Hilbert complejo y T : H → H un operador lineal acotado.
Muestre que T es normal si y solo si ||T ∗x|| = ||Tx|| para todo x ∈ H . En este
caso, muestre que ||T 2|| = ||T ||2.

25. Sea H un espacio de Hilbert y (Tn)n∈N una sucesión acotada y monótonamente
creciente de operadores autoadjuntos. Muestre que la sucesión converge en el
sentido fuerte a un operador autoadjunto.

26. Sea (Pn)n∈N una sucesión monótona de proyecciones ortogonales en un espa-
cio de Hilbert H . Muestre que (Pn)n∈N converge en el sentido fuerte a una
proyección ortogonal P y además

(a) rg P =
⋃
n∈N

rgPn si Pn es creciente.

(b) rg P =
⋂
n∈N

rgPn si Pn es decreciente.

27. Sean H1, H2 y H3 espacios de Hilbert y S(H1 → H2) y T (H2 → H3) operadores
lineales densamente definidos.

(a) Si T ∈ L(H2, H3) entonces TS es densamente definido y (TS)∗ = S∗T ∗.

(b) Si S es inyectivo y S−1 ∈ L(H2, H1) entonces TS es densamente definido
y (TS)∗ = S∗T ∗.

(c) Si S es inyectivo y S−1 ∈ L(H2, H1) entonces S∗ es inyectivo y (R∗)−1 =
(R−1)∗

28. Sean H1, H2 espacios de Hilbert y U : H1 ×H2 → H2 ×H1, U(x, y) = (−y, x).
Entonces

(a) U es unitario.

(b) Si T (H1 → H2) es densamente definido,

G(T ∗) = [U(G(T ))]⊥ = U(G(T )⊥).

(c) T ∗ es cerrado.

(d) Si T es clausurable, T ∗ es densamente definido y T ∗∗ = T .
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Exercises for Chapter 5

1. (a) Sea X = C([0, 1]) y a ∈ C([0, 1]). Muestre que

A : X → X, (Ax)(t) = a(t)x(t)

es un operador lineal acotado. Encuentre ‖A‖, σ(A), σp(A), σc(A) y σr(A).

(b) Sea H = {f ∈ C([0, 1]) : x(0) = 0} y

S : H → H, (Sx)(t) =

∫ t

0

x(s) ds.

Encuentre σ(S), σp(S), σc(S) y σr(S).

2. Sea (λn)n∈N ⊆ C una sucesión acotada, y,

T : ℓ1 → ℓ1, T ((xn)n∈N) = (λnxn)n∈N.

Encuentre σ(T ), σp(T ), σc(T ) y σr(T ). Muestre además que, para todo K ⊆ C

compacto no vaćıo, existe un operador T ∈ L(ℓ1) cuyo espectro es K.

3. Sea X un espacio de Banach S, T ∈ L(X). Muestre que σ(ST ) \ {0} = σ(TS) \
{0}.

Hint. Muestre que id−ST es invertible si y solo si id−TS es invertible, encon-
trando una relación entre (id−TS)−1 y (id−ST )−1. Suponga ||T || ||S|| < 1 y
mire si la relación en este caso es válida en general.

4. Encuentre el espectro puntual, el espectro continuo y el espectro residual de los
operadores:

R : ℓ2(N) → ℓ2(N), R(x1, x2, x3, . . . ) = (0, x1, x2, x3, . . . ),

L : ℓ2(N) → ℓ2(N), L(x1, x2, x3, . . . ) = (x2, x3, x4, . . . ),

T : ℓ∞(N) → ℓ∞(N), T (x1, x2, x3, . . . ) = (x2, x3, x4, . . . ).
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Problem Sheet 1

Espacios métricos y normados.

1. Sea X un espacio normado. Muestre que:

(a) Todo subespacio finito-dimensional de X es cerrado.

(b) Si V es un subespacio finito-dimensional deX yW es un subespacio cerrado
de X , entonces

V +W := {v + w : v ∈ V, w ∈W}

es un subespacio cerrado de X .

2. Sea T un conjunto y ℓ∞(T ) el conjunto de todas la funciones x : T → K con

‖x‖∞ := sup{|x(t)| : t ∈ T } <∞.

Muestre que (ℓ∞(T ), ‖ · ‖∞) es un espacio de Banach.

3. Considere el espacio de sucesiones d, c0, c definidos como en el Example 1.15.

(a) Muestre que (c0, ‖ · ‖∞) y (c, ‖ · ‖∞) son espacios de Banach.

(b) Muestre que (d, ‖ · ‖∞) es un espacio normado, pero no es completo.

4. Sea (X, ‖ · ‖) un espacio normado. Muestre que X es un espacio de Banach si y
solo si toda serie absolutamente convergente es convergente.
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Problem Sheet 2

Operadores lineales.

1. Sea X un espacio compacto, CR(X) el conjunto de funciones continuas real-
evaluadas sobre X y Y ⊂ X un subconjunto cerrado.

(a) Considere el mapa ρ : CR(X) → CR(Y ) definido por ρ(f) = f |Y . Muestre
que I := ker(ρ) es un subespacio cerrado de CR(X).

(b) Sea ρ̃ : CR(X)/I → CR(Y ) el mapa inducido en el espacio cociente. Pruebe
que ρ̃ es una isometŕıa.

(c) Demuestre que rg(ρ) es completo.

2. Sean X y Y espacios normados con X de dimensión finita. Muestre que toda
función lineal T : X → Y es acotada.

3. (a) Sea X = C([a, b]) con la norma ‖ · ‖∞. Muestre que

T : X → C, T x =

∫ b

a

x(t) dt

es un operador lineal y acotado. ¿Cuál es su norma?

(b) Ahora considere X con la norma

‖x‖p :=
(∫ b

a

|x(t)|p dt
)1/p

, x ∈ X,

para 1 ≤ p <∞. ¿Sigue siendo T acotado? Si es aśı, calcule su norma.

(Si no han visto teoŕıa de medida, ind́ıquenlo claramente y hagan el ejercicio
solo para p = 1).

4. Sea 1 ≤ p < ∞. Para z = (zn)n∈N ∈ ℓ∞ sea T : ℓp → ℓp definido por (Tx)n =
xnzn para x = (xn)n∈N ∈ ℓp. Muestre que T ∈ L(ℓp) y calcule ‖T ‖.

Last Change: Tue 5 Feb 10:58:45 COT 2013

D
R
A

F
T

122

Problem Sheet 3

Hahn Banach, Espacios duales.

1. Demuestre el teorema de Hahn-Banach para espacios vectoriales complejos.

Sugerencia: Para un espacio vectorial sobre los complejos X muestre que:

(a) Sea ϕ : X → R un funcional R-lineal, entonces

Vϕ : X → C, Vϕ(x) := ϕ(x) − iϕ(ix),

es un funcional C-lineal sobre X con ReVϕ = ϕ.

(b) Sea λ : X → C un funcional C-lineal con Reλ = ϕ, entonces Vϕ = λ.

(c) Sea p un funcional sublineal sobre X y ϕ, Vϕ definido como en el punto
anterior, entonces

|ϕ(x)| ≤ p(x) ⇐⇒ |Vϕ(x)| ≤ p(x), x ∈ X.

(d) ‖ϕ‖ = ‖Vϕ‖.

2. En X = ℓ2(N) considere el subespacio

U = {(xn)n∈N : xn = 0 excepto para un número finito de ı́ndices n}.

Sea V el complemento algebraico de U en X , i. e., U es un subespacio tal que
U + V = X y U ∩ V = {0}. Muestre que

ϕ : X → K, ϕ(x) =

∞∑

n=0

un para x = u+ v con u ∈ U, v ∈ V.

es un funcional lineal bien definido y no acotado.

3. (a) Sea c ⊆ ℓ∞ el conjunto de las sucesiones convergentes. Muestre que el
funcional

ϕ0 : c→ K, x = (xn)n∈N 7→ lim
n→∞

xn

es continuo y calcule su norma.

(b) Sea ℓ∞(N,R) el conjunto de todas las sucesiones acotadas en R con la
norma del supremo. Muestre que existe ϕ ∈ (ℓ∞(N,R))′ tal que

lim inf
n→∞

xn ≤ ϕ(x) ≤ lim sup
n→∞

xn, x = (xn)n∈N ∈ ℓ∞.

4. Sea X un espacio normado, f : X → K un funcional lineal no nulo y K =
ker f

(a) Muestre que dim(X/K) = 1.

(b) Muestre que f es continuo si y solo si ker f es cerrado.
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A◦, ◦B, 73

G(T ), 47
HS(H1, H2), 99
K(X,Y ), 90
M⊥, 58
R(λ, T ), 79
S ⊆ T , 72
T (X → Y ), 47
dom(T ), 47
C([a, b]), 12
C1([a, b]), 13
L(X,Y ), L(X), 21
C∞

0 (Ω), 111
D(Ω), 111
ℓ∞, 11
ℓ∞(Γ), 64
ℓp, 11
α(T ), 92
δ(T ), 92
τ(U), 52
dist, 10

adjoint operator
Banach space ∼, 71
Hilbert space ∼, 65, 75

Alaoglu, 53
algebraic basis, 16
annihilator, 73
antilinear, 60
ascent, 92

Baire’s category theorem, 38
Baire-Hausdorff theorem, 37
Banach space, 9
Banach-Steinhaus theorem, 38
basis

algebraic ∼, 16
Hamel ∼, 16
Schauder ∼, 16

Bessel inequality, 62, 63
bidual, 33
bounded

uniformly ∼, 38

category, first ∼, second ∼, 38
Cauchy sequence, 6
Cauchy-Schwarz inequality, 18
closable operator, 47
closed graph theorem, 47, 50
closed operator, 47
closed range theorem, 74
compact, 89
compact operator, 90

spectrum, 94
complete metric space, 6
complete orthonormal system, 61
contraction, 105
convergence, 6, 40
convergent

strongly ∼, 40
weakly ∼, 35, 40

descent, 92
Dirichlet kernel, 42
distance, 10
dual space, 26
Dunford theorem, 82, 83

eigenspace, 79
equicontinuous, 90
equivalent norms, 14
essentially selfadjoint operator, 88

Fejér theorem, 44
Fischer-Riesz theorem, 65
formal adjoint operator, 75
Fourier series, 41
Fréchet-Riesz representation theorem, 61
Fredholm alternative, 95
Fredholm index, 95
Fredholm operator, 95
functional, 26

Gram-Schmidt, 62
graph norm, 49
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Hölder conjugate, 30
Hölder inequality, 18
Haar functions, 113
Hahn-Banach theorem, 27
Hamel basis, 16
Hellinger-Toeplitz

theorem ∼, 67
Hilbert space, 56
Hilbert-Schmidt norm, 99
Hilbert-Schmidt operator, 99
holomorphic, 82
homeomorphism, 6

index
Fredholm ∼, 95
Riesz ∼, 93

inequality
Bessel ∼, 62, 63
Cauchy-Schwarz ∼, 18
Hölder’s ∼, 18
Minkowski ∼, 11
Minkowski’s ∼, 19
Young’s ∼, 18

initial topology, 52
inner product, 55
inner product space, 55
Inverse mapping theorem, 46
isometry, 6

partial ∼, 104

Korovkin theorem, 40

Lax-Milgram theorem, 112
Legendre polynomial, 62
Lemma

Riesz’s ∼, 15

metric space, 5
Min-Max-Principle, 99
Minkowski inequality, 11, 19

Neumann series, 25
norm

equivalent ∼s, 14
normed space, 9
nowhere dense, 38

open map, 45
Open mapping theorem, 46
operator

closable ∼, 47
closed ∼, 47
compact ∼, 90
essentially selfadjoint ∼, 78, 88
Fredholm ∼, 95

positive, 68
selfadjoint ∼, 78, 87
spectrum of a ∼, 79

operator norm, 21
operator product, 108
operator sequences, 40
operator sum, 108
orthogonal, 58
orthogonal complement, 58
orthogonal projection, 60
orthonormal basis, 61
orthonormal system, 61

Parallelogram identity, 56
Parseval’s equality, 64
partial isometry, 104
Polarisation formula, 56
positivity preserving, 40
pre-Hilbert space, 55
precompact, 89
product topology, 53
projection, 50, 60, 69, 114
projection theorem, 58

reflexive, 33
relatively compact, 89
resolvent, 79, 84
resolvent map, 79
resolvent set, 79
Riesz index, 93
Riesz’s lemma, 15
Riesz-Schauder theory, 95

Schauder basis, 16
selfadjoint operator, 78, 87
semicontinuous, 53
seminorm, 9, 26
separable, 8
sequence

Cauchy ∼, 6
convergent ∼, 6

sesquilinear form, 55
shift operator, 23, 33
singular values, 98
space

Banach ∼, 9
metric, 5
normed ∼, 9

spectral radius, 86
spectrum, 79

compact operator, 94
sublinear, 26
subspace

complemented ∼, 51
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symmetric operator, 78

test functions, 111
theorem

Ascoli-Arzelá, 90
Baire’s category ∼, 38
Baire-Hausdorff ∼, 37
Banach-Steinhaus ∼, 38
closed graph ∼, 47, 50
closed range ∼, 74
Dunford, 82, 83
Fejér ∼, 44
Fischer-Riesz ∼, 65
Fréchet-Riesz representation ∼, 61
Hahn-Banach ∼, 27
Hellinger-Toeplitz ∼, 67
inverse mapping ∼, 46
Korovkin ∼, 40
Lax-Milgram ∼, 112
open mapping ∼, 46
Phillips, 74
projection ∼, 58
Schauder, 90
Tietze, 107

Tietze’s theorem, 107
topology, 52

initial ∼, 52
product ∼, 53
weak ∼, 52
weak ∗ ∼, 52

totally bounded, 89
triangle inequality, 5

unconditionally convergent, 112
Uniform boundedness principle, 38
uniformly bounded, 38

weak Cauchy sequence, 109
weak convergence, 35
weak topology, 52
weak ∗ topology, 52

Young’s inequality, 18
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