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CONTENTS 3

The notes are written and modified while I am teaching an introductory course
on functional analysis at the Universidad de los Andes, Bogotd, Colombia. They
are by no means a new presentation of basic functional analysis, they are rather a
collection of excerpts of the books of the list of references I used to prepare classes.
Many thanks to the students from my 2009 class who found a lot of mistakes in the
first draft of the notes.

Prerequisites for the course are a solid knowledge in analysis, linear algebra and
very basic notions of topology. Having attended a lecture in measure theory or an
advanced course in analysis is of advantage but not necessary.

An important part of any mathematics lecture are exercises. For each week there
is a problem sheet with exercises (stolen from various books) which hopefully help
to understand the material presented in the lecture.

Bogotd, February 2013, M.W.

These lecture notes are work in progress. They may be abandoned or changed
radically at any moment. Very likely they contain a lot of mistakes and ambiguities.
If you find mistakes or have suggestions how to improve the lecture notes, please
let me know.
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Notation

The letter K usually denotes either the real field R or the complex field C. The
positive real numbers are denoted by Ry := (0, 00).
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Chapter 1

Banach spaces

1.1 Metric spaces
We repeat the definition of a metric space.

Definition 1.1. A metric space (M,d) is a non-empty set M together with a map
d:MxM—R
such that for all z,y,z € M:

(i) d(z,y) =0 <= z=y,
(i) d(z,y) = d(y, ),
(iii) d(z,y) < d(z,z) +d(z,y).

The last inequality is called triangle inequality. Usually the metric space (M, d) is
denoted simply by M.

Note that the triangle inequality together with the symmetry of d implies
d(z,y) 20,  wyeM,

since 0 = d(z,z) < d(z,y) + d(y, z) = 2d(x,y).
It is easy to check that

d(@,y) - d(y.2)| < d(x,2),  @,y,z€ M.

A subset N C M is called bounded if
diam N := sup{d(z,y) : z,y € N} < .
Let » > 0 and © € M. Then

B, (z) :={y € M : d(z,y) <r} =: open ball with centre z and radius r,
K, (z):={y € M :d(z,y) <r} =: closed ball with centre z and radius r,
Sp(z) :={y € M : d(x,y) =r} =: sphere with centre z and radius r.

Examples. e R with the d(z,y) = |z — y| is a metric space.
e Let X be a set and define d : X x X — R by d(z,y) = 0 for z = y and
d(z,y) = 1 for & # y. Then (X,d) is a metric space. d is called the discrete
metric on X.

Last Change: Thu 7 Feb 17:21:44 COT 2013
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Let (M,d) be a metric space. Recall that the metric d induces a topology on M:
a set U C M is open if and only if for every p € U there exists an £ > 0 such
that Be(p) C U. In particular, the open balls are open and closed balls are closed
subsets of M. Let z € M. A subset U C M is called a neighbourhood of x if there
exists an open set U, such that v € U, CU.

It is easy to see that the topology generated by d has the Hausdorff property, that
is, for every @ # y € M there exist neighbourhoods U, of x and U, of y with
U,NnU, =

Recall that a set N C M is called dense in M if N = M, where N denotes the
closure of N.

Definition 1.2. A sequence (z,)nen € M converges to x € M if and only if
lim d(z,,z) =0, that is,
)

n—
Ve>0 INeN: n>N = d(z,,z)<e.

The limit = is unique. A sequence (z,)nen is a Cauchy sequence in M if and only
if
Ve>0 INeN: mn>N = d(z,,z.,) <e.

Definition 1.3. A metric space in which every Cauchy sequence is convergent, is
called a complete metric space.
Definition 1.4. Let (X, Ox) and (Y, Oy) be topological spaces.

(i) A function f: X — Y is called continuous if and only if f~1(U) is open in X

for every U open in Y.

(ii) An bijective function f: X — Y is called a homeomorphism if and only if f
and f~! are contiunous.

The following lemma is often useful.

Lemma 1.5. Let (M, d) be a complete metric space and N C M. Then N is closed
in M if and only if (N,d|n) is complete.

Remarks. e Every convergent sequence is a Cauchy sequence.
e Every Cauchy sequence is bounded. Recall that a sequence (zy,)nen is bounded
if the set {z, : n € N} is bounded.

Not every metric space is complete, but every metric space can be completed in the
following sense.

Definition 1.6. Let (M, dyr) and (N,dy) be metric spaces. A map f: M — N is
called an isometry if and only if dy(f(z), f(y)) = dm(x,y) for all 2,y € M. The
spaces M and N are called isometric if there exists a bijective isometry f: M — N.

Note that an isometry is necessarily injective since z # y implies f(z) # f(y)
because d(f(x), f(y)) = d(z,y) # 0, and that every isometry is continuous.

Theorem 1.7. Let (M,d) be a metric space. Then there exists a complete metric
space (M,d) and an isometry ¢ : M — M such that o(M) = M. M is called
completion of M ; it is unique up to isometry.
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Proof. Let
Car = {(xn)nen € M : (@n)nen is a Cauchy sequence in M}

be the set of all Cauchy sequences in M. We define the equivalence relation ~ on
C]\,[ by

z~y = d(@n,yn) 20, n— 00
for all = (@p)nen, ¥ = (Un)nen € Ca. It is easy to check that ~ is indeed a
equivalence relation (reflexivity and symmetry follow directly from properties (i)

and (ii) of the definition of a metric and transitivity of ~ is a consequence of the
triangle inequality).

Let M :=C M/ ~ the set of all equivalence classes. The equivalence class containing
2 = (@n)nen is denoted by [z]. On M we define

d:MxM—=R, d(z],[y]) = lim d(zn,yn). (1.1)
n-—00
We have to show that d is well-defined.
Let (mn)nEN € [’K] and (%L)n,eN € [Z/] Then

[d(@n, yn) = A(@ms Ym)| < |d(@ns Yn) = ATm, Yn)| + [d(@ms Yyn) — ATm, Yim)|
< d(Tp, Tm) + dYn, Yym) — 0, m,n — 0o.
Since (d(zn,yn))nen is a Cauchy sequence in the complete space R, the limit in
(1.1) exists.
Moreover, for (Zn)nen € [z] and (Jn)nen € [y] it follows that

|d(@r, Yyn) = d(Tr, Gn)| < |d(Tr, Yn) — AT Y| + |d( Ty Yr) — Aoy G|
< d(@n, Tn) + d(Yn, Jn) — 0, n — oo.

Hence d is well-defined.
Let

©: M — M, o(z) = [(2)nen]-

We will show that (ﬁ, J) is a complete metric space, that ¢ is an isometry and that

@(M) = M in several steps.
Step 1: (ﬁ,cf) is a metric space.
Proof. Let [z],[y], [2] € M. Then

e 0=d([z]:[y]) = lim d(wn,yn) = z~y = (=[]
o d(fz).[y)) = lim_d(zn,yn) = lim d(yn,2,) = d(y). ).

>

(el ) = Jim dCan,yn) < N d(on, za)+d(n,gn) = d(fal, [2)+d(0=], ).

=9

Step 2: ¢ is an isometry.

Proof. This follows immediately from the definition.

Step 3: (M) = M.

Proof. Let (xn)nen € [#] € M and € > 0. Then there exists an N € N such that
d(Tp,Tm) < 5, m,n > N. Let z:=xy € M. Then

dip(=), o)) = lim d(zy,2,) < 5 <<

Last Change: Thu 7 Feb 17:21:44 COT 2013
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Next we show that (]VI,dA) is complete. Let (Z,)nen be a Cauchy sequence in M.
Since p(M) is dense in M there exists a sequence z = (z,)nen € M such that

1
ATy, 2n) < —, neN.
n

The sequence z is a Cauchy sequence in M because

Az, 2m) = d(p(20), 9(zm)) < Al@(20), Fn) + dlEn, Fm) + Ad(Em, P(2m))
<%+[i\(in,im)+g~>0, m,n — o0o.

The sequence (2, )nen converges to [z] because

~ 1
(&n,2) < d(@n, p(20)) + d(p(zn),2) < = + lim d(zp,2m) = 0, n — 00.
n m—o00

=)

We have shown that ¢(M) is a dense subset of the complete metric space (JT/T ,J)
and that ¢ is an isometry.

Finally, we have to show that Mis unique (up to isometry). Let (N, dn) be complete
metric space and 1 : M — N an isometry such that (M) = N. Then the map

T: (M) = (M), T(p(x)) = ()
can be extended to a surjective isometry T : o(M) = M- N by

Tz =T(lim z,):= lim Tz,
n—oo n—00

for x = lim x, with z,, € (M), n € N. O
n—o0
Examples. o C" with d(z,y) = max{|z; —y;| : j = 1,...,n} is a complete

metric space.

o C" with d(z,y) = v/]z1 — 1|2 + - + [zn — yn|? is a complete metric space.

o Let C([a,b]) be the set of all continuous functions on the interval [a,b]. For

f,9 € C(la,b]) let
di(f,g) == max{|f(z) — g(2)| : € [a, 0]},
b
@lf.9)i= [ 17(0) = gla) .

Then d; and ds are metrics on C([a, b]). (C([a,b]),d1) is complete, (C([a,b]), d2)
is not complete.

Remark. The completion of (C([a,b]), d2) is L1(a,b) (the set of all Lebesgue inte-
grable functions on (a,b)).

Definition 1.8. A metric space is called separable if it contains a countable dense
subset.

Proposition 1.9. Let (M,d) be a separable metric space and N C M. Then N is
separable.

Last Change: Thu 7 Feb 17:21:44 COT 2013
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Proof. We have to show that there exists a countable set B C N such that BDON
where the closure is taken with respect to the metric on M. By assumption on
M there exists a countable set A := {z, : n € N} C M such that A =M. Let
J:={(n,m) € NxN: 3y € N with d(z,,y) < £}. For every (n,m) € J choose
a Yn,m € N and define B := {yn,m : (n,m) € J}. Obviously, B is a countable
subset of N. To show that B is dense in N it suffices to show that for every y € N
and k € N there exists a b € B such that d(b,y) < §. By definition of A there
exists a 4, € A such that d(zn,y) < 5. In particular, (n,2k) € J. It follows that

d(?]n,?kv y) < d(yn.zkv xn) + d(zm Z/) < % o

1.2 Normed spaces

Definition 1.10. Let X be a vector space over K. A norm on X is a map

- X —>R
such that for all z,y € X, a« € K
i) lz]l=0 <= z=0,
() ozl = laf =[],
() flo+yll < llzll + llyll-
Remarks. e Note that the implication < in (i) follows from (ii) because ||0 =

[12- 0[] = 2[jo]|.

e Note that [|z]] > 0 for all z € X because 0 = ||z — z|| < 2||z||. The last
inequality follows from the triangle inequality (iii) and (ii) with « = —1.

Remark. A function [-]: X — R which satisfies only (ii) and (iii) of Definition 1.10

is called a seminorm. As seen in the remark above for norms, a seminorm is non-
negative and satisfies [0] = 0.

Remark. A norm on X induces a metric on X by setting
d,y) = lle—yll,  zyeX

Hence a norm induces a topology on X via the metric and we have the concept of
convergence etc. on a normed space.

Definition 1.11. A complete normed space is called a Banach space.

Obviously, every subspace of a normed space is a normed space by restriction of the
norm. A subspace of a Banach space is a Banach space if and only if it is closed.

Proposition 1.12. Let X be a normed space. Then the following is equivalent:

(i) X is complete.
(ii) Every absolutely convergent series in X converges in X.

Proof. Exercise 1.2. O

Example 1.13 (Quotient space). Let X be a Banach space and M C X a closed
subspace. On X we have the equivalence relation

T~y = w-—yeM.

Last Change: Thu 7 Feb 17:21:44 COT 2013
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For 2 € X we denote the equivalence class of X/M containing = by [z]. Then X/M
is a vector space if we set

@]+ [y =[x +y], alz]:=az], zye X, aeK
For z € X let dist(z, M) := inf{||z — m| : m € M}.
o (X/M,| - |~) is a normed space with
Il X/M =R, ||[2]]|~ := dist(z, M).

Proof. First we show that || - ||~ is well-defined. For z,y € X withz —y € M
we find

eMm
—~
dist(z, M) = inf{||lz —m|| : m € M} = inf{|ly — (y —x+m)|| : m € M}
=inf{||ly —m| : m € M} = dist(y, M).

Property (ii) in the definition of a norm is easily checked. For property (iii)
let [z],[y] € X/M. Then

2]+ Wlll~ = [z + ylll~ = inf{ |z +y —m| : m € M}

inf{||z — mg +y —my|| : my,my, € M}

inf{||x — mg| : my € M} +inf{||y — my| : my, € M}
= 11~ + llyll~-

It is clear that [z] = 0 implies ||[z]||~ = 0. Now assume that ||[z]||~ = 0.
We have to show that z € M. By definition of dist there exists a sequence
(mn)nen such that ||z —my,| — 0, that is, (m,)nren converges to x. Since M
is closed, it follows that x € M. O

IN

Let X be a Banach space and M a closed subspace. Then X/M is Banach
space with the norm defined in Example 1.13.

Proof. We already saw that X /M is normed space. It remains to prove com-
pleteness. Let ([2,])nen be a Cauchy sequence.

First we show that we can assume ||[z,,] —[2.,]]|~ < 27" for all m > n: Choose
N; € Nsuch that ||[zn, ] = [zm]||~ < 27! for all m > Ny. Next choose Ny > Ny
such that [|[zn,] — [2m]||~ < 272 for all m > N,. Continuing this process,
we obtain a subsequence with the desired property. Since a Cauchy sequence
converges if and only if it contains a convergent subsequence, it suffices to
prove convergence of the subsequence constructed above.

By definition of the quotient norm we can assume that ||z, — 2,41 < ||[2, —
Tnt1]]|~ + 27" < 287" Then (2, )nen is Cauchy sequence in X because for
alln >m

n—1

n-1
< Z l2ns1 — znl <2 Z 274,
j=m j=m

n-1
zn — 2wl = H > i1 —
j=m
Therefore x :== lim z, exists and
n—oo
lzn] = 2lll~ = lfzn — 2~ < llen — 2| =0, n— oo o
Remark 1.14. (i) In the proof above we used that, by definition of | - ||~, for
every ¢ € X and every £ > 0 there exists an Z € [z] such that ||Z]| < ||[z]||~+e€.

Equivalently, there exists an m € M such that ||z +m|| < ||[z]||~ + &.

Last Change: Thu 7 Feb 17:21:44 COT 2013
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(ii) Obviously, [lz| > ||[z]||~ for every z € X.

Examples 1.15. (i) Finite dimensional normed spaces. C" and R™ are complete
normed spaces with

|- loo K" 5 R, [lafloc = max{le| : j = 1,....,n}.

Let 1 < p < oo. Then C™ and R™ are complete normed spaces with

M =Rzl = (3 lasl) "
i=1

The triangle inequality ||z + yl|, < ||z]l, + [|yllp is called the Minkowski inequality
(see Section 1.3).

(if) Let T be a set and define
loo(T) := {2z : T — K bounded map}.
Obviously, £ (T') is a vector space. Let
|z|loo := sup{|z(t)| : t € T}, T € Lo,
be the supremum norm. Then (€o(T), || - ||) is a Banach space.
Proof. Exercise 1.4. O
(iii) Sequence spaces.
e (o = l5(N) is a Banach space.
e For 1 <p<oolet
oo
0, = 0,(N) = {m)neN CK: Y felr < oo}
n=1
and

e 1
lelly = (3 leal?)”, @ty
n=1

With the usual component-by-component addition and multiplication with a
scalar, £, is a vector space and (€p, || - ||) is a Banach space.

Proof. First we show that £, is a vector space. For a € K and z,y € (, we

have
oo oo
Z |ax, |P = |af? Z |z, |P < 0o
n=1 n=1
and
oo oo oo
D lon + gal? < 37 (2max{|anl, yal})” = 27 Y (max{|an, [yal})”
n=1 n=1 n=1
[e ]

<2 leal? + lyal” = 22 (I} + lyllp) < oo

n=1

Last Change: Thu 7 Feb 17:21:44 COT 2013
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Hence ¢, is a K-vector space. Properties (i) and (ii) in the definition of a norm
are easily verified. The triangle inequality is the Minkowski inequality (see
Section 1.3).

To show that (£, || - ||) is complete, let (2,)nen be a Cauchy sequence in £,.
Set &, = (Zn,m)men. Then the sequence of the m-th components is a Cauchy
sequence in K because

[Znm — Thm| < |20 — x| ps m e N.

Since K is complete, the limit y,, := lim @y, ,,, exists. Let y := (Y )men. We
n—oo

will show that y € ¢, and that x,, &) y. Let e > 0 and N € N such that

||&n — zk|| < e for all k,n > N. For every M € N

M
> g — 2P < o — okllf < P
=1

Taking the limit & — oo on the left hand side yields

M
> am, — yilP < P

Jj=1
Taking the limit M — oo on the left hand side finally gives

=

Z ‘xn,]‘ = y]|p <eP < o0,
j=1

in particular, 2, —y € £,. Since £, is a vector space, we obtain y = x, + (y —
xn) € {p and ||z, — y||, < e. That (2,)nen converges to y follows from the
inequality above since € can be chosen arbitrarily. O
(iv) %, spaces: See measure theory.
(v) Subspaces of l~. Let
d:={z = (xp)nen CK : z, # 0 for at most finitely many n},
co:={x = (Tn)nen CK: lim z, =0},
n—oo

c:={z=(zp)nen CK : lim z, exists},
n—00

Obviously, the inclusions d C ¢y € ¢ € lo hold. Moreover, it can be shown that
co and ¢ are closed subspaces of {, and that d is a non-closed subspace of . In
particular, (co, || - ||oo) and (¢, || - ||s) are Banach spaces, (d, || - ||« ) is not a Banach
space (see Exercise 1.5).

(vi) Spaces of continuous functions. For metric space T (e.g. an interval in R) let

C(T):={f:T — K: f is continuous},
B(T):={f:T —K: f is bounded},
BC(T) :=C(T)nB(T).

For f € B(T) let

[[flloe :=sup{|f(t)|: t € T}.

In Analysis 1 it was shown that (B(T),| - ||e) and (BC(T),]|| - ||s) are Banach
spaces. Note that C(T') = BC(T') for a compact metric space T'.

Last Change: Thu 7 Feb 17:21:44 COT 2013
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(vii) Spaces of differentiable functions. Let [a,b] a real interval. We can define
several norms on the vector space

C*([a,b]) := {f : [a,b] — K : f is continuously differentiable}.
o (C'([a,b]), ]| - |ls) is not a Banach space.

Proof. For n € Nlet f,, : [-1,1] = K, fu(t) := (2 +n~2)2. Then the f,
converge to g : [-1,1] = K, g¢(t) = |t| in the || - || c-norm. But g ¢ C'([a,b]).
Hence C*([a, b)) is not closed as a subspace of the Banach space C([a, b)), so it
is not a Banach space. O

o For f € C'([a,b]) let

£l = 11 flloo + 1 lloo-

Then (C*([a,b]), ]| - [(1)) is a Banach space. Note that the right hand side is
finite because by assumption f’ is continuous.

Proof. Let (xn)nen be a Cauchy sequence in (C"([a,b]), [ - [|(1))- Then there
exist ,y € C([a,b]) such that 2, — 2 and 2], — y in the supremum norm. A
well-known theorem in analysis implies 2’ = y, hence x,, — = in || - [|(1). O

In the following, C([a,b]) will always be considered to be equipped with the
norm || - [[(1) unless stated otherwise.

Theorem 1.16. Let X be a Banach space, Y a closed subspace and N a finite
dimensional subspace of X. Then'Y + N is a closed subspace. In particular, every
finite-dimensional subspace is closed.

Proof. Obviously, Y + N is a subspace of X. To proof that it is closed, we proceed
by induction. Therefore we can assume without restriction that dim N = 1. Let
2 € X such that N = {Az : A € K} and (2, )neny = (Yn +anz)nen a Cauchy sequence
inY +N.

Case 1. (an)nen is bounded. Then it contains a convergent subsequence (an, )keN-
Then the sequence (Yn, )ken = (Zn), — an,2)ken converges because it is the sum of
two convergent sequences.

Case 2. (an)nen is unbounded. Then there exists a subsequence (an, )ren With
klim |ap, | = 0o. Since (2, )ren is bounded, it follows that

c—00

Z+ —Yn, — 0, n — o0.
Qny,

1
Tny,

1
Qny,

Hence d(z,Y) = 0. Since Y is closed, this implies z € Y, therefore N +Y =Y is
closed in X.

Finally, choosing Y = {0} shows that every finite-dimensional subspace is closed.
O

Note that the sum of two closed subspaces is not necessarily closed, see as the
following example shows. Another example can be found in [Hal98, §15].

Example. In ¢; consider the subspaces

U := {(@n)nen € 1 : 2, =0, n € N}
V= {(zn)nen € €1 : Tap—1 = NTon, n € N},

Last Change: Thu 7 Feb 17:21:44 COT 2013
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Obvioulsy, U and V are closed subspaces of ¢;. Let e,, be the nth unit vector in ¢;.
Let m € N. Then eg,,—1 € U CV + U and ey, = (C2m+# €om—1) — #czm,l S
V + U. Since span{e, : n € N} is a dense subset of {1, it follows that V + U = {;.
Now we will show that V + U # ¢;. Let

o = (n)nen S "%, n even,
= \“fn)neN, Ln =
0, nodd.

Clearly © € ¢1. Suppose that there exist v = (vp)nen € V, u = (un)nen € U such
that © = v + u. It follows for all m € N

1

53 = T2m = U2m + U2m = U2m
(2m)2 ’

0 =22m-1 = vom—1+ U2m—1 = M2 + U2m—1 = Iz + U2m -1,

impliying that ug,,—1 = 74717, m € N, hence u # ¢;. Therefore x #V + U.

Definition 1.17. Let X be a normed space and || - ||; and || - |2 be norms on X.
They are called equivalent norms if there exist m, M > 0 such that

mllally < llzle < Mz, @ €X. (12)

Theorem 1.18. Let ||-||; and ||-||2 be norms on a vector space X . The the following
are equivalent:

(i) ||+ |lx and || - ||2 are equivalent.
(if) A sequence (xn)nen S X converges with respect to || - |1 if and only if it
converges with respect to || - ||2 and in this case the || - ||1-limit and the || - ||2-

limit are equal.

(iti) A sequence (T )nen € X converges to 0 with respect to || - ||1 if and only if it
converges with respect to || - ||2.

Proof. (i) = (ii) = (iii) is clear.
“(iii) = (i)”: Obviously it suffices to show the existence of M € R such that (1.2)
is true. Assume no such M exists. Then there exists a sequence (x5, )neny € X such

that ||z,]l1 = 1 and ||7,]|2 > n||zall1 = n. Let y,, :==n"z,. Then y, LN 0, so by

assumption also y, 12,0 This contradicts lynll2 > 1 for all n € N. ]

The theorem above implies in particular, that the topologies generated by equivalent
norms coincide. Moreover, the identity map id : (X, ||+ |l1) — (X, |- [|2) is uniformly
continuous for equivalent norms.

Example 1.19. On C!([a,b]) define the norm
/1l = sup{max{|z(t)], |&"()} : t € [a,0]}.
and let || - [|(1) be as in Example 1.15 (7). It is not hard to see that

Izl < llzlle < 2lzlw, = C(la,b]).
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Theorem 1.20. All norms on K" are equivalent.

Proof. Let {e1,...,e,} be a basis of K". For z = Z;L:l a, e, define

n 1
2
Jallz := (3l ?) ™
j=1

Obviously, || - ||2 is a norm on X and it suffices to show that every norm on X is
equivalent to | - [|2. Let || - || be a norm on X and z = 3°7_, @, e,,. Using triangle
inequality for || - || and Holder’s inequality, we obtain

1
2

lall = > ases]| < S lasllies I < (lesl?) " (o lles 12)* = Cllall - (13)
Jj=1 j=1 j=1 j=1

1

with constant C' := (Z;‘:l | e; HQ) * independent of z.

Note that || - ||z : X — R is continuous, hence S := {z € X : ||z|ls = 1} is
closed being the preimage of the closed set {1} in R. In addition, S is bounded,
therefore S is compact by the theorem of Heine-Borel. Now consider the map
T:(X,||-]2) = R, Tz = ||z||. By (1.3), T is uniformly continuous, so its restriction
to the compact set S has a minimum m and a maximum M. Since || - || is a norm,
m > 0 (otherwise there would exist an z € S with ||z|| = 0, thus z = 0 but 0 ¢ S).
Therefore

mllzlle =m < |jz|| < M = M||z|2, z €S,
and by the homogeneity of the norms
mlizls < 2] < Mal, @€ X. O

The theorem above implies that all norms a a finite-dimensional K-vector space are
equivalent. Moreover, it follows that every finite normed space is complete because
K™ with the Euclidean norm is complete and that a subset of a finite dimensional
normed space is compact if and only if it is bounded and closed (Theorem of Heine-
Borel for K" with the Euclidean metric). In particular, the unit ball in a finite
dimensional space is compact.

This is no longer true in infinite dimensional normed spaces. In fact, the unit ball is
compact if and only if the dimensions of the space is finite. For the proof we use the
following theorem which is also of independent interest, as it shows that in a certain
sense quotient spaces can work as a substitute for the orthogonal complement in
inner product spaces (see 77).

Theorem 1.21 (Riesz’s lemma). Let X be a normed space, Y C X a closed
subspace with Y # X and € > 0. Then there exists an x € X such with ||z| =1
and dist(z,Y) > 1 —e.

Proof. If Y = {0} or ¢ > 1, the assertion is clear. Now assume 0 < ¢ < 1. Note
that in this case 72~ > 1. Since Y is closed and different from X, the quotient

space X/Y is not trivial. Hence there exists an £ € X such that [|[¢]||~ = 1. By
Remark 1.14 there exists y € Y such that

1
L=l < llE+yll < 7=
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Let z = ||€ + y||~*(€ + y). Obviously, ||z| = 1 and for every z € Y

ko =2l = llE + ol 7 [J€ +y = g+ wllz ]| 2 g+ ol Mg~ = g+ yl ™ > 1 —e.

————
ey

Hence d(z,Y) =inf{||lz — 2| : 2 € Y} > 1 —e. O
Theorem 1.22. For a normed space X the following are equivalent:

(i) dim X < oo,

(ii) Bx :={zr € X :|z| <1} is compact.

(i) Fvery bounded sequence in X contains a convergent subsequence.

Proof. “(i) = (ii)” follows from Theorem 1.20.

“(ii) = (i)”: Assume that Bx is compact. Then there are x1, ..., z, € X with
[lz;]l <1, =1,..., n, such that
n
Bx € | By(ay). (1.4)
j=1
Let U = span{z1, ..., z,}. If U # X, then, by Riesz’s lemma, there exists an

e
x € X such that ||#]| = 1 and dist(2,U) > %, in contradiction to (1.4). Therefore
dim X =dimU < n.

“(ii) = (iii)”: If Bx is compact, then obviously for every a > 0 also aBx =
{az : x € Bx} is compact. Since every bounded sequence is a subset of some aBx,
it must contain a convergent subsequence.

“(iii) = (i)”: Assume that dim X = co. Choose z; € X with [z1| = 1 and set
Uy := span{z1} # X. By Riesz’s lemma there exists an zo € X with [jas] = 1
and dist(z2,U1) > 3, in particular [lz1 — x| > . Set Us := span{xy, 22} # X.
Continuing this way, we obtain a sequence & = (2, )nen C X with ||z, — 2| > % for
all n,m € N with n # m. Therefore, the sequence x does not contain a convergent
subsequence, hence Bx is not compact (Recall that a compact metric space is
sequentially compact). [}

Let X be a vector space and A a set. A family (zx)xea € X is called linearly
independent if every finite subset is linearly independent. A Hamel basis (or an
elgebraic basis) of X is a family (zx)rea C X that is linearly independent and such
that every element z € X is a (finite!) linear combination of the 5. The existence
of a Hamel basis can be shown with Zorn’s lemma.

Definition 1.23. Let X be a normed space. A family (z,,)nen is a Schauder basis
of X if every z € X can be written uniquely as

o<}
Z QpTy with a,, € K.

n=1

Definition 1.24. Let (X, || -||) be a normed space over K. A subset Y C X is said
to be a total subset of X if

span(Y) = X,

that is, if the set of all linear combinations of elements of Y is dense in X.
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Theorem 1.25. A normed space (X, | - ||) is separable if and only if it contains a
countable total subset.

Proof. Let A be a dense countable subset of X. Then obviously span A = X, that
is, A is a total subset of X. B

Now assume that A is countable total subset of X. Let B := {Xa, : n € N, A € Q}
where @ ;= Qif X is a R-vector space and @ = Q+1Q if X is a C-vector space. In
both cases B is countable. We will show that B = X. Let « € X and € > 0. Since
A is a total subset of X, there exist a1, ..., a, € A and Ay, ..., A, € K such that

n

£

llz =" Ajayll < 3
=1

Since (,j is dense in K, there exist p1, ..., uy € @ such that

=Ml <5 (Xllagl) w G=1.m
j=1

Then y := Y_j_, pja; € span A and

==yl < Hz - Z/\J'%'H + ”l/ = E/\jajH <z T H > s - AJ‘%’H
=1 j=1 =1
n
g n E (>
§§+r§lj§\ur%ﬂ;|\anl\<§+§:€- o

Note that every normed space with a Schauder basis is separable, but not every
separable normed space has a Schauder basis.

Examples 1.26. (i) ¢, is separable for 1 < p < co.

Proof. Let e, :=(0,...,0,1,0...) be the nth unit vector in £,. We will show that
{en : n € N} is a total subset of £,. Let = (2y,)nen C £p. Then

n oo
HI — E wjej|‘ = H E .’L‘jéi]H —0, n— oo O
=1 P j=n+1 P

(ii) fs is not separable.

Proof. Recall that the set A := {(zp)nen : 2n € {0,1}}isnot countable. Obviously,
A C l. Let B be a dense subset of {o,. Then for every & € A there exists an
b, € B such that ||z — by||ec < &. Since ||z —yllec = 1 for @ # y € A, it follows that
B has at least the cardinality of A, that is, there exists no countable dense subset
of ¢,. ]

(ii) Cla,b] is separable since by the theorem of WeierstraB the set of polynomials
{la,b] = R, z — 2™ : n € N}

is a total subset of Cla, b].

Last Change: Thu 7 Feb 17:21:44 COT 2013

18 1.3. Hélder and Minkowski inequality

1.3 Holder and Minkowski inequality

In this section we prove Hélder’s inequality and Minkowski’s inequality. For the
proof we use Young’s inequality.

Theorem 1.27. Let p,q € (1,00) such that

1 + l =1.
p q
Then for all a,b> 0:
1 1
ab < —af + = b7, (1.5)
p q

Proof. If ab = 0, then inequality (1.5) is clear. Now assume ab > 0. Since the
logarithm is concave and % + % =1 is follows that

1 1 1 1
111(—a"+7bq> > ~In(a?) + = In(b?) = In(a) + In(b) = In(ab).
» . » (a”) p (6%) = In(a) + In(b) = In(ab)
Application of the monotonically increasing function exp : R — R yields (1.5). O

Theorem 1.28 (Holder’s inequality). Let 1 < p < co and ¢ = 1%’ i e,

L
p 4q
(setting é =0). Ifz €4, and y € {g, then z = (TnYn)nen € {1 and
Izl < lllp lyllq- (1.6)
Proof. If z = 0 or y = 0 then the inequality (1.6) clearly holds. Also the cases p =1

and p = oo are clear.
Now assume z,y # 0 and 1 < p < co. The Young inequality (1.6) with

o,
Izl lyllq
yields
T 1 |z;[P 1 |y,|¢
| [y;1 |51 + [y;]

Izl e = 2 llllz  a Tylld”

Taking the sum over gives

1 > 1 1 & 11 & 1 1
R zy;l < = 7] L m— y.q: —+ - =1.0
Tl 2501 < 5 ol + ol = 5+

=ll=llp =lvls

=1 =1

In the special case p = ¢ = 2 we obtain the Cauchy-Schwarz inequality.

Corollary 1.29 (Cauchy-Schwarz inequality). Forz = (2)nen, ¥ = (Yn)nen €
Uy the Hélder inequality implies

-
@)l = |3 w575 < lale lyle-
Jj=1
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Theorem 1.30 (Minkowski inequality). Forl <p < oo and x,y € ¢, Minkowski’s
inequality holds:

ll+ylly < lllly + llyllp- (1.7)

Proof. If © +y = 0 then (1.7) clearly holds. Also the cases p = 1 and p = oo are
easy to check.

Now assume 2z +y # 0 and 1 < p < 0. Let ¢ € (1,00) such that 11—, + % = 1. The
triangle inequality in K and Holder’s inequality (1.6) yield for all M € N:

M M
Slag il =Dl ol -l gl

j=1 J

A

=1

M
e T e S P | ET R
=1

i=1

<

I3
1

1 M 1, M —_—— 1
) (X lusl) " (X s+ wl)
j=1

j=1

M 1M ——
v _

> \le‘") ( Jaj + 3|1

=1 1

Jj=

lelly + llall,) (f 2 +3;l7) -
j=1

IN

IN
—~ —~

Q=

1
Note that (Z?il @ +y; |F> 7 20 for M large enough. Hence the above inequality
yields

M 1
5
(X ks + i) < Nl + ol
Jj=1
using p — % = p(l - %) = 1. Taking the limit M — oo finally proves (1.7). O
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Chapter 2

Bounded maps; the dual
space

2.1 Bounded linear maps

Definition 2.1. Let X,Y be normed spaces over the same field K. The set of all
linear continuous maps X — Y is denoted by L(X,Y), i.e.,

L(X,Y)={T: X — Y : T linear and continuous}
and L(X) := L(X, X).
Recall that the following is equivalent:

(i) T: X — Y is continuous

(ii) lim Ta, = T lim, e 2, for every convergent sequence (z)neny € X
n—oo

(ili) Voo €e X Ve>030>0: ||z —xol| <6 = ||Te—Txo|| <e

(iv) UCY open = T-'(U)={2z€ X: f(z) € U} openin X.

Definition 2.2. Let X,Y be normed spaces over the same field K. For a linear
map T : X — Y define the operator norm

[Tl == sup{||Tz|| : w € X, [|l]| =1}

If || T|| < oo then T is called a bounded linear operator and ||T'|| is the operator norm
of |||

Remark 2.3. (i) For a continuous linear map 7: X — Y
1Tzl < Tl l=ll, =€ X.
Proof. The inequality is obvious for 2 = 0 or |jz|| = 1. For z € X \ {0} let
7 = ||lz||~'a. By definition of |T|| we find || Tz| = ||| |TZ| < ||lz|| ||T||. Note
O

that the inequality is also true if 7" is unbounded and x # 0.
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(if) The following is easy to check:

7] = sup{||Tz|| : = € X, [l = 1}
=sup{||Tz|: z € X, ||z <1}

:sup{”Tx” :IEX,I#O}

[l
=inf{M eR:Vz e X|Tz|| < M|z}
Remark 2.4. (i) For S, T € L(X,Y) and X € K we define
ANT+S): X =Y, (\T+S)x:=\Tz+ Sx.
Since the sum and composition of continuous functions is continuous, and
(AT + S obviously is linear, L(X,Y) is a vector space.
It will be shown in Theorem 2.6 that || - || is indeed a norm. Note the the

operator norm depends on the norms on X and Y. This is can be made
explicit using the notation ||T'||L(x,y), or similar notation.

(i) Let X,Y,Z be normed spaces and T' € L(X,Y), S € L(Y, Z). Then
ST:X = Z, STz:=S(Tx).

Obviously, ST € L(X, Z) as composition of continuous linear functions and
IST|| < ||S|| |IT]| because by Remark 2.3

5Tzl < |SINT=l < ISIHT =], =€ X.
In particular, L(X) is an algebra.

Theorem 2.5. Let X,Y be normed spaces, T : X — Y linear. The following is
equivalent:

(i) T is continuous.
(ii) T is continuous in 0.
(iii) T is bounded.
(iv) T is uniformly continuous.
Proof. The implications (iii) = (iv) = (i) = (ii) are obvious.
¢ (ii)) = (iii)”:  Assume that T is not bounded. Then there exists a sequence
(n)nen € X such that ||z,|| =1 and || Ta,| > n for all n € N. Let y,, :=n"'z,.

Then y, — 0 but || Ty,| > 1 for all n € N in contradiction to the continuity of T
in 0. O

Theorem 2.6. Let X,Y be normed spaces.
(i) L(X,Y) is a normed space.
(ii) IfY is Banach space, then L(X,Y') is a Banach space.

Proof. (i) In Remark 2.4 we have seen that L(X,Y") is a vector space. From defi-
nition of the operator norm it is clear that |7 = 0 if and only if T = 0 and that
[[AT|| = |A|||T|| for all A € K. To prove the triangle inequality let S,T € L(X,Y)
and z € X.

(S + D)zl = 1Sz + Tl < [|Sz]| + | Tx] < [S]+ 1T
Taking the supremum over all z € X with ||z| =1 yields ||S + T'|| < ||S]| + |-
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(i) Let (T,)nen be a Cauchy sequence in L(X,Y). For z € X, the sequence
(T x)nen is a Cauchy sequence in Y because

1The — Toll < | Tn = Tl [|]]-
Since Y is complete, we can define
T:X—-Y, Tzx:= lim T,z.
n-—00

It is easy to check that T is linear. That 7" is bounded and T;, — T follows as in
Example 1.13(2): For ¢ > 0 exists an N € N such that

T — Tl < %7 n,m > N.
In particular, for all z € X it follows for n > N that

|Tz — Thz|| < || Tz — Tnz| + | Tne — Tzl < ||Tz — Tzl + g, meN. (2.1)
Taking the limit m — oo on the right hand side yields ||z — Thz|| < § < e. It
follows that T'— T, is a bounded linear map. Since L(X,Y) is a vector space, also
T =T, + (T —T,) is a bounded linear map. In addition, (2.1) shows that T,, — T,
n — 00. O

Examples 2.7. In the following examples, the linearity of the operator under con-
sideration is easy to check.

(i) Let X be a normed space. Then the identity id : X — X is bounded and
[lid]| = 1.

(ii) Let 1 < p < co. The left shift and the right shift on £, are defined by

R:l, — L, (z1, 22,23 ... Jnen — (0,21, 22,...),
L:ty,— 0, (21,2, 23 ... Jnen > (@2, T3,... ).

Obviously, R and L are well-defined and linear. Moreover, R is an isometry
because || Rz||, = ||z||p; in particular ||R| = 1.

The left shift is not an isometry because, e.g., | L(1,0,0,...)|, = [|0]l, =0 <
1 =(1,0,0,...)[,. It is easy to see that ||[Lz|, < |z, € £y, implying
that ||L|| < 1. Since ||L(0,1,0,0...)|, = |[(1,0,0...)[, = [/(0,1,0,0...)|,
we also have ||L|| > 1, so that altogether ||L|| = 1.

Note that LR = id,, but RL # idy,.

T:CH[0,1], [ er) = C(la, B], ||| ), T =2’ with [|zflor = [|2[|oo +]|2[|oo-
The operator T' is bounded and || T'|| = 1.

(iii

=

Proof. The operator T" is bounded with || T[] < 1 because || T2||oc = [|2/||co <
]l + |2'[|oo < [|z]|cr for all z € X.

To proof that ||T|| > 1 let @, : [0,1] = R, z,,(t) := L exp(—nt). Obviously,
T € CH([0,1]), [znllcr = 2 + 1 and [|Tp]lee = 1. It follows that

HTﬂfsup{H” cx e CY([0,1]) \{O}}>sup{”’z"”"' n € N}

lzllc1 [P

:sup{ml—.neN}:l. O

(iv) T:CH([0,1], ]| - loo) = C([a,b], || - lloo)s T =2’ is not bounded.
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Proof. As in the example above let @,, : [0,1] = R, 2,(t) := L exp(—nt). It
follows that

|Tzn“oo )

sup{HHTlﬁ‘L sz € CY([0,1]) \{O}}>5up{‘ :n € N}

:&,up{%.nEN}:oo O

Lemma 2.8. let X,Y be normed spaces, X finite-dimensional. Then every linear
map T : X =Y is bounded.

Proof. Let ey, ..., e, be a basis of X. Since on X all norms are equivalent, we can
assume that

ISl - S

Let M := max{||Te; || :  =1,...,n}. Then T is bounded with ||T'|| < M because
forz =37 aje € X

ITally = | D aiTes ||, <D loslITe; Iy <MY layl = Mlallx. O
j=1 j=1

Theorem 2.9. Let X,Y be normed spaces, Y a Banach space. Let D C X be a
dense subspace of X and T € L(D,Y). Then there erists exactly one continuous
extension T : X — 'Y of T. The extension is bounded with |T|| = ||T||.

Proof. For z € X choose a sequence (z,,)nen € D which converges to z. The se-
quence is a Cauchy sequence in D, hence, by the uniform continuity of T', (Tzy)nen
is a Cauchy sequence in Y, and therefore it converges in Y because Y is complete.
Let (€n)nen be another Cauchy sequence in D which converges to z. By what was
said before, (T'S,,) converges in Y. Then nli_{xolo |Tan — T = nli_{go 1T (xn — &)l <

lim |7 |[(z, — &)l = | T|| lm |[(zn — &)|| = 0, the following operator is well
n—00 n—oo
defined:

T:X - Y, Tr = lgn Tz, for any (z,)neny € D which converges to .

It is not hard to see that T is a lincar extension of T and that ||T] > ||T. To see
that indeed equality holds, we only need to observe that by definition of T'

{(ITa] 2 € D,[l2l = 1 = {|Tx] : @ € X, ||l| = 1},

hence the suprema of both sets without the closure are equal (and equal to the
supremum of the closed sets). Since T is lincar and bounded by || T, it is continuous.
Assume that S is an arbitrary continuous extension of 7. For z € X and a sequence
(zn)nen € D which converges to « we find

Sz = lim Sz, = lim Tz, = lim f:cn =Ta.
n—o0 n—oo n—oo
Therefore, T is the unique continuous extension of 7'. O
Finally we give a criterion for the invertibility of a bounded linear operator.
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Theorem 2.10 (Neumann series). Let X be a normed space and T € L(X) such
that Yoo T™ converges. Then id —T is invertible in L(X) and

=S

(@d-1)"t=>"1" (2.2)

n=0
In particular, if X is a Banach space and |T| < 1, then id =T is invertible and
[Gd-T)""<@— (T

Proof. The proof is analogous to the proof for the convergence of the geometric
series. We define the partial sums Sy, :== Y T", m € Ny. Then

(id =T)Sp = Spm(id =T) = id =T™**, m € No. (2.3)
Note that:

(i) T™ — 0 for m — oo because y_o_, T™ converges.
(ii) Sm — YoproT™ for m — oo by assumption.
(iii) For fixed R € L(X) the maps L(X) — L(X), S — RS and S — SR

respectively are continuous.

Hence taking the limit m — oo in (2.3) gives

(d-1) 31" = (D2 77)(d-T) =id
n=0 n=0
implying that id —7T" is invertible and that (2.2) holds.
Now assume that X is a Banach space and that ||T|| < 1. Then Y77, T™ converges
in norm because ||[T"| < ||T'||". In particular, (Z;":O Tj)
me

in L(X). Since L(X) is complete by assumption on X and Theorem 2.6 the series
converges. By the first part of the proof, id =T is invertible and formula (2.2)
holds. O

is a Cauchy sequence
N

Application 2.11 (Volterra integral equation). Let & € C([0,1]?) and y €
C([0,1]). We ask if the equation

z(s) — /(: k(s t)z(t) dt = y(s), sel0,1]. (2.4)

has solution = € C([0,1]). If a solution exists, is it unique? Can the norm of the
solution be estimated in terms of y?

Solution. Note that equation (2.4) can be written as an equation in the Banach
space C([0, 1]):

r—Kr=y
where

K:0([0,1]) = C([0,1]), (Kz)(s) == /Uslc(s,t)z(t) dt, s € [0,1].
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Obviously, K is a well-defined linear operator and for all z € C([0,1], s € [0,1]
o) = | [ ken1a(t) 0 < [ it 0110 e < s Lol
s ot ns  pt
|K22(s)| = '/ k(s,t)/ k(t, t1)x(t) dty dt‘ < Hkngonxuw/ / dt; dt
0 0 0 0
2

S

= [kl% llzlloo -

Repeating this process, it follows that
[K"2(s)] < % IE1% 2lloo: s €[0,1], € C([0,1]), n €N,

which shows that ||K™|| < % In particular, 37 ) K™ converges so that id —K
is invertible by Theorem 2.10. Hence equation (2.4) has exactly one solution z €
C([0,1]), given by

z:iK"y.

n=0

Moreover, flz]oe = || 2520 K"y < Zolo 1K™ Nyl < X2 M=liylloc =

ellklloollylo- O

2.2 The dual space and the Hahn-Banach theorem

Definition 2.12. Let X be a normed space. X' := L(X,K) is the dual space of
X; elements in the dual space are called functionals.

Note that in general the algebraic dual space, i.e., the space of all linear maps
X — K in general is larger than the topological dual space defined above.
Theorem 2.6 implies immediately:
Proposition 2.13. The dual space of a normed space X with the norm

2’| = sup{|2’ ()] : 2 € X, [l2]| <1}, o' € X',

is a Banach space.

Definition 2.14. Let X be normed space. p: X — R is a a seminorm if
(i) p(Az) = [Ap(z), AeK, ze X,
(i) p(z+y) <p(=)+ply), =yeX.
A seminorm p is called bounded if there exists an M € R such that
pla) < Mlfef,  weX.
If p satisfies
@) p(Az) = Ap(z), A>0,z€X

instead of (i), then it is called a sublinear functional.
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For example, every norm on X is sublinear. If ¢ : X — K is linear, then
XoR, 2o |p(@)
is sublinear.

Remark. Observe that p(z) > 0 for every z € X and every sublinear functional p.
Moreover, note that every seminorm is a sublinear functional.

The next fundamental theorem shows that every normed space admits non-trivial
functionals (except when X = {0}).

Theorem 2.15 (Hahn-Banach theorem). Let X be normed space and p : X —
R a seminorm. Let Y C X a subspace and o a linear functional on'Y (that is,
o : Y — K linear) with

eo(y) <ply), yeY
Then o has an extension to a functional ¢ on X which satisfies

lo(@)| <p(x), weX. (2.5)

Proof. For Y = X there is nothing to show. Now assume Y # X. We distinguish
between the real and the complex case. First assume that X is a real vector space.

We divide the proof in two steps.

Step 1. Let zp € X \'Y and Z := span{zy, Y}. We will show that ¢y can be
extended to some ¢ € Z’ such that (2.5) holds for all z € Z.
Obviously, every linear extension of 1 must be of the form

Ye(y + A20) = @o(y) + Ac, AER, yeY
for some ¢ € R. We have to find ¢ such that [¢.(2)| < p(2),z € Z, that is,

|the(y + Az0)| < p(y + Azo), yeyY, NeR. (2.6)
By assumption on ¢g

eo(r) = o(y) = ol —y) <ple —y) <plr+20) +py+20), yzeY,
implying
—po(y) —p(y +20) < —po(@) +p(z +20),  y,x€Y,
so that
a:=sup{—po(x) —p(z + 20) : x € Y} < inf{—po(z) + p(x + 20) :x €Y} :=b.

Now let ¢ € [a, b] arbitrary. We show that then 1. is an extension of g as desired.
Let z =y + Azp € Z with y € Y and A € R. Obviously 9. is continuous in 0, hence
Ve € Z'.

We have to show (2.6). For A = 0 equation (2.6) clearly holds. For A # 0:

A>0: A<M < /\< - ¢0(39) +p(Ay+zo)) = —¢o(y) +p(y + Az0),
A<0: Ae<Aa< A( —wo(5y) —p(3y + Zo>) = —po(y) +ply + Az0).
In both cases we obtain 1.(z) = ¥.(y + Azo) = wo(y) + Ae < p(y + Az0) = p(2).

Last Change: Fri 15 Feb 10:55:26 COT 2013

28 2.2. The dual space and the Hahn-Banach theorem

Application to —z yields —t.(z) = 1c(—2) < p(—z) = p(z). In summary, we have
() <p(2), 2 € Z.

Step 2. Let ® be the set of all proper extensions of ¢g such that |p(z)] < p(z) for
all z € D(p) (the domain of ¢). By Step 1, ® is not empty and partially ordered
by

1 < Y2 <= o is an extension of ;.

Every totally ordered subset ®( has the upper bound

U Dw).  f(@) = () for « € D).

Pedy

By Zorn’s lemma, ¢ contains a maximal element ¢. This ¢ is defined on X because
otherwise, by Step 1, it would not be maximal.

Now we assume that X is a complexr vector space. Consider X as a vector space
over R and define the functional

Vo:Y =R, Vo(y) = Re(p(y))-
It is R-linear because for all z,y € Y and o € R

Vo(az +y) = Re(po(az +y)) = Re(apo(z) + ¢o(y)) = a Re(po(x)) + Re(vo(y))
=aVy(z) + Vo(y).

In addition, Vp is bounded by the sublinear functional p

Vo)l = [Re(o(®))] < lpo(w) <p(y),  ye Y.

By what we have already shown, there exists an R-linear extension V € L(X,R) of
Vo with |V (z)| < p(z), € X. Now define

p: X =C, p(x) =V(x) —iV(iz).
 has the following properties:
(i) ¢ is an extension of wo. To see this, let y € Y.
e(y) = Vo(y) = 1Vo(iy) = Re(po(y)) — iRe(po(iy)) = Re(wo(y)) — iRe(io(y))
= Re(po(y)) +iIm(po(y)) = ¢o(y)-
(ii) ¢ s C-linear. To show this, let z,y € X and ¢ = a + ib with a,b € R.

ple+y)=Ve+y) —iV(i@@+y) = V(@) +V(y) —iV(iz) —iV(y)
= (@) + @(y)
o(Cz) = plax) + p(ibx) = V(azx) — iV (iax) + V (ibz) — iV (i%bz)
=al[V(z) — iV (iz)] + b[V (iz) + 1V (z)]
= (@ +10)[V(2) - IV(i2)] = Cp(@).

(iil) ¢ is bounded by p. To prove this, let € X and @ € R such that
lp()] = ¢ ¢(x) = Re (p(e'* ) = V((€*z)) < p((¢'* 2)) = p(a).

In conclusion, ¢ is a C-linear continuous extension of ¢o which is bounded by p as
desired. O
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Remark. If in the Hahn-Banach theorem we consider only real normed spaces and
replace the seminorm p by a sublinear functional such that ¢o(y) < ¢(y) for all
y € Y, then ¢y can be extented to a functional ¢ : X — K such that —q(z) <
p(z) < g(x) for all € X, see [Rud91, Theorem 3.2].

The Hahn-Banach theorem has some important corollaries.

Corollary 2.16. Let X be a normed space, Y C X a subspace and ¢y € Y'. Then
there exists an extension p € X' of wo such that ||| = |l¢ol|-

Proof. The map p: X — R, p(z) = ||pol| ||z|| is a sublinear functional on X and
leo)] < ool lyll = p(y) for all y € Y. By the Hahn-Banach theorem, ¢q can
be extended to a ¢ € X’ with |p(z)| < p(z) = [l¢ol| ||z]|, so that [l¢] < [|¢oll. On
other hand ||¢]| > ||| holds because g is a restriction of ¢. O

The next corollary shows that X’ does not consist only of the trivial functional and
that it separates points in X.

Corollary 2.17. Let X be a normed space, x € X, v # 0. Then there exists a
¢ € X' such that p(x) = ||z||. In particular for all z,y € X:

(i) 2=0 < Vo€ X' p(z)=0,
(i) 2#y = Jpe X' o) # ¢(y).

Proof. Let Y := span{z} and ¢y € Y’ defined by ¢o(Az) = Al|z|. Then ¢o(z) =
|||l and ||¢o|| = 1. By Corollary 2.16 there exists an extension ¢ € X’ of ¢o with
the desired properties. Statement (i) is clear; (ii) follows when (i) is applied to
T —y.

Corollary 2.18. Let X,Y be a normed spaces.

(i) llll = sup{ep(@) : o € X', [lpll = 1}, = € X.
(ii) ForT:X —Y linear

[T] = sup{ep(T2) 1z € X, || =1, p €Y7, [loll = 1}.

Proof. (i) Tor all g € X' with lgl| = 1: [lofl = gl lal] = ()], hence 2] >
sup{p(z) : ¢ € X', ||| = 1}. To show that in fact we have equality, we recall that
by Corollary 2.17 there exists a ¢ € X’ with |¢|| = 1 and ¢(x) = ||z||. Hence the
formula in (i) is proved. Note the the supremum is in fact a maximum.

(ii) Let M :=sup{p(Tz) :z € X, ||z|| =1, ¢ € Y, [|¢| = 1}. We have to show
M = ||T||. Obviously, M = oo if and only if || T'|| = co. Now assume ||T'|| < co. Let
e > 0. Then there exists an € X with ||z|| =1 and ||Tz| > ||T|| —e. Choose a
¢ € X' such that ||¢]| =1 and p(Tz) = ||[Tz||. Then M > p(Tz) = ||T|| — . Since
€ is arbitrary, it follows that M > ||T'||. The revers inequality follows from

o(Tz) <ol 1Tzl < el TN 2l = TN, = €X, |lz] =1, o€ X', |l¢| =1.0

Corollary 2.19. Let X be a normed space, Y C X a closed subspace. For every
20 € X\ Y exists p € X' such that |y =0 and p(zo) = 1.

Proof. Let m: X — X/Y be the canonical projection. Then w(y) =0, y € Y, and
m(z0) # 0. Since X is a normed space by Example 1.13, there exists a ¢ € (X/Y)’
such that ¢(m(xg)) # 0 and ¢(m(z)) = 1. Obviously ¢ = 1 o € X’ and has the
desired properties. O
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Corollary 2.20. Let X be a normed space, Y C X a subspace. Then the following
are equivalent:

() ¥ =X,
(i) (¢ =0 = 9=0), peX’
Theorem 2.21. Let X be a normed space.

X' separable => X separable.

Proof. By Proposition 1.9 the unit sphere Sx := {a’ € X' : ||2’|| = 1} is separable.
Choose dense subset {2/, : n € N} of Sx/. and z,, € Sx = {z € X : ||z]| = 1} with
|z, (x)|| > &. Let U = span{z, : n € N}. We will show U = X. Assume this is
not true. By Corollary 2.19 there exists an 2’ € Sy such that 2’ # 0 and 2’|y = 0.
Let n € N such that ||z}, — 2/|| < %. This leads to the contradiction

1 1
3 S len(@a)l < |27, (20) — @' (2a)| + |2 (@n)| < 12, = 'l + [2(@n)| < 7. D

2.3 Examples of dual spaces

Theorem 2.22. (i) Let 1 < p < oo and q such that

1
—4+=-=1
P q

with the convention é = 0. g is called the Holder conjugate of p.

The following map is an isometric isomorphism:

o0
T:lg— (6,), (Ta)y= Zw"yn for x = (x,) € Ly, y = (Yn) € Lp-
n=0

(ii) The following map is an isometric isomorphism.:
T:0 = (c), (Tx)y= Zznyn for x = (z,) € b1, y = (yn) € co.
n=0
Proof. (i) Let 1 <p < oo. T is well-defined by Hélder’s inequality and

oo
[(Tz)y| = ‘ anyn‘ < llzllgllyllp-

n=0
Linearity and injectivity of T" is clear. The inequality above gives
1Tl < lallg @€ty 2.7

It remains to show surjectivity of T and that |Tz|| > ||z||, z € 4. To this end,
let y' € (¢,)" and set x, := y'(e,), n € N, where e, is the nth unit vector in £,. We
will show that z := (z,)nen € {4 and that Tz = y'. For ¢/ = 0 this is clear. Now
assume that y’ # 0. For n € N define

P % Tn # 0,
" 0, z, =0.
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Using pq — p = ¢ we find

N N
Z [tn|P = Z ‘xn‘p(qinv NeN.
n=1 n=1
Hence, for all N € N,
N N N N N
Z [zn]? = Zmntn = Zf/ny/(cn) = 3//( Ztn Cn) < H?/’”H Ztn Cn Hp
n=1 n=1 n=1 n=1 n=1
N 1 N 1
=11 [eal?) < M1 eal?)
n=1 n=1

For N large enough, the last factor in the line above is not zero, so, using 1 — % =2
we obtain

N
1
(D lzal) 7 < 1IYl
n=1

implying that 2 € £,. Since (T'z)e, = xpe, = y' e, n € N, and {e, : n € N} a
total subset of £, it follows that T2 = y'. In particular, with the inequality above,
llzllg < Y|l = [|ITx||. Together with (2.7) it follows that ||Tz|| = ||z|, that is, T" is
an isometry.

The proof for p =1 is similar.

(ii) Well-definedness and injectivity of T" are clear. Moreover || Tz|| < ||z||; for every
x € {1 because

o o
| D" @nynl < Mlleo D lal = llylloole]
n=0 n=0

1, Yy E€co, € L.

To show that T is surjective, let y’ € (cp)’ and let z,, := y,(e,) where e, is the nth
unit vector in ¢p. For n € N choose «,, € R such that |y/(e,,)| = exp(ia,)y’(€n). It
follows that

oo oo oo oo
D lanl =19 (en)l = > explian) y'(en) = ¥ (D explian) en)
n=0 n=0 n=0 n=0

o
< Iyl explian) en ||, = 191l
n=0

Hence z € 41 and ||z|; < ||y/||. As before, since {e, : n € N} is a total subset of ¢,
it follows that Tz = y" and the proof is complete. (Note however, that {e, : n € N}
is not dense in £o.) O

The theorem above shows that

(Lp)' = 4y, 1<p<oo,
(Cg)/ gfl.

Remark. Note that ({o)’ 2 1. To see this, assume that ((s)" = 1. Since 4 is
separable, Theorem 2.21 would imply that also £ is separable, in contradiction to
Example 1.26.

Other important examples are given without proof in the following theorems.
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Theorem 2.23. Let (2, %, ) be a o-finite measure space. Let 1 < p < oo and q

such that i + % =1. Then

Ti4(0) (@), @)= [ f7an [ L@, ge 20,
is an isometric isomorphism.
Theorem 2.24 (Riesz’s representation theorem). Let K be a compact metric
space and M (K) the set of all reqular Borel measures with finite variation, that is

[|ge]| < o0 with

el := Sllp{ Z (V)| = Z partition of K in pairwise disjoint measurable sets}.
Vez

Let1 <p<ooandq suchthat%Jr%:l. Then

TiMK) > ©K)). (T = [(adn pe MK). g€ CK),
is an isometric isomorphism.

For a proof, see [Rud87, Theorem 6.19].
The theorems above show that

14

(&)
(C(K))

Ly 1<p< oo,
M(K).

1R

2.4 The Banach space adjoint and the bidual

Definition 2.25. Let X, Y be normed spaces and T' € L(X,Y). The Banach space
adjoint of T is

T:Y — X', (T'yNe ==y (Tx), v €Y' zeX.

Obviously, T is linear and continuous as composition of continuous functions, hence
T" € L(Y’, X’) and the following diagram commutes

Theorem 2.26. Let X,Y,Z be normed spaces.

(i) The map L(X,Y) — L(Y',X'), T — T', is linear and isometric, that is,
1T = |T|l. In general, it is not surjective.

(i) (ST) =1"S" for Se€ L(Y,Z) and T € L(X,Y).

Proof. (i) Linearity of T — T" is clear. Immediately by the definition of 77 we have
that

1T =1y o TN < lYINITI v €Y,
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hence ||T”|| < ||T||. By Corollary 2.18 ||T|| is

[T = sup{y/(Tw) - w € X, ||z =1, y' €Y', |ly/|| = 1}.
For every € > 0 there exist z € X, ||z|| =1, v’ € Y’ such that ||T|| —e < y/(Tz) =
Ty () < NIy Il = 17715 so [T < 1 77]|-
(ii) For all 2’ € Z" and ¢ € X we have ((ST)'2')(z) = 2/(ST(x)) = 2/(S(Tx)) =
(8"2")(Tz) =T'(S"2")x = (T"S")(2')(x), hence (ST) =T"S". O

Example 2.27. Let 1 < p < co. The adjoint of the left shift
L:t,—tp, L(z1, 22, 23,...) = (2,23,...)
is the right shift.

Proof. Let % + % =1and y = (Yn)nen € lqg = (I,)". Then for all = (z,)nen € Iy

oo oo oo )
(L/?/)'T =y(Lz) = Z Yn(LT)n = Z?/vzwvt+l = Zyn—lwn = Z(Ry)nwn
n=1 n=1 n=2 n=2
= (Ry)nzn = (Ry)z. o

Il
—

n
Definition 2.28. Let X be a normed space. X" := (X')" is the bidual of X.
For every « € X the linear map
Jx(z): X' =K, Jx(z)2" = a'x

is linear and bounded by ||z||, hence Jx(z) € X"
Theorem 2.29. The map

Jx: X = X", Jx(z)z' = 2’2z, 2/ e X’
is a linear isometry. In general, it is not surjective.

Proof. We have seen above that Jy is well-defined, linear and | Jx(x)|| < ||z,
2z € X. Now let 2 € X and choose ¢, € X’ such that ¢, (z) = ||| (Corollary 2.17).
It follows that ||Jx (x)¢e]| = |¢z(z)] = ||z||, hence ||Jx (z)|| > 1. O

The preceding theorem gives another easy proof that every normed space X can be
completed (see Theorem 1.7).

Corollary 2.30. Every normed space is isometrically isomorphic to a dense sub-
space of a Banach space.

Proof. By the theorem above, X is isometrically isomorphic to Jx(X) C X”. Since
X" is complete (Theorem 2.6), the closure Jx (X) is a Banach space. O

Definition 2.31. A Banach space is called reflezive if Jx is surjective.

Examples 2.32. (i) Every finite-dimensional normed space is reflexive.
(ii) €y is reflexive for 1 < p < oo by Theorem 2.22.

(ili) ¢o and £, are not reflexive.
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Note that there are non-reflexive Banach spaces X such that X = X" (but Jx is
not surjective).

Lemma 2.33. Let X,Y be normed spaces and T € L(X,Y). ThenT"oJx = JyoT,
that is, the following diagram commutes:

x—L N
Tk
X K
Proof. Forx € X andy € Y’
[T"(Tx(@))(y) = (Tx (@) (T'y) = T'y'z =y (Tx) = (Jy (Tw))y’ = [(Jy o T)(z)]y’.
O

If X and Y are identified with subspaces of X” and Y” via the canonical maps
Jx and Jy, then T" is an extension of T.. Note that with this identification S €
L(Y', X") is adjoint operator of some T € L(X,Y) if and only if $'(X) C Y.

Lemma 2.34. Let X be a normed space. Then J o Jx: =idx/.
Proof. Note that Jx: : X’ — X" and J4 : X" — X' Forz € X, 2’ € X'
[(J% o Ix)2')(z) = [Ix2|(Jx(x)) = [Ixz]z' = 2. O

Theorem 2.35. (i) Every closed subspace of a reflezive normed space is reflex-
we.

ii) A Banach space X is reflexive if and only if X' is reflexive.
(if) i y

Proof. (i) Let U be a closed subspace of a reflexive normed space X and let v” € U”.
We have to find a u € U such that Jx(u) = u”. Let zf : X' = K, z((z') =
uw”(2’|i7). Obviously, 2§ is linear and bounded because

|26 (@) = u” @'|o)] < "ol < flu”[ll2"],

hence z( € X”. Since X is reflexive there exists an 2y € X such that Jx (z¢) = (.
Assume that zo ¢ U. Since U is closed, there exists a ¢ € X’ such that ¢|y = 0 and
¢(zg) =1 (Corollary 2.19). On the other hand ¢(zy) = 0 by choice of z because

2 (z0) = 2§ (') = Jx(w0)2’ = u" (2

Therefore zy € U. It remains to be shown that Jy(z¢) = u”, that is

v, ' e X',

u(u) = u'(z0), u el
Let v/ € U’ and choose an arbitrary extension ¢ € X’ (Corollary 2.16). By definition
of zg it follows that
u (W) =u"(olv) = z((p) = (x0) = v/ (x0).

(ii) Let X be reflexive. We have to show that Jy: : X’ — X" is surjective. Let
2y’ € X" The map =, : X — K, z{(z) = 2§'(Jx(2)) is linear and bounded, hence
zf € X'. We will show that Jx(z() = zf’. Let 2 € X"”. Since X is reflexive,
there exists an « € X such that Jx(z) = «”. Therefore

T (e’ = 2" () = Tx (@)(2h) = e = 2! (Jx(2)) = 2 ("),
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hence indeed Jx/(zf) = z(’.

Now assume that X’ is reflexive. By what was is already proved, X" is reflexive.
Since X is a closed subspace of X” via the canonical map Jx, X is reflexive by part
(i) of the theorem. O

Corollary 2.36. A reflexive normed space X is separable if and only if X' is
separable.

Proof. That separability of X’ implies separability of X was shown in Theorem 2.21.
If X is separable and reflexive, then also X" is separable. By Theorem 2.35 X' is
reflexive, so we can again apply Theorem 2.21 to obtain that X’ is separable. O

Definition 2.37. Let X be a normed space. A sequence (z,,)nen converges weakly
to zo € X if and only if

lim 2'(z,) = 2/ (20), 2 e X

n—o00
. w .
Notation: z,, — x or w-lim z,, = x.
n — oo

If it should be emphasised that a sequence converges with respect to the norm in the
given Banach space, then the sequence is called norm convergent. Sometimes the
notion strongly convergent is used. Note, however, that in spaces of linear operators
the term “strong convergence” has another meaning (see Defintion 3.12).

The next remark shows that strong convergence is indeed stronger than weak con-
vergence.

Remarks 2.38. (i) If the weak limit of a sequence exists, then it is unique, be-

cause, by the Hahn-Banach theorem, the dual space separates points (Corollary 2.17).

(i) Every convergent sequence is weakly convergent with the same limit.

(i) A weakly convergent sequence is not necessarily convergent. Consider for ex-
ample the sequence of the unit vectors (e,)nen in ¢o. Let ¢ € ¢ = ¢;. Then
hl’INl[ ¢(en) = 0 but the sequence of the unit vectors does not converge in norm.

ne

Example 2.39. Let (2,,)nen be a bounded sequence in C([0, 1]). Then the follow-
ing is equivalent:

(i) (2p)nen converges weakly to y € C[(0,1)].

(ii) (zn)nen converges pointwise to y € C[(0,1)].
Proof. “(i) = (ii)” It is easy to see that for every ¢o € [0, 1] the point evaluation
x + x(tp) is a bounded linear functional. Hence for all ¢ € [0, 1] the sequence
(2 (t)nen converges to some y(t). By assumption, [0,1] — K, ¢ — y(t) belongs to
c([0,1]).
“(ii) = (i)  follows from Riesz’s representation theorem (Theorem 2.24) and the
Lebesgue convergence theorem (see ?7). O

Theorem 2.40. Every bounded sequence in a reflexive normed space contains a
weakly convergent subsequence.

Proof. Let X be a reflexive normed space and 2 = (z,)nen € X be a bounded
sequence.
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First we assume that X is separable. By theorem 2.36, also X’ is separable. Let
{¢n : n € N} be a dense subset of X’. We will construct a subsequence y = (yn)nen
of x such that for every j € N the sequence (¢;(yn))nen converges. The sequence
(¢1(2n))nen is bounded, so it contains a convergent subsequence

(1(@ny 1), 1(Tn, 2), @1(Tn, 3), - -)
Now the sequence (@2(xn,,;j))jen is bounded, so it contains a convergent subse-
quence

(p2(@nz.1)s P2(Tnz,2)s P2(Tny3)s - )

Continuing like this, we obtain a sequence of subsequences x,,, = (2n,, j)jen, m € N
such that (@ (2n,,.;))jen converges. Now the “diagonal sequence” y with y, :=
Zn,,.m has the desired property.

Now we will show that y is weakly convergent. Let 2/ € X’ and € > 0. Choose an
k € N such that |2/ — ¢kl < 57 where M := sup{||z,|| : » € N} < oco. Let N € N
such that ok (yn) — @& (ym)| < 5, m,n > N. It follows for m,n > N:

2" (yn) = 2" (ym)| <12 (yn) — 0k Ya)| + 19x Un) — @k (Um)| + [k (Ym) — &' (Ym)]
< 2]\/1”1/ — okl + [0x(Yn) — @k (ym)|

<§+§:e.

This implies that (z'(y,))nen is a Cauchy sequence in K, hence it converges. To
show that (y,)nen converges weakly, define the map

X =K, ¥@E)= lim 2 (y,).
n—r00
By what is already shown, v is well-defined and linear. It is also bounded because
b = | im 2 (v = lim 2" (v < i 21 (4 < M.
o)) = | Tim 2/ ()| = i Ja’ ()] < T[] [(9)]| < Mo’

Hence 1 € X”. Since X is reflexive, there exists a yo € X such that 2/(yo) =
P(2') = lim 2'(y,). Hence (yn)nen converges weakly to yo.
n—oo

Now assume that X is not separable. Let Y := span{z,, : n € N} where (2, )nen is
the bounded sequence in X chosen at the beginning of the proof. Y is separable
(Theorem 1.25) and reflexive (Theorem 2.35). Hence, by the first step of the proof,
there exists a subsequence (Yn)nen C Y of (2, )nen and a yo such that y,, s o in
Y. Let 2/ € X'. Then /|y, € Y’, hence nlglgo ' (yn) = nlggo 2|y (yn) = 'y (yo) =

Z'(yo). Therefore we also have y, — o in X. O
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Chapter 3

Linear operators in Banach
spaces

3.1 Baire’s theorem

Theorem 3.1 (Baire-Hausdorff). Let (X,d) be a complete metric space and
(An)nen be a family of open dense subsets of X. Then (), Ay is dense in X.

Taking complements, it is easily seen that the theorem above implies

Theorem. Let (X,d) be a complete metric space and (B, )nen be a family of closed
subsets of X such that Uf;l B,, contains an open subset. Then at least one of the
sets By, contains a non-empty open subset.

Proof of Theorem 3.1. For r > 0 and z € X let B(x,r) :={{ € X : [z —§| <r}.
We have to show that any open ball in X has non-empty intersection with mnGN A,
Let € > 0 and zp € X.

Aj is open and dense in X, hence A; N B(xzg,¢) is open and not empty. Hence there
exist €1 € (0,27 '¢) and x; € Ay such that B(x1,e1) C Ay N B(zg, ), hence

B(z1,%) € B(21,61) € A1 N B(xo, €).
Ay is open and dense in X, hence A; N B(z1, ) is open and not empty. Hence
there exist e5 € (0,272¢) and 22 € As such that B(z2,e2) C As N B(wy, %), hence

B(za, %) C B(wxz,e2) € Ao N B(wy, 5) € Ao N Ay N B(wo, e1).
In this way we obtain sequences (£, )nen and (Zn)nen with 0 < &, < 27" and

B(tn, %) € B(¥n,en) C AN B(@n-1,6n-1) € Ap_1 N ... Ao N Ay N B(xo,€1).
(3.1)

Observe that z, € B(xn, %) for N € N and n > N. This implies that (z,)nen
is a Cauchy sequence in X because, for fixed N € N and all n,m > N we obtain
AT, xn) < d(@m,zN) + d(@n, zN) < 2N+l Since X is complete, y := lim z,
n—o0
exists and g € B(zy,en) for every N € N because for fixed N, we have that
xp € B(wn, %) if n > N. Hence (3.1) implies
y€ B(ay, %) C B(an_1,en-1) C An_1N... Ao N Ay N B(xo, 1), N >2,

80 Y € Npen An N B(zo, €). O
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Definition 3.2. Let (X, d) be a metric space.

e A C X is called nowhere dense in X, if A does not contain an open set.
e A C X is of first category if it is the countable union of nowhere dense sets.
e A C X is of second category if it is not of first category.

Note that A is nowhere dense if and only if X \ 4 is dense in X.
An equivalent formulation of

Theorem 3.3 (Baire’s category theorem). A complete metric space is of second
category in itself.

Examples 3.4. Q is of first category in R. R is of second category in R.

3.2 Uniform boundedness principle

Definition 3.5. Let (X,d) be a metric space. A family F = (fi)aea of maps
X — Ris called uniformly bounded if there exists an M € R such that

[fa(z)] < M, zeX, AeA.

The next theorem shows that a family of pointwise bounded continuous functions
on a complete metric space is necessarily uniformly continuous on a certain ball.

Theorem 3.6 (Uniform boundedness principle). Let X be a complete metric
space, Y a normed space and F C C(X,Y) a family of continuous functions which
is pointwise bounded, 1. e.,

VeeX 3C, >0 VfeF |f(x)]<Cq.
Then there exists an M € R, xg € X and r > 0 such that
Va € By(zg) VfeF |f(z)| <M. (3.2)
Proof. For n € N let
A= o e X : If@)] < n}.
feF

Note that for every n € N the set {x € X : || f(z)|| < n} is closed because f and || - ||
are continuous. Since all A4, are intersections of closed sets, they are closed. Let
2z € X. Since F is pointwise bounded, there exists an n, € N such that z € 4,,_,
hence X C Up,enA,. By Baire’s theorem exists an N € N, g € X, r > 0 such that
B, (z0) C An, that is, (3.2) is satisfied with M = N. O

The Banach-Steinhaus theorem is obtained in the special case of linear bounded
functions.

Theorem 3.7 (Banach-Steinhaus theorem). Let X be a Banach space, Y a
normed space and F C L(X,Y) a family of continuous linear functions which is
pointwise bounded, i. e.,

VeeX 3C, >0 VfeF |f(@)]<Cs.
Then there exists an M € R such that
Ifll <M, feF.
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Proof. By the uniform boundedness principle there exists an open ball B;(z¢) C X
and an M’ € R such that || f(z)|| < M’ for all € B, (z¢) and f € F. For z € X
with ||z|| =1 and f € F we find

1 1
I @)l = Z I tra)ll =~ 11f (zo) = f(zo —ra)|
1 2M'
< S ol + 1 (@o —ro)ll) < === M,
€Br (o)
showing that F is uniformly bounded by M. O

Corollary 3.8. Let X be a normed space and A C X. Then the following are
equivalent:

(i) A is bounded.
(ii) For every ' € X' the set {2'(a) : a € A} is bounded.
Proof. “(i) = (ii)” is clear.
“(ii)) => (i)” The family (Jx(a))sca € X" is pointwise bounded by assumption.
By the Banach-Steinhaus theorem there exists a M € R such that
lal =ll7x(@)l <M, a€A
Hence A is bounded. O

Corollary 3.9. Every weakly convergent sequence in a normed space is bounded.

Proof. Let X be a normed space and (z,,)nen be a weakly convergent sequence in
X. By hypothesis, for every &’ € X’ the set {2/(z,,) : n € N} is bounded. Therefore,
by Corollary 3.8, the set {2, : n € N} is bounded. O

The following theorem follows directly from Theorem 2.40 and Corollary 3.9.

Theorem 3.10. Let (X, | -||) be a normed space, (xn)nen and xg € X. Then the
following is equivalent:
(i) zo = w;lgmwzn.
(ii) (@n)nen is bounded and there exists a total subset M' C X' such that
lm fa) = fao), e

Corollary 3.11. Let X be Banach space and A" C X'. Then the following is
equivalent:

(i) A’ is bounded.
(i) For all x € X the set {a'(x) : a’ € A’} is bounded.

Proof. The implication “(i) = (ii)” is clear. The other direction follows directly
from the Banach-Steinhaus theorem. O

Note that for “(ii) = (i)” the assumption that X is a Banach space is necessary.
For example, let d = {z = (2)nen : T, # 0 for at most finitely many n} C l.
d is a non-complete normed space (see Example 1.15(5)). For m € N define the
linear function ¢y, : d = K by ¢, (e,) = mdy, ,, where 6, p is the Kronecker delta.
Obviously ¢,, € d’ and ||, || = m, hence the family (¢;,) is not bounded in d’, but
for every fixed x € d the set {¢m,(z) : m € M} is.
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Definition 3.12. Let X,Y be normed spaces, (T, )nen € L(X,Y) a sequence of
bounded linear operators and T' € L(X,Y).

(i) (Th)nen converges to T, denoted by lim T, = T, if and only if
n—o0
lim ||T,, — T =0.
n—o0

(i) (Tn)nen converges strongly to T, denoted by s-1imT,, = T or T,, = T, if and
n — oo
only if

lim || T,z —Tz| =0, rzeX.
n—00

(iti) (Th)nen converges weakly to T, denoted by w-1imT,, =T or T, 2 T, if and
n — oo
only if

lim |p(T,z) — ¢(Tz)| =0, zcX, peY.
n—o00

Remark. (i) The limits are unique if they exist.

(ii) Convergence in norm implies strong convergence and the limits are equal.
Strong convergence implies weak convergence and the limits are equal.

The reverse implications are not true:

o Let X =06(N), T, : X = X, Tho = (21, ..., Tp, 0,...) for z = (Zm)men-
Then T converges strongly to id but ||7, —id| = 1 for all n € N, so that
(Th)nen does not converge to id in norm.

o Let X =05(N), T5, : X = X, T,z = (0, ..., 0, z1, 2, ...) (n leading zeros)
for = (Zm)men. Then T converges weakly to 0 but ||T,z|| =1 for all n € N,
so that (T, )nen does not converge strongly to 0.

Proposition 3.13. Let X be a Banach space, Y be a normed space and (T},)nen C
L(X,Y) such that for all x € X the limit Tx := linml]Tnz exists. Then T € L(X,Y).
ne

Proof. 1t is clear that T is well-defined and linear. By the uniform boundedness
principle, there exists an C' € R such that |T5,|| < C for all n € N. Now let 2 € X
with ||z|| = 1. Then ||[Tz| = lim ||T,z| < sup||T,| ||z|| < C which implies that
T e L(X,Y). noee neN O

We finish this section with a result on strong convergence of positive operators on a
space of continuous functions. An operator 7" on a function space is called positivity
preserving if T f > 0 for every f > 0 in the domain of 7.

Theorem 3.14 (Korovkin). Let X = C|0,2n] the space of the continuous func-
tions on [0,27] and let x5 € X with xo(t) = 1, x1(t) = cos(t), x2(t) = sin(t) for
t € [0,2n]. Let (Tn)nen C L(X) be a sequence of positivity preserving operators
such that Thaj — x; for n — oo and j = 0,1,2. Then (Ty,)nen converges strongly
to id, that is, Tpx — x for all x € X.

Proof. We define the auxiliary functions

t—
yi(s) = sin? 3 s, t,s € [0,27].
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Note that y(s) = (1 — cos(s) cos(t) —sin(s) sin(t)), hence y; € span{zo, 1,22}, in
particular T,,y; — y; for n — oo.

Now fix € X and ¢ > 0. Since z is uniformly continuous there exists a 6 > 0 such
that for all s,¢ € [0, 27]

yi(s) = sin® ';29 <6 = |elt) - a(s)| <e.

% we obtain that

Setting o =
|x(t) — 2(s)| < e+ aye(s), s,t € 0,27,

because either s,t are such that y.(s) <, then |2(t) — z(s)| < § by definition of d;
or yi(s) > 6, then |z(t) — 2(s)| < 2[|z]|cc = ad < ay(s). Hence we have that

—& —ay(s) < z(t) — z(s)

< e+ay(s),  stel0,2m)
= —exg—ay < z(t)xg—x

<
< exo + ay, t €0, 2n]
and since T, is positive and y; is a positive function

—eThxo — oy < x(t)Thao — Thx < eThao + aTyys, t €[0,2x].

Since Txo — w0 and Ty — 5(1 — cos(t)z; — sin(t)zz) for n — oo, we can find
N € N large enough such that eT),z0 + aThy: < exo + ay; + € for all n > N, hence

|x(t)Thao — Thz| < exo+ ayr + &, te[0,2n], n> N.
Hence 2T),x9 — T}, x0 converges to 0 in norm in X because by the inequality above
[2(t)(Thxo)(t) — (Thx)(t)] < e+ ay(t) +e = 2e, tel0,2n], n> N.

That T,z — z follows now from

[z = 2T0zolloc + |2Tawo — Tlles < [12[| 20 = Tnzolloo + 2Tnzo = Thlleo. O

Fourier Series

Definition 3.15. Let z : R — R a 27-periodic integrable function. The Fourier
series of z is

o0
a .
S(x,t) = ?O + ;(ak cos(kt) + by sin(kt)),
where
1
ay == 7/ z(s) cos(ks) ds, k € N,
Tr —T
1 (7 .
by == — / x(s) sin(ks) ds, keN.
R

Note that the Fourier series is a formal series only. In the following we will prove
theorems on convergence of the Fourier series.

First we will use methods from Analysis 1 to show that for a continuously differen-
tiable periodic function its Fourier series converges uniformly to the function. Next
we will use the uniform boundedness principle to show that there exist continuous
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functions whose Fourier series does not converge pointwise everywhere. Finally,
the Korovkin theorem implies that the arithmetic means of the partial sums of the
Fourier series of a periodic function converges uniformly to the function.

For a given 2m-periodic function and n € N we define the nth partial sum

n
ay .
sn(z,t) = ?0 + I;(ak cos(kt) + by, sin(kt)). (3.3)
Lemma 3.16.
17 sin((n+3)s) 0
sn(z,t) = 7/ o5+ )Du(s) ds with Da(s)={ 2w > 70 gy
- n+i 5=
D,, is called Dirichlet kernel. D,, is continuous and
1o
= D, (s) ds =1. (3.5)
m

-

Proof. Using the trigonometric identity cos(a) cos(b) +sin(a) sin(b) = cos(a—b) and
that x is 2w-periodic we obtain

sn(x,t) = %J + Z(ak cos(kt) + by sin(kt))
k=1

1 /7r z(@)(% iy g(cos(ks) cos(kt) + sin(ks) sin(k’t))) ds

L

= %/ﬂ x(s)(% + icos(k(s —1)) ds
q k=1

= % /7’ z(s +1) (% + icos(ks)) ds.
S k=1

Now we calculate for s # 0

n ins
ins
e

1 n 1 1 n 1 2n
3+ Zcos(ks) =5+3 Z(C’S e k) = 5 Z et = 3 Zc"“
k=1 k=1 k=0

k=—n

= DTL('S)'

e—ins gi2ns _q 1 el(nt3)s _ gm1(nt3)s sin((n + %)9)
2 ev—1 2 os2_es/? N 2sin 5

Note that lin%J Dn(s)=n+2=1+37_| cos(0). For the proof of (3.5) let z =1 a
s—
constant function on R. Then, by (3.3),

17
— Dy (s) ds = sp(x,t) = z(t) = 1. O
™

—m

Theorem 3.17. Let  : R — R be a 2w-periodic continuously differentiable func-
tion. Then the Fourier series of x converges uniformly to x.

Proof. Let z: R — R a 2w-periodic continuously differentiable function. Let € > 0
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and h € (0,7) such that h < . Using (3.4) and (3.5) it follows that

_e_
LIEd RS

\w(s)—s,b(m,t)\:’—/ (a(s + 1) — (1)) Das) ds |

h
|/ ds‘-‘r/ |ds+‘/

= B"( = Cu(f)

We have to show that A, (t), By(t) and C,(t) tend to 0 for n — oo uniformly in ¢.
Using the mean value theorem and that Zo < sin(o) for o € [0, 7/2] we obtain

B, (t) = /h M [sin((n+ %)s)| ds < /f w ds

—h 2sin 3| 5 2sin |5
<1
T €
< 2|2 |loo= < =.
< 20l < 2
Define the auxiliary function
x(s+t) — z(t)
5= RETU T e [h,7, teo,n].
fly = TG0 s, el
The functions f; are continuously differentiable and || fillcc < % =: M,
il < 23”;(‘,‘;72) =: M>. Note that the bounds do not depend on ¢. Integrating

by parts, we find

Calt) = \/: fu(s)sin((n + L)s) ds|

_ |l 95) gy [T eosling o) g

,‘ Wﬂ(s)ﬁ/’l PE fi(s) d
M

< (m = h)Ms) =: nrT

Note that M’ does not depend on ¢t. When we choose N such that +1 < 5 we
2
obtain finally |2(s) — s, (z,t)| < e for all t € R, that is, |z — s, (2, )|l <. O

Theorem 3.18. There exists a 2m-periodic continuous function x whose Fourier
series does not converge everywhere pointwise to x.
Proof. We identify the 27-periodic functions on R with

X :={z e C([-mn]) : a(-m) =z(r)}.

Clearly (X, - ||) is a Banach space.
Note that for fixed t € [-7, 7] and n € N

sn(+,t): X - K

is linear and bounded, hence an element in X’.

Assume that for every = € X its Fourier series converges pointwise to z. Then
for every € X and ¢ € [—m, 7] the sequence (s,(,t))nen is bounded (because it
converges to z(t)). By the uniform boundedness principle there exists C; such that
[lsn(-,t)|| < C¢ for all n € N. In particular, we have

[lsn (-, 0)]| < Co, neN.
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It is easy to see that

lsute 0l = 2| [ atDu(s)as] < Ll [ 1Du(oas

hence [|s,(+,0)| < [™_|Du(s)|ds. On the other hand, the function y(s) = sign(Dy,(s))
can be approximated by continuous functions y,, with [lym|l =1 such that

[0 (Ym, 0)|| = = /7r z(8)Dn(s)ds — l " sign(Dy,(s)) Dy (s)ds = l /f | Dy, ()| ds

- FL — L

so that finally we obtain
1
[[sn(-,0)|| = ;/ |Dy(s)|ds < Co, neN.

However |[[s,,(+,0)| — oo for n — co because

T T T | aj 1
/ \Dn(sﬂdsﬂ/ wdszg/ Isin{tn + 3)s)|
0 0

_r 2sin 5 s

2/7:(”+ )\bma\d > 2712:1/(“1“ |sino| do
0 a k

T a

n—1

- (k+1)m 1
> i =4 _
> Z k:+1 / [sino|do W;w(k-kl)

Il

s
M: i
i

x~
Il
—

Hence the theorem is proved. O

Finally we show that the arithmetic mean of the partial sums of the Fourier series
of a continuous function converge.

Theorem 3.19 (Fejér). As before let
X = {a € C(l-mm) 5 a(—m) = a(m)}
and let T,, € L(X) defined by

1 n—1
15
k=0
Then (T, )nen converges strongly to id (i.e. T,z — x forn — oo, x € X).

Proof. Note that the T}, are well-defined and that for all z € X and ¢ € [—m, 7]

—1

T x(s+1))
T, t)7n2/77rxs+tDk() M/w Yo s Z s)ds

k=

We simplify the sum in the integrand:

n-1 ins
s is -1
me k+ ImZe‘(’CJr = Im(e‘E ;e"‘b) =1Im (e‘f Zis*l )

oS _1 eins/2 (eins/2 _ gins/2)
=l e = e
—Im 2i(cos(ns/2) +isin(ns/2))sin(ns/2) _ sin®(ns/2)
N 2isin(s/2) ~ sin(s/2)
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If we define the Fejér kernel

1 sin*(ns/2)
Fo(s) = {QW, sin(s/2) © S #0,

1 s =

2n )
we can write T, x as

1
Tor(t) = = / —x" By (s)a(s + 1) ds.

Note that all F, are positive functions, hence the T,, are positive operators. To
show the theorem, it suffices to show that T,z; — x; for zo(t) = 1, z1(t) = cos(t),
22(t) = sin(t) (Korovkin theorem). Using (3.3) it follows that sy (o, - ) = xo for all
k € Ny and that

so(w1, -) = so(z2, -) =0,
sp(w2, ) =x1, sg(w1, -) = @, ke N.

Since Ty, = o, Thxj = "—:L]T] for j = 1,2 and n € N the theorem is proved. [

3.3 The open mapping theorem

Definition 3.20. A map f between metric spaces X and Y is called open if the
image of an open set in X is an open set in Y.

Note that an open map does not necessarily map closed sets to closed sets. For
example, the projection 7 : R x R — R, 7((s,t)) = s, is open. The set A :=
{(s,t) eRxR:s>0,st >2}is closed in R x R but 7(A) = (0,00) is open in R.
Lemma 3.21. Let X,Y be Banach spaces and T € L(X,Y) such that
By (0,r) € T(Bx(0,1)).
for some r > 0. Then for every e € (0,1)
By (0, (1 —e)r) C T(Bx(0,1)).
Here Bx (zg,7) :={x € X : ||z — xo|| < r} and By (yo,7) :={y €Y : |ly — vl < r}
are open balls in X and 'Y respectively.
The lemma says that if T(Bx(0,1)) is dense in By (0,r), then, for any 0 < p <,
the ball By (0, p) is contained in T'(Bx (0,1)).
Proof. Note that the assertion is equivalent to
By (0,r) € (1—¢)7'T(Bx(0,1)) = T(Bx(0,(1 —¢)™")).

Fix € > 0 and yo € By (0,r). We have to show that there exists an zp € X with
lzoll < (1 — &)=t and yo = T(xo). By assumption, By (0,7) C T(Bx(0,1)). Hence
there exists an 1 € Bx(0,1) such that |jyg — Tz1]| < er. By scaling, we know
that T'(Bx(0,¢€)) is dense in By (0,er). Since yo — T'z1 € By (0,¢er), there exists an
o2 € Bx(0,¢) such that ||yo — Ta1 — Taa| < €?r. Since T(Bx(0,¢?)) is dense in
By (0,£%r), there exists an 23 € Bx(0,22) such that ||yo — Tw1 — Twa — Tas|| < &r.
Continuing in this way, we obtain a sequence (2, )nen such that

leall <™t llwo— > Taxl| <re”, neN. (3.6)
k=1
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It follows that zg := Y po , @ exists and lies in B(0, (1—¢)~?!) because > 5, |2k <
Eiil ref~t = (1 —¢)~!. Since T is continuous, we know that

oo

T(w0) = T(ixk) = Zle
k=1

k=1

By (3.6) it follows that ZZZI Tz, converges to yo for n — oco. Hence Txy = yo and
the statement is proved. O

In the proof of the open mapping theorem we use the following fact.

Remark. Let T': X — Y be a linear map between normed spaces X and Y and
assume that T'x (B(0,1)) is dense in By (y,d) for some y € Y and 6 > 0. Then
Tx(B(0,1)) is dense in By (0,9).

Proof. Obviously it suffices to show that T'(Bx(0,2)) is dense in By (0,24). Since
T is linear, it follows immediately that Tx(B(0,1)) is dense in By(—y,d). Let
z € By (0,26) and € > 0. Note that y — z/2 € By (y,0) and —y — z/2 € By (—y,0).
Choose 1,22 € Bx(0,1) such that || Tz —(y—2/2)|| < /2 and || Tze— (—y—2)|| <
£/2. Since 1 + z2 € Bx(0,2) and

1T(21 +@2) = 2l < [ T21 — (y = 2/2) | + | Tw2 — (—y — 2/2)|| <,

it follows that z € T(Bx(0,2)) because € can be chosen arbitrarily small. O

Theorem 3.22 (Open mapping theorem). Let X,Y be Banach spaces and
T e L(X,Y). Then T is open if and only if it is surjective.

Proof. If T is open, then it is obviously surjective.
Now assume that 7' is surjective. We use the notation of the preceding lemma. By
assumption

S}

Y = | T(Bx(0,k)).

k=1

Since Y is complete, by Baire’s category theorem there must exist an n € N and
y € Y and € > 0 such By (y,e) C T(Bx(0,n)), in other words, T'(Bx (0, 1)) is dense
in By (y/n,e/n). By the remark above T(Bx(0,1)) is dense in By (0,&/n), so by
Lemma 3.21 By (0,8) C T'(Bx(0,1)) for all § < &/n.

Now let U C X be an open set and u € U. Then there exists an open ball Bx (0,¢)
such that u + Bx(0,e) C U. By what was shown above, there exists an § > 0 such
that Tu + By (0,0) C Tu+ T(Bx(0,¢)) = T'(u+ Bx(0,¢)) C T(U). O

The open mapping theorem has the following important corollaries.

Corollary 3.23 (Inverse mapping theorem). Let X,Y be Banach spaces and
T € L(X,Y) a bijection. Then T~ exists and is continuous.

Proof. By the open mapping theorem 7" is open, so its inverse 7~ ! is continuous. [

Corollary 3.24. Let X,Y be Banach spaces and T € L(X,Y) injective. Then
T~!:1g(T) — X is continuous if and only if rg(T) is closed.
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Proof. If rg(T) is closed in Y then it is a Banach space. So by the previous lemma,
T : X — rg(T) has a continuous inverse. On the other hand, if 77! : rg(T) — X is
continuous, then T is an isomorphism between X and rg(T), so rg(T) is complete,
hence closed in Y.

Corollary 3.25. Let X be a K-vector space and || - ||1 and || - |2 norms on X such
that X is complete with respect to both norms. Assume that there exists an o > 0
such that ||z||2 < a||z]|1 for all x € X. Then the two norms are equivalent.

Proof. Let T : (X,| - |l1) = (X, - l2), T = x. T is surjective and bounded by
«, so it is continuous. By the open mapping theorem, its inverse is continuous,
hence bounded. The statement follows now from ||z|y = [T z||1 < |77 ||z,
zelX.

3.4 The closed graph theorem
Let X, Y be normed spaces. Then X XY is a normed space with either of the norms

[0 X <Y =R @)l =Nl + v,

[0 X xY =R @)l = Vel + vl

Note that the two norms defined above are equivalent.

Definition 3.26. Let X,Y be normed spaces, D a subspace of X and T: D — Y
linear. T' is called closed if its graph

G(T) ={(z,Tz):2 €D} C X XY

is closed in X x Y. T'is closable if G(T) is the graph of an operator 7. The operator
T is called the closure of T

D is called the domain of T, also denoted by dom7. Sometimes the notations
T:X2OD—YorT(X —Y) are used.

Obviously, the graph G(T') is a subspace of X x Y.

Lemma 3.27. Let X, Y normed space and D C X a subspace. ThenT : X DD —
Y s closed if and only if for every sequence (zy)nen C D the following is true:

(zn)nen and (T, )nen converge

= 20:= lim z, € D and lim Tz, = Txg. (3.7
n—oo n—o0

Proof. Assume that T is closed and let (zy,)nen such that (z,)nen and (T2 )nen
converge. Then ((zy,T2y))nen C G(T') converges in X x Y. Since G(T') is closed,
lim (z,,T2,) = (z0,y0) € G(T). By definition of G(T') this implies lim z, =
n—00 n—o0
zo € D(T) and Tag = yo = lim Tz,

n—oo

Now assume that (3.7) holds and let ((z,,Txy))nen € G(T') be a sequence that
converges in X x Y. Then both (z,)nen and (T'x,)nen converge, hence zg =
lim z,, € D and lim Tz, = Txo which shows that lim (z,,Tz,) = (¢, Txo) €
1—0C n n—o0

7]G(T), hence G(T)) is Ocolosed. O
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Lemma 3.28. Let X,Y normed space and D C X a subspace. ThenT : D —Y is
closable if and only if for every sequence (z,)nen C D the following is true:

lim 2z, =0 and (Tzp)nen converges —> lim Tz, =0. (3.8)

n—00 n—o0
The closure T of T is given by
D(T)={z € X :3 (Tn)nen C D with ILm zn =2 and (Tzy)nen converges },

T = lim (Tz,) for (zn)nen € D with lim z, = z.
n—o00 n—oo
(3.9)

Proof. Assume that T is closable. Then G(T) is the graph of a linear function.
Hence for a sequence (2, )neny € D with lim z,, = 0 and lim Tz, = y for some
n—o0 n—oc

y € Y it follows that (0,y) € G(T) = G(T). Hence y = T0 = 0 because 7T is linear.

Now assume that (3.8) holds and define T as in (3.9). T is well-defined because
for sequences (z)nen and (Z,)ney in D with lim z, = lim Z, = z such that
n— 00 n—00

(T2n)nen and (TZn)nen in D converge, it follows that (z,, — &, )nen converges
to 0. Since T(znif Tn) = 7(zn — &) converges, it follows by assumption that
lim Tz, — lim T%, = lim T(z,, —&,) = 0. Linearity of T is clear. By definition,
n—00 n—00 n=rco

G(T) is the closure of G(T), so T is the closure of T O

Remarks 3.29. Let X,Y be normed spaces.
(i) Every T € L(X,Y) is closed.

(ii) If T is closed and injective, then 7! is closed.

Proof. Closedness of {(z,Tz) : 2 € X} C X xY implies closeness of {(T 'y, y) :
yerg(T)} C X xY. O

(iii) If T : D D X — Y is linear and continuous, then T is closable and D(T) =
D(T).

Examples 3.30. (i) A continuous operator that is not closed.
Let X be normed space, S € L(X) and D a dense subset of X with X \D # 0.
(For example, d is dense in ¢p.) Then T := S|p is continuous because it is
the restriction of a continuous function, but is not closed. To see this, fix an
2o € X \ D and choose a sequence (z,,)nen C D which converges to zg. Then
(T )nen converges (to Swzo). If T were closed, this would imply that z € D,
contradicting the choice of xg.

=

A closed operator that is not continuous.
Let X =C(-1,1]),D=CY[-1,1)) CC([-1,1]))and T: X DD - X, Tz =
2’. Then T is closed and not continuous.

Proof. Let (zy,)nen € D such that (,)nen and (T2, )nen converge. From a
well-known theorem in Analysis 1 it follows that zp := lim z,, is differentiable
n—o0

and Txo = 2{ = (lim z,) = lim 2, = lim Tx,.

n—oo n—+00 n—o0o
That T is not continuous was already shown in Example 2.7 (iv) (choose
Ta(t) = & exp(—n(t + 1))). O
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(iii) Let X = %(~1,1), D = C'([0,1]) € %([0,1]) and T : X DD — X, T =
2. Then T is not closed.

Proof. Let @, : [-1,1] = R, z,(t) = (24 n"2)2. Then (zn)nen C D and
zn, — g for n — oo where g(t) = |t|, t € [-1,1]. The sequence of the
derivatives converges

. 1, t>0,

! P =< —
2l (t) = T — h(t)={-1, t<O0,
0, t=0.

Obviously h € % (—1,1). If T were closed, it would follow that g € C*([-1, 1]),
a contradiction. O

Definition 3.31. Let X,Y be Banach spaces, D C X a subspace and T': X D
D — Y a linear operator. Then

[-lr:D=R, |alr =z + [T
is called the graph norm of T.

It is easy to see that || - ||z is a norm on D. Moreover, the norm defined above is
equivalent to the norm ||z[|7. = /||z[|? + [|Tz||? on D. Most of the time, the graph
norm defined in Definition 3.31 is easier to use in calculations. However, the norm
with the square root is sometimes more useful when operators in Hilbert spaces are
considered.

Lemma 3.32. Let X,Y be Banach spaces, D C X a subspace andT : X DD =Y
a closed linear operator. Then

(i) (D, |- llr) is a Banach space.
(i) T: (D,||-|lr) = Y, Ta = Tx, is continuous.

Proof. (i) To show completeness of (D, || - [7) let (zn)nen € D be a Cauchy se-
quence with respect to || - |[7. Then, by definition of the graph norm, (2)nen
is a Cauchy sequence in X and (Tz,)nen is a Cauchy sequence in Y. Since
X and Y are complete, the sequences converge. Hence, by the closeness of T,
-1 [RIES

- lim z, =:z9p € D and x,, — xy.
n—oo

(ii) The statement follows from |Tz|y < |lz||x + [|Tz|ly = ||z|z, = € D. O

Lemma 3.33. Let X,Y be Banach spaces, D C X a subspace and T : X DD —Y
a closed surjective operator. Then T is open. If, in addition, T is injective, then
T~ is continuous.

Proof. By Lemma 3.32 and the open mapping theorem (Theorem 3.22) the operator
iT : (D] - |lr) = Y, Ta = Ta, is open. Let U C D open with respect to the
norm in X. Then U is also open with respect to the graph norm because obviously
i:(D,||llr) = (D, ||l), iz = z, is bounded, hence continuous. Hence T'(U) = T'(U)
is open in Y.

Now assume in addition that 7" is injective. Then 7= : Y — (D, ||-||r) is continuous
by the inverse mapping theorem. Since i is continuous, also 771 = (T 0i™!)~! =
io T~ is continuous. O
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Lemma 3.34. Let X,Y be Banach spaces, D C X a subspace and T : X DD — Y
a closed injective linear operator such that T~' : rg(T) — X is continuous. Then
rg(T) is closed.

Proof. Let (yn)nen be a Cauchy sequence in rg(T) with yo := lim y,. and x, =
n—oo
T~ ly,, n € N. Then (z,)nen is a Cauchy sequence in D because ||z, — .|| =
1Ty — T Yyl < 1T |y — yim || Hence (2, )nen converges in X and its limit
zo belongs to D and yo = lim y, = Tz € rg(T) because T is closed. O
n—oo

Theorem 3.35 (Closed graph theorem). Let X,Y be Banach spaces and T :
X =Y be a closed linear operator. Then T is bounded.

Proof. Note that the projections

m :G(T) = X, mi(z, Ta) =,
m: G(T) =Y, mo(z, Ta) =Tz

are continuous and that m; is bijective. By assumption the graph G(T) is closed
in X x Y, hence a Banach space, so 7 is open by the open mapping theorem
(Theorem 3.22). Hence T = my o 7 ! is continuous.

Lemma 3.36. Let XY be Banach spaces, D C X a subspace and T : D — 'Y
linear. Then the following are equivalent:

(i) T is closed and D(T') is closed.
(i) T is closed and T is continuous.
(iii) D(T') is closed and T is continuous.
Proof. (i) = (ii) follows from the closed graph theorem because by assumption D

is Banach space.
(i) = (iii) and (iii) = (i) are clear. O

Example 3.37. An everywhere defined linear operator that is not closed.

Let X be an infinite dimensional Banach space and (z))xea an algebraic basis of
X. Without restriction we can assume [[zx|| =1, A € A. Choose N — A, n— A,
be an injection. Then the operator

T:X — X, T(?L‘):ZTLCA,L-'L‘)\TL for x:Zcan € X,

neN AEA
is well-defined. Assume that T is closed. By the closed graph theorem 7" must be
bounded, but |[Tzy,|| = ||nza, || = n while ||zy,| = 1, n € N contradicting the
boundedness of T'.

3.5 Projections in Banach spaces

Definition 3.38. Let X be a vector space. P: X — X is called a projection (on
rg(P)) if P2 = P.

Note that if P is a projection, then also id —P is a projection because (id —P)? =
id—2P + P? =id —P.
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Lemma 3.39. Let X be a normed space and P € L(X) a projection. Then the
following holds:

(i) Either P =0 or ||P| > 1.
(ii) ker(P) and rg(P) are closed.
(i) X is isomorphic to ker P @ rg(P).

Proof. (i) Note that || P|| = [|[P?|| < || P||?, hence 0 < ||[P|| - [[P[|* = | PII(1 - [|P[).
(ii) Since P is continuous, ker(P) = P~1({0}) is closed. To see that rg(P) is
closed, it suffices to show that rg(P) = ker(id —P). Indeed, = € ker(id —P) implies
z = Pz € rg(P) and y € rg(P) implies (P —id)y = Py —y = y —y = 0, hence
y € ker(id —P).

(ili) Obviously  — ((id —P)z, Pz) € ker(P) @ rg(P) is well defined, linear, bi-
jective and continuous because id —P and P are continuous. By the inverse map-
ping theorem then also the inverse operator is continuous which shows that X and
ker(P) & rg(P) are isomorphic. O

Theorem 3.40. Let X be a normed space, U C X a finite dimensional subspace.
Then there exists a linear continuous projection P of X to U with ||P|| < dimU.

Proof. From linear algebra we know that there exist bases (ui,...,u,) of U and
(p1,---,n) of U’ such that |lug| = [|¢x|| = 1 and ¢;(ug) = ok, j,k =1,...,n.
By the Hahn-Banach theorem the ¢j, can be extended to linear functionals v, on
X with [¢x|| = [|¢r|]. We define

P: XX, Pw:Zka(ac)uk.
k=1

Obviously P is a linear bounded projectionon U and || Pz|| < =7, [l ||| luk| =
O

Yk Izl = nllz]l.

Theorem 3.41. Let X be Banach space, U,V C X closed subspaces such that X
and U &'V are algebraically isomorphic. Then the following holds:

(i) X s isomorphic to V& U with ||(u,v)|| = |lul + ||v]-
(ii) There exists a continuous linear projection of X on U.
(ili) V' is isomorphic to X/U.

Proof. (i) Since U and V are Banach spaces, their sum U ¢ V is a Banach space.
The map U &V — X, (u,v) — u+ v is linear, continuous and bijective. Hence by
the inverse mapping theorem, also the inverse is continuous.

(i) P: X — U,u+ v — u is the desired projection.

(iii) The map V +— X/V, v ~— [v] is linear, bijective and continuous. Since U is
closed, X/U is a Banach space. By the inverse mapping theorem it follows that V'
and X /U are isomorphic. O

Definition 3.42. let X be a Banach space. A closed subspace Ui of X is called
complemented if there exists a continuous linear projection on U.

Remark 3.43. Note that not every closed subspace of a Banach space is comple-

mented in the sense of the theorem above. For example, ¢g is not complemented as
subspace of {o.
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3.6 Weak convergence

Definition 3.44. Let X be a set and U = (Ux)xea a family of subsets of sets in
X. The smallest topology on X such that all Uy are open is called the topology
generated by U, denoted by 7(U).

Obviously 7(U) exists and is the intersection of topologies containing all Uy.

Lemma 3.45. Let X be a set, U = (Ux)ren a family of subsets of X. Then the
topology generated by U consists of all sets of the form

U N U (3.10)

~ET k=1
that is, of arbitrary unions of finite intersections of sets in the family U.

Proof. Let 7(U) be the topology generated by U and o(U) the system of sets de-
scribed in (3.10). It is not hard to see that o({f) is a topology containing U, hence
containing 7(U). On the other hand, all sets of the form (3.10) are open in 7(U),
so o(U) C T(U). O

Definition 3.46. Let X be a set, A be an index set and for every A € A let (Y, 7))
be a topological space. Consider a family F = (fy : X — Y)) of functions. The
smallest topology on X such that all f) are continuous, is called the initial topology
on X, denoted by o(X,F).

Note that 7(F) = T({f{l(UA) SAeA, Uyenl.

Definition 3.47. Let X be a normed space. The topology (X, X’) is called the
weak topology on X. The topology o(X’, X) is called the weak# topology on X'
when X is identified with a subset of X” by the canonical map Jx.

Note that o(X’, X) C o(X', X") C o)

Lemma 3.48. Let X be a normed space. A sequence (Tn)nen C X is weakly con-
vergent to some xg € X (in the sense of Definition 2.37) if and only if it converges
in the weak topology o(X, X').

Proof. Assume that (z,,)nen is weakly convergent with x¢ := w-limz,, and let U
n — oo

be a o(X, X')-open set containing zo. Then there exist @1, ..., ¢, such that
n
zoe (e (V) CU
k=1

with Vj open subsets in R containing ¢;(z¢). Since lim ¢(z,) = ¢(zo) for all
n—00

¢ € X', we can choose an N € N such that ¢;(z,) € U; for all n > N and all
j=1,...,n. Hence z, € Ni_,{¢; ' (V;)} CU foralln > N.

Now assume that (z,,)nen € X converges to g in the weak topology. Since by defi-
nition of ¢(X, X”) all functionals ¢ € X’ are continuous, it follows that (p(zy))nen
converges to () for every ¢ € X'.

Lemma 3.49. Let X be a normed space, (xn)nen € X and (¢n)nen € X',
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(i) zo =w-limz,, = |zo| <liminfaz,.
n — oo n—o0
(ii) po=wx*-lim @, = |[pol < liminfep,.
n — oo n—oo

Proof. (i) For zo = 0 the assertion is clear. By the Hahn-Banach theorem there
exists an ¢ € X’ such that p(zo) = ||zo|| and ||¢|| = 1. Hence

lzoll = 1| tim ()] < liminf ] 2, ]| = lim nf [,

(i) Let € > 0. Then there exists an € X with ||z|| = 1 such that ||| — ¢ <
llpo(x)]|. The statement follows as above:

ool =& <llvo(@)ll = lim [on(2)]| < liminf [j@, | [|z] = liminf[lp,]|. O
n—00 n—o0 n—00
Definition 3.50. Let X be a topological space. A function f : X — R is called

upper semicontinuous if limsup f(x,) < f(z). It is called lower semicontinuous if
Tp—T
liminf f(en) > /(2).
Hence the lemma above states that ||| is lower semicontinuous in the weak topology.
Definition 3.51. For A € A let (X, 7)) be topological spaces. Define
X =[] X ::{f:Aa U X s f) e X, /\EA}.
AEA AEA

The product topology on X is the weakest topology such that for every A € A the
projection

mc X = Xy, m(f) = f0U),

is continuous.

Lemma 3.52. Let X as above with the product topology. Let O C P(X) be the
family of all sets U C X such that for every u € U there exist \j € A, Uj C Xy,
open, j =1, ..., n, such that

ue{seX :s(\)el;, j=1,...,n}= ﬂﬂ'il(U]‘) CcuU.
j=1~—~—

open in O

Then O is the product topology on X .
Proof. This is a special case of Lemma 3.48. O

Theorem 3.53 (Banach-Alaoglu). Let X be a normed space. Then the closed
unit ball K{ :={p € X" : ||¢| <1} is weak*-compact.

Proof. For x € X define the set A, := {z € K: [z| < ||z|} and let A :=[] . x Az
together with the product topology. By Tychonoff’s theorem A is compact. Note
that elements a € A are maps X — K with |a(z)| < ||z, * € X. Hence Kj C A
because [¢(z)| < ||¢]| |z| < ||z|| for every ¢ € K]. The product topology on A is the
weakest topology on A such that for every € X the map 7, : A - K, a— a(z) is
continuous. Hence the topology on K7 induced by A is exactly the weak *-topology
on K71. So it suffices to show that K7 is closed in A with the product topology.
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Let ¢ € ?{ and let z,y € X and € > 0. Then
U:={a€cA:l|a(x+y)—p+yl<e, lal) - @) <&, laly) - oy)| <&}

is an open neighbourhood of ¢. Hence there exists an g € K| € U N K. Since g is
linear, it follows that

le(z +y) — @) — )l = le(z +y) — o(z) — ey) — 9(z +y) + g9(z) + g(y)]
<lp(@+y) =gl +y)l + o) — 9(@) + o(y) — 9(y)| < 3=.
Since e was arbitrary, this implies ¢(z+y) = ¢(2)+¢(y). Similarly it can be shown

that ¢(Az) = Ap(z) for A € K and 2 € X. It follows that ¢ is linear. Since ¢ € A,
it follows that @] < 1, hence ¢ € Kj. O
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Chapter 4

Hilbert spaces

4.1 Hilbert spaces

Definition 4.1. Let X be a K-vector space. A map
(,): X xX K
is a sesquilinear form on X if for all z,y,z € X, A € K

(i) Mety,2) =M, 2) + (y,2),
(ii) (z, \y+2)=Naz,y) +(z,z2).

The inner product is called

e hermitian <= (v,y) = (y,z), z,z€ X,
e positive semidefinite <= (z,x) >0, zeX,
o positive (definite) <= (z,z) >0, z e X\ {0}

Definition 4.2. A positive definite hermitian sesquilinear form on a K-vector X
is called an inner product on X and (X, (-,-)) is called an inner product space (or
pre-Hilbert space).

Note that (z,z) € R, x € X, for a hermitian sesquilinear form X because (z,z) =

Lemma 4.3 (Cauchy-Schwarz inequality). Let X be a K-vector space with
inner product (-,-). Then for all z,y € X

o )P < I, o)l [y, )], (4.1)

with equality if and only if x and y are linearly dependent.

Proof. For x = 0 or y = 0 there is nothing to show. Now assume that y # 0. For
all A e K

0< (@4 My, @+ Ay) = (,2) + My, @) + Mz, y) + My, v).
(z,y)

In particular, when we choose A = oy we obtain
Ky, o) [yl | e,y
0<(x+Ay,z+Xy) = (z,2) — +
: )= lem) w.v) (y,9) (,y)
2
oy L)
.y)
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which proves (4.1). If there exist «, 8 € K such that ax 4+ Sy = 0, then obviously
equality holds in (4.1). On the other hand, if equality holds, then <Z+)\y z+\y) = 0
with A chosen as above, so z and y are linearly dependent.

Note that (4.1) is true also in a space X with a semidefinite hermitian sesquilinear
form but equality in (4.1) does not imply that = and y are linearly dependent.

Lemma 4.4. An inner product space (X, (-,-)) becomes a normed space by setting
Iz = (z,2)%, 2 € X.

Proof. The only property of a norm that does not follow immediately from the
definition of || - || is the triangle inequality. To prove the triangle inequality, choose

z,y € X. Using the Cauchy-Schwarz inequality, we find

llz + ylI* = lall* + 2Re(z, ) + lylI* < ll2* + 20z, m)] + lyl*
< ll® + 2l Iyl + lyll* = (HIIHHyH) : o

In the following, we will always consider inner product spaces endowed with the
topology induced by the norm.

Definition 4.5. A complete inner product space is called a Hilbert space.

Lemma 4.6. Note that the scalar product on a inner product space X is a continu-
ous map X x X — K when X x X is equipped with the norm ||(z,y)|| = ||z|| x+ ||yl x-

Proof. The statement follows from

[(@1,22) = (y1,92)| = [(21,22 — y2) — (Y1 — 21, 92)]
< laall lwe = yall = llyr — 21| fly2]- o

The polarisation formula allows to express the inner product of two elements of X
in terms of their norms.

Theorem 4.7 (Polarisation formula). Let X be an inner product space over K
and x,y € X. Then

1 . .
@,9) = 7 (o + 9l = 2 = yl), if K=R,
1 . . . . .
.9y = (Il + vl =l =yl +ille + i)~ ille —)?), i K=C.
Proof. Straightforward calculation. O

A necessary and sufficient criterion for a normed space to be an inner product space
is the following.

Theorem 4.8 (Parallelogram identity). Let X be normed space. Then the
norm on X is generated by an inner product if and only if for all z,y € X the
parallelogram identity is satisfied:

lle+yl? + llz = yl* = 2[|z]* + 2]y]*.

In this case, the inner product is given by the polarisation formula.
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Proof. Assume that the norm is generated by the inner product (-, -) and let ||z|| =
(z,x)2. Then for all z,y € X parallelogram identity holds:

lz + g% + e = yl* = ll2)® + lyl* + 2Redz, y) + ll* + |lyl* — 2Re(z , )
= 2[lal| + 2|1y |*.

Now assume that the norm on X is such that the parallelogram identity holds and
for z,y € X define (z,y) by the polarisation formula. We prove that (-,-) is an
inner product on X in the case K = C. The case K = R can be proved analogously.

e Positivity.
Yo ,z) = |z + 2l — o —2|® +ille + izl - ife —iz]?
=4||z|? +illz +iz]|? — i[[ix + =||* = 4]|=|*> > 0.
e Hermiticity.
Ya,y) = lle+yl® = o —yl® +ille +iy)? il - iy||?
= lly+al = Iy = ol +i]| = o+ 9l =iz + I = 4,2
o Additivity.
4w, y) + (@, 2))
= e +yl® = e —yl? +illz + iyl — iz - iy]?

+la 2l = llz = 2)* + il + izl = iz — iz

] et y*ﬂr

= Hz+

) +z y—z y—zH
e ;

— — 2
+i”z+iy+z+i Z” 71Hz71y+27iy23‘|

e e Rl e |
1T 1 I‘*l 1
2 2
_ 2 — 22
—4P+”+2H 2Hy s
e e | e B e el |
e B e I e e |
y+z
=2-4(x,=—).
(@, 455)

If we choose z = 0 we find (z,y) = 2(z, %), hence

<x,y>+<x,z):2<z,ygz>:<x,y+z>.

e Homogeneity. From the additivity we obtain (A\z,y) = Az, y) for all A € Q.
Note that (iz,y) = i(z,y), hence homogeneity is proved for A € Q + iQ.
Hence for fixed z,y € C the two continuous functions C — C, XA — Xz ,y)
and C — C, A — (\z,y) must be equal because they are equal on the dense
subset Q + iQ of C. O
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Theorem 4.9. The completion of an inner product space is an inner product space.

Proof. By continuity of the norm, the parallelogram identity holds on the comple-
tion X of an inner product space X. So X is an inner product space. O

Examples 4.10. (i) R" and C" with the Euclidean inner product
@, 0) => s, o=@ )io1, ¥ =)

are inner product spaces.

(ii) £2(N) with
o)=Y wTr o= (@)ken, Y= Urken,

is an inner product space.

(i

=

Let R([0,1]) be the vector space of the Riemann integrable functions on the
interval [0, 1]. Then

1 PR
(f.9) = / fOa® dt, g€ R(D, 1)),

defines a sesquilinear form on R([0, 1]) which is not positive definite, since,
for example, X0y 7 0, but (x10} > X{03) = 0-

The restriction of (-, ) to the space of the continuous functions C([0, 1]) is an
inner product which is not complete (its closure is the space ([0, 1])).

4.2 Orthogonality

Definition 4.11. Let X be an inner product space.
(i) Elements z,y € X are called orthogonal, denoted by = L vy, if and only if
(z,y) =0
(ii) Subsets A, B C X are called orthogonal, denoted by A L B, if and only if
(a,b)y=0forallac A, be B.

(ili) The orthogonal complement of a set M C X is

Li={zeX:z1lm, meM}.

Remarks 4.12. (i) Pythagoras’ theorem holds: |z +yl||? = ||=/|? ifz Ly.
(ii) For every set M C X its orthogonal complement M~ is a closed subspace of

(iii) A C (A+)* for every subset A C X.
(iv) At = (span A)* for every subset A C X.

Theorem 4.13 (Projection theorem). Let H be a Hilbert space, M C H a
nonempty closed and convexr subset and o € H. Then there exists exactly one
yo € M such that ||z — yo|| = dist(zo, M).
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Proof. Recall that dist(xo, M) = inf{|lzo —y|| : y € M}. If 29 € M then the
assertion is clear (choose yo = o).

Now assume that 2o ¢ M. Without restriction we may assume z¢ = 0.

Ezistence of yo. Let d := dist(xo, M) = inf{||y|| : y € M}. Then there exists a

sequence (Yn)nen C M such that lim |y, | = d. We will show that (y,)nen is a
n—00
Cauchy sequence. Note that ||225%= (|2 > @2 because 5% € M by the convexity
of M. Hence the parallelogram identity (Theorem 4.8) yields
ynfymH2 < Hyn fymHQ ‘ yn+ymH27d2
‘ 2 - 2 + 2
1 B
= §(|‘ynH2+Hym|‘2)7dz — 0, n,m — oo.

Since X is a Banach space, (yn)nen converges to some yo € X, and since M is
closed, yo € M.
Uniqueness of yo. Assume that there are yo, §o € M such that ||yol = ||%o]| = d =
dist(zg, M). The parallelogram identity yields
Yo + Jo ||2 o+ 0%, ||¥o—Yo|? .
< [RLR] < |2 B Bp g

1
2
Tt follows that [|yo — Fol| = 0, so yo = Fo. O
Lemma 4.14. Let M be a closed and convex subset of a Hilbert space H and fix
xg € H. Foryg € M the following are equivalent:

(i) o — voll = dist(zo, M),

(ii) Re{xo —yo,y — vo) <0, ye M.

Proof. (i) = (ii) Fort € [0,1] and y € M let y¢ :=yo +t(y — yo). Then y € M
by the convexity of M and by assumption on yg
llzo = yoll> < llzo — yell* = llwo — yo — t(y — wo)lI?
= [lzo — yolI®> — 2t Re(wo — w0, ¥ — o) + Iy — voll*.
So for all t € (0,1]
2Re(wo — 9o, ¥ — y0) < thy — ol®
which implies Re(zo — yo, y — yo) < 0.
(i) = (i) Let y € M. By assumption
lzo = yll* = [l(zo — w0) + (yo — »)II?
= llzo = yoll* + o = ylI* + 2 Re(xo — yo, 50 —y) = [lwo —yo[>. O
Lemma 4.15. Let U be a closed subspace of a Hilbert space H and fix xo € H. For
yo € U the following are equivalent:
(3) llzo = yoll = dist(zo, U),
(il) @ —yo L U.
Proof. (i) = (ii) Lety e U. If y = 0, then obviously (zo—yo,y) = 0. If ||y|| = 1,
let A = [Jy||~*{x0 — yo ,y). By assumption
llzo = yoll> < llzo — yo — Ayl

= llzo = olI> = Xzo — 5o, ¥) — My zo — yo) + A |lyl?

= llzo = yoll* + (1 = 2]lylI~*)[{zo — yo . 9)I?

= llzo = oll® = Kzo — yo, y)I?
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S0 (zo — Yo ,y) = 0. By linearity of U then zg —yo L y for ally € U.
(ii) = (i) Let y € U. By assumption

llzo = ylI* = ll(zo — 90) + (o — I* = llwo — oll* + lyo — ylI* = |lwo — o[> O

Recall that a linear operator P : X — X on a Banach space X is called a projection
if and only if P2 = P (see Definition 3.38).

Theorem 4.16. Let H be a Hilbert space, U C H a closed subspace with U #
{0}. Then there exists a projection Py € L(H) on U such that |Py| = 1 and
ker(Py) = U+, Alsoid —Py is continuous projection with ||id —Py|| =0 if U = H
and |id=Py|| = 1 if U # H. If U & U is equipped with the norm | (u,v)|| =
([u)|2 + |[v]|®)2, then H=U & U~+.

Definition 4.17. Py as in the theorem is called the orthogonal projection on U.

Proof of Theorem 4.16. Fix o € H and let Py (o) := yo the unique element yo € U

such that ||zg — yo|| = dist(zo,U). Then rg(Py) = U and P2 = Py, hence Py is a

projection on U.

By Lemma 4.15, Py () is the unique element in U such that zg — Py(z) € U*.
Re(wog — Py(zo), y — Py(wo)) <0, yeU.

We will show that Py is linear. Let x1,22 € H and A € K. Since U is a subspace,
we obtain

Ary — 22 = (\Py(21) = Pu(@2)) = Ma1 — P (1)) — (22 — Pu(x2)) € U™
Hence, by definition of Py,
Py(Azy — x2) = APy(z1) — Py(x2).
We already know that rg(Py) = U. ker(Py) = UL because
Py(z) =0 <= xp e UL

Therefore id —Py is a projection with rg(id —Py) = U+ and ker(id —=U) = U. By
Pythagoras’ theorem we obtain

l0l12 = 1P (0) + (id P )(@o)lI? = 1P (o) I + | (id — Por) (o) 2
In particular, H = U & U* with norm as in the statement, and ||Py| < 1 and
[lid—=Py|| < 1. Lemma 3.39 implies ||Py|| = 1, |[id—Py|| = 1 if U # H and
lid=Py|| = 0if U = H. ]
Lemma 4.18. Let U be a subspace of a Hilbert space H. Then U = U++.
Proof. By the projection theorem (Theorem 4.16), for every closed subspace V

Py =id—Py. =id—(id—Py.r) =Py,

hence V = V+1L. Application to V = U shows the statement. O

Definition 4.19. Let X,Y be vector spaces. A map X — Y is called antilinear or
conjugate linear if f(Ax +y) = Af(z) + f(y) for all A € K and z,y € X.
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Theorem 4.20 (Fréchet-Riesz representation theorem). Let H be a Hilbert
space. Then the map

O:H—H, y—{(,y)
is an isometric antilinear bijection.
Proof. Obviously ®(0) =0 € H'. The Cauchy-Schwarz inequality yields
[eW) (@) = [z . )| <l llyll, =, ye€H,

hence || ®(y)|| < |ly|| If y # 0, then set = |y||~'y. Note that ||z|| = 1 and
|®(y)z| = ||yll, implying that ||®(y)| = |ly]|l. So we have shown that ® is well-
defined and an isometry. In particular, ¢ is injective.

To show that ® is surjective, fix an ¢ € H'. If ¢ = 0, then p = ®(0). Otherwise
we can assume that ||¢|| = 1. Since ker{¢} is closed, there exists a decomposition
H = kerp @ (kerp)t. Note that rg(¢) = K, hence dim(ker )+ = 1. Choose
yo € (kerp)t with ¢(yo) = 1. Then (kerp)t = span{yo}. For z = u + \yo €
ker p @ (ker ¢)*,

(@, lyoll ~2wo) = A = Ap(y) + p(u) = (),

hence ¢ = (-, ||lyo]| “*yo). Since ® is an isometry, it follows that 1 = ||¢| = ‘

0 flgoll = 1. o

1
llyoll”
Corollary 4.21. (i) Ewvery Hilbert space is reflexive.
(ii) The dual H' of a Hilbert space H is an inner product space by
(@), 2(y)) = (v, 7)n
with ® : H — H' as in Theorem 4.20.

Proof. (ii) is clear. Let W : H' — H" as in Theorem 4.20. Then it is easy to check
that ¥ o ® = Jy, so Jy is surjective, implying that H is reflexive. O

Corollary 4.22. Let H be a Hilbert space.
(i) A sequence (zn)nen C H converges weakly to xo € H if and only if
(Tn —x0,y) >0,  yeH.

(ii) Every bounded sequence (xn)nen C H contains a weakly convergent subse-
quence.

Proof. (i) follows from the Riesz-Fréchet theorem, and (ii) follows with Theorem 2.40.

O

4.3 Orthonormal systems

Definition 4.23. Let H be a Hilbert space. A family S = (z))xea of vectors in
H is called an orthonormal system if (zx,zx) = dxxn. A orthonormal system S is
an orthonormal basis (or a complete orthonormal system) if and only if for every
orthonormal system 7"

SCT = S=T.
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Examples 4.24. (i) The unit vectors (e,)nen in ¢2(N) are a orthonormal sys-
tem.

(ii) Let H = Lo(—m, ). An orthonormal system in H is
S = {\/%} U {%sin(n-) inE N} U {%cos(vw) in € N}.

Lemma 4.25 (Gram-Schmidt). Let H be a Hilbert space and (zn)nen a family of
linearly independent vectors. Then there exists a orthonormal system S = ($p)nen
such that span S = span{z,, : n € N}.

Proof. Let s; := |lz1]|"'@1. Next set yo := 22 — (x1,s1)s1. Note that y» # 0
because zo and ; are linearly independent. Let s := |ly2|| ~'y2. Then s; L sy and
[[si]l = [|s2]l = 1. Now for k > 1 let
n
Ynt1 i= Tnyl — Z(M s 5k) Sk Snt1 = ymst ™ Ynta
k=1
Since 21, ...,2,41 are linearly independent, s,,4; is well-defined. By construction,
Sn41 L sj for j =1, ... n. Note that for every n € N, s,, € span{zy, ..., x,} and
Z, € span S, hence span S = {x,, : n € N}. O

Example. Let H = Ly((0,1)) and z, € H defined by z,(t) = t". Application

of the Gram-Schmidt orthogonalisation yields polynomials s, (t) = \/n+ 1P, (t)
where P, (t) = ﬁ%(tl —1)™ is the nth Legendre polynomial.

Theorem 4.26 (Bessel inequality). Let H be a Hilbert space, {s, : n € N} a
orthonormal system in H. Then

=)

D la,sa)l? <llzl®,  zeH.

n=1
Proof. For N € N let oy = 2 — Zln\;l(z?sn)sm Since xy L s, forn=1,..., N,
Pythagoras’ theorem yields

|(z,sn>\2. O

M=

N N
2
loll? = ol + || 3o @ sa)sal| = lowl2+ 3 o, sn)f? >
n=1 n=1

n=1

Lemma 4.27. Let H be a Hilbert space, S = (sx)aea a orthonormal system in H.
Then for every x € H the set

Sy ={XeA:(x,s)\)#0}

is at most countable.
Proof. By the Bessel inequality, for every n € N the set
1
Semi={AeAil@ s> =}

is finite. Hence S, = Ule Sz, is at most countable. O
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Definition 4.28. Let X be a normed space, (zx)xea € X. Then )7y, zx con-
verges unconditionally to z € H if and only if Ag := {\ € A : z) # 0} is at most
countable and Y_°7; z, = z for every enumeration Ag = {\, : n € N}.

Recall that in finite dimensional Banach spaces unconditional convergence is equiv-
alent to absolute convergence. In every infinite dimensional Banach space, however,
there exists a unconditionally convergent series that does not converge absolutely
(Dvoretzky-Rogers theorem).

Corollary 4.29 (Bessel inequality). Let H be a Hilbert space and S C H a
orthonormal system. Then

Dol sl <lazl?  zeH
s€S

Proof. For fixed 2 € H, the set S, = {s € S : (x,s) # 0} is at most count-
able (Lemma 4.27), so the claim follows from the Bessel inequality for countable
orthonormal systems. O

Theorem 4.30. Let H be a Hilbert space and S C H a orthonormal system. Then

P:H — H, Pm:Z(m,s)s
seS

is an orthogonal projection on spanS and the series is unconditionally convergent.

Proof. First we proof that the series in the definition of P is unconditionally conver-
gent (this proves then well-definedness of P). Fix # € H. For fixed z € H, the set
Se ={s €S :(x,s) # 0} is at most countable (Lemma 4.27). Let S, = {s,, : n € N}
be an enumeration of S,. Then (22:1@ s Sk)sk)nEN is a Cauchy sequence because

M
HZ(T Sk 9;€H Z\T Sk) M, K — o
k=N

by Bessel’s inequality. Since H is complete, y := Zk 1, sk)sy exists. Let m :
N — N be a permutation. Then also yr := Y2, (z, 5x(k))sx (k) exists. We have to
show that y = y,. For all z € H

(y,2) = Z<yxsn><5'n ,2) = Z<1U73W)<37r 12) = (Yr , 2).
n=1 n=1

We have used that 7 | (¥, sn)(sn ,2) is absolute convergent and can therefore be
rearranged, because, by Holder’s inequality and Bessel’s inequality

(S 1 5o ) < (Sl 5B) (3 Hom ) < Pl < oc.
n=1 n=1 n=1

Since y—y- L z, z € H, it follows that y = y,. Therefore the series in the definition
of P is unconditionally convergent and P is well-defined.

It is clear that P is a linear and ||P|| < 1 follows from Corollary 4.29. Let = € H.
We have to show that  — Px € span 5" (Theorem 4.16). This is clear because

<x—Z(ac,s> s’o> <x—Z(x,s),sO>:0, 50 € S. o

seS SES,
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Theorem 4.31. Let H be a Hilbert space and S C H a orthonormal system. Then
the following is equivalent.

(i) S is a complete orthonormal system.

(i) 2L S = =0, z€H.
(iii) H = span§.
(iv) z = Z<I‘,S>S, zeH.
SES
V) (@y) =) (@.s)s.y),  zyeH.
seS
(vi) Parseval’s equality holds: ||z||* = Z| z,s) rzeH.

s€S

Proof. (i) = (ii) If there exists an # € H such that € S+ \ {0}, then S’ :=
S U {||z|| "z} is a orthonormal system with S C S’, contradicting the maximality
of S.

(ii) = (iii) follows from Lemma 4.18.

(iii) = (iv) By theorem 4.30, 2 — Y (2 ,s)s is the orthogonal projection on
spanS = H.

(iv)

= (v) straightforward.
(V)= (v
=

i)
( 1) (i) Assume there exists an orthonormal system S’ 2 S. Then for every
/€ 8"\ S we get the contradiction

L= [ls/)2 = 32 1s' )2 = 0. O

sES

Choose z = y.

Now we show that the orthonormal systems in Example 4.24 are complete.

Examples 4.32. (i) The set of the unit vectors {e,, : n € N} in (5(N) are a
complete orthonormal system in £3(N) because {e, : n € N} = £5(N).

(if) Let T’ be a set and define

0(T) == {f :T' =K : f(v)#0 for at most countably many v € I' and

S <o}

yerl

Then (f.g) = > er f(7)g(7) is a well-defined inner product (note that
only countably many terms are # 0 and the sum is absolutely convergent
by Holder’s inequality). As in the case I' = N it can be shown that ¢5(T) is a
Hilbert space and (fx)xer where fx(y) = dx, (Kronecker delta) is a complete
orthonormal system in (5(T").

Let H = L»(0,1) and

:{\/%}U{%sin(n-):neN}U{%cos('m):neN}.

Note that span S is the set of all trigonometric polynomials. Without restric-
tion we can assume that K = R. By the theorem of Fejér, the trigonometric
polynomials are dense in Car := {f € C([—m,7]) : f(—7) = f(n)} with re-
spect to || - ||oo, hence also with respect to || - ||2. Since Cor is || - [|2-dense in
Ly([—m,7]), S is a total subset of Ly([—,7]).

(iii

=
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Lemma 4.33. Let H be an infinite dimensional Hilbert space. Then the following
is equivalent.

(i) H 1is separable.
(i) Every complete orthonormal system in H is countable.

(iii) There exists an countable complete orthonormal system in H.

Proof. (i) = (ii) Assume S C H is an uncountable complete orthonormal system
in H. Let ¢ € (0,272) and 5 # s’ € S. Then B.(s) N B(s') = 0 because by
Pythagoras ||s — s'|| = /||s[[2+[[s'|2 = V2. Let A be a dense subset of H. For
every s € S there exists an as € A such that as € B:(s). In particular, as, # ay if
s # s, so A cannot be countable, thus H is not separable.

(if) = (iii) The existence of a complete orthonormal system in H follows from
Zorn’s lemma. By assumption, it must be complete.

(iii) = (i) Let S be a countable orthonormal system in H. Then spanS = H by
Theorem 4.31 and H is separable by Theorem 1.25. O

Lemma 4.34. Let H be Hilbert space and S and T be complete orthonormal system
in H. Then |S| =|T|.

Proof. The statement is proved in linear algebra if |S | < co. Now assume that S
is not finite. For € S the set T, := {y € T : (z,y) # 0} is at most countable
by Lemma 4.27. By Theorem 4.31(ii) T C U, cgTs, hence |T| < [S|IN| = [S].
Analogously, |S| < |T||N| = |T|. By the Schroder-Bernstein theorem then [S| =
7). ]

Theorem 4.35. Let H be a Hilbert space and S an orthonormal basis of H. Then
H = (5(S) (see Ezample 4.32(ii)).

Proof. Define T : H — £5(S) by Tx(s) = (x,s), z € H, s € S. T is well-defined
by Bessel’s inequality. Then 7' : H — (2(S) is linear and isometric by Parseval’s
equality. To show that T is surjective, let y € ¢2(S) and define = := 37, g y(s)s.
Then 2 € H (Theorem 4.30) and Tz = y. O
Note that by construction (T'z,Ty) = (x,y), x,y € H.

Corollary 4.36. If H is a separable Hilbert space, then H = (5(N).

Corollary 4.37 (Fischer-Riesz theorem). Ly[0,1] = {5(N).

4.4 Linear operators in Hilbert spaces

Definition 4.38. Let Hy, H, be Hilbert spaces and ®; : H; — H the canonical
isomorphism in the Fréchet-Riesz representation theorem (Theorem 4.20). Let T €
L(Hy, Hy). Tts (Hilbert space) adjoint operator is T* := ®7'T'®y € L(Ha, Hy)
where T” is the Banach space adjoint of T (see Definition 2.25).

Hence T™ is characterised by

(Tz,y) =(x,T"y), x € Hy,y € Hs.

Theorem 4.39. Let Hy, Ho, H3 be Hilbert spaces, S, T € L(Hy, Hs), R € L(Ha, H3)
and X € K.
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(AS +T)* =XS* +T*.
(RT)* = T*R".
*e L(Hz,Hl ) and | T*|| = ||T|.

ok

(1
T
T
HTT*H = HT T| =TI

ker T = (rg(T*))*, ker T* = (rg(T))*.
If T is invertible, then (T—1)* = (T*)~1.

)
ii)
(ii)
(iv)
v)
(vi)
(vii)

Proof. (i)-(iv) are clear. For the proof of (v) note that for ||z]| =1
| Tal|? = (T2, Ta) = (o, T"Tw) < ||| |T* Tl < |T*TI| < (1T 1T = 171>

Taking the supremum over all z € H with |z| = 1 shows the desired equalities.
(vi) kerT = (rgT*)* because for x € H

Te=0 <= VyeH, (Tz,y)=0 <= VyeHy, (z,T'y)=0
= oz Lrg(T).

Then also ker T* = (rg(T™*))* = (rg(T))*. O
Definition 4.40. Let Hy, Hy be Hilbert spaces, T € L(Hy, H»).

(i) T is called unitary if T is invertible and TT* = idg, and T*T = idg,.

(i) T is called normal if Hy = Hy and TT* = T*T.

(iii) T is called selfadjoint if Hy = Hy and T = T*.
Remarks. (i) T selfadjoint = T normal.

(i) T € L(Hy,H2) = TT* and T*T are selfadjoint.

Next we show that a length preserving linear map between Hilbert spaces also
preserves angles.

Lemma 4.41. Let Hy, Hy be Hilbert spaces and T € L(Hy, Hs).
(i) T is an isometry <= (Tz,Ty) = (z,y), =,y € Hy.

(i) T is unitary <= T is a surjective isometry.

Proof. (i) The direction “<” is clear; “=” follows from the polarisation formula
(Theorem 4.7).

(ii) “=” Since T is unitary, if follows that rg(T) D rg(TT*) = rg(idn,) = Ha, so
T is surjective. T is an isometry because for all z,y € H;

(T, Ty) = (T"Tz,y) = (2, y),

“«<”  Assume that T as a surjective isometry. Since
(,y=T"Ty) = (x,y) — (Tz,Ty) =0, =,y€ M,

it follows that T*Ty = y, so T*T = idy,. In particular 7™ is surjective. Now we
will show that T is an isometry. Let £, € Hy. Then there exist z,y € H; such
that Tz = £ and Ty = 7. It follows that

(178, Tn) = {T"Tw, T*Ty) = (v,y) = (Tz,Ty) = (£, n).

By the same argument as for 7' we conclude that idy, = T**T* = TT*. 0O
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Examples 4.42. (i) Let Hy, H, be Hilbert spaces with dim H; = dim Hy = n <
00. After choice of bases, a linear operator T : H; — Hj has a representation
(aij)fj=1 € My(C). The matrix corresponding to 7 is then (@j;)7_;-

(ii) Let H = L5[0,1]. For k € Loo([0,1] x [0,1]) define
Ty : L2[0,1] — Lo[0,1], (Twf)(t) = /U k(s,t)f(s) ds.

Then T}, € L»[0, 1] and

1
Ti : Lo[0,1] — Lo[0, 1], (T f)(t) = /0 k(s,t)f(s) ds,
that is T} = T5.

Theorem 4.43 (Hellinger-Toeplitz). Let H be a Hilbert space, T : H — H a
linear operator such that

(Tz,y) =(x.Ty), =xyeH.
Then T is bounded, hence selfadjoint.

Proof. 1t suffices to show that T is closed because D(T) = H is closed. Let
(zn)nen C H with , — 0 and Tz, — y. Observe that

2_ o o _ _
lyll® = lim (Tws,y) = lim (z,,Ty) = (lim z,,Ty) = (0,Ty) =0,
so y = 0. This implies that 7" is closable, hence closed since D(T) = H. O

Theorem 4.44. Let H be a complex Hilbert space. For T € L(H) the following is
equivalent.

(i) (Tz,z) eR, z € H.
(i) T is selfadjoint.

Proof. (ii) = (i) follows from
(Tx,z) = (x,Tz) = (Tx, ), z € H.
(i) = (i) Letz,y € H and XA € C.

A= (T(\z+y), M +y) =N (T, 2) + (Ty,y) + MTz,y) + XTy, ),

B:={T(x+y), \x+y) =N Tz, z)+ Ty, y) + My, Tz) + Az, Ty).
By assumption, A = B, so in the special cases A = 1 and A =i we obtain

(Tz,y)+(Ty.z) = (y,Tz) + (z,Ty),
(Tz,y) = (Ty,z) = —(y,Ta) + (x,Ty),

so finally (Tz,y) = (z,Ty).
Theorem 4.45. Let H be a Hilbert space, T € L(H) selfadjoint. Then
T = sup [(Tz, )|

lzll<t
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Proof. Let M := sup),<; [(T@,z)|. Obviously M < ||T|| because for |lz|| <1

(Ta, @) < ||T|l|l=)* < IT].

To show the reverse inequality fix =,y € H. Observe that

T+y),z+y)— (T(@-y),z—y) =2(Tz,y) +2(Ty, )
=2(Tz,y)+2(y,Tz) = 4Re(Tz,y).

Hence, by the parallelogram identity (Theorem 4.8), for ||z|| < 1, |ly|| < 1,

Re(Tz,y) < 2 ((T(z +y), 2 + )|+ [Tz —y), 2~ y)])

M
5

IN
[N

(Mllz+yll* + Ml = yl*) = - (l2l* + [[y]*) < M.

4
Now choose A € C, || =1 such that N(T'z,y) = |(Tz,y)|, so
|(Tw,)| = (TOw),9) = [Re(TOa) ) M, izl <1, lyll < 1.
In particular, ||(-,Tz)|| < M, so || Tz|| <1 for ||lz|| < 1. This shows ||| < M. O

Corollary 4.46. Let H be a Hilbert space and T € L(H) selfadjoint. If (Tx,x) =
0, z€ H, thenT =0.

Note that the condition (T'z,z) = 0 automatically implies that T is selfadjoint in
the case of a complex Hilbert space. In a real Hilbert spaces H the assumption
that T is selfadjoint is necessary for the statement in the corollary. For example, let

T= ((Pl é)) : R? — R? the rotation about 90°. Then T # 0 but (Tx,z) = 0

for all z € R2.

Lemma 4.47. Let H be a Hilbert space, T € L(H) a normal operator. Then
ITall = IT"2ll,  weH,

in particular, ker T = ker T*.

Proof. 0= (T*Tx — TT*z ,z) = |Tx|® — | T*z||2. O

Definition 4.48. Let H be a Hilbert space. A bounded selfadjoint operator T' €

L(H) is called non-negative, denoted by T' > 0, if (Tz,z) > 0 for all z € H. It

is called positive, denoted by T' > 0, if (T'x,z) > 0 for all z € H \ {0}. We write

T < S if and only if S —T > 0. A sequence (T},)nen € L(H) is increasing if and

only if T, < Ty41, n € N. A sequence (T,,)nen € L(H) is decreasing if and only if

(=T )nen € L(H) is increasing.

Theorem 4.49. Let H be a Hilbert space. Every monotonic bounded sequence of
selfadjoint linear operators on H converges strongly.

Proof. Let (T))nen be a bounded monotonic sequence of selfadjoint operators.
Without restriction we assume that it is increasing. Let

Snm : Hx H—=K, Sum(@,y) = (T — Tz, y)
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is a positive semidefinite sesquilinear form on H if n > m. Let M be a bound of
(T )nen. Note that then | T, — T, || < 2M. Then, using Cauchy-Schwarz inequality,
we find for n > m and z € H with ||z| =1
||<T - Tm)TH <( n— Tm)z s (Tn - Tm)z> = snm(z, (Tn - TM)T)
< S (2,2)% sum (T — Ton), (T — Ton)a)
= (T = T)a, @) 3 (T = Tyn)a, (T, — To)?a) %
(T = To)z, )| T = T 2T — Tl
< @M)3 (T, — T, 7).

IN

By assumption ((T,, x))nen is a monotonically increasing bounded sequence in R,
hence convergent. It follows that (7),2)nen is a Cauchy sequence, hence T' converges
strongly to some T' € L(H) (Proposition 3.13). That T is selfadjoint follows from

(Tw,y) = lim (T,z,y) = lim (z,Toy) = (o, Ty),  x.y€H a
n—oo n o0

4.5 Projections in Hilbert spaces
Proposition 4.50. Let H be a Hilbert space, P € L(H) a projection. If P # 0
then the following is equivalent.
(i) P is an orthogonal projection.
(i) 1Pl =1.
(iii) P is selfadjoint.
(iv) P is normal.
)

(v) (Px,z) >0,z € H.

Proof. (i) = (ii) follows from Theorem 4.16.
(i) = (i) Let & € ker P and y € rg(P). Then for all A € K
IMl? = 1P + M)IP < Il + Myll? = Nl + M2yl + 2Re(Ma, ).

In particular, 0 < [|z[|2 4+ 2ARe(z, y) for all A € R, and 0 < ||z||? + 2iA Im(z, y) for
all X € iR, hence Re(z,y) =Im(z,y) = 0.
(i) = (iii) Observe that (Pz,y) = (z, Py) for all z,y € H because

(Px,y) = (Pz,y — Py+ Py) = (Px, Py),
(z,Py) = (¥ — Px + Pz, Py) = (Px, Py).

(iii) = (iv) is clear.
(iv) = (i) By Lemma 4.47, ker P = ker P* = (rg P)*.
(i) = (v) For all x € H: (Pz,z) = (Px,xv — Px + Px) = (Pxz, Px) > 0.
(v) = (i) Let = € ker P, y € rg P. Since for all A € R
0 < (Ple+ M), @+ M) = Oy, @+ Ag) = Mlyl* + My, @),
it follows that (z,y) = 0. O

Lemma 4.51. Let H Hilbert space H. A linear operator P : H — H is an orthog-
onal projection if and only if P? = P and (z,Py) = (y, Pz) for all z,y € H.
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Proof. Assume that P is an orthogonal projection. Then P? = P and by Proposi-
tion 4.50 P is selfadjoint.

If P2 = P and {z,Py) = (y,Px) for all 2,y € H, then P is a projection. By
the theorem of Hellinger-Toeplitz (Theorem 4.43) P is selfadjoint, hence P is an
orthogonal projection by Proposition 4.50. O

Lemma 4.52. Let H be a Hilbert space, Uy,Us C H closed subspaces and Py, P>
the corresponding orthogonal projections. Then the following is equivalent:

(i) PiP» = PP, = 0.

(ii) Uy L Us.

(i) Py + P» is an orthogonal projection.

If one of the equivalent conditions above hold, then rg(Py + Py) = Uy & Us.

Proof. (1) = (ii) By assumption, Uy = rg P, C ker P; = (rg P1)* = Uj‘, hence
Uy L Us.

(ii) = (i) By assumption, rg P, = Uy C Uj- = ker Py, hence P, P> = 0. Since (ii)
is symmetric in Uy and Us, it follows also that P, Py = 0.

(i),(ii) = (iii) Observe that Py P, = PP, = 0, so Py + P, is a projection because

(Py+ P,)*> =P} + PP+ PPy + P; = P + P,.

Since the sum of two selfadjoint operators is selfadjoint, P; + P is selfadjoint, hence,
by Proposition 4.50 an orthogonal projection.
(iii) = (i) Since P; + P, is an orthogonal projection, it follows that

PPy + PPy = (P + P3)* — (P + P) = 0.

In particular 0 = (P, Py + P> Py ) Pyw = (id +P,) Py Pox. Note that for y € H\ {0} the
vectors (id —P,)y and Py are linearly independent, hence (id +P2)y = (id —P)y +
2P,y is zero if and only if (id—PFP2)y = 0 and Py = 0, hence y = 0. Therefore
rg P P, C ker(id +P) = {0}. O

Lemma 4.53. Let H be a Hilbert space and Py and P» orthogonal projections on
subspaces Uy and Us.

(i) PiP> is an orthogonal projection if and only if PyP, = P,Py. In this case,
PP, is an projection on Uy N Us.

(ii) Py — Py is an orthogonal projection if and only if Py Py = PyP; = Ps.

Proof. (i) If Py P, is an orthonormal projection, then, by Proposition 4.50, Py P is
selfadjoint, that is Py P, = (PyP»)* = Py P = P,P;. On the other hand, if P, and
P, commute, then it is easy to verify that (PyPs)? = Py Py and (P P)* = P Py,
hence PyP, is an orthogonal projection. In this case, rg(PiPs) = rg(P2P1), so
rg(P1Py) C Uy NUs. On the other hand, Py Pox = z for every @ € Uy N Us, so also
rg(P1P) O Uy NU, holds.

(ii) Using Lemma 4.52 we obtain

Py — P, orthonormal projection <= 1— (P, — P») orthonormal projection
<= (1— Py)+ P, orthonormal projection
= P(1-P)=(1-P)P=0

— PP =PP=P 040
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Lemma 4.54. Let H be a Hilbert space and Py, Py orthogonal projections on Hy,
H, C H. Then the following is equivalent.

(i) Ho C Hi,

(i) [|Pox| < |Przll, =€ H.

(ifi) (Pox, I) <(Pz,z), re€H.
(iv) PPy =

Proof. (ii) <= (iii) Let # € H and P an orthogonal projection. Then (Pz,z) =
(P?x,z) = (Px, Px) = || Px|%
(i) <= (iv)
PP, = Py = Py(id—P,) =0 — rg(id—P,) C ker Py
< (rgP)* C(rgR)" < Hi CHy

<= Hy, C H;.
(iv) = (ii) Forall z € H: || Poall = [ PyPral| < | BollllPra] < || Pyl
(iii) = (i) Let 2 € Hi" = ker P;. Then 0 = (Piz,z) > (Pyz,x) > 0, hence
(Poz,x) = 0. It follows that Py|ps = 0 (Corollary 4.46), hence Hi{f CkerPy =
HE. ]

Lemma 4.55. Let H be a Hilbert space and (P,)nen a sequence of orthogonal
projections with (Ppx,z) < (Pyx,z) for all z € X and m < n. Then (P,)nen
converges strongly to an orthogonal projection.

Proof. By Theorem 4.49 we already know that s-lim P,, =: P exists and is a selfad-
joint operator. It remains to be shown that P is a projection, that is, that P? = P.
For x € H and n € N

P’z = (P =P, + P,)(P— P, + P,)v = (P - P,)Pz+ P,(P — P,z + Pla.
Note that (P — P,)Pz — 0, n — o0, and also P,(P — P,)x because ||P,| = 1,
n € N. Since P2z = P,z — Puz, it follows that P = P. O
4.6 The adjoint of an unbounded operator
In sections 2.4 and section 4.4 we have defined the adjoint of bounded linear opera-
tors between Banach or Hilbert spaces. Now we define the adjoint of an unbounded
linear operator. Recall that T(X — Y') denotes a possibly unbounded linear oper-

ators defined on a subspace D(T) C X.

Definition 4.56. Let X,Y be Banach spaces and D(T) € X a dense subspace.
For a linear map T: X D D(T) — Y we define

D(T'):={p €Y' : v ¢(Tx) is a bounded linear functional on D(T)},

Since D(T') is dense in X, the map D(T) — K, x — ¢(Tz) has a unique continuous
extension T"¢ € X’ for ¢ € D(T"). Hence the Banach space adjoint T’

T:Y' 2D(T) = X', (T'¢)(x) = p(Tx), x€D(T), p€DT).

is well-defined.
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Theorem 4.57. Let X,Y be Banach spaces, D(T) C X a dense subspace and
T:X 2DD(T)—Y be alinear operator. Then T" is closed.

Proof. Let G(T") ={(y',T"y') : ¢ € D( T’)} CY’ x X’ be the graph of T".
Note that (y/,2') € G(T’) if and only if 2’z = y/(Tz) for all z € D(T). Now let
((yhs20))nen € G(T') a convergent sequence with hm (y al) = (yf,zg). For all

z € D(T) it follows that
S s ’ T ’
zor = lim zyx = lim y,(Tz) = lim y,(Tz),
thus (yg, zj) € G(T") which implies that 7" is closed. O

Definition 4.58. Let X,Y be Banach spaces. For linear operators S, T from X to
Y we write S C T'if T'is an extension of S, that is, if D(S) € D(T) and T'|p(s) = S.

Theorem 4.59. Let X,Y,Z be Banach spaces.
(i) Let (S,D(S)) and (T,D(T)) be densely defined linear operators X — Y. If
SCT thenT CS'.
(i) Assume S(X = Y) and T(Y — Z) are densely defined such that also TS is
densely defined. Then S'T' C (T'S)'.

(iii) Assume S(X —=Y) and T(X — Y) are densely defined such that also T + S
is densely defined. Then (S"+T') C (S+T)".

Proof. (i) is clear from the definition of the adjoint operator.
(ii) Let 2’ € D(S'T"). Then T"z" € D(S’) and the map
D(S) =K, zw— (T'2')(Sz)
is continuous. Then also its restriction
D(TS) =K, =z (I'2')(Sz) = 2 (T'Sx)
is continuous. Note that by assumption D(T'S) is dense in X, hence 2’ € D((T'S)’)
and (T'S)'z' = S'T'2.
(iii) Let y' € D(T'+ S") = D(T") N D(S’). Then the map
DT +8S)—K, z—y(Tz)+y(Sz)=y(T+9)z)
is continuous. Since by assumption D(T" + S) is dense in X, y' € D((T'+ S)’) and
(T+8)y =T+ 85)y. O

If S and T are bounded, then “=” holds in (ii) and (iii) (Theorem 2.26). Note
that for unbounded linear operators T” + S” = (T'+ S)’ is not necessarily true. For
example, if T(X — Y) is a densely defined unbounded linear operator such that
also T” is densely defined with D(T") #Y’. Then D(T' - T") #Y' =D(T -T)'".

Corollary 4.60. Let X be a Banach space, T a densely defined linear operator in
X with bounded inverse T~' € L(X). Then T" is invertible and

(T/>—1 — (T—l)/‘

Proof. By Theorem 4.59 (ii) it follows that (T~1)/T" C (TT~') = id’y = idx, hence
(Til)/T/ = id'D(Tr).

Again by Theorem 4.59 (i) we find T(T')" C (T7'T) = idp(p) = idx, so it
suffices to show D(T'(T~1)') = D(T"). Let ¢ € D(T') and n = (T~!)"p. For every
x € D(T) it follows that n(Tz) = (T~ ¢)(Tz) = (T~ Tz) = @(x), which
implies n € D(T"), hence D(T"(T~1)") = D(T"). O
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More general is Theorem 4.65 due to Phillips.

Definition 4.61. Let X be a Banach space. For subspaces A C X and B C X’ we
define the annihilators

A% ={peX 1 p(x)=0, x€ A} C X',
°B:={zeX:px)=0, pc B} CX.

Remark 4.62. The sets A° and °B are closed subspaces and °(A4°) = A. If X is
reflexive, then also (°B)° = B.

Proof. Obviously, A° and °B are subspaces. Let (2] )nen € A° be a convergent

sequence. Then z{) := lim 2/, € A° because z{z = lim z/,x = 0 for all z € A.
n—oo n—o0
Let (zn)nen € °B be a convergent sequence. Then zo := lim z, € °B because
n—o0

pxg = lim gz, =0 for all p € B.
n—oo

Now we show that °(A°) = A. Since obviously A C °(A°), also A C°(A°). Assume
that there exists an a € °(A°) \ A. By a corollary to the Hahn-Banach theorem
(Corollary 2.19) there exists a ¢ € X’ such that ¢ = 0 and ¢(a) # 0. Therefore
¢ € A°, so by definition of °(A°), also p(a) = 0.

(°B)° = B follows if we identify X with X" using the canonical map Jx. O

Lemma 4.63. Let X,Y be Banach space, Y # {0} and T(X — Y) a densely
defined closed linear operator and yo € Y\ {0}. Then there exists a ¢ € D(T") such
that ©(yo) # 0, in particular, D(T") # {0}.

Proof. By assumption, the graph G(T') of T is closed and (0, yo) # G(T'). Hence, by
a corollary to the Hahn-Banach theorem (Corollary 2.19) there exists ¢ € (X x YY)’

such that ¥|gry = 0 and 9((0,50)) # 0. Let v : Y = K, o(y) = ¥((0,y)).
Obviously ¢ € Y’ and ¢(yo) # 0. Moreover, ¢ € D(T”) because for all z € D(T)

@(Tx) = ((0,T2)) = ¢((2, Tz) — (2,0)) = ¥((x, Tx)) — ¥((x,0))
—¢((2,0)). O

Theorem 4.64. Let X andY be Banach spaces. For a densely defined closed linear
operator T(X —Y') the following holds:

(i) rg(T)° = @O =kerT".
(i) rgT = °(ker T").
(i) rgT =Y <= T’ is injective
(iv) °(xgT")ND(T) = kerT.
(v) rgT’" C (kerT)°

Proof. (i) The first equality is clear. The second equality follows from

perg(T)° <= Vyerg(T) ¢y)=0
= VzeDT) ¢Tz)=0
— 9eDT), T'p=0
< € ker(T).

(ii) rgT =°((rgT)°) = °(ker T’) by (i) and Remark 4.62.
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(iif) By (ii), rg7 =Y if and only if °(ker 7”) = Y. This is the case if and only if
p(y) =0 for all p € kerT” and y € Y, that is, if and only if ker 77 = {0}.

(iv) Let 2 € ker(T) and 2’ € rg7”. Choose y' € D(T”) with 7"y’ = 2’. Then
'z = (T"y )z =y (Tz) = y'(0) = 0, hence = € °(rgT").

Now let € °(rgT') N D(T). Then y'(Tz) = (T"y")x =0 for all y’ € Y. Since T is
closed, it follows by Lemma 4.63 that Tz = 0, hence x € ker T'.

(v) Let 2’ € rg(T”) and x € kerT'. Choose y' € D(T”) such that 7"y’ = a’. Then
2’z = (T'yY )z = y'(Tz) = y'(0) = 0. It follows that rg(7”) C (kerT')°, and since
(kerT')° is closed, the statement is proved. O

Theorem 4.65 (Phillips). Let X,Y be a Banach spaces, T(X — Y) a densely
defined injective linear operator with rg(T) =Y. Then

Tyt =@ty (4.2)

and T~ is bounded if and only if T is closed and (T')~" is bounded on X'. (T~!
denotes the inverse of T : D(T) — vg(T), similar for (T')~1.)

Proof. O

Theorem 4.66 (Closed range theorem). Let X,Y be reflexive Banach spaces
and T : X D D(T) =Y a closed densely defined linear operator. The following is
equivalent:

(i) rg(T) is closed.
) rg(T") is closed.

) T:X 2DD(T) — rg(T) is open.
(iv) T": Y D D(T") = xg(T") is open.
)

)

rg(T) = °(ker T”).
rg(T") = (ker T')°.

Proof. (i) <= (iii) Since T is closed, (D(T'), || - ||7) is a Banach space and
T:(D(T),|-llr) > rgT, To=Tz

is continuous (Lemma 3.32). Observe that also i : (D(T),| - |lr) = X, @ — x is
continuous and that T = T o™ : X D D(T) — Y. Note that rg7 is a Banach
space.

If rg T is closed, then T : (D, || - |7) — rgT is open by the open mapping theorem
(Theorem 3.22), then also T =T 0i~! : X D D(T) — rgT is open as composition
of open maps. If T : D(T') — rgT is open, then it is surjective, hence rg T is closed.
Note that 7" is closed (Theorem 4.57), hence (ii) <= (iv) is proved analogously.

(i) < (v) follows from theorem 4.64 (ii).
(ii) <= (vi) follows from theorem 4.64 (ii)

rg(T") = °(ker T") = (ker T)°.

(iii) <= (iv) Recall that T"is open if and only if there exists an , » > 0 such that
the image of the open ball in X with centre 0 and radius r contains the open unit
ball in Y. That is, there exists a 7 > 0 such that T(Bx(0,r)) 2 By (0,1). Assume
that T is open and let r as above.

To show that 7" is open, we have to show that for every z{, € rg(T”) with ||zf| < 1,
there exists a yj € D(T") with T"yj = xj and ||lyy|| < r. Define a linear functional
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¢ on rg(T) as follows: for y € rgT with [ly|| < 1 choose v € D(T) such that
lz|| < r and Tz = y. Set p(y) = zjz and extend ¢ linearly to rgT. Note that
le(y)| = |zhz] < [|zgllllz]l < rllyll, ¢ is bounded, so by the theorem of Hahn-Banach
it can be extended to a functional yj € Y’ with |lyg|| < r. Note that

D(T) — K, = yo(Tz) = p(Tx) = 24

is continuous, so y, € D(T).
(iv) <= (iii) Follows analogously if we note that 7" = T by the reflexivity of X
and Y. O

Definition 4.67. Let Hy, H> be Hilbert spaces and D(T') C H; a dense subspace.
For a linear map T : Hy 2 D(T) — H, its Hilbert space adjoint T* is defined by

D(T*):={y € Hy : x— (Tx,y) is a bounded on D(T)},
T*:Hy D D(T*) — Hy, Ty =y*,
where y* € Hy such that (Tz,y) = (z,y*) for all z € D(T).
Note that for y € D(T*) the map x — (T'z,y) is continuous and densely defined

and can therefore be extended uniquely to an element ¢, € Hi. By the Riesz
representation theorem (Theorem 4.20) there exists exactly one y* € Hy as desired.

Definition 4.68. Let Hy, H, be Hilbert spaces and D(T') C Hy, D(S) C Hs sub-
spaces. The linear maps T : Hy 2 D(T) — Hs and S : Hy O D(S) — H; are called
Sformally adjoint if

(Tz,y)u, = (@, SY)u,, z € D(T), y € D(S).
Note that the formal adjoint of a non-densely defined linear operator is not unique;
in particular, the operator trivial operator with D = {0} is formally adjoint to every
linear operator.
If T is densely defined, then its adjoint 7* is its maximal formally adjoint operator.
Lemma 4.69. Let Hy and Hy be Hilbert spaces and define

U: Hy x Hy — Hy x Hy, (z,9) = (y, —2).

If T(Hy — Ha) is a densely defined linear operator, then

2
=
[
=2
Q
=
=
I
=
Q
=
=

(4.3)

Proof. Observe that U is unitary, hence U(G(T)*) = [U(G(T))]*. The first equal-
ity in (4.3) follows from

(40, 20) € G(T") (Tz,y0)y = (x,v0)x, =€D(T)
(Tz,yo0) — (z,20) =0, z€D(T)
(Tz,—z), (Yo,20))Hoxm, =0, x€D(T)
(U(z,Tx), (yo,20))moxrr, =0, € D(T)
(

Yo,0) € [U(G(T))]* o

IR

Theorem 4.70. Let Hy and Hy be Hilbert spaces. For a densely defined linear
operator T(X — Y') the following holds:

(i) T* is closed.
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(i) If T is closable, then T* is densely defined and T** =T.

Proof. (i) follows immediately from (4.3).
(ii) Let yo € D(T*)*. Then (yo,y) = 0 for all y € D(T). This implies
0={090), (=2: YD) mxm, = ((0,90), Uy, 2)) mrxm,  (y,2) € G(T7).
Hence by Lemma 4.69,
(0.90) € [U"HG(T)N* = GT) = G(T) = G(T).

It follows that yo = 70 =0, so D(T*) =Y. Let
V :Hy x Hy — Hy x Hy, V(y,z) = (z,—y).
Obviously VU = —idpy, xu, and application of Lemma 4.69 to 7 yields

G(T™) = [V(GT) = VUGD)M]*F = [-(GD)H]*F = GIT)* = G(T)
=G(T

!

hence T** =T. O

Theorem 4.71. Let Hy, Ha, H3 be Hilbert spaces.

(i) Let T(Hy — H») and S(Hy — Hs) be densely defined linear operators. If
S CT then T* C S*.

(ii) Assume S(H, — Hs) and T(H> — H3) are densely defined with TS = H;.
Then S*T* C (T'S)*.

(iti) Assume S(Hy — Hs) and T(Hy — Hs) are densely defined with T + S = H;.
Then (T* +S*) C (S+1T)*.

If S and T are bounded, then “=" holds in (ii) and (iii).
Proof. As is in the Banach space case. O

Corollary 4.72. Let H be a Hilbert space, T a densely defined linear operator in
H with bounded inverse T~Y € L(H). Then T* is invertible and

(T =Ty =T

Proof. By Theorem 4.71 (i) it follows that (I'=1)*T* C (TT~!)* = idy- = idy,
hence (T~1)*T* = idp(r+y-

Again by Theorem 4.71 (i) we find T*(T~1)* C (T~!T)* = idpr) = idm, so it
suffices to show D(T*(T~1)*) = D(T*). Let y € D(T*) and z = (T~!)*y. For
every x € D(T) it follows that (Tz,z2) = (Tz,(T~')*y)

2 € D(T*) which implies D(T*(T~1)*) = D(T*). O

Theorem 4.73. Let Hy, Hy be Hilbert spaces, T(Hy — Hs) a densely defined closed
linear operator. Then the following holds.

@) rg(T)L = @L = kerT™*.

(i) 1g(T) = (ker T*)*.
(iii) rg(T*)* =kerT.
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(iv) rg(T*) = (ker T)*.

Proof. (i) Note that y € rg(T)* if and only if (T ,y) for all # € D(T). This is
equivalent to y € D(T*) and T*y = 0.

(i) By (i) rg(T) = ra(T) = (kerT*).

(iii) By Theorem 4.70 T™* is closed and densely defined and 7** = T'. Application
of (i) to T* shows rg(T*)* =kerT.

(iv) Application of (ii) to T shows rg(T*) = (ker T)*. O

Example 4.74. Let H = L»[0,1]. Let

D(T}) := W3 (0,1) = {x € L»[0,1] : @ absolutely continuous, 2’ € Ls[0,1]},
D(T») :=D(T1) N{z € L2[0,1] : (0) = (1)}
D(T3) :=D(T1) N{z € Lz[0,1] : (0) = (1) = 0}.

For £k =1,2,3 let
Ty : H D D(Ty) — H, Trae = iz’.

Obviously, the T}, are well-defined and D(T%) is dense in H (Theorem ??). We will
show: T} = T3, Ty =Ty, Ty = T3, in particular all T}, are closed.

Proof. Let x,y € D(T1). Then, using integration by parts,

Mo = [ w00 o j(t)y(t)} ~ [ st at
— iz (L)1) — 2(0)y(0) + (=, Tay).
In particular we obtain
(Tz,y)=(x,Ty), D), ycD(Ts),
(Tz,y) = (x,Ty), z,y € D(Ty).
This shows that
D(Ty) CD(TY), D(T2) CD(T) and D(Ty) C D(T])

and TY|p(ry) = T3, T3 |p(ry) = Th and T |p(ry) = 1.
’I-‘? prove the inclusion D(Ty) C D(T3) let g € D(Ty) and ¢ = T}'g. Define ®(t) =
Jo ¢(s)ds. Then & is absolutely continuous and &’ = . For x € D(T})

/ iz (t)g(t) dt = (Tyx,g) = (z,p) = / iz(t)p(t) dt
0 0
1 1 N
- m(t)@(t)‘ - /0 i (1)) dt

= 2(1)®(1) — /01 iz’ (t)®(t) dt.
Note that ®(1) = 0 as can be seen if z is chosen to be a constant function. Hence
/01 iz (t)(g(0)i®(x)) dt =0,  z € D(T1),
implying that g +i® € rg(71)* = {0}. It follows that g is absolutely continuous
and g(0) = ip(0) =0, g(1) = ip(1) =0, so g € D(T3).

Analogously, Ty = Ty and T3 = T can be shown. O
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Definition 4.75. Let H be a Hilbert spaces, D(T) C H a dense subspace and
T:H D D(T)— H alinear map.

(i) T is called symmetric if T C T*.
(i) T is called selfadjoint if T = T*.
(iii) 7 is called essentially selfadjoint if T = T*.

The operator T> in the example above is selfadjoint, the operator T35 is symmetric.
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Chapter 5

Spectrum of linear operators

If not stated explicitely otherwise, all Hilbert and Banach spaces in this chapter are
assumed to be complex vector spaces.
5.1 The spectrum of a linear operator

Definition 5.1. Let X be a Banach space and T(X — X) a densely defined linear
operator.

p(T) :={A € C : X\id—T is bijective} resolvent set of T,
o(T) :=C\ p(T) spectrum of T.

The spectrum of T is further divided in point spectrum oy (T), continuous spectrum
oo(T) and residual spectrum o (T):

op(T) :={X € C : Xid —T is not injective},
0o(T) :={A € C : Xid—T is injective, rg(T — Aid) # X, rg(T — Aid) = X},
0:(T) :={X € C : X\id —T is injective, rg(T — Xid) # X }.

It follows immediately from the definition that
o(T) = op(T)Uoe(T) Uoy(T).
In the following, we often write A — 7" instead of \id —T'.
Definition 5.2. (i) Elements X € 0,(T") are called eigenvalues of T'.

(i) For A € 0p,(T") we define the geometric eigenspace of T in A, Nz(T'), and the
algebraic eigenspace of T in A, Ax(T), by

NA\(T) :=ker(T — \),
ANT):={z € X : (T — )"z =0 for some n € N}.

(iii) For A € p(T) the resolvent of T in A is (A\id =T)~! := R(A\,T). The map
p(T) = L(X), Ar R(AT)
is the resolvent map.
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Remark 5.3. If T is closed, then (T — \)~! is closed if it exists. Therefore, by the
closed graph theorem,

p(T)={\€C : T — \is injective and (T — \)~! € L(X)}.

Remark 5.4. Often the resolvent set of a linear operator is defined slightly differ-
ently: Let T(X — X) is a densely defined linear operator. Then A € p(T) if and
only if A — T is bijective and (A—T)~1 € L(X). With this definition it follows that
p(T) = 0 for every non-closed T(X — X) because one of the following cases holds:

(i) A—T is not bijective = X ¢ p(T);
(ii) A — T is bijective, then (A —T)~! is defined everywhere and not closed, so it
cannot be bounded, which implies A ¢ p(T).

Remark 5.5. If dim X < oo, then 0.(T) = 0,(T) = 0 and o0},(T) is the set of all
eigenvalues of T'.

Theorem 5.6 (Spectral mapping theorem for polynomials). Let X be a
Banach space, T € L(X) and P € C[X] a polynomial. Then

o(P(T)) = P(o(T)).

Proof. Let A € C. Then there exists a polynomial @ such that P(X) — P(\) =
(X — N)Q(X). In particular, P(T) — P(A) = (T — N)Q(T) = Q(T)(T — \). Hence,
if A € o(T), then (T — X) is not bijective, so P(T') — P()) is not bijective which
implies P(o(T)) C o(P(T)).

Now assume g € o(P(T)). There exist a, A1, ..., A\, € C such that P(X) — p =
a(X — A1)+ (X — \p). Since P(T) — p is not invertible, at least one of the terms
Aj — T cannot be invertible, that is at least one A; must belong to the spectrum of
T and = P(X;) € P(o(T)). O

5.2 The resolvent

In this section we will study the resolvent map p(T') — L(X), A — R(\,T) =
(A —T)~'. We will show that its domain is open and that it is analytic.

Lemma 5.7. Let X be a Banach space and T(X — X)) a closed linear operator.

(@) 1R, )| for all \o € p(T).

1
>
= dist(Ao, (7))
(ii) For Ao € p(T) and A € C with |A — Xo| < |[R(Xo, T)|| 7!
ROLT) =Y (Ao = N)"(R(ho, )™

n=0

Note that (ii) shows that locally around a Ao € p(T") the resolvent has a power series
expansion with coefficients depending only on \g and 7T'.

Proof of Lemma 5.7. Recall that for a bounded linear operator S € L(X) with
[IS]| < 1 the operator (id —S)~! € L(X) and it is given explicitly by the Neumann
series (Theorem 2.10)

-9t =95
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Let X\g € p(T'). For A € C we find
A=T=X-T=—A) = [id=(\o— NN —=T)" (N —T).

If Ao — Al < [[(Ao — T)7}{| 7%, then the term in brackets is invertible, hence so is
A — T and we obtain

A=T)" =~ 1) [id—(ho — N~ 1)

=== N"e-T)")
n=0
— Z()‘O _ )‘)”()\0 _ T)—(n+1)
n=0
which proves (ii). If p € C with || < ||(T — Ao) 7|71, then Ao + p € p(T), hence
dist(Ag, o(T)) > (T — Xo) 1|71, so also (i) is proved. O
As a corollary we obtain the following theorem.
Theorem 5.8. Let X be a Banach space and T(X — X) a closed linear operator.
(i) o(T) is closed.
(i) If T € L(X), then o(T) is compact.
Proof. (i) C\ o(T) = p(T) is open by Lemma 5.7.
(ii) Let A € C with [A| > ||T||. Then A =T = A(id —A~'T) is invertible since

[A7'T|| < 1 (Neumann series, Theorem 2.10), hence A € p(T) It follows that
{ANeC:|A > ||T|I} 2 p(T). Since o is closed and bounded, it is compact. O

Next we prove the so-called resolvent identities.

Theorem 5.9. Let X be a Banach space and T(X — X), S(X — X) a linear
operators with D(S) = D(T).

(i) 1st resolvent identity:
RAT) = R(p,T) = (n = MR T)R(p,T), A p€p(T).
In particular, the resolvents commute.
(i) 2nd resolvent identity:
R(\,T) — R(X\, S) = R\T)T - S)R(\, S), X e p(T)Np(S).
Proof. (i) follows from a straightforward calculation:

ROT) = R, T) = (A =T)"" = (u—=17)7"
A=) =T - A =D (u - T)
=(u— A)R()\‘VT)R(F“ T).

(ii) is shown similarly:

R\T)—RAS)=(A-T)"'—=(A-8)"!

(
== A=S-(-T)(A-5)!
= RO\T)(T — )R\, S), ]
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Next we study properties of the resolvent map p(T) — L(X), A — R(\,T). By
Lemma 5.7 we already now that its domain is open and that it is analytic, that is,
locally it has a power series representation.
Definition 5.10. Let 2 € C be an open set, X a Banach space and f: Q — X.
(i) f is called holomorphic in zy € Q if and only if the limit
i £2) = £G0)
z—20 zZ— 20

exists in the norm topology. f is called holomorphic if and only if it is holo-
morphic in every zp € Q.

=

f is called weakly holomorphic in zy € Q if and only if the limit

i 1) = 1)

z—2z0 zZ— 20

exists in the weak topology. f is called weakly holomorphic if and only if it
is weakly holomorphic in every zo € Q. Hence, for every ¢ € X' the map
Q — C, z+ ¢(f(z)) is holomorphic in the usual sense.

Lemma 5.11. Let X be a Banach space. A sequence (n)nen C X is a Cauchy
sequence if and only if the sequence (p(,))nen C X is uniformly Cauchy for p € X'
with ||| <1 (that is, for every e > 0 exists a N € N such that |p(x,) —p(xm)| < €
for allm,n > N and all p € X" with ||| < 1).

Proof. Assume that (z,)neny € X is a Cauchy sequence and let ¢ > 0. Then
there exists a N € N such that ||z, — 2| < € for m,n > N. It follows that
le(zn) — @(@m)|| < lell|zn — zm|| < € for all m,n > N and all ¢ € X’ with
llell < 1.

Now let € > 0 and assume that there exists an N € N such that |o(z,) —¢(z,)| < €
for all m,n > N and all ¢ € X" with |l¢|| < 1. Recall that the map Jx : X — X"
is an isometry. It follows for m,n > N

zn — 2wl = | Ixan — Ixzmll = sup{|(Jxzn — Jxam)e| : ¢ € X', [lp] < 1}
= sup{le(an) — @(em)| : ¢ € X', o] <1} <e. o

Recall the following fundamental theorem of complex analysis.

Theorem 5.12 (Cauchy’s integral formula). Let Q € C open and let f : Q@ — C
holomorphic. Let zg € Q and r > 0 such that K,(z) :={z € C:|z— 2| <r} C Q.
Then

fla) = /1 I3 4. aeBi(x) (.1)

N 2ri (20) # @

where T'y(20) is the positively oriented boundary of K,(z9). More generally, for
n € N,

.f<"'>(a):i/rv( G (G, a € By (). (5.2)

27 z—a)"t!

Theorem 5.13 (Dunford). Let X be a Banach space and let Q2 € C open. A map
f:Q — X is holomorphic if and only if it is weakly holomorphic.
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Proof. Clearly, holomorphy of f implies weak holomorphy. Now assume that f is
weakly holomorphic. Let zp € Q. Choose r > 0 such that K,(z) = {z € C :
|z — 29| <7} € Q. and let T'v(29) be the positively oriented boundary of K, (z).
For every ¢ € X’ Cauchy’s integral formula (5.1) yields

P = 5 [ UE) 4 e By(a).
(20)

27 Jp z—a

For a € By (z0) and 0 < |h| < r — |29 — a] it follows that a + h € K,(29), hence with
Cauchy’s integral formula we obtain

elrtatm) — e(7(@) - (g0 ) a)
1 1 { 1 1 h

2ni o) Rlz—a—h z—a (z-a)?

1 1 1
5 o [ e o
h o(f(2)

2mi I(z0) (2 —a)?(z —a—h)

Since z — ¢(f(z)) is holomorphic in a neighbourhood of T',(z¢), it is in particular
continuous. Hence there exists C,, such that

le(f(2)] < Cp,  z€Dn(20).

By a corollary to the theorem of Banach-Steinhaus (Corollary 3.8), there exists
C > 0 such that

Ifl<C,  z€T(z)

Hence we obtain

[ (@)~ etr(@) = w0 i@ | < Hieic

This implies that

tim o (7 (F(a+ B) = f(@))) = Jim & ((F(a-+ 1)~ o(f(@)) = (g0 ) (a),

h—0 h—0

uniformly for ¢ € X', ||¢|| < 1. Therefore, by Lemma 5.11, hm L(fla+h)— f(a))

exists. O
Theorem 5.14 (Dunford). Let X be a Banach space, 2 C C open and T : Q@ —
L(X). Then the following is equivalent:

(i) T is holomorphic in the operator norm.

(ii) T is strongly holomorphic.

(ili) T 4s weakly holomorphic.
Proof. (i) = (ii) follows from the definition. (ii) <= (iii) follows form Theo-

rem 5.13. It remains to prove (iii) = (i). As in the proof of Theorem 5.13 we
obtain for z € X and ¢ € X’

1 d _h o(T(2)x)
W (W(T(aJrh)f*T(a)Z)) g =T (2)2) = o -/Fr(zo) G=alc—a=h) dz.
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Since z + ¢(T'(z)x) is holomorphic in a neighbourhood of T'.(zp), it is continuous,
so there exists C,, such that

lo(T(2)z)| < Crpy 2 € Li(20).

By a corollary to the theorem of Banach-Steinhaus (Corollary 3.8), there exists
C, > 0 such that

IT(z)all < Co, 2 €Tr(20),

and by the theorem of Banach-Steinhaus (Theorem 3.7), there exists C' > 0 such
that

IT(2)] <C, z € I'y(z0).

This implies that

lim %(gﬁ(T(a +h)x — T(a)m)) = 50( %13}) %(T(a +h)z — T(a)z))

h—0

exists, uniformly for ¢ € X', ||| < 1. Therefore, by Lemma 5.11,

1
}ILIH%J E(T(a +h)x —T(a)x)

exists and convergence is uniform for € X with [|z|| = 1. Analogously as in the
proof of Lemma 5.11 it follows the existence of

hm}l( (a+h) — T(a)). |

Theorem 5.15. Let X be a Banach space, T(X — X) a densely defined closed
linear operator. Then the resolvent map

p(T) = L(X), A= R\T)=O-T)"
is holomorphic.

Proof. Let X\g € p(T') and A € C with |A — Xg| < [[R(Xo,T)|. For fixed z € X and
¢ € X' we have by Lemma 5.7

oo

(( Z (A=20) <R(/\117T))n+l>z)
n=0
i A=) ()\o,T))"“m)

where we used that the operator series converges and ¢ is continuous. Since the last
sum is absolutely convergent, it follows that A — ¢(R(\, T')x) is analytic locally at
Ao, hence holomorphic. Since weak holomorphy is equivalent to holomorphy in the
operator norm (Theorem 5.14), the theorem is proved. O

The preceding theorem allows us to apply theorems of complex analysis to the
resolvent map.

Theorem 5.16. Let X be a Banach space and T € L(X). Then o(T) # 0.
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Proof. Assume o(T) = (). Observe that this implies X # {0} and T~! € L(X). Let
A € C with |A| > ||T||. Then X € p(T') and using the Neumann series

1
171 = IA

IR = | 3o arr=em0]| < 37 =) =
n=0 n=0

In particular, ||[R(A, T)|| — 0 for |A\| — co. Hence for every z € X and ¢ € X’ the
map A = ¢(R(\, T')x) is holomorphic and bounded in C, so constant by the Liouville
theorem. Since p(R(\,T)z) — 0 for |\| = oo, it follows that @(R(X, T)z) = 0 for
all A € C, z € X and ¢ € X'. By a corollary to the Hahn-Banach theorem
(Corollary 2.16) it follows that R(A\,T)x = 0 for all z € X and A € C, hence
R(A\,T) =0, A € C. This contradicts the fact that 1 = | TT7Y|| < |T|I|T7Y) =
0. O

The following example shows that for unbounded linear operators the cases o(T) = ()
and o(T') = C are possible.

Examples 5.17. (i) Let X = C([0,1]) and
T:X2040,1]) = X, Tx=xa
Then T is unbounded and closed and o(T) = o,(T) = C.
(ii) Let X = {z € C([0,1]) : 2(0) = 0}, D(T) = {w € XNC*([0,1]) : 2’ € X} and
T:X2D({T)— X, Tzx=2.
Then T is unbounded and closed and o(T) = 0.

Proof. (i) Obviously, T is unbounded and densely defined. If (z;,)nen € D(T') such
that z,, — z and T'z,, — y € X, then, by a theorem of Analysis 1, z is differentiable,
hence in D(T') and Tz = 2’ = y which implies that T is closed.

For every A € C the differential equation 2/ — Az = 0 has the solution z(t) = e
Note that zy € D(T) and (T — A)zy =0, so A € o, (T).

(ii) Obviously, T' is unbounded and densely defined. If (2, )nen € D(T) such that
rn, — ¢ and Tz, — y € X, then, by a theorem of Analysis 1, z is differentiable
and z’ = y. Moreover, z(0) = nlEIolo 2,(0) = 0, so in D(T) and Tx = 2’ = y which

At

implies that T is closed.
For every A € C and every y € X the initial value problem 2’ — Az = y, (0) has
exactly one solution z given by

ot
xA(t) = e”/ e y(s) ds.
0

Obviously z € C'[0,1], 25(0) = 0 and 2 (0) = Az5(0) + y(0) = 0. Hence T — X is
bijective, in particular A € p(T"). O

Note that in the last example the continuity of (7" — ) can be seen immediately:
t
1T = 2 lloo = llaalloe = sup {| / M y(s) ds| st € 0.1]}
Jo

1
< ||yl oo max{1, eA}/ e ds.
0
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Definition 5.18. Let X be a Banach space The spectral radius of T € L(X) is

1

r(T) := limsup [|T"|

Theorem 5.19. Let X be a Banach space, T € L(X) and r(T') its spectral radius.
(i) r(T) < ||T™||Y™ < |T|| for all m € N, in particular r(T) = lim ™M™

(i) o(T) C{AeC: |\ <r(D)}.
(ii) If X is a complex Banach space, then there exists a X € o(T) such that
|Al = (T), in particular

r(T) = max{|\| : A € o(T)}.

(iv) If X 14s Hilbert space and T is normal, then r(T) = ||T.
(v) If X is a complex Hilbert space and T is normal with r(T) = 0, then T = 0.

Proof. (i) Let m € N arbitrary. For every n € N there exist p,,q, € Ny with
¢n <m and n = pym + gn. Let M := max{1, |T||, ..., |[T™}||}. Then

(77| = P || < e | T | < M{T™ P

This implies (T) = limsup | 7" < limsup Mz | T™|mw %% = || T™| .
n— 00 n—00
(ii) By the formula of Hadamard, the radius of convergence of Y7, z" |||
is (limsup |T"||%)™Y = »(T)~'. Hence for all A € C, [A| > r(T), the series
n—oo

32 AT DT = A converges in norm. By Theorem 2.10 (Neumann series), 4 is
the inverse of A—T". Because T is closed, it follows that {\ € C: |A| > r(T)} C p(T),
or equivalently {\ € C: |\ <7(T)} C o(T).

(i) Let ro := max{|A| : A € o(T)}. It follows from (ii) that ro < r(T). Now
choose any p € C with || > ro. We have to show that || > r(T). Observe that
by definition of R(T) and by the formula of Hadamard

(A=T)7t =3 AT N > (D), (5.3)

n=0

where the series on the right hand side converges in norm. In particular, for every
p € LX)

A =T)71 =D AT, A > (D).
n=0

Hence A = (T — A\)~! defines an analytic function for |A| > r(T). It follows

from complex analysis that then the equality in (5.3) holds for all A in the largest

open ring where A — ¢(X — T') is analytic, that is for all A > »(T'). In particular,

2 o 1~ FDH(T™) converges for every ¢ € L(X)', hence it is weakly convergent,

and therefore (u= "1 o(T™)),en converges to 0. It follows that (u~"tDT™),cy is

weakly convergent to 0, hence it is bounded (Corollary 3.9). Let M € R such that
1

|~ DT < M, n € N. Then |||T"]|% < M#u!+% for all n € N, in particular
#(T) = Lim [|[|T"]% < p.
n—00

(iv) Recall that ||TT*|| = ||T||? for a normal operator T' (Theorem 4.39). Hence

7212 = 17T = [(TT*)?| = [(TTHI* = IT|I*,
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hence || T2|| = ||T|?>. By induction, it can be shown that hence ||T2"| = ||T||*" for
all n € N, implying that
r(T) = Jim 7% = Jm 7% = L (1T =17
n—00 n—00 n—oo
(v) follows directly from (iv). O

Note that in general r(T") < ||T|, for example r(T") = 0 for every nilpotent linear
operator.

5.3 The spectrum of the adjoint operator

Lemma 5.20. (i) Let X be a Banach space and T(X — X) a densely defined
closed linear operator. Then o(T") = o(T) and R(\,T) = R(\,T") for X €
p(T).

(ii) Let H be a Hilbert space and T(H — H) a densely defined closed linear
A

operator. Then o(T*) = o(T) = {\ € C : X € o(T)} and R\ T)* =
R(A\*,T*) for A€ p(T).

Proof. The assertions follow from Theorem 4.65. O

Lemma 5.21. Let X be a Banach space and T(X — X)) densely defined and closed.
(i) Aeop(T) = A€ op(T")Uan(T").
(i) A€o (T) = A€ o,(T).
Proof. (i) If A € op(T), then ker(A — T) 2 {0}, rg(A —T") C ker(T)° # X. It
follows that A € o, (T”) or A € o(T").

(i) If X € 0x(T'), then rg(A — T) # X. By Theorem 4.64 rg(A — T') = X if and only
if (A\=T)" = A —T"is not injective, hence A € o,(T”). O

Theorem 5.22. Let H be a complex Hilbert space, T(H — H) a symmetric oper-
ator and A € C\ R.

@) A =Tzl = | Im(N)| |z]| for all z € D(T).
In particular T — X : D(T') — vg(T — N) is invertible with continuous inverse
and the point spectrum of T' is real.
(ii) If T is closed, then rg(A —T) is closed.
Proof. (i) For all z € D(T)

I = T)al flall = [(A — D) a)] = [(Re A — Tz, ) +i(m e, )|
> I Afe].

In particular, A — T' is injective, which implies that A ¢ op,(T).
(i) If (A = T') is continuous and closed, to its domain rg(A — T') is closed. O

Theorem 5.23. Let H be a complex Hilbert space and T(H — H) a symmetric
operator. Then the following is equivalent.

(i) T is selfadjoint.
(i) rg(A—=T) = H for all z€ C\R.

Last Change: Wed 17 Apr 11:33:04 COT 2013

88 5.3. The spectrum of the adjoint operator

(iii) rg(+i—T)=H.

v

) There exist z+ € C with Imzy > 0 and Imz_ < 0 such that rg(z+ —T) = H.
(v) o(T) CR.
(vi) T is closed and ker(+i —T*) = H.

Proof. (i) => (ii) Let A € C\ R. Then rg(A\ — T') # H is closed by Theorem 5.22
and \* ¢ o, (7). It follows by Theorem 4.73 that

rg(A —=T) =rg(A — T)** = ker(\* — T*)* = ker(\* = T)* = {0} = H.

(ii) = (i) By assumption, T is symmetric, hence T C T*, so it suffices to show
that D(T*) € D(T). Let A € C\R. Then A — T and A — T are bijective. For
2 € D(T*) there exists a y € D(T) such that (A—=T"*)z = (A=T)y. Since T C T*, it
follows that Ty = T, hence  —y € ker(A—T"*) = {0} which implies z = y € D(T).
(if) = (iii) = (iv) is obvious.

(iv) = (v) Let z4 € C with Imz} > 0 and Im z_ < 0 such that rg(z4 —T) = H.
By Theorem 5.22, it follows that z4 — 7' is injective and its inverse is bounded by
|Sz+|. Hence, by Lemma 5.7, every A € C with |A — z+| < [3z+| belongs to p(T).
Given any A € C\ R, repeating the argument above finitely many times shows that
Aep(T).

(v) = (ii) is obvious.

(vi) = (iii) Since T is closed, the range of i — T is closed by Theorem 5.22.
Therefore rg(+i — T) = rg(+i — T)*+ = ker(Fi — T*)* = {0}*+ = H.

(i) = (vi) Since T =T"*, it is closed and C\R C p(T'), in particular ker(+i—T) =
{0}. O

Analogously, we find a characterisation of essentially selfadjoint operators.
Theorem 5.24. Let H be a complex Hilbert space and T(H — H) a symmetric
operator. Then the following is equivalent.
(i) T is essentially selfadjoint.
) rig(A—T)=H for all z € C\R.
(iii) rg(£i—T)=H.
)
)
)

n

—

iv) There exist z4 € C withImzy > 0 and Imz_ < 0 such that rg(z+ —T) = H.

—

v) o(T) CR.

ker(+i—T*) = H.

(vi

Definition 5.25. Let X be a Banach space and T(X — X) densely defined and

closed. A € C is called approzimate eigenvalue if there exists a sequence (2 )nen C

X such that [|z,|| = 1 for all n € N and lim (T — Xz, = 0. The set of all
n—ro0

approximate eigenvalues is denoted by oap (7).
Proposition 5.26. (i) Every approzimate eigenvalue belongs to o(T).
(if) Ewvery boundary point of o(T) C C is an approzimate eigenvalue of T.
(ii) If X is a Hilbert space and if T is selfadjoint, then every X € o(T) is an

approzimate eigenvalue of T
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Proof. (i) Let A be an approximate eigenvalue of T'. Choose a sequence (zy, )nen
D(T) such that ||z, || =1 for all n € N and (A — T)z,, — 0. Assume that X € p(T').
Then R(A\,T) = (A —T)~! is bounded, therefore

nlglgc Ty = nlgrolo RA-T)AN=T)x,=R(N-T) nlLII;O(A - Tz, =0,

in contradiction to [|z,| =1 for all n € N.
(i) Let A be a boundary point of o(T"). Then there exists a sequence (A, )nen C
p(T') which converges to A\. For every n € N choose z,, € X such that ||z,| =1
and ”R(}\n,T)‘Ln” > 3R\, T)||. From Lemma 5.7 we know that |[R(A,, T)| >
m Set yp, := ||R(A\n, T)||~ IR()\,,,T)zn Then y, € D(T) and |ly,| = 1
for all n € N. Moreover
IO =Tyl < IO = X)ynll + 1[(An = T)ynl|

= A=l + RN — T>wn‘|71

<A =] + 2R, =TT — 0, n — 00.
Hence A € 0,p(T).

(iii) By Theorem 5.23 the spectrum of a selfadjoint operator is real, so o(T)
90(T) C 0.y (T) C o(T).

oo

Lemma 5.27. Let H be Hilbert space and T € L(H) selfadjoint. Then o(T) C
[m, M] where m := inf{(Tx,z) : ||z|| = 1} and M := sup{(Tz,z) : ||z| = 1}
Moreover, m, M € o(T).

Proof. Let A € R, A < m. Then X\ — T is injective because for all z € X
I =D)alllzll = (A = T)a,z) > (A —m)|z]*. (5.4)

In particular, rg(A—T) = D((A=T)7") is closed because (A=T)"! : 1g(A—-T) —
is closed and continuous by (5.4). Hence rg(A—T) =rg(A — T) = ker(A—T)* =
It follows that (—oo, m) € p(T'). Analogously (M, co) € p(T') is shown.

Now we show that m € o(T"). By Proposition 5.26 it suffices to show that m €
0ap(T). By definition of m there exists a sequence (2 )nen such that ||z, | =1 for
all n € N and (T2, ,x,) \¢ m. Since s(z,y) := (T — m)x,y) defines a positive
semidefinite sesquilinear form, Cauchy-Schwarz inequality implies

(T = m)anl|? = |s(zn, (T —m)z,)| < s(zn,zn)%s((T —m)z, )%
=((T - m)zy, 7T7z> (T - m) o, (T — m)$n>§~

Since the first term in the product tends to 0 for n — oo and the second term is
bounded by (|| —m)? < oo, it follows that [|(T — m)a,| tends to 0 for n — oo.
This shows that m € 0., (T"). The proof of M € o(T) is analogous.

5.4 Compact operators

Recall that a metric space M is compact if and only if every open cover of M
contains a finite cover. M is called totally bounded if and only if every for every
€ > 0 there exists a covering of M with finitely many open balls of radius e. M is
called precompact (or precompact) if and only if M is compact. It can be shown that
a totally bounded metric M is compact if and only if M is complete. In particular,
a subset of a complete metric space is totally bounded if and only if its closure is
compact. A subset of a metric space is called relatively compact if and only if its
closure is compact.
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Definition 5.28. Let X,Y be normed spaces. An operator T' € L(X,Y) is called
compact if for every bounded set A C X the set T(A) is relatively compact. The
set of all compact operators from X to Y is denoted by K(X,Y).

Remark 5.29. Sometimes compact operators are called completely continuous.

Remarks 5.30. (i) Every compact linear operator is bounded.

(i) T' € L(X,Y) is compact if and only if for every bounded sequence (zn)nen
the sequence (T'z,)nen contains a convergent subsequence.

(ili) T € L(X,Y) is compact if and only if T'(Bx (0,1)) is relatively compact.
(iv) Let T € L(X,Y) with finite dimensional rg(T"). The T is compact.
(v) The identity map id € L(X) is compact if and only if X is finite-dimensional.

Theorem 5.31. Let X,Y be Banach spaces. Then K(X,Y) is a closed subspace
of L(X,Y).

Proof. Obviously, 0 € K(X,Y) and Remark 5.30 (ii) implies that the linear com-
bination of compact operators is compact. Now let (T}, )neny € K(X,Y) a Cauchy
sequence. Since L(X,Y) is complete, there exists a T € L(X,Y) such that T}, — T
We have to show T' € K(X,Y). Take an arbitrary bounded sequence (z)neny € X
and choose M € R such that ||2,|| < M, n € N. Since T} is compact, there exists a
subsequence (’I‘(l)) such that (Tlar(ﬂ )nen converges. Continuing like this, for every
k > 2 we find a subsequence (ac,(1 ) of (1<" )) such that (Tkz( ))nEN converges. Let
(Yn)nen = (L(n ))neN the diagonal sequence. Then, for every k& € N, the sequence
(TrYn)nen converges. Let € > 0. Choose k € N such that ||T' — Ti|| < 357 and
N € N such that | Txz, — Tram| < § for m,n > N. Then, for all m,n > N,

1Tyn = Tymll < 1 TYn — Teynll + 1 Tkyn — Teymll + 1 Taym — Tyml|
Me € Me _
3M 3 3M

IA

Hence (T'yy)nen is Cauchy sequence in the Banach space Y, hence convergent. O

Lemma 5.32. Let X,Y,Z be Banach spaces, S € L(X,Y) and T € L(Y, Z). Then
TS is compact if at least one of the operators S or T is compact.

Proof. Let (z,)nen be a bounded sequence in X. If S is compact, then there exists
a subsequence (2, )ken such that (Sz,, )rken converges. By continuity of T', also
(T'Sxn, )ken converges.

Now assume that T" is compact. Since S is bounded, (S, )ren is bounded, hence
there exists a subsequence (2, )ren such that (TS, )ken converges. O

Theorem 5.33 (Schauder). Let X,Y be Banach space and T € L(X,Y). Then
T is compact if and only if T' is compact.

For the proof we use the Ascoli-Arzeld theorem.

Theorem 5.34 (Arzeld-Ascoli). Let (M,d) be a compact metric space and A C
C(M) a family of real or complex valued continuous functions on M such that

(i) A is bounded,

Last Change: Wed 17 Apr 11:33:04 COT 2013



Chapter 5. Spectrum of linear operators 91

(ii) A is closed,

(iil) A 1is equicontinuous, that is,

Ve>0 306>0 VfeAd d(z,y) <0 = |f(x) - fly) <e.

Then A is compact.
Proof. See, e.g., [Rud91] or [Yos95]. O

Proof of Theorem 5.33. First assume that T is compact. Let Kx(0,1) := {z €
X : ||z|| < 1} be the closed unit ball in X. By assumption K := T'(Kx(0,1)) is
compact in Y and bounded by ||T||. Now let (¢, )nen € Y’ be a bounded sequence
and M € R such that ||¢,| < M, n € N. We define the functions

fo i K=K, fuy) = ealy)-

Then (fn)nen is bounded by M and equicontinuous because |f(y1) — f(y2)] <
Cllyr — y2ll, y1,y2 € K. By the Ascoli-Arzeld, (f,)nen is compact, so there exists a
convergent subsequence (f,, )ren. Then also (T"¢p, )ken converges because

IT"¢n, = T'en,. || = sup{llon, (T2) — ¢n,.(T2)|| : = € Kx(0,1)}
= sup{[l¢n, (¥) = P W) : ¥ € K} = || for = frnl
Now assume that 7" is compact. Then 7" € L(X”,Y") is compact. By Lemma 5.32

T" o Jx is compact. Recall that Jy oT = ToJx (Lemma 2.33),s0 JyoT : X —Y”
is compact. Since Y is closed in Y, T : X — Y is compact. O

Example 5.35. Let k € C([0,1]?) and

Ty - C([0,1]) = C([0,1]), (Tkx)(t):/o k(s, )z (s) ds.

Then T}, is compact.

Proof. Obviously T}, is well-defined and bounded. Let (2, )nen € C([0,1]) a bounded
sequence with bound M. Hence (Tjxy,)nen is bounded. To show that it is equicon-
tinuous fix € > 0. Since k is uniformly continuous, there exists a § > 0 such that
|k(s,t)—k(s',¢")| < eif ||(s,t) — (s', )] < 8. Now for t1,ts € [0,1] with [t; —t2] < 8
and n € N we obtain

1
[Thxn(t1) — Than(tz)| < / [k(s,t1) — k(s, t2)]|xn(s)| ds < e]|zn]|oc < Me.
0
By the Ascoli-Arzeld theorem it follows that (Ti2y, )nen is relatively compact, hence
it contains a convergent subsequence. O

Let X be vector space and T': X — X a linear operator. Then obviously

{0} CkerT CkerT? CkerT? C ...,
XDrgT DrgT? DrgT?D ...

Lemma 5.36. Let X a vector space and T : X — X a linear operator.

(i) Assume that ker T*+1 = ker T* for some k € Ng. Then ker T™ = ker T* for
all integer n > k.
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(ii) Assume that rg TF*+! = vgT* for some k € Ng. Then rgT" = vgT* for all
integer n > k.

Proof. We prove the lemma by induction. The case when n = k is clear by assump-
tion.

(i) Assume that n > k and ker 7" = ker T*. Then
ker 7" ={z e X : T" e =0} = {r € X : Tz € ker T¥} = ker T"*! = ker T*.
(i) Assume that n > k and rg 7" = rg T*. Then
rgT"H = T(rgT™) = T(rg T*) = rg TF T = rg TF.
|

Definition 5.37. Let X be a vector space and T : X — X a linear operator. We
define

min{k € Ny : ker 7% = ker TF+1}, if the minimum exists,

ascent of T := o(T) := {
00 else

descent of T := 8(T) i {min{k €Ny :1gTF =g TFH}, if1 the minimum exists,
00 else.

Lemma 5.38. Let X be a vector space and T : X — X a linear operator. If
both the ascent a(T) and the descent 6(T) are finite, then o(T) = 6(T) =: p and
X =rg(T?) @ ker(T?).

Proof. Let p:=«(T) and g := §(T"). We divide the proof in several steps.

Step 1. rg(TP) Nker(T™) = {0} for every n € No.

To see this, choose z € rg(T?) Nker(T™). Then there exists a y € X such that
z =TPy, so 0 ="T"z = TP*"y. Hence y € ker T?*" = ker T? by Lemma 5.36i. It
follows that © = TPy = 0.

Step 2. X =1g(T™) + ker(T?) for every n € Ny.

For the proof fix z € X. Then Tz C rg(T?) = rg(T9™™). Hence there exists y € X
such that 79z = T%""y. Then T(z—1"y) = 0, and therefore z = T"y+(z—T"y) €
rg(T™) + ker(T7).

Step 8. a(T) < 6(T) =q.

Let # € ker 79", We have to show x € kerT?. By step 2, with n = p, there
exist 21 € rg(T?) and zo € ker(T9) such that © = z1 + zo. Hence 1 = 2 — x5 C
ker(T7+') Nrg(TP) = {0} by step 1. Therefore x = x5 € ker(TY).

Step 4. 0(T) < a(T) = p.

By step 1 and step 2, we have that X = rg(TP) & ker(79). Since rg(TP*1) N
ker(T?) C rg(TP) Nker(T9) = {0}, we also have X = rg(T9*!) @ ker(T?), implying
rg R(TP*) = rg(TP), hence § < p. O

Theorem 5.39. Let X be a Banach space, T € L(X) a compact operator and
A e C)\{0}.
(i) ker(A —T)" is finite dimensional for every n € Ny.

(i) If U C X is a closed subspace with U Nker(A —T)™ = {0}, then (A — T)(U)
is closed and X\ =T : U — rg((A = T')|u has a bounded inverse.
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(iil) rg(A —T)™ is closed for every n € Ny.

Proof. Note that (A —T)" = A" — 3" (7)A"~*T* and the operator sum is com-

pact. Hence it suffices to show the asgerltions for n = 1.

(i) Observe that T|xer(x—1) = Aid [ker(x—1)- Hence Aid |ker(x—m) is compact. By
Remark 5.30 (v) this is case if and only if ker(A — T') is finite dimensional.

(i) Since U Nker(A — T) = {0}, the restriction (A — T')|y is invertible. We will
show that its inverse is bounded. Assume ((AfT)|U) ~!is not bounded. Then there
exists a sequence (2, )nen such that ||z, || = 1 for all n € N and nlgyolc()\ —T)z, =0.

Since T is compact, there exists a convergent subsequence (T'z,, )ren. Hence

A, = Tap, + (A —=T)an, — lim Ta,, =y.
N, e’ n—oo
—0

Note that y € U because U is closed. Moreover, y € ker(A — T') because

A=Ty=N-T) nlgléo Ty = (A=T)zp, =0.

lim
n—o0
Hence y € ker(A —T) NU = {0} in contradiction to |y|| = lgn [[Azn]| = X # 0.
Hence ((A — T)|U)7l :1g(A = T)|y — U is bounded. Since it is also closed, its
domain rg(A — T')|y must be closed.

(iii) By (i) we already know that dimker(A — T') < oo. Then by the following
lemma 5.40 there exists a closed subspace U C X such that X = ker(A —T) ® U.
Hence rg(A — T') = rg((A — T)|v) is closed by (ii). O

Lemma 5.40. Let X be a Banach space and M C X a finite dimensional subspace.
Then there exists a closed subspace U of X such that X = M & U.

Proof. Let x1, ..., x, a basis of M. Then there exist o1, ..., ¢, € M’ such that
lloxll =1 and @g(z;)d; for all j,k =1, ..., n. By the Hahn-Banach theorem the
¢k can be extended to functionals ¢, € X’ with ||| = 1, k = 1,..., n. Let
P:X — X,Pzr= 27:1 ©;j(x)z. Obviously P = P?, hence P is a projection. Note
that M = P(X). Hence X = rg(P) ®ker P = M & ker P. O

Theorem 5.41. Let X be a Banach space, T € L(X) a compact operator and
A e C\{0}. Then a(A=T) =6(A\—T) =p < oo and X =ker(A\—T)P®rg(A—T)P.

The number p = a(A —T) = §(A —T) is called the Riesz index of A\ —T.

Proof. By Lemma 5.38 it suffices to show that a(7T") and 6(T") are finite.
Assume that « is not finite. Since in this case ker(A — T') C ker(A —T)? C ... we
can find a sequence (z,,)nen € X such that for all n € N

1
lznll =1, zp, €ker(A—=T)", and |z, —z[ > 5 for all z € ker(A — T)" 1.

The last condition can be satisfied by the Riesz lemma (Theorem 1.21) because
ker(A — T)™ is closed for all n € N. Then for all 1 <m <n

1Tz = Tl = |Aen =Azm — (A = T)zn + (A =Ty || >

Eker(A—T)n—1

1
7

Therefore (Txy)nen does not contain a convergent subsequence in contradiction to
T being compact.
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Assume that § is not finite. Since in this case rg(A —T) D rg(A—T)% 2 ... we can
choose a sequence (z,,)nen C X such that for all n € N

1
lznll =1, z, €rgA=T)", and |z, —z|> 5 forallze rg(A — T)" .

The last condition can be satisfied by the Riesz lemma because rg(A—T)" is closed
for all n € N by Theorem 5.39. Then for all 1 <m < n

1
|Tan — Taw| = |Atn Az — (A =Tz + (A= T)as, || > 3

Erg(A=T)n+1

Therefore (Tzy)nen does not contain a convergent subsequence in contradiction to
T being compact. O

Theorem 5.42 (Spectrum of a compact operator). Let X be a Banach space.
For a compact operator T € L(X) the following holds.

(i) If X € C\ {0}, then X either belongs to p(T) or it is an eigenvalue of T, that
is C\ {0} C p(T)Uop(T).
(if) The spectrum of T' is at most countable and 0 is the only possible accumulation
point.
(iii) If X € o(T) \ {0}, then the dimension of the algebraic eigenspace Ax(T) is
finite and A\(T) = ker(A — T')P where p is the Riesz index of A\ —T.

(iv) X =ker(A=T)? @& rg(A —T)? for A € o(T) \ {0} where p is the Riesz index
of A\ =T and ker(A — T)? and rg(A\ — T')P are T-invariant.

(v) op(T)\ {0} = 0,(T") \ {Oi and o(T) = o(T"). If H is a Hilbert space then

op(T)\ {0} = {X € C: X € ,(T*)} \ {0} = 0,(T*) \ {0}, where the bar
denotes complex conjugation, and o(T) = {\ € C: X\ € o(T*)} = o(T*).

Proof. (i) Let A € C\ {0}. By Theorem 5.41 the Riesz index p of A — T is finite. If
p =0, then X = rg(A—T) by the proof of Lemma 5.38 (step 2), hence A € p(T). If
p#0, then X € o, (T).

(i) It suffices to show that for every ¢ > 0 the set {\ € o(T') : |A| > €} is finite.
Assume there exists an ¢ > 0 such that the set is not finite. Then there exists a
sequence (An)nen such that A, # Ap, for n # mand |A\,| > €, n € N. Since o(T')\{0}
consists of eigenvalues, we can choose eigenvectors x,, of T with eigenvalues A,,.
Note that the z, are linearly independent because A, # X, for n # m. Let
U, := span{x1, ..., 2, }. Note that all U, are T-invariant, closed and that Uy C
U C Uz C .... Using the Riesz Lemma, we can choose a sequence (yy,)nen such
that for all n € N

1
lynll =1, yn €U,, and |y, —z| > 3 for all z € U,,_1.
Let 1 < m < n. Note that Ty, € Uy,. Let y, = Eyzl ajx; for some a; € C. Then

()‘n - T)yn = an()‘n - T)‘En + Za] (T - )‘n)wj = Za]'(kj - )‘n)"L']' €Upn-1.
j=1 J=1

Hence

1
1Tyn — Tymll = Anyn —(An = Ty — Ty || > bX (5.5)

€Un—1
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Therefore (T, )nen does not contain a convergent which contradicts the assumption
that 7" is compact.

(iii) and (iv) follow from Theorem 5.42.
(v) By Schauder’s theorem 7" is compact (theorem 5.33) Hence for A € C it follows
that

Aep(T) <= ker(A\—-T)={0}and rgA\-T)=X

<~  °rg(A—T')={0} and °ker(A\—T") =X

< 1gA—T")=X"and ker(A\—T")={0}

= Alep() O
Theorem 5.43 (Fredholm alternative; Riesz-Schauder theory). Let X be a
Banach space, T € L(X) a compact operator and X\ € C\ {0}. Then exactly one of
the following is true:

(i) For everyy € X the equation (A — T)x =y has ezactly one solution © € X.

(if) (A —T)z =0 has a non-trivial solution x € X.

Proof. (i) is equivalent to A € p(T") and (ii) is equivalent to A € o, (T'). Since A # 0,
the latter is equivalent to A € o(T'). The assertion follows from Theorem 5.42. O

A more precise formulation of the Fredholm alternative is the following.

Theorem 5.44. Let X be a Banach space, T € L(X) a compact operator and
A e C\ {0}. Forz,y,€ X and p,n € X' consider the equations

A) A=Tz=y, ©) (A\=The=n,
(B) (A\=T) =0, D) (A\—T)p=0.
Then
(i) Fory € X the following is equivalent:
(a) (A) has a solution x.
(b) ¢(y) =0 for every solution ¢ of (D).
ii) Forn e X' the following is equivalent:
(if) n € X' the following L
(a) (C) has a solution .
(b) n(x) =0 for every solution  of (B).
(ili) Fredholm alternative: Ezactly one of the following holds:

(a) For ally € X and n € X' the equations (A) and (C) have ezactly one
solution (in particular (B) and (D) have only the trivial solutions).

(b) (B) and (D) have non-trivial solutions. In this case dim(ker(A —T)) =
dim(ker(A —77)) > 0 and (A) and (C) have solutions if and only if

p(y) =0 for all solutions ¢ of (D),
n(x) =0  for all solutions x of (B).

Definition 5.45. Let X,Y be Banach spaces. T € L(X) is called Fredholm oper-

ator if rg(T') is closed and n(T) := dim(kerT") < oo and d(T') := codimy (rgT) :=
dim(Y/rg(T')) < oo. In this case, x(T') := n(T") —d(T) is called the Fredholm index.
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Proof of Theorem 5.44. ............ O

Now we return to the spectrum of compact operators.

Lemma 5.46. Let H be Hilbert space, # {0}, and T € L(H) a selfadjoint compact
operator. Then at least one the values ||T| or —||T|| is an eigenvalue of T. In
particular, if T # 0, then T' has at least one eigenvalue distinct from 0.

Proof. If |T|| = 0, the assertion is clear. Now assume that |T'|| # 0. Recall that
|7 =sup{|(Tz,z)| : 2 € X, ||z|| =1} (Theorem 4.45).

By Lemma 5.27 the numbers m = inf{(Tz,z) : z € X,|z| = 1} and M =
inf{(Tz,z) : x € X, ||z| = 1} belong to the spectrum of T'. Since T' is compact and
||| # 0, it follows that 0 # {£||T||} No(T) = {£||T||} N op(T). O

Theorem 5.47 (Spectral theorem for compact selfadjoint operators). Let
H be a Hilbert space and T € L(H) a compact selfadjoint operator.

(i) There exists an orthonormal system (en)N_, of eigenvectors of T with eigen-

values (A\,)N_; where N € NU {oo} such that

N
Tz = Z A, €n) €n, z e H. (5.6)

n=1

The A, can be chosen such that |A\i| > |X2| > -+ > 0. The only possible
accumulation point of the sequence (Ap)nen s 0.

(i) If Py is the orthogonal projection on ker T, then

N
x:ng-ﬁ—Z(x,en)en, r e H. (5.7)
n=1
(iil) If A€ p(T), A £0
o~ (@, en)
—1,, __ y—1 L5 Cn
A=—T) 'z =2\ P0x+;)\717)\cn, z € H.

Proof. (i) Let X1 = X and Ty = T. If T # 0, then there exists a A\; € o, (T1)
such that |A;| = ||T1|| # 0. Let B; be an orthonormal basis of ker(A\; — T%). Note
that By is finite because T is compact (Theorem 5.42). Let X; := ker(\ — T)* =
rg(A —T) = rg(A — T). Here we used that T is selfadjoint and consequently
X € 0p(T) C R. By Theorem 5.42, X, is Ty-invariant, hence T5 := T1|x, € L(X>).
Obviously, T5 is selfadjoint and compact. If T5 # 0, then there exists a Ay € 0,(T3)
such that [Aa] = [|T3|| # 0. Let Bz be an orthonormal basis of ker(A2—T%). Note that
B is finite because T is compact (Theorem 5.42). Hence By U Bs is an orthonormal
basis of span{ker(\; —T),ker(A\y — T)}. Let X3 := span{ker(\; — T), ker(A\y — T)}+
and T3 := Tb|x,. Continuing like this we obtain a sequence of Banach spaces X,
and a sequence of compact selfadjoint operators T, € L(X,,). Let € X. Define

Tpp1 =T — Z (z,en)en € Xni1.
en€B1U...By
It follows that
[Tz -T Z (@ en)en | = [Ths1@n1ll < [Ansalllz] — 0, n — 00.
e, €B1U...By,
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This implies that

N N
Tz = Z(z,en>Ten = Z)\n@,en)en
n=1 n=1

(ii) Note that ...

(iii)
O

Corollary 5.48. Let H be a Hilbert space and T € L(H) a compact selfadjoint
operator. There exists a sequence (P,)N_, of pairwise orthogonal projections with
N e NU{oo} and a sequence |A\1] > |X2| > ... such that

N
T=> Py (5.8)
n=1

where the series converges to T in the operator norm. If (A\y)n is an infinite se-
quence, then lim A, = 0. The representation (5.8) is unique if the \,, are pairwise
n—oo

distinct.

Proof. 1If the series is a finite sum, the assertion is clear. Now assume that the
series is an infinite. Note that for every k € N the operator Y-, An P, is normal
and that the norm of a normal operator is equal to maximum of the moduli of the
elements of its spectrum (Theorem 5.19). Since |Ag41| — 0 for & — oo the claim
follows from

=sup{|An|:n > k+1} = [Apga] O

k
HT -3 P,
n=1
The representation (5.8) allows us to define the root of a positive compact selfadjoint

operator.

Theorem 5.49. Let H be a Hilbert space and K € L(H) a compact operator.

(i) T is positive <= all eigenvalues of T are positive.
T is strictly positive <= all eigenvalues of T are strictly positive.

(ii) If T is positive and k € N then there exists ezactly one positive compact
selfadjoint operator R such that R* = T.

Note that the theorem does not imply that there cannot be non-compact operators
A € L(H) such that A2 = T. In Corollary 5.60 we will show that every bounded

positive selfadjoint operator has a unique positive root.

Proof of Theorem 5.49. Recall that a linear operator T is positive if and only if
(Txz,z) >0 for all z € H. Let Py, A\, and e, as in (5.7). Then (i) follows from

<T.75,.7,‘> = <Z>\n<w79n>en7 Pox + Z)\n<w;en -,e>n> = Z)\nKz;en)l(z > 0.

For the proof of (ii) define R = 3, A,lq,/k<- ,en)e,. Obviously RF = T. To show
uniqueness, assume that there exists a compact selfadjoint positive linear operator
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S such that S* = T. Since S is compact, it has a representation S = > on HnQn
with pairwise orthogonal projections @,,. By assumption

T=8"=3 uiQn
Hence the i, are the kth roots the eigenvalues A,, of T', so S = R. O

Definition 5.50. Let H be a Hilbert space and T' € L(H) a positive selfadjoint
compact operator. Then |T)| := (T*T)?. The non-zero eigenvalues s, of |T| are the
singular values of T.

Obviously |T'| and |T*| are positive selfadjoint compact operators.

Lemma 5.51. (i) |||T|z]|| = |[|Tz| and |||T*|y| = |T*y|| and for @ € Hy and
y € Hy.

(i) s is a singular value of T if and only if s* is an eigenvalue of T*T and TT*.

Proof. (i) For all x € Hy
NT|2||* = {(|T|2, |T|z) = (| T2, 2) = (T*Tx,x) = | Tz|*

An analogous calculation shows || [T*|y || = ||T*y| and for y € Ho.
(ii) follows from the uniqueness of the representation (5.8). O

Note that |T| can be defined more generally for positive selfadjoint operators on a
Hilbert space H, see Definition 5.61.

A representation similar to (5.6) exists for arbitrary compact operators.

Theorem 5.52. Let Hy, Hy be Hilbert spaces and T € L(Hy, Hs) a compact oper-
ator.

(i) Let s1 > s3 > --- > 0 be the singular values of T and (p,)N_; C Hy and
(1;“1n)f:1 C Hy such that

N
Te = su(@,pu)tn, @€ H,
n=1

M=

Ty= ) sa(y,Un)pn, Y€ Hs.

n=1

If there are infinitely many s,, then lim s, = 0.
n—oo
(i) The non-zero eigenvalues of |T'| and |T*| coincide and are equal to the sp.
The s2 are the eigenvalues of T*T and TT*. Moreover, the 1, = iTgan are
eigenvectors of T*.
Proof. (i) Let (¢n)nen € Hy a ONS such that, see Theorem 5.47,

N N
Tz = Z 5p(T 5 Pn)Pn, T*Tx = Z 5i<z s Pn)Pn.-
n=1

n=1

Let v, :== iTtpn. Then (¢, )nen is an ONS in Hy because

1 1, ., 1
(Wn¥m) = Z(Ton, Tom) = (T Tpn om) = 5200m = Onm.

“n “n
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Moreover

1 .2
T, = —TT*Tp, = 2T, = 524,
Sn Sn

Hence o, (T*T) \ {0} = {s2 : 1 <n < N} C 0,(TT*) \ {0}. Similarly the reverse
inclusion can be shown, so that o, (T*T') \ {0} C o, (TT*) \ {0}.
(ii) ... O
Theorem 5.53 (Min-Max-Principle). Let Hy, Hy be Hilbert spaces, K € L(H1, Hs)
a compact operator with singular values sy > so > s3 > .... Then s; = ||K|| and
forn>2

Sn1 = infEH sup{HKxH s x € Hy, x Lspan{zq,...,2n}, |j2]| = 1}.

@1,z €Hy

Proof. ... O

5.5 Hilbert-Schmidt operators

Definition 5.54. Let Hy, H> be Hilbert spaces and K € L(H;, H2). K is called
a Hilbert-Schmidt operator if and only if there exists an ONB (ex)aea of H; such
that

S IKex|? < 0.

AEA

The set of all Hilbert-Schmidt operators from H; to Ho is denoted by HS(H1, Hs).

Theorem 5.55. Let Hy, Hy be Hilbert spaces.

(i) A operator K € L(Hy, Hs) is a Hilbert-Schmidt operator if and only if K* is
a Hilbert-Schmidt operator. In this case:

DolKea =" [Kesl = [Kex|” < oo

acA BEB AEA
for all ONBes (eq)aca of H1 and (eg)sep of Ha.
(ii) Every Hilbert-Schmidt operator is compact.

(iii) Let K € L(Hy, Hs) be a compact operator with singular values xy > xo >
s3> .... Then K is a Hilbert-Schmidt operator if and only if K* is a Hilbert-

Schmidt operator if and only if
D sk < oo
Theorem 5.55 (i) shows that for K € HS(H;, Hz) the Hilbert-Schmidt norm

1
3
||K||lus :== ( Z || K eq HZ) for an ONB (eq)aca-

acA

is well-defined.
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Proof of Theorem 5.55. (i) Let K be a Hilbert-Schmidt operator and (ex)xea an
ONB of Hy such that Y, [[Kex || < co. For an arbritray ONB (3)gep of Hz
we find, using Parseval’s equality (Theorem 4.31) First we show that K* is also a
Hilbert-Schmidt operator.

2
DR wslP = [ID (K wsien)ea| =D D KK s, en)l

BeB BeB llxeA AeABEB
=33 (s Ke)P =Y Ko < oo
A€EA BEB AEA

In particular, the Hilbert-Schmidt norm of K* does not depend on the chosen
ONB of Hy. Applying the same proof to K*, it follows that the Hilbert-Schmidt
norm of K = K** does not depend on the chosen ONB of H;y. For the proof of
|K|| < ||K||rzs we observe that every € H; with [|z]| = 1 can be extended to a
ONB of H;. Hence

[1Kllms > [ Kall = sup{|[Kyll : y € Hy, [lyll =1} = [|K]].

(ii) Let (ex)rea an ONS of H; and (e, )nen & subset containing all ey with K ey #
0 (this family is at most countable by Lemma 4.27). For n € N let P, be the
orthogonal projection on {ei,...,e,}. Note that all P, are compact because they
have finite-dimensional range. Since K is a Hilbert-Schmidt operator, we find that
K = KP|* = |[K(d—Po)[” < [K(d=Po)ls = Y [Keal* — oo,

m=n+1

in particular K is compact because it is the norm limit of compact operators.

(iif) Assume that K is compact. By Theorem 5.52 we can choose ONSs (5, ) ren of
H, and (¥n,)ren of Ho such that Kz = ZnEN $n{T , ©n )by where 81 > 53 >+ >0
are the singular values of K.

If K is a Hilbert-Schmidt operator, then

N N
Dosn =D IIKeal® < |IK|lfis < oo
n=1 n=1
Now assume that 22’:1 52 < oo and choose an arbitrary ONB of H; containing

(¢n)nen. It follows that

N N
Sl = S 1Kl < 1Kl = 3 2 < oo,

AEA n=1 n=1

implying that K is a Hilbert-Schmidt operator. O
Lemma 5.56. The finite-rank operators are dense in the Hilbert-Schmidt operators.

Proof. Let H be a Hilbert space and S € HS(H). In particular, S is compact
and there exist ONBs (¢, )nen and (¢, )nen such that S = Zf:;l $n (", on)thy. For
M € N let us define Spr = M 5,0, o). Then ||S — Sarll2 < IS — Sarllzg =
SN i1 82— 0 for M — oo, O

An important class of examples is given in the following theorem.

Theorem 5.57. Let H = Ly(0,1) and T € L(H). Then the following is equivalent:

Last Change: Wed 17 Apr 11:33:04 COT 2013



Chapter 5. Spectrum of linear operators 101

(i) T is a Hilbert-Schmidt operator.
(ii) There exists a k € L(0,1)? such that

1
(T2)(t) = /O ks, ) (s) ds.

In this case we write Ty, for T.
If one of the equivalent conditions holds, then

= ([ [ 0 as.at)” = bl

Proof. (ii)) = (i) Let (en), be an ONB of Ly(0,1). Then also (&), is an ONB
of Ly(0,1) (where &, denotes the to e, complex conjugated function) and we find

Z T e |2 = - z/ \(k 2 a

n=1
/ t), e at (5.9)
- / Ik, B dt (5.10)

1 1
:/ / (s, £) ds dt = [k Loz
0 0

In (5.9) we have used the monotone convergence theorem to exchange the sum and
the integral (Theorem ??) and in (5.10) we used Parseval’s equality (Theorem 4.31).
It follows that 7" is a Hilbert-Schmidt operator and that ||T||us = [|k[|L,(0,1)2-

(i) = (i) By the proof we have an isometry
W : Ly(0,1)? — HS(L2(0,1)), Tk = Ty.

We will show that the range of W is dense in HS(H). By Lemma 5.56 it suffices to
show that rg(¥) contains the finite-rank operators. Let T be of finite rank. Then
T is of the form T = >"1° | (-, 2n)yn so that for every f € H

Tf(t)= 7i(f T )Y (t Z/f 8)n (8)yn(t) ds—/ (Zzn S)yn(t )()ds.

n=1 n=1

This shows that T € rgW. Fix S € HS(H) and choose a sequence (S, )nen in the
range of . Since ¥, is an isometry, it follows that (U ~=1S,),en is Cauchy sequence
in H, hence its limit exists. Using the continuity of ¥ we find

5= lim S, = lim WS, :q/( lim \I/’lsn) € rg(0). ]
n—00 n—o00 n—r00

Theorem 5.58. Let Hy, Hy be Hilbert spaces.

(i) (HS(Hl,HQ), II- HHs) is a normed spaces. The norm is induced by the inner
product

(S, Thus =Y (Sea,Tea), S, T €HS(H, Hy),

«

for an arbitrary ONB (eq)aca of Hi.
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(ii) Let T € HS(Hy, Hs) and A a bounded linear operator between appropriate
Hilbert spaces. Then AT and T A are Hilbert-Schmidt operators and

AT s < 1A Tlus, 1T Allus < AT s
(i) HS(H) is a two-sided ideal in L(H).
Proof. Note that (a+b)? = a® +b>+2ab = a*> +b* — (a — b)? + a® + b* < 2(a® + b?)

for a,b € R.

(i) Let S,T € HS(H1, Hz) and X € C. Then obviously AS € HS(H,, Hz). To show
that S+ T € HS(Hi, H>) fix an ONS (ex)aea of Hi. Using the above remark is
follows that

DI+ el <Y (ISenl + [ Texl)* <2 [Seal* + [Tex | < oo
AEA AEA AEA

It follows that (-, )us is well-defined. The properties of an inner product are clear.
In particular, ||T||us = (T, T)us for T € HS(H,, Ha).
(ii) Note that

Do lAT e [P < AP Y ITex [P = IAIPIT s

AeA XEA

so AT is a Hilbert-Schmidt operator. It follows that TA = (A*T*)* is also a
Hilbert-Schmidt operator with norm ||[TAllus = [|(A*T*)*|lus = [|A*T*|lus <
AT s <= AT T [l

(iii) is a consequence of (i) and (ii). O

5.6 Polar decomposition

Theorem 5.59. Let H be a Hilbert space and T € L(H) a selfadjoint operator with
T > 0. Then there ezists evactly one R € L(H) such that R>0 R? =T.

In addition, if S € L(H) commutes with T, then S commutes with R.

the operator R is called the root of T and is denoted by v/T.

Proof. Without restriction we can assume ||T|| < 1, hence 0 < T' < id. Now assume
that a solution R € L(H) of R? = T exists. Let A :=id —T and X := id —R. Note
that

d—A=T=R>=(1-X)*>=id —2X + X2

Note that 0 < R < id if and only if 0 < X < id. Hence R is a non-negative solution
of R? =T if and only if X is a non-negative solution of

- %(AJrX?). (5.11)

Step 1. Construction of a solution of (5.11).
We define

Xo:=1id, Xni=¢ (A+Xn 1), neN
Note that every X, is a polynomial in A with positive coefficients and that X, X,,, =
XX, for all n,m € N. Since A is positive, this implies that all X,, are positive.

We will show the following properties of the sequence (X, )nen by induction.
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(i) X, —X,—1 is a polynomial in A with positive coefficients, so that in particular
X, —Xp-1 >0.

(i) [ Xall <1.

All assertions are clear in the case n = 0 (with X_; := 0). Now assume that the
assertions are true for some n € N. Note that
n—1 n—1

1 . 1
X71+1—X71:§(A+X5,) (A+X? ):§(X3—X2 )

1
2
1
§(Xn = Xo—1) (X + Xno1).

Since by induction hypothesis both terms in the second line are polynomials in
A with positive coefficients, (i) is proved for n + 1. (ii) follows from || X4 <
AN+ 1 X)) < 1.

Since (X, )nen is uniformely bounded monotonically increasing sequence in, there
exists an X € L(H) such that X = s;liman and || X < liminf, o [ Xn|| <1 (see

Exercise 4.25).

Now let S € L(H) with ST = TS. By definition of A, then also SA = AS and
X, S = X,S for all X,, since the X,, are polynomials in A. For every x € H we
therefore obtain

0<||SXz— XSz| = lim [|SX,z — X,,Sz| = lim ||SX,z — SX,z| =0.
n—oo n—oo

Since all X,, commute with T, it follows that X, X = X, X for all n € N, so that
forall z € X

X7 = X))l = 1(Xn = X)(Xn + X)a]| <2(Xp = X)*2] — 0, n— oo,
which shows that X2 = s-lim X2. Therefore X solves (5.11) because
n — oo
X = s limX, = s-lim = (A4 X2) = S(A 4 s-lim X2) = (A 4 X
= solim Xo = solim 2 (A4 X2) = S(A+ s lm XD) = S(A+ X°).
Setting R = id —X we obtain a bounded selfadjoint solution of R? = T with 0 <
R <id.

Step 2. Uniqueness of the solution.

Let R’ € L(H) be solution of R? = T with R’ > 0. Then R and R’ commute
because

R'A=R(R)*=(R)*R = AR'.
It follows that
(R—RH)R(R-R)+(R-R)R(R-R)=(R*-R*)[R-R)=0.

Since both operators on the left hand side are non-negative, it follows that both of
them are 0 and therefore

(R—R)'=(R-R)R(R—R)— (R— R)R'(R—R') = 0.
Since R — R’ is normal, it follows that [|[(R — R')||* = ||(R — R')||*. O

Corollary 5.60. If S,T € L(H) are positive and ST = TS, then also ST is
positive.
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Proof. By Theorem 5.59 the root of T exists, is selfadjoiunt and commutes with S.
Hence for all z € H

(ST, z) = (SVTVTx,x) = (VTSVTz ,x) = (SVTx,VTzx) > 0. O
Definition 5.61. For T' € L(H) we define |T| := (T*T)%.

Definition 5.62. Let Hy, Hy be Hilbert spaces and U € L(Hy, Hy). U is called a
partial isometry if U \(kerU)f is an isometry. ker U L is called its initial space.

Note that U is an partial isometry if and only if
Uler vy : (ker U)* = rg(U)

is unitary.
Theorem 5.63 (Polar decomposition). Let Hy, Ho be Hilbert spaces and T €
L(Hy,Hs). Then there exists a partial isometry U € L(Hy, Hs) such that T = U|T|.
If in addition the initial space of U is (ker T)*, then U is unique.
Proof. Note that | |T|z||? = ||Tz||? for all z € Hy because
1Tk |12 = (Tl ITIe) = (T*T)Ee, (T*T)ia) = (T*Tw,2) = (T, Ta) = [Tl
We define

U rg(ITl) - re(T),  U(Th) =T

U is well-defined because for z,y € Hy with [T|z = |T'|y it follows that ||Tz—Ty|| =

|7z — |T|y|| = 0 hence Tx = Ty. U is and isometry because ||Tz|| = || |T|z || for

all z € H as shown above. In particular, [|[U]| = 1 and has a unique continuous

extension to rg(|T]) — rg(T). Now we extend U to H; by setting Uz = 0 for all
A

zerg(|T|) = ker(|T|) =kerT. O
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Appendix A

Exercises

Exercises for Chapter 1

1. Banach’s fixed point theorem. Let M be a metric space. A map f: M — M
is called a contraction if there exists a v < 1 such that

d(f(z), f(y)) <vd(z,y),  =y€M.

Show that every contraction f on a complete normed space M has exactly one
fixed point, that is, there exists exactly one zg € M such that f(zo) = wo.

2. Let X be a normed space. Then the following is equivalent:

(i) X is complete.

(ii) Every absolutely convergent series in X converges in X.

3. Let X be a normed space. Show:

(a) Every finite-dimensional subspace of X is closed.

(b) If V is a finite-dimensional subspace of X and W is a closed subspace of
X, then

V+W:={v+w:veV, weW}
is a closed subspace of X.

4. Let T be a set and £ (T') be the space of all functions z : T — K with

lz|loo :=sup{|z(t)| : t € T} < 0.
Show that ((x(T), || - ||« ) is a Banach space.

. Let the sequence spaces d, ¢y, ¢ be defined as in Example 1.15.

ot

(a) Show that (co, || - [l) and (c,
(b) Show that (d, || - ||«) is @ normed space, but that it is not complete.

- ||sc) are Banach spaces.

6. Sea X un espacio normado con dim X > 1y S, T operadores lineales en X tales
que ST —TS = id. Muestre que al menos uno de estos operadores no es acotado.
Ayuda: Muestre que ST+ — T8 = (n 4 1)T™.
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7. Sean X y Y espacios normados con X de dimensién finita. Muestre que toda
funcién lineal T': X — Y es acotada.

8. (a) Sea X = C([a,b]) con la norma | - ||c. Muestre que
b
T:X —C, T:L':/m(t)dt
a

es un operador lineal y acotado. ;Cudl es su norma?

(b) Ahora considere X con la norma

b 1/p
lellyi= ([ letop ae) ", aex,
a
para 1 <p < oo. ;Sigue siendo T" acotado? Si es asi, calcule su norma.
9. Sea 1 < p < oo. Para z = (2 )nen € loo sea T : £, — {,, definido por (T'z),, =
Tnzn para & = (Tn)nen € £p. Muestre que T' € L(¢,,) y calcule ||T||.
Exercises for Chapter 2

1. Demuestre el teorema de Hahn-Banach para espacios vectoriales complejos.

Sugerencia: Para un espacio vectorial sobre los complejos X muestre que:
(a) Sea ¢:X — R un funcional R-lineal, entonces
Vo: X = C, Vy(x):=p(x) —ip(z),

es un funcional C-lineal sobre X con ReV,, = .

(b) Sea A: X — C un funcional C-lineal con Re A = ¢, entonces V,, = \.

o
~

Sea p un funcional sublineal sobre X y ¢, V,, definido como en el punto
anterior, entonces

lo@)| < p(x) = [Vo(x) <p(z), zeX.
(@) el = 1Vell-
2. En X = (5(N) considere el subespacio
U = {(zp)nen : n = 0 excepto para un nimero finito de indices n}.
Sea V' el complemento algebraico de U en X, i.e., U es un subespacio tal que
U+V=XyUnV ={0}. Muestre que

[e ]
p: X =K, go(z):Zu” paraz =u+vconu€e U, veV.
n=0

es un funcional lineal bien definido y no acotado.

3. (a) Sea ¢ C l el conjunto de las sucesiones convergentes. Muestre que el
funcional

wo:c— K, x=(Tn)neny— lim z,
n—oo
es continuo y calcule su norma.
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4.

(S

(b) Sea £(N,R) el conjunto de todas las sucesiones acotadas en R con la
norma del supremo. Muestre que existe ¢ € ({o(N,R))’ tal que

liminf z,, < ¢(z) < limsup ,,, = (Tn)nen € loo-

n—00 n—o0
Sea X un espacio normado, f : X — K un funcional lineal no nulo y K =
ker f

(a) Muestre que dim(X/K) = 1.

(b) Muestre que f es continuo si y solo si ker f es cerrado.

. Un isomorfismo entre espacios normados X y Y es un homeomorfismo lineal.

Pruebe las siguientes afirmaciones.

(a) SiT:X — Y es un isomorfismo [isométrico] entre los espacios normados
X y Y, entonces T” : Y/ — X' es un isomorfismo [isométrico]. Si X y Y
son espacios de Banach, el converso también vale.

(b) Si un espacio normado Y es isomorfo a un espacio de Banach reflexivo X,
entonces Y es un espacio de Banach reflexivo.

. Sea X un espacio normado separable y (2, )n,en una sucesiéon acotada en X'.

Entonces existe una subsucesion (2], Jren y zf € X' tal que

/
Ty

lim 2, (z) = z((z), zeX.

k—o0

Es cierto esto sin la hipétesis de que X sea separable?

. Sea X un espacio normado y M un subespacio de X. Sea

L={feX'| f(x) =0 paratodoz e M}.

Muestre que L es un subespacio cerrado de X' y que M’ es isométricamente
isomorfo a X'/L.

. Sea X un espacio compacto, Cr(X) el conjunto de funciones continuas real-

evaluadas sobre X y Y C X un subconjunto cerrado.
(a) Considere el mapa p : Cr(X) — Cr(Y) definido por p(f) = fly. Muestre
que I := ker(p) es un subespacio cerrado de Cr(X).

(b) Seap:Cr(X)/I— Cr(Y) el mapa inducido en el espacio cociente. Pruebe
que p es una isometria.

—
o
~

Demuestre que rg(p) es completo.

(d) Use el teorma de Stone-Weierstrafl para concluir el teorema de Tietze: Sea
X un espacio compacto de Hausdorff y Y C X un subconjunto cerrado.
Entonces cada funcién continua f : ¥ — R tiene una extensién continua
[+ X = Rceon | fllecx) = I fller)-

. Muestre que en /; la convergencia débil y la convergencia en norma coinciden.
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Exercises for Chapter 3

1. (a) Todo espacio métrico completo con infinitos elementos y ningtin punto
aislado es no enumerable.
(b) Toda base algebraica de un espacio de Banach infinito dimensional es no
enumerable.

2. (a) Sea X un espacio de Banach, Y un espacio normado y (T, )nen € L(X,Y).
Suponga que para todo x € X el limite T2 := lim7T,,z existe. Entonces
T e L(X,Y). nen
(b) Sean X,Y espacios de Banach, Y reflexivo, y (T} )nen € L(X,Y) tal que
(p(Thx))nen converge para todo z € X y ¢ € Y. Entonces existe un
T e L(X,Y) tal que T,, = T.

3. Muestre que la hipétesis de completitud en el principio de acotacién uniforme
es necesaria.

4. Sea [a,b] C R, neNytomeaSt%n) < e <t$L") Sbyain) eK k=1,...,n.
Para f € C([a,b]) se define
Qu(h) = Yo F(E).
k=1
Muestre que los siguientes enunciados son equivalentes:

(a) Qn(f) — /bf(t) dt, n — oo, para todo f € Cla,b].

b
(b) Qunlp) — / p(t) dt, n — oo, para todo polinomio p : [a,b] - Ky

a
sup Yop_y \a,(cn)| < 0.
neN

Sean X, Y, Z espacios de Banach y T : X D D(T) — Y un operador lin-
eal.

(a) SeaS:X D D(S)— Y unoperador lineal. Entonces la suma de operadores
S + T se define como

D(S+T):=DES)NDT), (S+T)z:=Sz+ Tz

(b) Sea R : Y D D(R) — Z un operador lineal. Entonces el producto de
operadores o composicion RT se define como

D(RT) :={x € D(T) : Tx € D(R)}, (RT)z := R(Tx).

5. Sean X, Y, Z espacios de Banach, R € L(X,Y),T: X DD(T)—Y,S:Y D
D(S) — Z operadores lineales cerrados. Muestre que:
(a) R+ T es un operador lineal cerrado.
(b) SR es cerrado.

(c) Si S es continuamente invertible (i.e., S7! : rg(S) — Y existe y es
continuo), entonces ST es cerrado.
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10.

11.

12.

Muestre ademéds que estas afirmaciones siguen siendo validas cambiando “cer-
rado” por “clausurable”

. Sea X =/(5(N) y

T:X2D(T)— X, Tz = (nTp)nen Ppara T = (Ty)nen.
Diga si T es cerrado con:

(a) D(T) = {z = (zn)nen € L2(N) : (nzn)nen € L2(N)},
(b) D(T)=d={z = (zn)nen € £2(N) : z,, # 0 para solo finitos n}.

. Sea X un espacio de Banach, n € Ny T un operador lineal densamente definido

de X en K™. Muestre que T es cerrado siy solo si T' € L(X,K").

. Sean X y Y espacios normados y 7 : X 2 D(T) — Y un operador lineal

cerrado.

(a) Sea K C X compacto. Muestre que T'(K) es cerrado en Y.

(b) Muestre que si F es un compacto en Y entonces T~!(F) es cerrado en X.

(c) ¢Si A es cerrado en X, es cierto que T'(A) es cerrado?

. Sea X un espacio normado. Una sucesion (2, )nen C X es una sucesion débil de

Cauchy si para todo ¢ € X' la sucesién (¢(zr))nen es una sucesién de Cauchy
en K.

(a) Seaz = (z)nen una sucesién acotada en X. Muestre que z es una sucesién
débil de Cauchy si y solo si existe un subconjunto denso U’ de X’ tal que
(¢(xn))nen es una sucesién de Cauchy para todo ¢ € U'.

(b) Toda sucesién débil de Cauchy en X es acotada.

Sea X un espacio de Banach, (z,)nen € X, (@n)nen € X',y z0 € X, o € X’

tal que z, M) Z0 Y Pn —> @o. Muestre que le on(2n) = o(zo).
n—>00

Sea X un espacio normado.

(a) Muestre que (X,||-||)) = (X, o(X,X’)). Es decir: un funcional lineal
¢ : X — K es continua con respecto a la topologfa inducida por || - || si y
s6lo si es continua con respecto a la topologia débil.

(b) Sean (zn)nen € X, 20 € X y (pn)nen € X', po € X' tal que &, = 2 y
On ~=5 o Muestre

llwoll <Timinf flzall,  [loll <liminf ion].
(¢) Sean S = {z € X : ||z| = 1} la esfera unitariay K = {z € X : ||lz|| = 1}

la bola unitaria cerrada en X. jSiempre son débilmente cerradas (prueba
o contraejemplo)?

Paran € N sea e, = (0,...,1,0,...) la sucesién que tiene 1 en la posicién n y
0 en el resto.
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(a) Muestre que (€y)nen no es convergente débilmente en £;.

(b) Muestre que (e,)nen €s w* convergente en (1.

13. Sea X un espacio vectorial y M C X un subconjunto convexo, balanceado y

absorbente. Muestre que el funcional de Minkowski pys es una seminorma en X.

Exercises for Chapter 4

1.

Sea X un espacio pre-Hilbert, U C H un subespacio denso y zp € X tal que
(2o ,u) = 0 para todo u € U. Muestre que z¢ = 0.

. Sea w € C([0,1],R). Para z,y € C([0,1]) se define

1
(T, Y)w = /0 z(t)y(t)w(t) dt.

Halle una condicién necesaria y suficiente spobre w para que (-, )y, sea un pro-
ducto interno. Bajo qué condicién la norma inducida por (-, -),, es equivalente
a la norma usual de Lo?

. Let H be Hilbert space, (zn)neny € H and zg € H. Then the following is

equivalent:
(a) @, — wo.

(b) [|znll = w0 and 2, < @0.

. Ejemplo de una proyeccién no acotada. Sea H = ly y ¢; el vector usual e/ = 6f

Defina
Ly := span{eant1 :n € No}

. 8 1 1 1
2 1= span § e + 562,63 + 2—264365 + Fee, e

Muestre que Ly N Ly = {0}.
Muestre que L1 & Ly = H.
Muestre que Ly & Ly # H.

Defina el operador Py : L1 @ Ly — Ly @ Lo, Py(x +y) = . Muestre que
Py es una proyeccién no acotada.

P
o
RN AN =

—
[=}

. Para A € R defina f) : R — C, fa(s) = e y sea X = span{f\ : A € R}.

Muestre que

T JR—
()= Jim g [ 90 s

define un producto interior en X. Muestre que la completaciéon de X no es
separable. (||fx — fx || =7)

Los elementos en la completacion de X se llaman funciones casi periddicas.

. ;Existe algin producto interno (-, -) en C[0, 1] tal que (z,z) = ||z||%, para todo

zeC0,1]?
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7. Sea X un espacio pre-Hilbert. Muestre los siguientes resultados

10.

11.

(a) Sean z,y € X con z L y, entonces
ll + ylI* = !l + .

LEl converso es cierto en general? ;Hay algin caso para el que se tenga?

(b) Siz #0,y # 0y a L y muestre que el conjunto {z,y} es linealmente
independiente.

(Como se puede generalizar este resultado?

(c) x Ly, siysolosi||z+ ayl > ||z|| para todo escalar a.

. Let H be a Hilbert space, Y C H a subspace and ¢y € Y'. Show that there

exists exactly one extension ¢ € H' of ¢ with [[¢o]| = ||l

. Sea X un espacio pre-Hilbert y U C X un subespacio. Muestre que

—

(a) U #U*L. ;Se tiene alguna contenencia?
b) TaUt#X

Sea 1 < p < oo. Para f € L,(R) y s € R defina Ty : L,(R) = L,(R) como
(Tsf)(t) == f(t — s). Claramente los Ty son isometrias lineales.

(a) Sea 1l <p < oo. Muestre que Ty 2 id para s — 0. Los T convergen en
norma?

(b) Los T, convergen en norma o convergen fuertemente en el caso p = co?
Muestre que W™ (), H™(Q) y H{"(2) son espacios de Hilbert.
Para el problema 4.10: Para Q C R definimos el conjunto de funciones de prueba

2(Q) :={p € C(Q) : supp(p) C Q es compacto}.

Para un multi-indice & = (v, ..., ap,) € N” se define |[a| = a1 + -+ an ¥y
Dp = 07" ... 9% si la derivada existe.

Sea f € Ly(Q). Una funcién g € Lo(R2) se llama la derivada débil a-ésima de f
si

(g.9) = (2)l(f, D), @€ P(Q).

Note que la derivada débil es tinica si existe; se denota por D(*) f.

Para m € N definimos el espacio de Sobolev
W™(Q) := {f € Ly(Q) : D f € Ly(Q),]a| < m}.
W™(Q) es un producto interior con

(frghwn = > (D f DO g)y.

lal<m

Ademas, definimos los espacios
H™(Q) :=C™(Q)NnWm(Q) and H'(Q) = 2(Q)

donde la clausura es tomada con respecto a la norma inducida por (-, -)ym.
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12. Sea H un espacio de Hilbert and B : H x H — K sesquilineal. En H x H
considere la norma ||(z, )| := v/||z]]? + ||y]|*
(a) Muestre que las siguientes son equivalentes:
(i) B es continua.
(ii) B is parcialmente continua, es decir, para cada z fijo, y — B(zo,y)
es continua para cada yo fijo, z — B(z,yo) es continua.

(ili) B es acotado, es decir, existe M € R tal que ||B(z,y)| < M|z|||yl
para todo z,y € H.

(b) Si B es continuo, entonces existe T' € L(H) tal que
B(z,y) = (Tz,y), w,y€H.

(c) Si ademds existe m > 0 tal que B(z,x) > m|z||?, z € H, entonces T es
invertible y |77 < m~t.

13. Sea H un espacio de Hilbert. Muestre que para toda sucesién (z,,), € H
acotada, existe una subsucesion (z,, )r tal que la sucesion (yy,)n donde,

L
Ym = — 5 Ty s
m
k=1

converge.

14. Sea X un espacio normado, (z,)nen € X y z € X. Las siquientes son equiva-
lentes:

(a) > ,enTn converge incondicionalmente a .

(b) Para todo £ > 0 existe un conjunto finito A C N tal que para todo conjunto
finito Bcon AC BCN

| Se-a <
beB

15. Sea H un espacio de Hilbert. Si P: H — H es un operador lineal, las siquientes
son equivalentes:

(a) P es una proyeccién ortogonal.

(b) P?=Py (Pz,y) = (z,Py).

16. Sea H un espacio de Hilbert, V,W C H subespacios cerrados y Py, Py sus
correspondientes proyecciones ortogonales.

(a) Muestre que
VW <<= Py=P/Py=PyPy.
(b) Muestre que las siguientes afirmaciones son equivalentes:
(i) PvPw =0.

() vV Lw.
(iii) Py + Pw es una proyeccién ortogonal.

Muestre que rg(Py + Pw) = V @ W si alguna de las condiciones anteriores se
tiene.
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17. Sea H un espacio de Hilbert y Py, P, las proyecciones ortogonales sobre Hy,
H, C H. Entonces las siguientes afirmaciones son equivalenteas:

(a
(b
(c
(d

) Hy C Hi,

) 1 Pozll < [|Prafl, =€ H.

) (Pox,z) < (Pix,x), x€H.
) PPy =D

18. Sea H un espacio de Hilbert separable, (2 )nen una base ortonormal de H, y,
(yn),,,eN una sucesion tal que:

Dl —yall < 1

n=1
y z L yn, para todo n € N, entonces z = 0.

19. Sea H un espacio de Hilbert complejoy T : H — H un operador lineal acotado.
Muestre que T' es normal si y solo si ||T*z|| = ||Tz|| para todo z € H. En este
caso, muestre que |[T2|| = ||T|?.

20. Haar functions. Let v = x[o,1/2) — X[1/2,1)- For n, k € Z define

Yok tROR, np(t) =252 92t —n).
For k€ Ngandn € {0, 1,2, ..., 28 — 1} let
hok 4 (t) = Y (1), for t€[0,1),
hor 1y 0 [0,1] = R )
h2k+n(1) = 11I1’17 d’k,n(t)-
t—1
and ho(t) =1, t €0,1].

(a) (hj)jen, is a orthonormal system in Ls[0, 1] and (¢ k)n,kez is a orthonor-
mal system in Lo(R).

(b) T :Ly[0,1] = Ly[0,1], Tf = Zz P hj)h; is a orthonormal projection
on the subspace

U = {f € Ly[0,1] : f const. in intervals [r27%, (r + 1)27%) with € Np}.

—

c) For f e C[0,1], the series ij;o (f,hj)h; converges uniformely to f.
(d

(e)  (¥kn)k,nez is an orthonormal basis of La(R).

=

(hj)jen, is an orthonormal basis of L3[0, 1].

21. Sea H un espacio de Hilbert, V.W C H subespacios cerrados y Py, Py sus
correspondientes proyecciones ortogonales.

(a) Muestre que
VCW <+ Py=PyPy=PyPy.
(b) Muestre que las siguientes afirmaciones son equivalentes:

(1) Pva =0.
(i) VLW,
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22.

23.

24.

25.

26.

27.

28.

(iii) Py + Pw es una proyeccién ortogonal.
Muestre que rg(Py + Pw) = V @ W si alguna de las condiciones anteriores se

tiene.

Sea H un espacio de Hilbert y Fy, P; las proyecciones ortogonales sobre Hy,
H, C H. Entonces las siguientes afirmaciones son equivalenteas:
(i)Ho C Hy,
({1 Pox]| < [Pz, e H.
(iii) (Poa , :c) < (Plac xz), xeH.
(iv) PPy =

Sea H un espacio de Hilbert separable, (z,)nen una base ortonormal de H, y,
(Yn)nen una sucesién tal que:

oo
Z Hl'n _yn” <1
n=1

y z L y,, para todo n € N, entonces z = 0.

Sea H un espacio de Hilbert complejoy T : H — H un operador lineal acotado.
Muestre que T" es normal si y solo si ||T*z|| = ||Tz|| para todo € H. En este
caso, muestre que ||T2|| = ||T||>.

Sea H un espacio de Hilbert y (T7,)nen una sucesién acotada y monétonamente
creciente de operadores autoadjuntos. Muestre que la sucesién converge en el
sentido fuerte a un operador autoadjunto.

Sea (P, )nen una sucesién mondtona de proyecciones ortogonales en un espa-
cio de Hilbert H. Muestre que (P,)nen converge en el sentido fuerte a una
proyeccién ortogonal P y ademads
(a) rg P =U,en7gPn si P, es creciente.

(b) rg P ={),enTgPn si P, es decreciente.

Sean Hy, Hy y Hj espacios de Hilbert y S(Hy, — Hs) y T(H> — H3) operadores
lineales densamente definidos.

(a) SiT € L(Ha, Hs) entonces T'S es densamente definido y (T'S)* = S*T™*.
(b) Si S es inyectivo y S™! € L(Has, Hy) entonces T'S es densamente definido
y (T'S)* = S*T*.
(c) SiS esinyectivoy S™! € L(H», Hy) entonces S* es inyectivo y (R*)™! =
(R71>*
Sean Hy, H espacios de Hilbert y U : Hy X Hy — Ho X Hy, U(z,y) = (—y, z).
Entonces
(a) U es unitario.
(b) SiT(H; — Ha) es densamente definido,
G(T") = [U(GT)]* = UGD)h).

(c) T* es cerrado.
(d) Si T es clausurable, T* es densamente definido y T** = T.
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Exercises for Chapter 5
1. (a) Sea X = C([0,1]) y a € C([0,1]). Muestre que
A:X S X, (Az)(t) = a(t)z(t)
es un operador lineal acotado. Encuentre |Al|, 0(A), o (A), oe(A) y ox(A).
(b) Sea H ={f € C([0,1]) : 2(0) =0} y
S:H—H,  (Sx)t)= /Otz(s) ds.

Encuentre o(S), 0,(5), 0c(S) y 0:(S5).
2. Sea (An)nen C C una sucesién acotada, y,
T:08— Zl-, T(<xn)nEN> = </\nxn)nEN-

Encuentre o(T), op(T'), 0c(T) y 0:(T). Muestre ademés que, para todo K C C
compacto no vacio, existe un operador 7' € L(£') cuyo espectro es K.

3. Sea X un espacio de Banach S,T € L(X). Muestre que o(ST) \ {0} = o(T'S) \
{o}.

Hint. Muestre que id —ST es invertible si y solo si id —T'S es invertible, encon-
trando una relacién entre (id —7'S)~! y (id —ST)~!. Suponga ||T||[|S|| < 1y
mire si la relacién en este caso es vélida en general.

4. Encuentre el espectro puntual, el espectro continuo y el espectro residual de los
operadores:
R:l3(N) = £(N), R(x1, 2, 23, ...) = (0, 1, 2, 23, ... ),
L: lg(N) e fg(N), L(Il, T2, I3, ) = (IQ, T3, T4, ),
T :(>®°(N) = (>2(N), T(x1,x2,3,...)= (T2, T3, 2T4,...).
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Problem Sheet 1

Espacios métricos y normados.

1. Sea X un espacio normado. Muestre que:

(a) Todo subespacio finito-dimensional de X es cerrado.

(b) SiV esun subespacio finito-dimensional de X y W es un subespacio cerrado
de X, entonces

VW ={v+w:veV, we W}

es un subespacio cerrado de X.

2. Sea T un conjunto y £ (7T') el conjunto de todas la funciones = : T'— K con

[|2]|oo := sup{|z(t)| : t € T} < co.

Muestre que (€ (T), || - ||oo) €s un espacio de Banach.
3. Considere el espacio de sucesiones d, ¢g, ¢ definidos como en el Example 1.15.

(a) Muestre que (co, || - [loo) ¥ (¢, ]| * [lso) son espacios de Banach.

(b) Muestre que (d, || - ||oc) €s un espacio normado, pero no es completo.

4. Sea (X, || - ) un espacio normado. Muestre que X es un espacio de Banach si y
solo si toda serie absolutamente convergente es convergente.
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Problem Sheet 2

Operadores lineales.

1. Sea X un espacio compacto, Cr(X) el conjunto de funciones continuas real-
evaluadas sobre X y Y C X un subconjunto cerrado.

(a) Considere el mapa p : Cr(X) — Cr(Y) definido por p(f) = f|y. Muestre
que I := ker(p) es un subespacio cerrado de Cr(X).

(b) Seap: Cr(X)/I — Cr(Y) el mapa inducido en el espacio cociente. Pruebe
que p es una isometria.

(¢) Demuestre que rg(p) es completo.

2. Sean X y Y espacios normados con X de dimensién finita. Muestre que toda
funcién lineal T': X — Y es acotada.

3. (a) Sea X = C([a,b]) con la norma || - ||oo. Muestre que

b
T:X —C, Ta::/m(t)dt

es un operador lineal y acotado. ;Cuédl es su norma?

(b) Ahora considere X con la norma

b 1/p
lally o= ([ oop ar) ™, wex,

para 1 < p < oco. jSigue siendo T" acotado? Si es asi, calcule su norma.
(Si no han visto teorfa de medida, indiquenlo claramente y hagan el ejercicio
solo para p = 1).

4. Sea 1 < p < oo. Para z = (zp)nen € loo sea T : £, — {,, definido por (T'z), =
ZTnZp para & = (Tn)nen € p. Muestre que T € L({,) y calcule ||T7|.
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Problem Sheet 3

Hahn Banach, Espacios duales.

1. Demuestre el teorema de Hahn-Banach para espacios vectoriales complejos.

Sugerencia: Para un espacio vectorial sobre los complejos X muestre que:
(a) Sea ¢: X — R un funcional R-lineal, entonces
Vo: X = C, Vy(z):=p(x) —ip(iz),

es un funcional C-lineal sobre X con ReV,, = .
(b) Sea A: X — C un funcional C-lineal con Re A = ¢, entonces V,, = A.

(¢) Sea p un funcional sublineal sobre X y ¢, V,, definido como en el punto
anterior, entonces

le(@)| <plx) = [Vo(2) <p(z), zeX.
(d) el = Vel
2. En X = (3(N) considere el subespacio
U = {(@n)nen : n = 0 excepto para un nimero finito de indices n}.
Sea V' el complemento algebraico de U en X, i.e., U es un subespacio tal que
U+V =XyUNV ={0}. Muestre que

oo
p: X =K, gp(z):Zun paraz =u+vconu €U, veV.
n=0

es un funcional lineal bien definido y no acotado.

3. (a) Sea ¢ C l el conjunto de las sucesiones convergentes. Muestre que el
funcional

vo:c— K, z=(Tn)nen— lim x,
n—o0

es continuo y calcule su norma.

(b) Sea (5 (N,R) el conjunto de todas las sucesiones acotadas en R con la
norma del supremo. Muestre que existe ¢ € ((s(N,R))’ tal que

liminfx, < p(z) <limsupan, == (Tn)nen € loo-
n—o0 n—o00

4. Sea X un espacio normado, f : X — K un funcional lineal no nulo y K =

ker f
(a) Muestre que dim(X/K) = 1.

(b) Muestre que f es continuo si y solo si ker f es cerrado.
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adjoint operator
Banach space ~, 71
Hilbert space ~, 65, 75
Alaoglu, 53
algebraic basis, 16
annihilator, 73
antilinear, 60
ascent, 92

Baire’s category theorem, 38
Baire-Hausdorff theorem, 37
Banach space, 9
Banach-Steinhaus theorem, 38
basis

algebraic ~, 16

Hamel ~, 16

Schauder ~, 16

Bessel inequality, 62, 63
bidual, 33
bounded

uniformly ~, 38

category, first ~, second ~, 38
Cauchy sequence, 6
Cauchy-Schwarz inequality, 18
closable operator, 47
closed graph theorem, 47, 50
closed operator, 47
closed range theorem, 74
compact, 89
compact operator, 90
spectrum, 94
complete metric space, 6
complete orthonormal system, 61
contraction, 105
convergence, 6, 40
convergent
strongly ~, 40
weakly ~, 35, 40

descent, 92

Dirichlet kernel, 42
distance, 10

dual space, 26

Dunford theorem, 82, 83

eigenspace, 79

equicontinuous, 90

equivalent norms, 14

essentially selfadjoint operator, 88

Fejér theorem, 44

Fischer-Riesz theorem, 65

formal adjoint operator, 75

Fourier series, 41

Fréchet-Riesz representation theorem, 61
Fredholm alternative, 95

Fredholm index, 95

Fredholm operator, 95

functional, 26

Gram-Schmidt, 62
graph norm, 49

123

124

Holder conjugate, 30
Holder inequality, 18
Haar functions, 113
Hahn-Banach theorem, 27
Hamel basis, 16
Hellinger-Toeplitz
theorem ~, 67
Hilbert space, 56
Hilbert-Schmidt norm, 99
Hilbert-Schmidt operator, 99
holomorphic, 82
homeomorphism, 6

index
Fredholm ~, 95
Riesz ~, 93
inequality
Bessel ~, 62, 63
Cauchy-Schwarz ~, 18
Holder’s ~, 18
Minkowski ~, 11
Minkowski’s ~, 19
Young’s ~, 18
initial topology, 52
inner product, 55
inner product space, 55
Inverse mapping theorem, 46
isometry, 6
partial ~, 104

Korovkin theorem, 40

Lax-Milgram theorem, 112
Legendre polynomial, 62
Lemma

Riesz’s ~, 15

metric space, 5
Min-Max-Principle, 99
Minkowski inequality, 11, 19

Neumann series, 25
norm

equivalent ~s, 14
normed space, 9
nowhere dense, 38

open map, 45
Open mapping theorem, 46

operator
closable ~, 47
closed ~, 47

compact ~, 90
essentially selfadjoint ~, 78, 88
Fredholm ~, 95

positive, 68

selfadjoint ~, 78, 87

spectrum of a ~, 79
operator norm, 21
operator product, 108
operator sequences, 40
operator sum, 108
orthogonal, 58
orthogonal complement, 58
orthogonal projection, 60
orthonormal basis, 61
orthonormal system, 61

Parallelogram identity, 56
Parseval’s equality, 64
partial isometry, 104
Polarisation formula, 56
positivity preserving, 40
pre-Hilbert space, 55
precompact, 89

product topology, 53
projection, 50, 60, 69, 114
projection theorem, 58

reflexive, 33

relatively compact, 89
resolvent, 79, 84
resolvent map, 79
resolvent set, 79

Riesz index, 93

Riesz’s lemma, 15
Riesz-Schauder theory, 95

Schauder basis, 16
selfadjoint operator, 78, 87
semicontinuous, 53
seminorm, 9, 26
separable, 8
sequence

Cauchy ~, 6

convergent ~, 6
sesquilinear form, 55
shift operator, 23, 33
singular values, 98
space

Banach ~, 9

metric, 5

normed ~, 9
spectral radius, 86
spectrum, 79

compact operator, 94
sublinear, 26
subspace

complemented ~, 51
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symmetric operator, 78

test functions, 111

theorem
Ascoli-Arzela, 90
Baire’s category ~, 38
Baire-Hausdorff ~, 37
Banach-Steinhaus ~, 38
closed graph ~, 47, 50
closed range ~, 74
Dunford, 82, 83
Fejér ~, 44
Fischer-Riesz ~, 65
Fréchet-Riesz representation ~, 61
Hahn-Banach ~, 27
Hellinger-Toeplitz ~, 67
inverse mapping ~, 46
Korovkin ~, 40
Lax-Milgram ~, 112
open mapping ~, 46
Phillips, 74
projection ~, 58
Schauder, 90
Tietze, 107

Tietze’s theorem, 107

topology, 52
initial ~, 52
product ~, 53
weak ~, 52
weak x ~, 52

totally bounded, 89

triangle inequality, 5

unconditionally convergent, 112
Uniform boundedness principle, 38
uniformly bounded, 38

weak Cauchy sequence, 109
weak convergence, 35

weak topology, 52

weak % topology, 52

Young’s inequality, 18
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