Cálculo integral – Ecuaciones diferenciales 2013-2

Taller 2

- Fecha de entrega: 4 de septiembre 2013.
- Si entrega soluciones de la parte voluntario, indique claramente en la primera página cuales. Si no lo hace, no serán corrigidas.
- Indique claramente en su hoja tanto su nombre como la sección de la clase complementaria¹ a la que pertenece. Si el número de la sección no está claramente indicado, la tarea no será calificada.

Problem 1. Determine si las siguientes integrales son impropias. Si lo son, explique por qué lo son. Determine si las integrales convergen o divergen.

(a)
$$\int_{-5}^{5} \frac{1}{x} \, \mathrm{d}x,$$

(b)
$$\int_{-5}^{5} \frac{1}{\sqrt{|x|}} dx$$
,

(c)
$$\int_0^3 \ln x \, \mathrm{d}x,$$

(d)
$$\int_0^\infty \sin x \, dx.$$

(3)
$$\int_0^\infty \frac{(\arctan e^x)^3 + (\sin \frac{1}{x})^2}{x\sqrt{x} + \arctan(x^2 + 1)} dx,$$

(f)
$$\int_0^\infty \frac{(\sin x)^2}{x^2} \, \mathrm{d}x.$$

Problem 2. (a) Encuentre la longitud de la curva dada por

$$y = 5 - \frac{1}{3}\cosh 3x$$
, $0 \le x \le 2$.

(b) Encuentre la longitud de la curva dada por

$$x = \frac{y^4}{4} + \frac{1}{8y^2}, \quad 1 \le y \le 3.$$

Problem 3. Encuentre el área de superficie que se obtiene al rotar la curva

$$y = \frac{1}{4}x^2 - \frac{1}{2}\ln x, \qquad 1 \le x \le 2$$

- (a) alrededor del eje x,
- (b) alrededor del eje y.

Sec. 32: David Perdomo, 11-11:50 am; Sec. 33: David Perdomo, 12-12:50 m;
Sec. 34: Rafael Montoya, 12-12:50 m; Sec. 35: Rafael Montoya, 11-11:50 am.

Los siguientes problemas son opcionales, y no afectarán la nota de este taller. En caso de entregarlos será corregido como retroalimentación.

Problem 3. Determine si las siguientes integrales son impropias. Si lo son, explique por qué lo son. Determine si las integrales convergen o divergen.

(a)
$$\int_3^\infty \frac{\arctan x}{\sqrt{x^2 - 4}} dx,$$
 (b)
$$\int_0^2 \frac{\arctan x}{\sqrt{x^2 - 4}} dx.$$

Problem 4. Encuentre la longitud de la curva C dada por

$$42y = 7x^3 + \frac{21}{x}, \qquad 1 \le x \le a.$$

Problem 5. Dada la curva

$$C: x = 5 - t^4, \quad y = t^3 - t,$$

determine si la curva tiene autointersecciones. Encuentre todos los puntos, en los cuales la curva tiene tangentes verticales o horizontales. Haga un bosquejo de la curva.

Problem 6. Halle el área encerrada por las curvas

$$r = 2, \quad r = 3\cos t, \qquad t \in \mathbb{R}.$$

Problem 7. Halle la longitud de la curva

$$x = 3\cos t - \cos(3t), \quad y = 3\sin t - \sin(3t), \quad 0 \le t \le \pi.$$

Problem 8. La curva C sea dada por

$$x = \sin t$$
, $y = \sin t \cos t$, $t \in \mathbb{R}$,

- (a) Muestre que C se intersecta en (0,0) y da la fórmula para la(s) tangente(s) a la curva en este punto.
- (b) Da la fórmula para la tangente a C en el punto $(\frac{1}{2}\sqrt{2}, \frac{1}{2})$.
- (c) Calcule el área encerrada por C.