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These lecture notes are work in progress. They may be abandoned or changed radically at any
moment. If you find mistakes or have suggestions how to improve them, please let me know.

Many students found numerous errors and improved parts of the script considerably. Special thanks
for a very long list of errors and many improvements goes to Federico Fuentes.

I started writing these notes while I was teaching an introductory course on analysis at the Univer-
sidad de los Andes, Bogotd, Colombia in 2008-2. Since then, there have been changes every time I
taught it again and hopefully it converges to an error-free state. The lecture is aimed at pregrade
students who are already familiar with calculus.

The script is very much influenced by the lecture notes on Analysis 1 of my teacher C. Tretter and
by the book Analysis 1 by T. Brocker [Brs92]. In addition, I was mainly using the books by Rudin
[Rud76] and Dieudonné [Die69] besides several other books as sources to prepare the lecture.

An important part of any mathematics lecture are exercises. For each week there is a problem
sheet with exercises (stolen from various books) which hopefully help to understand the material
presented in the lecture.

Corrections, comments and remarks on the text are most welcome!

Bogotd, August 2017,
Monika Winklmeier.
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Chapter 1

Preliminaries

The following is not intended to serve as an introduction into logic. It only tries to fix the meaning
of some symbols the occur frequently.

Statements

A statement A is either true or false.

Ezamples: “The inner angles of an equilateral triangle are all equal.” “Bogota has more inhabitants
than Berlin.” “The sun is closer to the earth than the moon.” “Today is Monday.”

Non-Ezample: “This sentence is false.”

Statements A and B can be negated and connected:

-A “not A”; the statement A is not true.
ANB “A and B”; both A and B are true.
AV B “A or B”; at least one of the statements A and B is true.

A = B  “Aimplies B”;
or: “Ais sufficient for B.”
or: “B is necessary for A.”
A= B (A= B)AB = A
“A is true if and only if B is is true.”
or: “A and B are equivalent.”
or: “A is necessary and sufficient for B.”

For convenience, sometimes the notation A <= B is used instead of B = A.
Obviously, A <= =(-A) and (A = B) < (-B = -A).

Sets and Quantors

Let M be a set and x an object. Then exactly one of the following statements is true:

x €M  “zisaneclement of M” or “z lies in M”.

z & M  “zisnot an element of M” or “x does not lie in M”.

Hence, ~(z € M) < (z ¢ M).

Last Change: Mon 08 Feb 2021 10:51:34 AM -05

Let M be a set and A a statement. Then we have the following statements:

VaeeM:A  “Forall elements x of M the statement A is true”.

JzeM:A “There exists at least one element x of M for which the
statement A is true.”

FzeM: A “There exists exactly one element z of M for which the
statement A is true.”

AxzeM: A “There exists no element x of M for which the statement
A is true.”

It is easy to see that =(3 x € M : A) is equivalent to Az € M : A.
Instead of “Vz € M : A”, also the notation “A, z € M,” is used.

Definitions
For definitions, the symbols := and :<=> are used. The left hand side is defined by the right hand
side.
Ezamples:
e A triangle A is called equilateral. :<= The length of all sides of A are equal.
o A:= “The inner angles of an equilateral triangle are all equal”.
o M:={1,2,3}.

More on sets

Let X be a set and A(z) a statement depending on the object z. The set
{reX : A@)} or {zeX[A()}
is the set of all € X such that A is true.
The set which contains no elements is called the empty set. It is denoted by 0.
Let M and N be sets. Then
MCN <= VazeM:zeN,
M=N = (MCN)ANCM).
A set M with M C N is called a subset of N. In this case N is called a superset of M and we write
NDOM.
Each set N has the trivial subsets § and N. A subset M C N is called a proper subset of N if M
is not a trivial subset of N.
Other useful definitions are
N\M ={z:zeNAxz¢gM} difference,
NUM ={z:zeNVvzeM} union,

NNM ={z:zeNANzeM} intersection,
0 ={ empty set  (note: ) # {0}),
P(N) :={M:MC N} power set,

NxM :={(z,y):xeN,yeM} Cartesian product.

The sets M and N are called disjoint if and only if M NN = (). Often the union of disjoint sets is
denoted by MUN or M L N.

Last Change: Mon 08 Feb 2021 10:51:34 AM -05
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Relations

A relation R on a set M is a subset of M x M. Instead of (z,y) € R and (z,y) ¢ R we write z Ry
and x Ry, respectively.
A relation R on a set M is called

o reflexive if and only if x Rz for all € M.

o symmetric if and only if for all x,y € M the relation « Ry implies y R x.

o transitive if and only if for all ,y, 2z € M the relations x Ry and y Rz imply z R z.

Examples for relations are =, C, 1, <, #.

Ordered sets
(M, <) is called a (totally) ordered set by the relation < if the relation < is transitive and for
z,y € M exactly one of the following statements holds:
<y, x=y, y<u

‘We use the following notations:

>y = y<u,

r<y &= r=yVr<y,

>y = r=yVr>y.
Definition 1.1. Let (M, <) be a totally ordered set, N C M and x € M.

z is a lower bound of N <= x<n,neN,
z is an upper bound of N <= x>mn,neN.

We say that

N is bounded from below :<= N has a lower bound,
N is bounded from above :<=> N has an upper bound,
N is bounded :<= N has an upper and a lower bound.

The infimum of N, denoted by inf N, is the greatest lower bound of N, i.e., inf N is a lower bound
of N and for every lower bound 2’ of N we have inf N > 2’. If an element n of N is a lower bound
of N, then it is called minimum of N, denoted by min N.

The supremum of N, denoted by sup N, ist the least upper bound of N, i.e., sup N is an upper
bound of N and for every upper bound z of N it follows that sup N < z. If an element n of N is
an upper bound of N, then it is called mazimum of N, denoted by max N.

Remark. Neither the infimum nor the minimum need to exist. If they exist, then they are unique.

If the minimum exists, then also the infimum exists and min N = inf N. The same assertions hold
for the supremum and the maximum.

Functions

Let M and N # 0 be sets. A function (or a mapping) from M to N

f:M—=N, z— f(z),

Last Change: Mon 08 Feb 2021 10:51:34 AM -05
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assigns to each element = € X a unique f(x) € N. M is called the domain of f.
G(f) = graph of f :={(z,f(z)) ;2 € M} C M x N,
R(f) := range of f :={f(z): 2 € ]ll}n
A function f: M — N is called
injective (or one-to-one) <= Va2’ € M: (f(z)= f(a/) = z=2),
surjective <= R(f) =N,
bijective :<=> f injective A f surjective.

Since
f Dbijective = Vye N3IzeM: f(z)=uy,

a bijective function f : M — N defines a function N — M, the so-called inverse function of f:
FFUN=S M, yeo= f"y).
Remark 1.2. A function is not only the rule how to assign an element y to some z. The sets M
and N are also part of the function. For example, the following functions are all different:
fi:R—=R, x> 22,
fa:(0,00) - R, @ a?,
f5:(0,00) = (0,00), @~ a?,
fa:(0,00) = (1,00), z 22,
The function f; is neither injective nor surjective, the function fo is injective, the function f3 is
bijective, and the function fy is not well-defined.
Let M and N be sets and f: M — N a function. Given a subset A C M we define the restriction
of f to A by
flatA—= N, fla(@) = f(z).

f is then called extension of f|a. Another notation for the restriction of f is f[A.
The image of A under f is

f(A):=R(fla):={yeN : FweA: f@) =y} ={f() : x € A}.
For a subset B C N the set
fHB):={x €M : f(z) € B}
is called the preimage of B under f.
Two functions f, g : M — N are equal, denoted by f = g, if and only if

fl@)=g(x), xeM.

For example, in Remark 1.2 the functions f1(,0) and fa are equal, f» and f3 are not equal.
For sets L, M, N and functions f: L — M, g: M — N we define the composition of f and g

h=gof:L—= N, xzw— h(z):=(gof)(x):=g(f(x)).

As a diagram:

A VA

h=gof

Last Change: Mon 08 Feb 2021 10:51:34 AM -05
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Example. Let f: M — N bijective. Then
flof:M—=M, (flof)(z)=uz,
ol iN= N, (fof Ny =y

Proofs

Usually, there are several ways to prove statements like A = B. The end of proofs are usually
indicated by the symbol 0. The most common types of proofs are the following:

Direct proof

A direct proof of a statement C starts with a set of axioms that are agreed upon. Using a chain of
conclusions, finally C is established.

Example 1.3. For all n € N the following holds:

n iseven = n? iseven.

Proof. neven =— dmeN:n=2m
= n? = (2m)% =2-2m?
= n? = 2m’ for m' = 2m? € N
= n? is even. [}

(The natural numbers N are introduced in Section 2.1.)

Proof by transposition

Often it is simpler to proof -3 = -4 than the equivalent statement 4 —> B.

Example 1.4. For all n € N the following holds:

n? iseven = 7n iseven.

Proof. The implication above is equivalent to the implication:
For all n € N the following holds: n is odd == n? is odd.

The proof of the latter statement is similar to the proof of example 1.3:

nodd = dmeNy:n=2m+1

— n?=02m+1)?=02m)>+2-2m+1
N n2=2m'+1form =2m?+2meN
S n? is odd. o

Proof by contradiction

In order to proof a statement A == B it is assumed that both A and —B are true. Then it is
shown that this leads to a contradiction, indicated in these notes by .

Example 1.5. For all n € N the following holds:

n? isodd = n isodd.

Last Change: Mon 08 Feb 2021 10:51:34 AM -05
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Proof. Assume that the implication is wrong. Then there exists a n € N such that n? is odd but n
is even. This contradicts the assertion of Example 1.3. [m}

Example 1.6. a,b € R = 2ab < a® + b%.

Proof. Assume that the implication is wrong. Then there exist a,b € R such that 2ab > a® + 2. Tt
follows that

0>a’+b?—2ab=(a—b)>>0. X O

Remark. The fact that statement A implies statement B and that B is true, does not imply that
also A is true. For example, the implication

“-1=1 = (-1)?=1?
is true and the statement on the right hand side is true, but this does not imply that the initial
statement —1 =1 is true.
Proof by Induction

The idea of proof by induction is to show a statement A(1) (base of induction). When the impli-
cation A(n) = A(n+ 1) n € N, is shown, then the statement A(n) is true for all n € N. The
induction principle is discussed in Section 2.2.

Last Change: Mon 08 Feb 2021 10:51:34 AM -05
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Chapter 2

Natural numbers

The sets
NCZCQCRCC

can be introduced axiomatically, see [Lan51].
In this chapter the natural numbers

No={0,1,2,...} and N=Ng\{0}={1,2, ...}

are defined by the Peano axioms.

2.1 Peano axioms

The set of the natural numbers Ny satisfies the following axioms:
(P1) 0 € Ny,

(P2) there exists a mapping v : Ny — N,

(P3) v is injective, that is: m,n € N, m #n = v(m) # v(n),

(P4) Axiom of Induction: for all M C Ny the following implication holds:
(0eMA(meM = v(n)e M)) = M =N,.

Remark. e For n € N the number v(n) is called the successor of n.
e (P1) implies that the natural numbers are not the empty set.
e (P2) implies that 0 is not the successor of any natural number.
e (P4) implies that v is surjective.

As usual, we write

v(0)=1, v(0) =2, v(..v0)...))=n
—_——

n times

The operations + (addition) and - (multiplication) are introduced by using the function v:

Last Change: Mon 08 Feb 2021 10:51:35 AM -05
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Definition 2.1. For n,m € Ny let

n+0:=n, n+1:=v(n), n+v(m) :=v(n+m)

n-0:=0, n-l:=mn, n-v(m):=n-m+n.

Remark 2.2. (i) It can be shown that + and - are commutative, associative and distributive
(see Section 3.1).

(ii) For m,n € N exactly one of the following relations holds:

(a) m=n.
(b) There exists exactly one 2 € N such that n =m + .

(c) There exists exactly one o € N such that m = n + x.
In case (b) the number @ =: n — m is called the difference of m and n.

Definition 2.3. Let m,n € Ny. Then

m<ni<= JzeN:n=m+uz.
Remark. It can be shown that (Ng, <) is a totally ordered set.
Theorem 2.4 (well-ordering principle). Every non-empty subset of No has a smallest element.
Proof. We have to show:

MCNo, M#0) = 3moeM : (VmeM:mg<m).

Let M C Ny, M # (). Then there exists an mo € M. Let

A={keNy: k<m, meM}.
Obviously, 0 € A and mo + 1 € A, hence A # Ny. Therefore there exists an a € A such that
a+1¢ A (otherwise A = Ny by the axiom (P4)). Hence there must be an element m € M such
that a <m < a+1, hence m = a and a is the minimum of M. O
Without proof we cite the following important facts:
Theorem 2.5. The natural numbers are not bounded from above, i. e.

AN eNg: (VTLEND:HSN).

Theorem 2.6 (Euclidean algorithm, Division with remainder). For every m € N and
n € Ny there exist uniquely determined k,l € Ny, | < m, such that

n=k-m+I. (2.1)

2.2 The induction principle
Principle of induction. Let (A(n)),en be a family of statements, such that

(i) Basis: A(0) is true.
(ii) Inductive step: For all n € Ny the implication A(n) = A(n + 1) is true.

Last Change: Mon 08 Feb 2021 10:51:35 AM -05
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Then A(n) is true for all n € Ny.

Proof. Let M :={n € Ng : A(n) is true} € No. Then 0 € M by (i) and with every m € M also
v(m) C M by (ii). By (P4) it follows that M = Ny. O

A variation of the induction principle is the following: Let ny € Ny and assume that
(i) Basis: A(ng) is true.
(i) Inductive step: For all n € Ng, n > ng, the implication A(n) = A(n + 1) is true.

Then A(n) is true for all n € Ng, n > no.

Remark (Complete induction principle). Assume that for all n € N the implication
A(k) istrueforall k<n = A(n) istrue

holds. Then A(n) holds for all n € Ny.

Proof. Assume that there exists an n € Ny such that A(n) is not true. Then the set B := {n € Ny :
A(n) is not true} is not empty. By the well-ordering principle (Theorem 2.4) B has a minimum
ng := min B and by definition of B the statement .A(m) is true for all m < ng. Hence the induction
assumption implies that A(ng) is true. [m]

The principle of induction can be used for definitions. For example:

Definition 2.7. Let kg € Ny and ax € N, k € Ny, k > ky. Then the symbols

n n
E g, H a, neN, n> ko,
k=ko k=ko
are defined by
ko ko
E Q) = Qg H Af 1= Qg
k=ko k=ko

and
n+1 n n+1 n
Zak = <Z alc) + ant1, H ay, 1= (H ak) CQnt1, n > ko.
k=ko k=ko k=ko
For n < ko we define the empty sum and empty product by
n n
Sa=0  JJa=1
k=ko k=ko

n
1
Theorem 2.8. k’:1+2+~-+n:§n(n+l), neN.
k=1

Proof by induction on n.

k:l:%1(1+1). v

M~

(i) Basis n=1:

=
I

1

Last Change: Mon 08 Feb 2021 10:51:35 AM -05
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(ii) Induction step: n ~ n+ 1 for arbitrary n € N.

We write down the induction hypothesis and what we want to prove:

n
1
induction hypothesis: Z k= in(n +1). (statement A(n))
k=1
ntl 1
we want to show: Z k= 5(" +1)(n+2). (statement A(n + 1))
k=1

The implication A(n) = A(n + 1) follows from

n+1

Sk
k=1

n
e
(Z k) +(n+1) MR 5n(n +1)+ (n+1)
k=1

(%71+1)(71+]) = %(n+2)(n+1). O

Proposition 2.9. 2" >n? neN, n>5.

Proof by induction on n, ng = 5.

n=>5: 2°=32>25=5% v
ind.hyp.

nAn+1: 2ntl=9.9n " >]yp 2n2. Since for n > 3
n=nn—-2+2)=n(n—-2)+2n>1+2n

it follows that

ind.h;
ontl —9.9n MY on2 _ 2 L2 > 2 b on g1 = (n 4+ 1)2 o

2.3 Countable sets

Definition. The sets M and N have the same cardinal number if and only if there exists a bijection
¢ : M — N. In this case we write M ~ N.

Obviously, the relation ~ is
(i)  reflexive: M~ M,
(i) symmetricc: M ~N = N~ M,
(ili) transitve: M ~N AN N~P = M~ P.

Remark. For m,n € N the following equivalence holds:
{1,2,....,n}~{1,2,...,m} < n=m.

Definition 2.10. A set M is called
(i) finite if M =0 orif M ~{1,2, ..., n} for some n € N,
(i)  infinite if it is not finite,
(iii)  countable (or denumerable) if M ~ N,
(iv)  uncountable if it is neither countable nor finite,
(v)  at most countable if it is either countable or finite.
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If M ~{1,2,..., n} for some n € N, then

#M :=|M| :=n = number of elements in M.

Examples. The sets N, Ng, —N, Z, Q are countable, see Corollary 2.14 (Exercise 2.5).
The set of all real numbers R is uncountable (Corollary 4.57).

The proofs of the following facts can be found, e.g., in [Rud76, Chapter 2].
Proposition 2.11. Any subset of a countable set is at most countable.

Proposition 2.12. The finite union of finite sets is finite.
The countable union of finite sets is at most countable.
The finite union of countable sets is countable.

The countable union of countable sets is countable.

Proposition 2.18. If M and N are countable, then M x N is countable.
Corollary 2.14. The sets Z and Q are countable.

Proof. Z =Ny U (—N) is countable by Proposition 2.12.

Since every element of Q is of the form 2 with some p € Z and ¢ € N, the set Q can be identified
with a subset of the countable set Z x N, so Q is at most countable. On the other hand, Q contains
the subset {% : n € N} which evidently has the same cardinality as N. Therefore Q cannot be
finite by Proposition 2.12. In conclusion, Q is countable. O

2.4 Binomial coefficients
Definition 2.15. For n € Ny we define n! € N (“n factorial”) recursively by

(i) 0l:=1,
(i) (n+1)!:=(m+1)-n!, neNp

Remark. n! = Hk:1~2» -o--m, n €Ny
k=1
1'=1,21=2,3=6, 4! =24, ..., 10! = 3628800 is growing very fast.

Theorem 2.16. Let M, N finite sets with #M = #N = n € N elements. Then there are exactly
n! bijections M — N.

Proof by induction on n. (i) Basis: For n = 1, the assertion is clear.

(ii) Induction step n.~n+1: Let M and N be sets with n + 1 elements. To define a bijection
f M — N we fix an arbitrary element z € M. Then there are n + 1 possible values
of f(z) € N. The mapping f : M \ {z} — N\ {f(x)} must also be a bijection, hence by
induction hypothesis there are n! possibilities to extend f : {x} — f(x) to a bijection M — N.
In summary, there are exactly (n + 1) - n! = (n + 1)! different bijections M — N. [m]

Definition 2.17. Let M be a set. A permutation of M is a bijection M — M.

By Theorem 2.16 a set M with n elements has exactly n! permutations. Moreover, since an order
on M is equivalent to a bijection {1, 2, ..., n} — M, there are exactly n! order of M.

Last Change: Mon 08 Feb 2021 10:51:35 AM -05
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Example. e M = {a} has only one order and only the permutation a — a.
o M = {a,b} with a # b has

2order 1+—a,2+—band 1—b, 2 a,
2 permutations: a — a, b— b and a — b, b a.

Remark. For the rest of this section the rational numbers Q are used (for the definition of the
binomial coefficients). This could be avoided by combining the definition and theorem 2.20 to
something like: Given k,n € Ny, k < n there ezists a natural number x such that zk!(n — k)! = nl.

The number x is then denoted by = = (7).

Definition 2.18. For k, m € Ny we define the binomial coefficients

(k4+m\ _ (k+m)!
(k,m)47< k >7W

(“k + m choose k7). We set (Z) =0ifk>n.
Remark. Let k,n € Ng, k < n. It follows immediately from the definition that
n n n n
= = =1.
(0)-(20) = ()-C)

n—1 n—1 n
P iti 2.19. = N s k<n-—1.
roposition 9 (k71)+< i ) (k)’ k,neN kE<n

Proof. Using Definition 2.18 a straightforward calculation yields
n—1 4 n—1) (n—1)! n (n—1)!
k-1 k) (k=-D'n-1-GFk-01) " K@n-1-k)!

_ (=1t _ n! _(n
7Ic!(n—k)!<k+n7k)7k!(n—k)!7(k)' o

Theorem 2.20. Let M be a set with #M = n < co. Then there are exactly (Z) different subsets
of M with cardinality k < n.

Corollary 2.21. (:

) €N for all k, n € Ng, k <n.

Proof of Theorem 2.20. We prove the claim by induction on n.
n = 0: In this case M = () and necessarily k = 0. Since () is the only subset of M the number of all

subsets with zero elements is 1 =
nvn+1: Let #M =n+1, k€ Ng, k <n+ 1, and define

C(n, k) :=#{N C M : #N =k}.

Cn,k) = (”: 1>A

‘We have to show
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Chapter 2. Natural numbers 19

Fix € M. Since by induction hypothesis and the defintion of ("11) there are exactly (2‘) subsets
of M\ {z} with cardinality k, there are exactly (}) subsets of M with cardinality k which do

not contain z. Again by induction hypothesis, there exist exactly (kfl) subsets of M \ {z} with

cardinality k — 1, therefore there exist exactly (kﬁl) subsets of M with cardinality k& containing x.
Since an arbitrary subset of M either contains or does not contain the element z, the number of all

subsets with cardinality k is
n n n+1
c<n,k>f(k)+(k71)f( ! ) o

Theorem 2.22 (Binomial expansion). For numbers z, y and n € Ny the following holds:

(z+y)" = Z (Z)zky”’k = Z (k,m)zky™.
k=0

0<k<n
ktm=n

Remark. The formula holds for all z,y in any commutative ring R with the canonical actions of
N on R, for example for real numbers, matrices, functions, etc.

Proof. The second equality is clear. We prove the first equality by induction on n.
0 0\ o0
n=0: (z+y)’=1= o)ty v
n~n+1: Using the induction hypothesis we find
n

@4 = @)@t = @Y ()
k=0

n n

_ N\ k1, n—k N k,n—k+l

= E (k>:c Y +§ (k "y .
k=0 k=0

An index shift £ ~ k — 1 in the first sum yields

n+1 n
n+1 o\ k n—(k—1) TNk, n—(k—1)
(z+y) 7Z<k71>.ty +Z(k zFy
k=1 k=0
= n n
_ ol kyntl—k | n+l
et (G 0) s (@) e
k=1
=("}") by Prop. 2.19
ntl
_ Z <” ;Cr 1>l‘kyn+l—k' O
k=0
In the special cases x =y = 1 and = —y = 1, Theorem 2.22 yields

L. . n L (n
Corollary 2.23. ;) <k> =2" forneNy and g(fl) (k) =0 forneN.
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Proof. The formulae follow from the binomial expansion (Theorem 2.22):

> (;:) =2 (Z)lkl"*’“ =(1+1"=2" n € No,

k=0 k=0
S k(T -~ (n kin—k n n
S r =y ) CDITE ==t =0 =0, neN. |
k=0 k=0

Corollary 2.24. Let M be a set with #M =n < co.
(i) By Theorem 2.20 and Corollary 2.23, M has 2" subsets, i. e., #PM = 2™,

(ii) If n # 0, then M has as many subsets with an even number of elements as subsets with an
odd number of elements by Theorem 2.20 and Corollary 2.23.
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Chapter 3

Real and complex numbers

Integers

The ring of integer numbers Z is the smallest extension of the natural numbers such that for each
n € N the equation
rz+n=0

has a solution in Z and (Z, +, -) is a commutative ring with identity, that is, the associativity and
commutativity laws hold. The solution of z+n = 0 is denoted by —n and we write m+(—n) = m—n.
Rational numbers

The rational numbers Q are the field of fractions of Z, that is, the smallest field containing Z such
that for each n € Z \ {0} the equation

z-n=1
has a solution in Q. The elements of Q are equivalence classes of the form % with p,q € Z, ¢ # 0.
The order relation < on N in Definition 2.3 can be extended to Z and Q.
The field Q is still not sufficient:

(i) Not all equations have solution, e. g., 2 = 2 has no solution in Q.
(ii) Not every bounded subset of Q has a supremum, for instance {x € Q : 22 < 2} has no
supremum in Q (see Exercise 3.3).

2
Proof of (i). Assume that there exist p, ¢ € Z, ¢ # 0, without common divisor such that (s) =2.

Since p? = 2¢?, there exists an p’ € Z such that p = 2p’. Since 2¢> = 4p'?, 2 divides also ¢, in
contradiction to the assumption that p and ¢ have no common divisors. [m]
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3.1 Ordered fields
Definition 3.1. A field (K, +, -) is a set K together with operations
+:KxK—K, (z,y)—z+y, (addition)
i KxK—=K, (zy)—az-y, (multiplication)
satisfying the following axioms:

Axioms of addition

(Al) 24+ (y+2)=(x+y)+2 xyz2eK (associativity),

(A2) s+y=y+w, z,yeK (commutativity),

(A3) 30eK: z+0=2, z€K (identity element 0 of addition),
(A)VeeK3i—zeK: z+(—2)=0 (additive inverse element).

Axioms of multiplication

M1) z-(y-2)=(z-y) -2, zyzEK (associativity),

M2) z-y=y-2, zyeK (commutativity),

(M3) 31e K\{0}: z-1=2, z€K (multiplicative identity element 1),
(M4) Ve e K, 2#0, 32~ € K: z-2' =1 (multiplicative inverse element).

Law of Distribution
D) z-(y+2)=z-y+x-z, xyzek.

If it is clear what the operations + and - on K are, then one writes usually simply K instead of
(K, +, ).

Notation 3.2. The following notation is commonly used:

r-yi=z+(-y), wy:=z-y, z,y €K,
Limaey, Y€K, y+0,
Y

zy+z:=(x-y)+z etc z,y, z € K.

Remark 3.3. o (K, +) satisfying the axioms (A1) — (A4) is called a commutative group.

o (K,+, -) satisfying the axioms (A1) — (A4), (M1), (M2) and (D) is called a commutative ring.

Examples. e (Q,+,-) and (R, +, -) are fields,
® (Z,+, -) is a ring but not a field because (M4) is not satisfied,
e (N,+, -) is not a ring because (A4) is not satisfies,

o (Fy,+, -) with Fy = {0,1} and +, - defined by

+]0 1 -0 1
0[]0 1 0[0 0
110 1/0 1
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is the only field with 2 elements.
The following corollary follows immediately from the axioms:

Corollary 3.4. For a field (K,+, -) the following is true:

(i) The identity elements 0 and 1 are uniquely determined.
Forxz € K and y € K \ {0} the inverse elements —x and y~' are uniquely determined.
—0=0, 17'=1.

—(—z)=2, zeK.
—(r+y)=—2+(-y), wyeckK.
The equation a +x =b for a,b € K has the unique solution x =b—a in K.

(z ) '=2z, zeK, x#0.

)
)
)
)
)
)
(viil) (z-y)t=a2"ty7l, zyeK, x,y#0.
) The equation a-x =b fora, b € K, a# 0 has the unique solution x = ba~" in K.
(x) 2:0=0-2=0, zekK.
) (y=0 < 2=0Vy=0), zyeck.
) (—z) - y=—(xz-y), x yeK; inparticular, —y=—1-y.
) (m2)-(~y)=z-y, z,y€K.
Proof. We prove only (i), (vi), (x) and (xi).
(i) Uniqueness of the additive identity: Let 0, 0" € K be additive identity elements. We have to
show 0 = 0. This follows from
0 o0 o0 Do,
The uniqueness of the multiplicative identity element can be proved analogously.
(vi) Ewistence of the solution: Let x = b — a. Then z is a solution of a + z = b since

atb-a)®@at(cart) Y @t (—a)+b=0+0E b0y,
N—
=0 by (A4)
Uniquness of the solution: Let s, s’ € K be solutions of a + z = b. Then
s:s+b7b:s+(5'+a)fbi::1; (s+a)—b+s' =b—b+s =0+5 Wy oWy,
2

(x) Since the solution of 2 - 0 + # = x - 0 is unique by (vi) and since (use (D) in the first line and
(A3) in the second line)
z-04+2-0=2(04+0)==z-0,
z-0+0=2-0.
it follows that z - 0 = 0. the commutativity (M2) yields 0-z =z -0=0.
(xi) “==": Let -y = 0. If x = 0, then the assertion is clear. Now assume z # 0.
®

(Ma) (M1)

g Py 1™y @) B ya) et =00 Do

“<=": Follows from (x). [m]
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Definition 3.5. Let (K, +, -) be a field. For z,y € K, y # 0, define

n n
ne = xrn = E x, "= H z, n € No,
j=1 j=1

nx = an = —n(—x), y":=(y "), n € Z\ Np.

Proposition 3.6. Let (K,+, -) a field and z, y € K, n,m € Z. Then
(i) ne+mz=(n+m)x, (i) n(mz) = (nm)z, (iil) n(z +y) = nx +ny,

If x,y # 0, then also

(iv) M. pm = ‘,L,n+my (\,) (xn)m =g, (Vi) (J? . y>n ="y,
The statements (iv), (v) and (vi) hold for = 0 or y = 0 if m,n > 0.
Proof. We prove only the last statement. The other ones can be proved similarly.
First, let n € Np.
n = 0: By Definition 3.5 and (M3): (zy)’=1=1-1=2°-¢°. v
n .~ n+ 1: By Definition 3.5 and the induction hypothesis:

M
Ay = @) (yey) 2 @) @) = @) @)
(M2) ——
n+l =(z-y)"

=(z-y)
Now let n € Z\ Ny, i.e., —n € N. By Definition 3.5 and what we have already shown it follows that

Sy = @) ) = ey ) Cor.3.4(viii) (@) )" =@y O

Notation 3.7. Let (K, +, -) a field, A, B C K and 2 € K. Then
z+A:={x+a:ac A},
zA:={za : a € A},
A+B:={a+b:acA bec B}

Ordered fields
Definition 3.8. A field (K, +, -,>) is an ordered field if (K, +, -) is a field and the property “> 0”
(positivity) is compatible with + and - , i.e., the order azioms hold:
(OA1) For all z € K ezactly one of the following properties holds:
>0, =0, —x>0,
(OA2) z,ye K, 2>0ANy>0 = z+y>0.
(OA3) z,ye K, 2>0ANy>0 = z-y>0.

Let z, y € K. Then

x is positive = x>0,
x is negative = <0,
x is non-negative <= x>0 <= (z>0V x=0)
x is non-positive <= <0 <= (<0 V z=0).
r<y &= rv—y<0, r<y <= z—-y<O0,
r>y &= v—y>0, rz>y &= z—y=>0.
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Usually the ordered field (K, +, -,>) is denoted by K.
Examples. (Q, +,-,<) and (R, +, -, <) are ordered fields.
The following rules are immediate consequences of the order axioms:

Corollary 3.9. For elements a, x, o', y, y' in an ordered field (K,+, -,>) the following holds:
(i) Ewactly one of the following holds: © <y, x =y, x > y.
(ii) <y Ny<a = z<a,
(i) z<y = z+a<y+a,
(iv)za<y Ao/ <y = z+a' <y+vy,
V)z<yANa>0 = a-z<a-y,
r<yNa<0 = a-xz>a-y,
(Vi) 0<z<y AO<2' <y = 0<2'-z<y vy,
(vii) 22 >0, = #0,

(ix) 0<zr<y = 0<yl<al

)
(viii) >0 = 271 >0,
)
(x) 1>0.

Properties (i) and (i) show that (K,>) is a totally ordered set.

Proof. Property (i) is clear.
Proof of (ii): By assumption y — 2z > 0 and a —y > 0, therefore, by axiom (OA2), a — z =
(a —y) + (y — ) > 0 which is equivalent to = < a.
Proof of (vii): If 2 > 0 then the assertion follows from axiom (OA3). If z < 0 then z? =
—x)(—z)>0.
)
>0 >0
Proof of (viii): 7! =z -2~ - 27! > 0 by (vii) and axiom (OA3).
Proof of (x): Follows from 1 =1-1 and (vii).
For the proof of the other properties, see Exercise 3.1. O
Corollary 3.9 shows that the field F is not an ordered field since in Fy we have that 14+ 1 =0 % 0,
in contradiction to property (iv). Actually, every ordered field must have infinitely many elements.
Indeed, assume (K, +, -,>) is a finite ordered field. Since 1 > 0 by (x), property (iv) yields (use
induction): 0 < Z;Lzl 1, n € N. On the other hand, since K is finite, there is an m € N such that
YL 1=0. &
Definition 3.10. Let (K, +, -,>) be an ordered field.
Kiy={zeK:2>0}, K)={zeK: x>0}
K_=K\K{={zeK:2<0}

For z € K define the absolute value (or modulus) of x by

x, if x>0,
= |z| == .
—x, ifx<O0,
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and the sign of © by

. z/lz], ifx#0,
sign(z) := {O/H oD

The functions abs : K — K, x +— abs(z) and sign : K — K, x > sign(z) are called the absolute
value function and sign function.
The next proposition states some elementary properties of the absolute value.
Proposition 3.11. Let (K,+, -,>) be an ordered field and z,y € K. Then:
(i) |z} >0, and |z|=0 <= z=0,
(i) |- a| = Ja,
(iii) = <|z| and —x <|z|,
) |yl = lal - lyl,
(v) sign(z) € {—1,0, 1} and sign(z) - abs(z) = .

(iv

Fundamental is the so-called triangle inequality.

Theorem 3.12. Let (K,+, -,>) be an ordered field and x, y € K. Then
[z +yl < || + [yl 3.1
Proof. Since substituting by —z and y by —y does not change the formula, we can assume without
restriction that z +y > 0. Now
lz+yl = +y<|z[+]yl o

Corollary 3.13. Let (I, +, -,>) be an ordered field and z, y, z € K. Then
lz =yl <lal+yl, |e+yl >l —|yl| and |o—yl > || |yl

Proof. The first inequality follows directly from the triangle inequality
[z =yl =lz+ (=) < [zl + | =yl = |z] + |y|.

In the same way, the third inequality follows from the second inequality. To prove the second
inequality we not that |z] = |z +y — y| < |z + y| + |y|. Without restriction we can assume that
|z| > |y| because the assertion in symmetric in z and y. Therefore |z +y| > |z|—|y| = Hz\ - |y\| O

Theorem 3.14 (Bernoulli’s inequality). Let (K,+, -,>) be an ordered field. For xz € K,
x> —1 and n € Ny Bernoulli’s inequality holds:

(142)" >1+naz. (3.2)

Proof by induction on n.
n=0 14+2)°=1=1+0-z.
n ~ n+ 1: The induction hypothesis yields

> 1+ na by ind.hyp.

—_— )
(1+z)"™M=10+2)1+2)">1+2)(1+nz) =1+ (n+ 1)z + na’
—— ~~
>0 >0
>14(n+1a O
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Definition 3.15. (Least-upper-bound-property) An ordered field (K, +, -,>) has the least-
upper-bound-property if every non-empty subset which has an upper bound has a supremum (least
upper bound).

The least upper bound property is also called the (Dedekind) completeness.

Definition and Theorem 3.16. Every ordered field (K, +, -, >) with the least-upper-bound-property
has the so-called Archimedean property

(AP) For z,y € K, > 0, there exists an n € Ny such that

nr > y.

Proof. Assume there is no such n. Then the non-empty set
M ={nz : n € No}

is bounded by y hence, by the completeness assumption, sup M =: s exists. Since 0 < s —z < s
there exists an mo € N such that moz > s — 2 because s is the supremum of M (otherwise s — x
would be an upper bound of M which is smaller than s). This leads to s < (mp+1)z € M. & O

Example. (R,+, -,>) und (Q,+, -, >) have the Archimedean property. There exist ordered fields
without the Archimedean property.

The Archimedean property implies the following theorem.

Theorem 3.17. Let (K,+, -,>) be an ordered field with the Archimedean property and x, € € K,
e>0.

(i) If x > 1, then there exists an N € N such that

N >e.

(ii) If x <1, then there exists an N € N such that

N <e.

Proof. (i) Since & > 1 there exists an y > 0 such that z = 1 + y. Bernoulli’s inequality yields
2" =1+y)">1+ny, neNp
By the Archimedean property (AP) there exists an N € Ny such that Ny > ¢, also
2N > 14+ Ny>1l+e>e
(ii): If z < 0, we may choose N = 1. Now let us assume that 0 < 2 < 1. Since 27! > 1 ande~! > 0
there exists an N € Ny such that 0 < e=! < (z71)N =27V by (i), hence z¥ < e. [m]
3.2 The real numbers

It can be shown that up to isomorphy there is exactly one field R containing the natural numbers
N satisfying

o the field axioms (A1)—(A4), (M1)—(M4), (D),
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o the order axioms (OA1)-(OA3),
e least-upper-bound-property (Definition 3.15).

The existence of the real numbers will be shown in Section 4.6 using Cauchy sequences. Another way
to construct the real numbers uses the so-called Dedekind cuts, see for instance [Rud76, Appendix
to Chapter 1].

Remark. N C Z C Q C R, and the restriction of the order on R to N coincides with the order
defined in Definition 2.3.

Special subsets of R are the intervals:

Definition 3.18. For a, b € R, a < b, we define the sets

la,b] :={z €R:a<z<b} (closed interval),

(a,b) :={z€eR:a<xz<b} (open interval),

la,b) :={zeR:a<z<b} (
(

(a, b :={z€eR:a<xz<b}

right half-open interval),
left half-open interval).

Remark. Let a < b € R. Then sup((a, b)) = sup((a, b]) = max((a, b]) = b, (a,b) has no maximum.
Proposition 3.19. For every x € Ry there exists an n € Ny withn <z <n+ 1.
Proof. Exercise 3.3 [}
Proposition 3.20. Every interval in R contains a rational number.
Proof. Exercise 3.3 [m]
For the proof of the next theorem we use the following
Remark. Let 0 <a<be€ R and n € N, n > 2. Then
b —a™ < (b—a)nb" L. (3.3)

Proof. Using b—a > 0 and a* < b*, k € Ny, we obtain

b —a" = (b-a)d" "+ 0" 2a+ -+ ba" 2 a7 < (b—a)nb™ ! O

Definition and Theorem 3.21. For every real x > 0 and every n € N there is ezactly one real
y > 0 such that y" = .

This y is called the nth root of x denoted by y =: {/x =: x7. In addition we define the nth root of
0 to be 0.

Proof. Uniqueness: Follows from Corollary 3.9 (vi): 0 <y1 <y2 = yI <y5.

Ezistence: For n = 1 choose y = x. Now let n > 2. Let A:={t € R:t >0, t" <z}. The set Ais
not empty since it contains to := IJ%T (because 0 < ty < 1 and therfore t§ < to < ). Moreover, the
set is bounded from above since (1 +)? > 1+ > z. Since R has the least-upper-bound-property,

y:=sup A

exists. We want to show that y" = z.
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Step 1: Show y™ > x. Assume that y™ < x. Then there exists an h € R such that
_n
0<h< min{l, i}
n(y +1)n—1
The inequality (3.3) (with @ =y and b = y + h) yields
(y+h)" —y" <hn(y+h)" P < hn(y+1)" ' <z —y"

Since (y + h)" < x it follows that y + h € A in contradiction to y being an upper bound of A.
Step 2: Show y™ < z. Assume that y" > z. Then

Y-z

ny—1°
satisfies 0 < k < y. Inequality (3.3) yields that for all t >y — k
Y <y (y— k)" <nky" =y .

Therefore, [y — k,00) N A = 0. Since y is an upper bound of A, also y — k is an upper bound of A,
in contradiction to y being the least upper bound of A.

Since we have shown that y" < z and y™ > z it follows that y" = z. [m}

The extended real line

Definition 3.22. The extended real line is R := R U {—o00, co} with the convention that —oo <
z < oo for all z € R.

R is not a field but for z € R we define

TH+00=00+T =00, &T—00=—00+T=—00, —=—=0,
00 —00
00 ifx >0, —oo ifx >0,
0T =x-00= K -0z =a-(—00)= i
—oo ifx <0, 00 ifx <0.

For a, b e R let

(=00, b :=={xeR:2<b}, [a,00):={zecR:z>a},
(=00, b):={zeR:z<b}, (a,00):={zecR:z>a},

(=00, 00) :=R.
Definition 3.23. Let A C R. We define
sup A = oo if A has no upper bound,
infA=—o0 if A has no lower bound,
supf) = —oo, inf ) = co.

3.3 The field of complex numbers
Definition 3.24. A complex number is an element (a,b) € R x R. The set of all complex numbers

is denoted by C. Two complex numbers z; = (ar,b1) and 2o = (az2,bs) are equal if and only if
a; = as and by = bo.
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On C the operations + and - are defined by

+:CxC—C, (a,b)+ (c,d):=(a+c,b+d),
:CxC—=C, (a,b):(c,d):=(ac—bd,ad+ bc).

The absolute value (or modulus) of a complex number z = (a,b) is
2] := (a® + b?)% € R.
The complex conjugation is the map
C—C, z=(ab)—z:=(a,—b).
For a complex number z = (a, b) we set
Rez:=a (real part of z), Imz:=a (imaginary part of z).
Straightforward calculations show:

Proposition 3.25. (C,+, -) is a field with additive identity (0,0) and multiplicative identity (1,0).
For z = (a,b) the additive inverse is —z = (—a, —b). If z # (0,0), then its multiplicative inverse is

2= (o/l2l% =0/ |2]%).

Since (a,0)+(b,0) = (a+b,0) and (a,0)-(b,0) = (a-b,0) for all a,b € R, the field R can be identified
with the subfield {(a,0) : a € R} C C via the field homomorphism R — C, a +— (a,0). Note that
|(a,0)| = Va% = |a| in agreement with the definition of the absolute value of real numbers.

Definition 3.26. i:= (0,1).
Theorem 3.27. (i) i®= -1,
(i) (a,b) = a+1ib, a,b € R.
Proof. (i) i = (0,1)%> = (0,1)(0,1) = (0 — 1,04+ 0) = (~1,0) = —1.
(i) a+ib = (a,0) + (0,1)(b,0) = (a,0) + (0,b) = (a,b). O

The preceding theorem shows that calculations with complex numbers can be carried out as for
real numbers if we take into account that i? = —1.

The next proposition collects often used properties of complex numbers.

Proposition 3.28. Let z,w € C.

+Z=2Rez, z—-Z=2Imz,

w

Z=22>0 and |2|=0 <= 2=0,

=
E 2 & & &8 82
ES)

|zw| = |2| [w], in particular |2~ = |z|~! for z # 0.
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(viii) |Rez| < |z], [Imz| < |z,
(ix) |z 4+ w| < |z] + [w].

Proof. (i), (ii), (iii), (iv), (v) and (vi) are easy to check.
For the proof of (vii), let z = a + ib, w = ¢ + id with a,b,c,d € R. Then

|zw|?* = |(a +ib)(c +id)|* = |(ac — bd) +i(ad + be)|> = (ac — bd)* + (ad + bc)?
=a?c® + b2 d* + a*d* + b2c? = (a® + b?) (2 + d?) = |z |w|*.

Taking the square root yields the assertion.
The assertion about the real part of z in (viii) follows from

[Rez|? = |a> = a® < a® + % = |2~

The assertion about the imaginary part is proved analogously.
In order to prove the triangle inequality in (ix), note that wZ = Wz, hence

|z +w[? = (2 + w)(Z +T) = 2Z +wh + 20 + wZ = |2> + |w|* + 2T + 20
= 2 + |w|? + 2Re(zw) < |2|* + |w|?® + 2| Re(zw)|
el o+ fwf? + 202w] = 22 + [w]? + 20| w] = (2] + |w])®.

The assertion follows by taking the square root. O

Remark. Note that C cannot be ordered because i2 = —1 < 0 (cf. Corollary 3.9 (vii)).
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Chapter 4

Sequences and Series

In this chapter, the notion of convergence is introduced, one of the most important concepts in
analysis. To this end, it is necessary to consider the distance between points in a given set which
leads to the definition of metric spaces. Next we deal with sequences in metric spaces and give
criteria for convergence and divergence. If, in addition, the metric space is equipped with the struc-
ture of a vector space compatible with the given metric, then relationship between the arithmetics
and properties of sequences can be established.

4.1 Metric spaces

A metric space is a set of points X together with a function X x X — R that measures the distance
between two points in X and satisfies the properties that are expected from a distance.

Definition 4.1. Let X be a set. A metric on X is a function
d: X xX =R, (z,y)—dzy),

such that

(@) d(x,y) =0 = z =y,

(i) d(z,y) =d(y,z), z,y e X (symmetry),
(iil) d(z,y) < d(z,z) +d(z,y), z,y,z € X. (triangle inequality).
Then, (X, d) is called a metric space and d(z,y) is the distance between the points z,y € X.
Note that the definition of d implies

d(z,y) >0, z,yeX,

since the triangle inequality yields 0 = d(z,z) < d(z,y) + d(y, z) = 2d(z,y).
Examples. (i) Any set X with |X| <1,

(i) Q, R, Cwith d(z,y) = |x—y| are metric spaces. If not stated explicitely otherwise, we always
consider @, R, C as equipped with this metric.
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(iti) Let F=Q, R or C and n € N. Then F" with the Euclidean metric

d,y) =Vier =P+ e —wl?, 2= |y=]|: | €F,
is a metric space. Note that for n = 1 the euclidian metric coincides with the metric defined

n (iii).

(iv) The set X with the discrete metric

0, z=y,
d(wyy):{l vty

Remark. Let (X,d) be a metric space and Y C X a subset. Then (Y,d|yxy) is also a metric
space.

Special subsets of metric spaces are open and closed balls.

Definition 4.2. Let (X, d) be a metric space. For a € X and r € Ry we define

B,.(a)
K, (a) :={z € X : d(a,z) <r} =: closed ball with centre at a and radius r.

={z e X : d(a,z) <r}=: open ball with centre at a and radius r,

Example. In the special case of R the open balls are exactly the open intervals, and the closed
balls are the closed intervals.

Definition 4.3. Let (X,d) be a metric space. For a subset M C X

diam M := sup{d(z,y) : z,y € M}
is the diameter of M. M is called bounded if diam M < oo.
Remark. (Exercise 4.1)

e M bounded <= Jae X, r>0: M C B,(a).

o A subset M C R is bounded in the sense of Definition 1.1 (as a subset of an ordered set) if
and only if it is bounded in the sense of Definition 4.3 (as a subset of a metric space).

e A subset M C R is bounded if and only if there exist a, € R and r > 0 such that M C B,(a).

4.2 Sequences in metric spaces
Definition 4.4. Let (X, d) be a metric space. A sequence in X is a map
N—=X, n—az,cX.
The sequence is usually denoted by
(zn)nens  (Tn)pzy, or (21,2, ...).

The z,, are called terms of the sequence.
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The important properties of the domain of a sequence are that it is countable and ordered. There-
fore, instead of the index set N any subset M = {m, m+1, m+2, ...} C Z can be used as domain
of a sequence (note that there is an order preserving bijection between N and M).

Since a sequence (z,)nen in a metric space (X,d) defines the set {z, : n € N} C X, one writes
(Tn)nen C X.
Examples (Sequences in R).

e z, :=a,n € Nforsomea€R: (a,a,a,...) (constant sequence),

ex, =1 neN: (1,44, ...),

o z, =2", neN,fora fixed z € R: (z, 22, 2%, ...),

ez, =(-1)",neN: (-1,1, -1, ...),

e 190=0,21=1, 241 =xp_1 +x,, n€N: (0,1, 1,2,3,5,...) (Fibonacci sequence).

Definition 4.5. Let (X, d) be a metric space. A sequence (z,,)nen C X is said to be convergent if
and only if

JaeX Ve>0 INeN Vn>N d(z,,a)<e.
The sequence is then said to converge to a, and a is called the limit of (z,,)nen denoted by

. n—oo
lim x, =a, or =, —>a, Or I, —a, n— oo. (4.1)
n—o00

A sequence is said to be divergent if it does not converge.

The sequence (2 )nen is said to be bounded if {z,, : n € N} is bounded in X.

(Here and in the following, a statement like € > 0 always means € € R, £ > 0.)

The definition says that a sequence (z,,)nen € X converges to a € X if and only if for every r > 0
almost all (i.e.all with exception of finitely many) ,, lie in B, (a).

The next theorem justifies the notation a = lim,,_,y z, in (4.1).

Theorem 4.6 (Uniqueness of the limit). The limit of a convergent sequence in a metric space
s unique.

Proof. Let (X,d) be a metric space and (2,,)nen a convergent sequence in X. Let a,b € X such
that ©, — a and 2, — b for n — 0o and a # b. Then d(a,b) > 0 and there exist N,, N € N such
that

d(a,b)
2

,n>Ngy,  d(z,,b) < @, n > Np.

d(z,,a) <

Let N = max{N,, Ny}. Then the triangle inequality yields for n > N the contradiction

d(a,b) d(a,b)
2 + 2

d(a,b) < d(xy,,a) + d(z,, b) < =d(a,b). [m]

Examples 4.7. Consider some of the sequences in R of the example at the beginning of this section:
(i) @n =a, n €N, for some a € R: (2, )nen is bounded and lim,,_, z, = a.

(ii) z, = %, n € N. The sequence (z,,)nen is bounded and converges to 0.
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Proof. The sequence is bounded because {1 : n € N} € By(0). To prove the convergence,
let € > 0. By the Archimedean property, there exists an N € N such that N > % Tt follows
that

1 1
\mnf()\:f<7<5, n > N. [}
(iii) zn = (—=1)", n € N. The sequence (2, )nen is bounded and divergent.

Proof. The sequence is bounded since {(—=1)" : n € N} = {—1,1} C By(0). Let 0 < ¢ < }
and assume that (z,,)n,en converges to some a € R. Then there exists an N € N such that

d(z,,a) <&, n> N. By the triangle inequality, it follows that

1 1

2zd(wN,wN+1)Sd(mN,u)+d(aL‘N+1,u)<§+§:1. g

Therefore ((—1)™)nen does not converge in R. O

. . n .
(iv) nlglgc i 1. (Exercise)

(v) L 2o (see Exercise 4.3)

n%ngc 2n
Theorem 4.8. Every convergent sequence in a metric space is bounded.
Note that not every bounded sequence converges as Example 4.7 (iii) shows.

Proof of Theorem 4.8. Let (X, d) be a metric space, (z,)nen € X a convergent sequence and let
a = lim,,_,y x,. Then there exists an N € N such that

d(xp,a) <1, n>N.

Let R := max{d(a,21), d(a,22), ..., d(a,zny_1)} + 1. Then d(a,z,) < R for all n € N, hence
(#n)nen € Br(a). O

Definition 4.9. Let (X, d) be a metric space. A sequence (25, )nen C X is called a Cauchy sequence
in X if and only if

Ve>0 INeEN VYnm>N d(x,,zm)<Ee.
Theorem 4.10. Every convergent sequence in a metric space is a Cauchy sequence.

Proof. Let (X, d) be a metric space, (2, )nen € X a convergent sequence and a := lim,, oo . Let
& > 0. Then there exists a N € N such that

d(zn,a) < =, n > N.

[SIR)

Therefore, by the triangle inequality,

€

d(zy, xm) < d(zy,a) + d(@m, a) < = + % =g, n,m > N. [m]

N

Note that the converse is not true.
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Example. Consider the metric spaces (R, d) and the subspace ((0,1),d],1)) Where d is the usual
metric on R. Let 2, = £, n € N. We already showed that (z,),en converges to 0 in R, hence it

n’

is also a Cauchy sequence. Since (2,)nen C (0,1) and the metric on (0,1) is a restriction of the
metric on R, the sequence is also a Cauchy sequence in ((0,1),d](,1)). But the sequence does not
converge in ((0,1),d|(,1)). Indeed, if it would converge to some a € (0,1), then it would converge
to a also in the metric space (R, d). The uniqueness of the limit would imply @ = 0, in contradiction
toa ¢ (0,1).

Definition 4.11. A metric space in which every Cauchy sequence converges is called a complete
metric space.

Examples 4.12. e (Q is not a complete metric space.

e The metric spaces R, C, R™, C™ are complete.
The completeness of R is equivalent to the least-upper-bound-property on R.
Theorem 4.13. Every Cauchy sequence in a metric space is bounded.

Proof. Let (X,d) be a metric space and (z,,)nen € X a Cauchy sequence. Then there exists an
N € N such that

d(zy, xm) <1, n,m > N.
Hence, by the triangle inequality,

d(z1,,) < d(zy,zn) +d(zn, ©,) < d(z1,28) + 1.

Let R := max{d(x1,22), d(z1,x3), ..., d(x1,2n5)} + 1. Then (2,)nen C Br(x1) which implies the
assertion. O

Definition 4.14. Let (X,d) be a metric space, (2, )nen € X a sequence in X and p : N — N such
that p(n) < p(n+1), n € N. Then (z,(n))nen is called a subsequence of (zn)nen-

Theorem 4.15. Let (X,d) be a metric space and (zn)nen C X.
(i) If (zn)nen converges, then every subsequence converges and has the same limit.
(ii) If (xn)nen is a Cauchy sequence and contains a convergent subsequence, then it converges.

Proof. (i): Let (z,())nen be a subsequence of the convergent sequence (zn)nen C X and let
@ := lim, o0 . Let € > 0. Then there exists an N € N such that d(z,,,a) < &, n > N. Now
choose M € N such that p(M) > N. Since p(n) > N for all n > M, it follows that d(z,(n),a) <¢,
n> M.

(ii) Let (2n)neny € X be a Cauchy sequence with the convergent subsequence (2,(n))nen. Let
a := limuen T,(n) and € > 0. By assumption, there exists an K € N such that d(z,),a) < § for
k> K and an M € N such that d(z,,zm) < §, n,m > M.

Let N := max{K, M}. Then, using that p(k) > k for all k € N, we obtain

d(n,a) < d(Tn, Tony) + d(Tpn),a) < %+% =e, n > p(N). O
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4.3 Sequences in normed spaces

Next we want to consider metric spaces with the additional structure of a vector space such that
the metric is compatible with the algebraic structure.

Definition 4.16. Let F be a field. A set V is called an F-vector space if there are operations

+:VxV oV, (gy)—z+y zyecV (Addition),
FxV =V, Ao)e=Xa, AeF, zeV (scalar multiplication),
satisfying the following axioms:
Axioms of vector space addition
(VS1) 24+ (y+2)=(z+y)+2 xyz€V,
(VS2) a4+y=y+z, xycV,
(VS3) 30y € V: VaeVa+0y =z,
(VS4) VeeVI—zeV: x4 (—z)=0y.

Axioms of scalar multiplication

VS5) A (@+y)=Axz+Ay, NeEF z,yeV,

(VS5)
(VS6) A+p)-z=Axz+p-x, MpelF, zeV,
( YA (p-x)=N-p)-z, \NpeF zeV,
(VS8) 1-z==z, zeV.

The elements of V' are called vectors, the elements of F are called scalars. It is custom to write Az
instead of A\-z for A€ Fand z € V.

Corollary 4.17. Let V be a F-vector space. Then:
(i) Oy and —z are uniquely determined,
(i) 0-2 =0y, z€V,
(ili) (-1)-z=—-z, zeV.
Proof. (i) Analogously to the proof of uniqueness of the additive identity in fields (Corollary 3.4).
(ii) Let A=1, p =0 € F and z € V arbitrary. By axiom (VS6) it follows that

VS

.'1:“28)l-m:(1+0)<mw§6)1»m+0<m(:8)m+0-m

Therefore 0 - 2 = Oy by the uniqueness of Oy shown in (i).
(iii) Let A=1, g = —1 and @ € V arbitrary. Then

(i)

0 @0z=1-1.2"%1.2

Therefore (—1) - © = —x by the uniqueness of —z shown in (i). O

Examples. e Every field F is an F-vector space.
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o Let I be a field and n = 1. For z = (z;)j_;, y = (y;)}=; €F" =F x--- xF and A € F let
Tty = (z; +y)j1 = @1+ Y1, ..., Tn +Yn),
Aa= (Ary)ioy = Az, o Az).

It is easy to check that " is a [F-vector space. For n = 1 this vector space coincides with the
vector space above.

e C is a R-vector space; R is a Q-vector space.

o Let F be a field, X # ) a set and denote the set of all functions f : X — F by FX. For
f,g € FX and A € F define

f+9:X=F, (f+9)(2) = fx)+g(2), reX,
Af: X —=F, (A flx)= (), zeX.

Then FX is a F-vector space.

Now we want to equip a vector space V with a metric that is compatible with the algebraic structure
on V.

Definition 4.18. Let F =R or C and V a F-vector space. A norm on V is a map
-1V =R, 2w fal

such that

(i) [lz]| =0 <= =0, zeV,

(@) [l = A flzl, AeFzev,

(i) [+l < o] + [l =y eV.

Then (V| - ||) is called a normed space.

Remark. Instead of R or C, F can be any field with a norm in the sense above. Usually we always
deal with R- or C-vector spaces.

Immediately from the definition of a normed spaces follows the following proposition.

Proposition 4.19. Every normed space (V, || -||) is a metric space with the metric
d(z,y) ==z —yl, zyeV.
In particular, ||z| = d(z,0) >0, z € V.

Using the proposition above, convergent sequences and Cauchy sequences are also defined in normed
spaces. Let (2, )nen be a sequence in the normed space (V.|| - [|). Then

® (Zp)nen convergesto a €V <= Ve >0 INeN Vn > N |z, —al <e.

® (z,)nen is a Cauchy sequence in V'

= Ve>0 AN eN Vm,n>N |z, —z,| <e.

Definition 4.20. A normed space in which every Cauchy sequence converges is called a Banach
space.
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In the following, F is always assumed to be R or C.
Examples. e Every ordered field is a normed space with the absolute value as norm.
e Q with the norm ||z|| = |z| is a normed space but it is not complete.
e R and C with the norm ||z|| = |2| are Banach spaces.
o If V=R"or C", neNand
ol = VIR ol @ = (o) € F
then (F™, || - ||) are Banach spaces. The norm || - || is called the Euclidean norm on F™.
Analogously to Corollary 3.13 for ordered fields the following lemma can be shown:
Lemma 4.21. Let (V,| - ||) be a normed space. Then
[l = lIll] < e =yl < el + lyll, 2,y €V
Proposition 4.22. Let (V.|| -||) be a normed space over F =R or C.
(i) (#n)nen Cauchy sequence in V.= (||zs||)nen Cauchy sequence in R.

(ii) (zn)nen converges in V.= (||zn||)nen converges in R.

In this case: || limy—oo T || = limpy—oo |20 ||
Proof. (i) Let ¢ > 0. Since (z,)nen is a Cauchy sequence, there exists an N € N such that
‘H‘LnH - HL,,,H) <||zp —xm| <&, myn>N.
(ii) Let e > 0. Let € > 0 and let lim,,_,oo 5, := a. Then there is an N € N such that
[leall = llall] < llen —all <&, n>N. o
Note that in both cases the converse direction is wrong as the example ((—1)")nen shows. Moreover,
any normed space over a non-complete field I is not complete.
Proposition 4.23. Let (V,||-||) be a normed space over F =R or C and (zn)nen a sequence in V.
(i) lim z, =0 <= lim [z,| =0,
n—oo n=oo
(ii) lim z, =a < lim (z, —a) =0, < lim |z, —a|] =0,
n—»00 n—00 n—00
(iil) If there exists a sequence (An)rxen € F and an No € N, such that A, — 0, n — oo and
[nll < [Anl, 7 = No,
then lim z, = 0.
n—00
Proof. (i) and (ii) are immediate consequences of Proposition 4.22. For the proof of (iii) fix an
e > 0. Then there is an N € N such that |\,| <&, n > N. Hence
[|zn]] < [An] <e, n>max{Ny, N}. O

Next we show that the algebraic operations on a normed space and taking limits are compatible.
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Theorem 4.24. Let (V,|| - ||) be a normed space over a field F and let X € F.
(i) If (an)nen, (bn)nen are Cauchy sequences in 'V, then so are
(an +bn)nen  and  (Aan)nen.
(ii) If (an)nen, (bn)nen are convergent sequences in 'V, then so are
(an 4+ bn)nen  and  (Aay)nen,
and
nler;o(a,L +bp) = nler;o an + nliﬁn;o by, nILH;o Aa, = A nlglgc .

Proof. (i) Let e > 0. Then there exist N, € N and N, € N such that

e

[lan —am| < 5 m,n > Ng,
e

[1br, — b || < 2 m,n > N.

For m,n > max{N,, N} it follows that

&€

27%

&
ll(an +bn) = (am + bm)ll < llan = am + [bn = bmll < 5 +

hence (an + bp)nen is a Cauchy sequence.

If A =0, then (Aap)nen = (0)nen a constant sequence and therefore a Cauchy sequence. Now let
A # 0 and € > 0. Then there exist N € N such that ||a, — am|| < \€T| for all m,n > N, hence

3

[Aan = Aam = [Allan — am| < I/\IW =&, mmn=N.
(i) is proved similarly. O
Example. The sequence (z,)nen where z, 1= ":1, n € N, converges to 1.

Proof. Since the constant sequence (1),en and the sequence (1),ecn converge, we have that

lim z, = lim (1+l)=lim 1+ lim l=1+0=1. ]
n—o0o n—o0o n n—0o0 n—o0 M
Theorem 4.25. Let (V,|| - ||) be a normed space over the field F with norm |- |.
(i) If M)nen € F and (zy)nen €V are Cauchy sequences, then so is
(Ann)nen C V.
(ii) If (An)nen CF and (xn)nen €V are convergent, then so is (A\n@n)nen €V and

i Ozn) = i 2o J ).

(iil) If the sequences (An)nen C F and (2,)nen C V are bounded and at least one of them converges
to 0, then sequence of the products converges to 0.
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Proof. (i) Since the sequences (A, )nen and (2, )nen are Cauchy sequences, they are bounded (The-
orem 4.13). Let R,, Ry € R such that

llzall < Rey  [An] SRy, neN.
For £ > 0 choose N, Ny € N such that
e e
len — 2l < gp= mon=Ney and A=l < gpm mn > Ny

For all m,n > max{N,, Nx} it follows that
[Anzn = Anzm | = [ An(@n — 2m) = (A = An) 2|

€ €
< |l |lzn — 2m A = Ml ||| < Ras5— + Ros5— = €.
< Pl lon = @l + 1 = Al el < Ragie + Rog= = ¢

(i) is proved similarly.
(iii) is proved similarly. Let R,, Ry as in the proof of (i). Without restriction we assume that
z, — 0, n — oo. Therefore

[Anzall = [Aal lznll < Ra llznll = 0, n — oo,
= |[Awzn] — 0, n — 0o, (by Prop. 4.23 (iii))
= Az, — 0, n — oo, (by Prop. 4.23(i)) O
Example. Let z,, := (—1)”;—;!, €R,neN. Since 0 < <1form=1,...,n—1it follows that
n n—1 1
o] = 2 2 2z
n o n n

Since (L)nen converges to 0 by Example 4.7 (ii), Theorem 4.25 (iii) yields that (z)nen converges
to zero.

Theorem 4.26. Let (V.| -||) be a normed space over a field F with norm |- |. Let (An)nen € F
and (xn)nen €V be convergent sequences such that lim,, oo Ap # 0. Then there exists an Ny € N
such that A\, # 0, n > Ny and the sequence (%zn)ff’:Nu converges with

Jimn - = () i ).
Jin

Proof. Let a := lim,_, Ap, # 0. Then there exists an Ny € N such that |\, — a| < J%, n > Ny,
hence, by the triangle inequality,

lal _ laf

|)\,,,|2\a|7|)\7a\2\a\7772>0, n > Ny.
Let € > 0. Then there exists an N € N such that

2
‘)\n*lL‘S%V n > N.

Therefore we have for all n > max{Ny, N}
1 1‘ 1
B P W P ela”
‘)\n a \aHAn\l ol < \a\% 2

This shows

i L1
1o Xy T oo A
The assertion of the theorem follows now by Theorem 4.25(ii). [m]

Last Change: Sat 23 Sep 2023 12:55:28 PM -05



Chapter 4. Sequences and Series 43

Remark. Important special cases of Theorem 4.24, Theorem 4.25 and Theorem 4.26 are when
V =R or V =C. For example, Theorem 4.25 shows that

(an)nen, (bn)nen € C convergent
= (anbn)nen € C convergent and lim (a,b,) = (lim a,)( lim by,).
n—o0 n—>00 n—oo

—

n3 +n?

E le. Lot @y = — 10
xample. LO T = s o0 — 1

, n€N. Then lim z, = —.
n—00 7

. -1 . . . . . .
Proof. Since x,, = %, n € N, and the limits lim,, %, limy,— 00 nl—z and lim,,—, o0 n% exist

and are equal to zero, Theorem 4.24, Theorem 4.25 and Theorem 4.26 yield
1+n! 1+0 1

nlglolcw" :nlggc Tr12n2—n3 7+0-0 T o

Theorem 4.27. (i) Let m € N, F = R or C and (F™, | - ||) with the Euclidean norm || - |.

Let (xn)nen be a sequence in F™ with x, = (i, ..., Tmn), 7 € N Then (Tn)nen is a
Cauchy sequence in F™ if and only if for all j = 1, ..., m the sequences (Tjn)nen are Cauchy
sequences in F. The sequence (2, )nen s convergent in F™ if and only if for all j=1, ..., m

the sequences (w]7n)w,gN are convergent in F. In this case

lim 2, = (lim @14, ..., im @,,,).
n—N n—N n—N

(ii) Let (zn)nen € C and @y, := Re zpn, yn :=Imz,, n € N. Then (2,)nen s a Cauchy sequence if
and only if both (xn)nen and (yn)nen are Cauchy sequences in R and (zp)nen is convergent
if and only if both (2, )nen and (yn)nen are convergent in R. In this case

lim z, = li ili .
R T T L

In particular, it follows that C and F™ are complete since R is complete.

4.4 Sequences in an ordered field

Let F be an ordered field. As in Definition 3.23 we can extend the order on F to an order on
F =F U {—00,00}. The most important example is, of course, F = R.

Definition 4.28. Let F be an ordered field. We say that a sequence (z,)nen C F diverges to oo ,
in formula lim,,_,~ z,, = oo, if and only if

VReF INeN Vn>N z, > R.

The sequence (x,)nen diverges to —oo if and only if (—ay, )nen diverges to oo, in formula limy, o0 T, =
—00.

Remark 4.29. e lim, ,yz, =00 = {x, : n € N} CF is not bounded from above.
o lim, ,yz, = —00 = {z, : n € N} CF is not bounded from below.

e The converse is not true: For example, the sequence (2,,)nen € R with 2, = (1 + (=1)")n
does not diverge to oo but {z,, : n € N} = 2Nj is unbounded above.

e lim, ooy =—00 < YVReF INeN Vn>N z, <R.
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Proposition 4.30. Let F be an ordered field and (x,)nen C F.

(i) Iflimy,—so0 [2n| = 00, then there exists an N € N such that x,, # 0, n > N and lim, o x;* =

(ii) Ifzn, >0, n €N, and lim,—o0 zn, = 0, then lim, o0 2,1 = 0.
If v, <0, n €N, and lim,, 0 ¥, = 0, then lim, o0 7,1 = —00.
Ifx, #0, n €N, and lim, 0 2, = 0, then lim, o [z, 1] = occ.

(iii) If there exists a sequence (Ap)nen C F such that lim,,y A\, = 00 and an N € N such that
Tp > Ay, n > N, then lim,_,yz, = cc.

Theorem 4.31. Let F be and ordered field and (2, )nen, (Yn)nen € F convergent sequences. As-
sume that there exists an Ny € N such that

ZTp < Yn, n=No. (4.2)
Then limy, 00 Tn < limy, 00 Yn-
Proof. Assume lim,,_, o &, > limy, o0 ¥n. Then

0< lim x, — lim y, = lim (@, — yn).
n—r00 n—ro0 n—ro00

and there exists an NV € N such that
1
Tp —Yn > = lim (2, —yn) >0, n >N, (4.3)
2 n—oo

(see proof of Theorem 4.26). Hence we obtain the contradiction

(4.2) (4.3)
0 > onyN, —YNyN, > 0. [}

Remark. Even if condition (4.2) is substituted by z,, < y,,, n € N, we cannot conclude lim,,_, z,, <

limy,—y 00 Yn, as the example z,, = % and y,, = 0, n € N, shows.

Corollary 4.32. Let F be an ordered field, (zn)nen € F a convergent sequence. Assume that there
exist No € N and «, 8 € F such that a < x,, < 8, n > No. Then

a< lim z, <f.
n—o00

Corollary 4.33 (Sandwich lemma). Let F be an ordered field, (ay)nen, (bn)nen convergent
sequences in F with

lim a, = lim b, = a.

n—so0 n—ro0
Let (xn)nen € F and N € N such that

ap, <xp <b,, n>N.

Then also (zn)nen converges and lim,, oo T, = a.

Definition 4.34. Let F be an ordered field. A sequence (25,)nen C F is called
(i) monotonically increasing =  Tpy1 2Ty, n2>1,

(ii) strictly monotonically increasing <=  Tp41 > Tp, 1> 1.
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(i) (strictly) monotonically decreasing, if (—ay,)nen is (strictly) monotonically increasing.

(iv) (strictly) monotonic, if it is either (strictly) monotonically increasing or (strictly) monotoni-
cally decreasing.

Not every convergent sequence is monotonic, and not every monotonic sequence is convergent or
bounded.

Theorem 4.35. Let F be a complete ordered field and (xy)nen a monotonic sequence in F. Then
(Zn)nen is convergent — <= (Zn)nen is bounded.
Proof. “=" is shown in Theorem 4.8 (every convergent sequence in a metric space is bounded).
“<="  Without restriction, we may assume that (z,),en is increasing. Since (z,,)nen is bounded
and F is complete, it follows that
a:=sup{z, : n € N} < ooc.

Let € > 0. By Exercise 3.4 it follows that there exists an N € N such that a — ¢ < 2 < a. Using
that z, < a, n € N, and the monotonicity of the sequence we find

|t —al|=a—a, <a—ay<e, n>N,
which implies the convergence of (z,)nen- O
Corollary 4.36. Let F be a complete ordered field and (z,)nen a bounded monotonic sequence in

F. Then (2, )nen converges and

lim z, =
n—oo

sup{z,, : n € N}, if (Zn)nen is increasing,

inf{x, : n € N}, if (w,)nen is decreasing.
In Theorem 3.21 we showed that for # > 0 and k£ € N there exists exactly one solution of the
equation y* = z but the proof is not constructive, i.e., it gives no rule how to find 3. The following

example gives a constructive proof.

Example 4.37 (kth root in R). Let 2 > 0 and k € N. Define the sequence (2, )nen recursively
by

To=x+1, Tnp1 =2z <1 -

(i) The sequence (2, )nen converges.

(i) limy, oo Tp =

Proof. (i) We show the following by induction on n:

(a) z, >0, n €N, (b) 2 < xp-1, n €N, (c) 2k >a, neN.
n =0: (a) and (c) are clearly satisfied, and for (b) there is nothing to prove.
nn+l:

a) T,41 > 0 because z, > 0 and kzf — (2F —z) = (k- 1)2k + 2 > 0.

k k
(b) 2% > 2 by induction hypothesis. Therefore 17%’;—9” < 1l and hence z,,4+1 = x”(lf z
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k ok
(¢) Note that —Z=* = Z=fa > 7;71 = —% > —1. Therefore, Bernoulli’s inequality (3.2) shows
k k k
k k Tp — T k Tp — T k i z
x, = 1— >ap | 1—k =x, | 1—-k =2x.
et (-5 2 i) (1)

(a) and (b) imply that (z)nen is a bounded monotonic sequence, hence it converges by Theo-
rem 4.35.
(ii) From the definition of the z,, it follows that

kab e, = (k — )2k + x. (4.4)
Let y := limy, o0 @,. Taking the limit on both sides in (4.4) shows that
by "ty = (k= 1)y + =,
hence y* = z. [m}
Another important example is the definition of Euler’s number.

Example 4.38. The limit

e:= lim (1 + %)n

n—o00

exists and is called Fuler’s number (e = 2,71828182...).
Proof. See Exercise 4.12. O

Not every sequence in an ordered field is monotonic, but every sequence contains a monotonic
subsequences.

Theorem 4.39. In an ordered field F every sequence (x,)neny € F contains a monotonic subse-
quence.

Proof. We call an z,, a “low” if z,, < x,, for all m > n. There are two possible cases:

Case 1: The sequence contains infinitely many low terms. Then the subsequence which consists of
all low terms is monotonically increasing.

Case 2: The sequence contains only finitely many low terms. Then there exists a N € N such
for all n > N the term z,, is not low. Hence for every n > N there exists an m > n such that
Ty, < T, because z, is not low. Let n; := N. Since z,,, is not a low term of the sequence, there

exists an ny > n; such that z,, < z,,. Inductively, we can find n; < ny < n3 < ... such that
Tny, > Tp, > Tpy > .... The sequence (2, )ren is a monotonically decreasing subsequence of
(Tn)nen- [m}

Theorem 4.40 (Bolzano-Weierstraf).

(i) Every bounded sequence in R contains a convergent subsequence.

(i) Ewery bounded sequence in C contains a convergent subsequence.

Proof. (i) By Theorem 4.39 every sequence contains a monotonic subsequence. Since R is complete
and every subsequence of a bounded sequence is bounded, this subsequences must converge by
Theorem 4.35.
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(ii) Let (2n)nen be a bounded sequence in C and let z,, := Re z,, and y,, := Im 2,,. Then (2, )nen
and (yn)nen are bounded sequences in R (by Proposition 3.28). By (i) there exists a conver-
gent subsequence (2, )gen Of (2n)nen. Again by (i), (yn, )ken contains a convergent subsequence
(Yny,, Jmen- Therefore, (xn, 4 iyn,, Jmen is convergent subsequence of (zn)nen. [}

Remark. The Bolzano-Weierstrafl theorem is equivalent to the completeness of R.

Definition 4.41. Let (x,),en be sequence in a metric space X. A value a € X is called a cluster
value of (zp)nen if there exists a subsequence that converges to a.

In addition, for an ordered field oo is a cluster value of a sequence (Z,)nen in the field, if it
contains a subsequence that diverges to oo and —oo is a cluster value of the sequence if it contains
a subsequence that diverges to —oo.

Remark. The Bolzano-Weierstral Theorem implies

(i) that every sequence in R contains either a convergent subsequence or a subsequence that
diverges to oo or —oo

(i) that every sequence in R has a cluster value.

Remark 4.42. (i) If a sequence in a metric space converges, then it has exactly one cluster
value. The reverse is not true.

(ii) A bounded sequence in R or C is convergent if and only if it has exactly one cluster value.

(iii) Let = (25,)nen be a sequence in a metric space. Then a is a cluster value of z if and only
if for each £ > 0 the ball B.(a) contains infinitely many terms of the sequence, that is, there
are infinitely many n € N such that z,, € B.(a). In formula: #{n € N: z, € B.(a)}) = oo.
Note, however, that #(B:(a)N{zn|n € N}) < oo is possible as the example ((—1)"),en shows.

Proof. (iii) Let a be a cluster value of 2. Then it has a subsequence (@, )ken which converges to
a. For given € > 0 there exist an K € N such that d(a,z,,) < €, k > K, hence z,,, € B:(a) for
every k > K.

Assume now that for every e > 0 infinitely many z, lie in Bc(a). Then we can choose inductively
ny < ng < ... such that z,, € B%, keN, ie.,dn,,a) < % k € N. Hence a is a cluster value of
the sequence because the subsequence (zy, )ren converges to a. [}

Definition 4.43. Let F be a complete ordered field and (z,)nen a sequence in F. The limes
superior and limes inferior

limsup z, :=lim z,, := inf{x € F : z, <z for almost all z,,},
n—oo

liminf z,, := lim z,:=sup{z € F : z,, > = for almost all z,,}.
n—o00

Proposition 4.44. Let F be a complete ordered field and (z,)nen € F. Then limsup,,_, ., is
the greatest cluster value of (xn)nen and iminf,_, @, is the smallest cluster value of (xy)nen.

Proof. We show only the assertion for a := limsup,, ,, 2,. If @ = 0o, then the sequence contains
a subsequence which diverges to oo, hence oo is a cluster value. Obviously, it is the largest cluster
value. If a = —oo, then the sequence diverges to —oo, hence —oo is the only cluster value.

Now assume a € R. First we show that a is the greatest accumulation point. Let € > 0. Then
2n < a+ § for almost all all z,,. Hence, only finitely many =, lie in Bg(a + ¢). Therefore, by
Remark 4.42, a + ¢ cannot be a cluster value.
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We have to show that a is cluster value of (2, )nen. If @ is not a cluster value, then there exists an
& > 0 such that at most finitely many z, lie in B-(a). Since in addition only finitely many z,, are
larger than a + ¢/2, it follows that z, < a — § for almost all .

To prove the assertion for liminf, we only need to apply the claim to the sequence (—z,)nen and
observe that liminfz, = —limsup(—z,) and that the largest accumulation point of (z,)nen is
equal to the negative o f the smallest accumulation point of (—y, )nen.

Corollary 4.45. A sequence (T, )nen is convergent if and only if limsup,,_, .. T, = liminf, . 5.

Remark. Another characterisation of lim sup and lim inf is the following: For the sequence (z,)nen
define the sequences (y;7 )nen and (y;, Jnen in F U {£o00} by

yt = sup{zy : k>n}, y, = inf{zy : k>n}.

Then (y;7 )nen is monotonically decreasing and (y,, )nen is monotonically increasing (and therefore
convergent in F U {+o00}) and

limsup, = lim y,f, liminf 2, = lim y, .

N—so0 o0 n—so0 n—ro0

Proof. Exercise 4.8.  Obviously, the sequence (y;')nen is monotonically decreasing and xy, < y;5
for k > n.
Case 1. (z)ken unbounded from above. Then y! = oo, n € N, and limsup,_, =, = 00 =
limy, o0 43
Case 2. (zk)ken bounded from above and has no cluster value a € R. Then the sequence (z,)nen
diverges to —o0, i.e., for every R € R exists ng € N such that z,, < R for all n > ngi. Hence also
y;7 < ng for all n > ng and therefore lim, o y;7 = —0o = limsup,,_, . Tn.
Case 3. (xk)ren bounded from above and has at least one cluster value a € R. Then y: > a,
n € N, and (y;})nen converges by Theorem 4.35 (since the sequence is bounded and monotonic).
Let y := lim,, o yi. First we show that y is the greatest cluster value of (z,)nen. Let b > y and
£ :=b—y. Since (y;} )nen is decreasing, there exists N € R such that y <b—§, n > N, but then
also z,, <y} <b—§, n> N. In particular, Bg(b)N{zn : n> N} = 0. This implies that b cannot
be cluster value of (2, )nen.
Next we show that y is a cluster value. To this end we construct a subsequence (zy, )ren of (€ )nen
which converges to y. By the definition of y; there exists an n; such that 0 < y; — 2, < 7
(use Exercise 3.4). Now assume that ng, k = 1, ..., m, are chosen such that n, < ngy, and
0 < Yy, —@n, < 3. By the definition of yy,, there exists an ny,11 such that [y, —n,.,, | < 727
Since the sequences (yn, )ken and (Yn, — Tn, )ken converge, also (z,, )k € N converges and

lm @, = Wm (Tn, = Yny) + Yo = im (2, = Yp,) + lim +yn, =0+y=y.
k—o0 k—o0 k—o00 k—o0

Alternative proof of Case 3. If (xk)ren is bounded from above and has at least one cluster value
a € R, then « := limsup,,_,. 2, € R. Since « is an accumulation point of (z)ken, there exists a
subsequence (2, )men which converges to a. In particular, a is a lower bound for (y;)keN because
y;r > sup{zk,, : km > k} > limpyoo 2, = a for all k € N. Since (y,:r);ceN is decreasing, it is
convergent and limy_ o0 Y > a.

Now let € > 0. Since « is the largest accumulation point of (2, )nen, there must be N € N such
that @, < a+e for all n > N (otherwise there would be a subsequence (z,, )men with 2, > a+e
for all m € N and this subsequence must have an accumulation point > a + ¢ > «). Consequently,
Yn = sup{zy : k > n} < a+ e para todo n > N. It follows that lim, e yn < o+ €. Since this is
true for all € > 0, we actually have lim,,_,~ y, < a.

The claim for liminf can be proved analogously (or can be deduced from the claim non limsup
applied to (—z)nen)- [m]
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4.5 Series

4.5.1 Basic criteria of convergence and series in R

Definition 4.46. Let (V, || -||) be a normed space, (#n)nen € V. Then we define the partial sums
Sp t Z Tk, neN.
k=1

oo
The sequence (s, )nen is a series in V, denoted by E ey T The series is convergent if the sequence

of the partial sums is convergent. In this case, s := lim,,_,~ s,, exists and we write

0
g Ty =S.

k=1

Otherwise the series is called divergent. In the special case where V' is an ordered field, we write

oo
Z T, = oo
k=1

if limy, 500 S5, = F00.

Remark. ® > 42, Ty is not a sum but the limit of a sequence.

e The symbol ZE‘:] 2, has two meanings: it denotes the sequence of the partial sums, and it
denotes its limit if is exists.

1
Example. E = 11 + — diverges.
n= n

Proof. sp =Y _11+ % >n(l+ %) > n + 1. Therefore the sequence of the partial sums diverges
to oo. [m}

o
1

Example. Z — converges. (See Exercise 4.12.)
= nl

Theorem 4.47. Let (V.| - ||) be a normed space over a field F, X € F and > 07 @, Yone i Un
o £
convergent series in V. Then Y " | Aty +yn converges.

Proof. Apply Theorem 4.24 to the sequences of the partial sums. O
Theorem 4.48. Let (V.| - ||) be a complete normed space and (2 )nen C V.

(i) Cauchy criterion for series:

oo n
Zzn converges <= Ye>03INeNVn>m>N sz" <e.
n=1 k=m

o0
(ii) E x, converges =  lim z, =0.
n=1 100

m
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Proof. Since V is a complete normed space, the series converges if and only if the sequence of the
partial sums s, := Y _, z) is a Cauchy sequence. This is the case if and only if for every € > 0
there exists an N € N such that for m — 1,n > N, without restriction m — 1 < n,

n
[l = Sm1]l = H o <e
k=m
In particular, it follows that
lzall = llsn — sn—1ll <e, n=>N,
s0 also the second part of the theorem is proved. O

Note that lim,, o 2, = 0 does not implies the convergence of the series Zfﬁ:l ,, as the following
example shows:

= 1
Example 4.49 (Harmonic series). E — = o0.
n
n=1

Proof. Let s, =31, % Then (s )nen is not a Cauchy sequence since
2n 2n
1 1 1
[s2n — 80| = Z %Z Z =3
k=n+1 k=n+1

Therefore, the harmonic series diverges. Since it is monotonically increasing, it follows that is
diverges to oco.

[m}
Example 4.50 (Geometric series).  Let z € C.
oo
@) |z >1 = Zz" diverges.
n=0
oo 0 1
ii <l = " e rges 1 "= .
(i) |2 Z 2" converges and Z z T
n=0 n=0
Proof. If |z] > 1 then |z|" = |2"| does not converge to 0, hence the sum cannot converge by
Theorem 4.47.
Now let |2 < 1 and let s, := 3" _; 2*. Then
n n n+1
(1—2)s, = (I,Z)sz :szJrsz =1-z"
k=0 k=0 k=1
Since |z| < 1, we have that z # 1 and lim,,_,~ 2™ = 0. So we obtain
1t 1
e g g n — oo. (4.5)
[}

Theorem 4.51. Let (z)ren C R, zp > 0, k €N, and define s, := > _; xr, n € N. Then

0
sz converges <= (Sp)nen bounded.
k=1
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Proof. The theorem follows immediately from Theorem 4.35 since the sequence (s, )nen is mono-
tonically increasing. [m}

= 1
Example 4.52. The series Z =l converges.
k=1

Proof. Since 1%2 > 0 for all & € N, it suffices to show that the sequence of the partial sums
Sp =Y p_y is bounded. This follows from

oy R T "
<sp—1=%"—<y ——— =%~ _ _y!
0Ssi-1=) G<) = 2i T v i1 X
k=2 k=2 k=2 k=2 k=2
1
—1--<1
n

Definition 4.53. A series in R is called alternating if it is of the form

£ ()"

n=0
with z, >0, n € N.

Theorem 4.54 (Leibniz criterion). Let (2,)nen € R be a monotonically decreasing sequence
such that z, >0, n € N, and lim,—,oc &, = 0. Then

oo
5= Z(*)"’ﬂ%
n=0

exists and |s — sp| < o1 where s, =Y p_o(—)Fzy, n € N.

Proof. First we show that the subsequences (s2n)nen and (s2;,41)nen converge. For all n € N

Son 2 Son = Tan+1 + Tan+2 = S2n42,

Sop41 < Son41 — T2p42 + Tong3 = S2n+3,

Sop 2 Soap — Toant1 = S2ngl = S1, (4.8)
(4.7)
S2p41 < Sont1 + Topy2 = S2ng2 < So. (4.9)

By (4.6) and (4.8) the sequence (s2,)nen is monotonically decreasing and bounded from below,
hence convergent by Theorem 4.35. Analogously, using (4.7) and (4.9), it follows that the sequence
(S2n+1)nen is convergent.

Let a :=limy, 00 Zop.

lim Sop41 = lm (Sont1 — @p + ) = (lim S2p41 — 2,) + lim 2, =a+0=a.
n—o00 n—oc n—oo n—00

Since (s2n)nen and (s2n+1)nen have the same limit, it follows that also (sp)nen converges and has
the same limit.

The error estimate follows from
[$20, — 8| = Son — 5 < Son — S2n41 = T2n+1,
> san41
[s2n41 — 8| = ST St < Sop42 — S2pt1 = Top42- [m]

< S2ng2
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T~ |
T zMg 1

FIGURE 4.1: Leibniz criterion.

T2 l\—/i 1

FIGURE 4.2: Leibniz criterion in the case that lim z, # 0.

Remark. If in the preceding theorem lim,,_,~ 2, =  not necessarily equal to zero, but otherwise
all assumptions are satisfied, then the sequence of the partial sums (s, )nen has exactly two cluster
values and

limsup s, — liminf s, = lim x,.
n—soco n—o0 n—o0

Examples. Y07, (-)"t =In2, Y02 ()57 =3
Proof of the limits: Example 6.71 and Exercise 7.1.

Definition 4.55. Let be N, b > 2, £ € N, (ax)g>_, € {0, 1, ..., b—1}. Then the sum

is called a b-adic fraction'. If there exists a K € N such that a; = 0, k > K, then it is called a
finite b-adic fraction.

Theorem 4.56. (i) Each b-adic fraction converges to a real number.

(ii) Each real number has a representation as a b-adic fraction. The representation is unique if
ap #b—1 for almost all k > —¢.

Proof. (i) It suffices to show that £ 7~ , apb~" is a Cauchy sequence. Let € > 0. Since b > 2 >

Inot to be confused with p-adic fractions from number theory

Last Change: Sat 23 Sep 2023 12:55:28 PM -05



Chapter 4. Sequences and Series 53

1, there exists an N € N such that b= < . For n > m > N it follows that

n m

STah™h = > | = Z axb™F < (b—1) Z bk

k=—t k=—1¢ k=m+1 k=m+1

n
— (b= 1)p=(m+D bek — - 1)b7<m+1)1 1 b N <e

k=0 b

(ii) Let € R. Without loss of generality we can assume z > 0. By Theorem 3.17 there exists

an N € Z such that b < x < bV L. We will construct a sequence (a,)2 5 C {0, ..., b—1} such
that for all n > N:
n n n
Sab << (DD ab ) 50 = (3w ) b (4.10)
k=N k=N b=

Sn

Let any = max{a € Ny : ab™™ < z}; obviously we have 0 < ay < b—1 and ayb™V/ < 2 <
(an +1)bN. Let n > N and assume that we have already chosen ay;, ..., a, € {0, ..., b—1} such
that (4.10) holds for n. Let any1 = max{a € Ng : ab~"*1) <z —s,}. Obviously, 0 < a, 11 <b—1
and the inequalities (4.10) hold also for n + 1. Since [s, — x| < b™™ — 00, n — o0, it follows that
b-adic fraction constructed above converges to x. [}

Corollary 4.57 (Cantor). R is uncountable.

Proof. Let A = {(an)nen : an € {0,1},n € N} be the set consisting of all sequences that contain
only 0 and 1. Assume that A is countable. Then A = {z,, : n € N}. Each z,, € A is a sequence
(k) wen. We construct a sequence y = (Y )nen € A as follows: Let yp = 0if x4 =1 and y, =1
if 25,5 = 0. Since y; € {0,1}, k € N, we hae that y € A. On the other hand, y # x,, for all n € N.
Hence the set A is not countable.

Since by Theorem 4.56 the map

A—=R, a=(an)pen— Z ap107"

neN

is well-defined and injective, R contains an uncountable set and therefore it is not countable. O

4.5.2 Series in normed spaces and absolute convergence

Definition 4.58. Let (V,| - ||) be a normed space, (zn)nen € V. The series Yo", @y, is called
absolutely convergent if the series

=
D llaall

n=1

converges in R.

Theorem 4.59. Let (V,|| - ||) be a complete normed space and (zn)nen € V. Then

0 0
Z ||zn]| converges = Z T, converges.
n=1

n=1
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Proof. Let € > 0. Since the series is absolutely convergent there exists an N € N such that for all
n>m>N

I3 2] < 3 ol < =
k=m k=m

Therefore the series Y"p- | @, converges by the Cauchy criterion (Theorem 4.48). [m]

Lemma 4.60. Let (V.| - ||) be a complete normed space and (xy)nen €V such that > oo ||@n||
converges. Then

S
< Ml

n=1

-
(DIEN
n=1

Proof. For all n € N we have HZle ’I‘kH < Y |kl Taking the limit n — oo on both sides
proves the assertion. [}

Criteria for absolute convergence

Theorem 4.61 (Comparison test). Let (V,| - ||) be a complete normed space, (xn)nen C V,
(an)nen € R, No € N such that a,, > ||z,|, n > No. Then

oo oo oo 0
E an converges = E T, converges and E [|an]l < E [

n=1 n=1 n=1 n=1

Proof. Let e > 0. Since ) ay converges, there exists an N € N such that

neN

n n
Z [z < Z ap < &, n > m > max{Ny, N}.
k=m k=m
Therefore the series Y5 | ||@n | converges by the Cauchy criterion (Theorem 4.48) which implies
that also the series ;- ; @, converges (Theorem 4.59). [m]

Example. The series > ) _, % converges for s > 2 by the comparison test since 0 < k]T < ,:7,

keN, and Y _; k% converges by Example 4.52.
Remark. ((s) =Y j_, 7= defines the so-called Riemann Zeta function. .

Theorem 4.62 (Root test). Let (V,| -||) be a complete normed space, (xn)nen €V and a =
limsup,,_, V||@nl. Then

oo
a>1 = Z x, diwergent,

n=1

oo
a<l = Z z,, absolutely convergent.

n=1

Proof. Assume that a > 1. Then there exists a subsequence (y, )xen such that =/, > 1, k € N.
Hence (2, )ken does not converge to 0, therefore the series does not converge (Theorem 4.48).

Now let a < 1 and fix a ¢ such that a < ¢ < 1. Since a is the greatest cluster value of ({/]|2n||)nen
there exists a K € N such that ¢ > {/[Ja[]) for all k > K. Since 357 - ¢* is a convergent harmonic
series and ¢* > ||zy||, k > K. it follows by the comparison test that also Y p- ;- [|zx|| converges. O

Last Change: Sat 23 Sep 2023 12:55:28 PM -05



Chapter 4. Sequences and Series 55

Similarly, the ratio test is proved.

Theorem 4.63 (Ratio test). Let (V)| -||) be a complete normed space and let (z,)nen C V.

If there exists an a > 1 such that ||zn41]| > al|z,|| for almost all n € N, then the series > o | @,
diverges.

If there exists an 0 < a < 1 such that | @, 41| < al|xa|| for almost alln € N, then the series > - | @
converges absolutely.

For a = 1 in Theorem 4.62 or Theorem 4.63 then the root respectively ratio test gives no information

about convergence of the series as the examples > o° | L and Y07 | (77:) show.

oo

n
Examples 4.64. (i) g DZ—' converges absolutely for every z € C.
n=0n!

Proof. The assertion is clear for z = 0. For z € C\ {0} the assertion follows from the ratio test
since, for n > 2|z|
n+1|

&3 (\Z”\)’l |z || 1
— = < <-<1 [m]
(n+ 1)\ n! n+1l " 2)z|+1 "2

o 1
(ii) The ratio and root tests give no information about convergence of E 0T since lim sup,,_, oo % =

k

. -1
1=1lim, o W(k%) .

. 1 1 1
(ii) Z:O:[)?”"*(’)k =3 +1+ 3 + 1 + .- converges absolutely.

Proof. Since limy 00 2¥ = limy,_s, 27% = 1 by Exercise 4.5 the root test yields
Kk kR 1
lim sup V/2-k+()* = limsup(2~! 2%) = Q’llimsupQ% =3< 1. O

n—00 n—oo n—oo

Note that in the last example the ratio test is not applicable. In general, whenever the ratio
test shows convergence, so does the root criterion. Indeed, if there is an 0 < a < 1 such that
|zns1]l < allzy| for all n € N, then ||z,|| < a™|lzo| for all n € N. Therefore {/||zn| < a™ /|0l
for all n € N. Since {/||zo|| — 1 for n — oo, the root test also shows convergence.
Rearrangement of series

Definition 4.65. Let (V,| - ||) be a normed space, (zn)neny € V and o : N — N a permutation.
o 0

Then Zw,w is a rearrangement of Z Ty

n=1 n=1

Definition 4.66. Let (V.|| - ||) be a normed space and (zn)nen € V. The series is called uncon-

ditionally convergent if for every permutation ¢ : N — N the series img(n) converges and has
. n=1

the same limit as ZJ," The series is called conditionally convergent if it converges but is not

unconditionally co;;:;rgcxlt.

Theorem 4.67 (Rearrangement theorem). Let (V.|| -||) be a normed space, (xn)nen €V such

that ZZOZI is absolutely convergent. Then every rearrangement converges absolutely and has the
same limit.
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Proof. Let 0 : N = N be a permutation and let € > 0. Then there exists an N € N such that
S

Z ||[z]| < e for all n > N. Since ¢ is a permutation, there exists an K € N such that o(k) > N

k=n
for all k> K. Obviously, K > N. Define the sequences (an)nen and (by)nen by

ap = ka, by = i;zrg(k), n € Np.

Forn € N, n > K, is follows that

n n n
llan = bn = ”ZM-ZIUWH = H Som- Y Ia(/c)H
k=0 k=N+1 .

k=0

g

“
zow]| < 3l <.
k=N+1,...n k=N

This shows that the sequence (by,)nen converges and has the same limit as (@, )nen.
The absolute convergence of the rearranged series follows when the above proof is applied to the
series >y _o ||lzkl|-

Theorem 4.68. Let (V,| - ||) be a complete normed space, xiy € V', k,1 € Ny, such that

M := sup{ii“mm‘ in EN} < 00. (4.11)

k=0 1=0

Then the series

oo o o oo
(o) X (Cmm) (X )
k=0 " 1=0 =0 k=0 n=0 " kI=0
kt+l=n
converge absolutely and have the same limits.
S
Remark. In this case the notation Z xy is used.
k,1=0

Proof. For each k € Ny the series s, := Y ;= @ converges absolutely by theorem 4.51 because

(lzxil)ieny, € R, [Jzg|| > 0, and the corresponding sequence of the partial sums Y ;" |lzx| is
bounded by assumption (4.11).

Analogously it follows that for all I,n € Ny the series #; := Y p” jap and v, = Y gi=0 Tr are
ktl=n
absolutely convergent. Therefore, for any N € N, the partial sums

N N N
Z Sk Z t;, and z Un (4.12)
k=0 =0

n=0

are well-defined. We show that the series Y77 ; si is absolutely convergent: For arbitrary K, L € No
we have by the triangle inequality and by assumption (4.11)

K L K L
S| < D llwil < M < .

k=0 1=0 k=0 1=0

Last Change: Sat 23 Sep 2023 12:55:28 PM -05



Chapter 4. Sequences and Series 57

By Corollary 4.32 this inequality remains true in the limit L — co:

Znskn 72\(2%“ <M <.

k=0 1=0

The assertion follows again from Theorem 4.51. Analogously it can be shown that the series };°
and Eic:“ v, are absolutely convergent. Let S := E;C:o sk and V = Z" o Un- It Temains to be
shown that S = V. For arbitrary ¢ > 0 there exist ¢ € N and v € N such that Y32 [|sk| <
Dl anH < £ and 0 > v. Moreover, there exists L € N such that L > v and Y2, |lan| <
k=0,...,0—1. Let

405 ?

Z:={(k,)eEN? : k<o—1, I<L—-1L}\{(k,)EN?: k+1<0o—1}
c{k,)eN?: k+1>0}.

It follows that

oo rr 1
V-s = |v- Zsk— sk‘ < Zusk||+‘v |
k= k=0
< gl Z(ZIM*ZWH
k=0 1=0 =L
o-1L-1
< +\ZZWMV PRI
k=01=L k=0 1=0
. Il - o-1L-1
< g+ Zuwu+|2un +\zu7,,fzzw1
k=01=L = = k=0 =0
o—1L—1
< *+ + - +|Z'Un ZZTU‘
k=0 1=0
3e
= | Z %kl| < ZJr Nk |
(4 (kD)eZ
3 €
< 7+| Z JL'H‘ < Z+Z = g,
k+i>v
Analogously ;% t; = > 07 vy is shown. O

Theorem 4.69 (Cauchy product). LetF be a field ||-|| a norm onF and (xx)reny, (i)ien, C F.
If the series Z;C:O T, Zfzo 1 are absolute convergent, then so is their Cauchy product

v e
POETEED 3) ST
n=0

and
(ézk) (; ) nzuzni,;o(ézky%k)
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Proof. Let xg := xp - y1, k,1 € Ng. Then

3 ol = 3 lloul- Il = (Zumu)@nyzu)

k,1=0 k,1=0

< (3 o) (S ) < .

k=0 =0

and the assertion follows from Theorem 4.68. [m]

The following theorem shows that the assumption of absolute convergence in Theorem 4.67 is
necessary.

Theorem 4.70 (Riemann rearrangement theorem). Let (@n)nen C R such that Y o | @y is
convergent but not absolutely convergent and let x € R. Then there ezists a permutation o : N — N
such that

©
Z To(n) =T

n=1

Proof. There are infinitely many positive and negative terms sequence (z,,)nen because otherwise
the series E:f:l x, would be absolutely convergent, in contradiction to the assumption that the
series is conditionally convergent. Let (a,)nen be the sequence of all non-negative terms and
(bn)nen be the sequence of all negative terms. These sequences can be chosen by induction: Let
ny = min{n € N : z,, > 0} and set a; := x,,. Assume that n; < n; < ...ny are already chosen.
Let ngq1 :=min{n € N:n > ng Az, > 0} and set apyy := &y, ,. Since > | @, is conditionally
convergent, we have

lim a, =0, lim b, =0, (4.13)
n—o00 n—o0

o o
> an =00, > by = —co. (4.14)
n=1 n=1

Next we define the permutation o : N — N by induction. Assume that o(1),...,o0(k) are already
defined. As 2, (x4 1) we chose the next not yet chosen term in the sequence

{(lln)neN i Y 2 S,
(bn)nen  if Elel'a(j) > .

Note that in the first case there exists a n € N, n > k such that 37 2,( > @ by (4.14);
analogously in the second case.

Now we prove that the rearranged sum converges to z. The idea is the same as in the proof of the
Leibniz criterion (Theorem 4.54).

Let € > 0. Then there exists an N € N such that |w,,(n)\ < e, n > N. Without restriction assume

Z;V:l Zs(j) < @. Choose K € N such that Zj\;rlK Ts(j) > @. Then

‘Zmd(])fa:‘gs, n>N+K. (]
=1

Remark. Theorem 4.67 shows that every absolutely convergent series is conditionally convergent.
The Riemann rearrangement theorem (Theorem 4.70) shows that in R a series is absolutely con-
vergent if and only if it is unconditionally convergent.
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For instance, take the space of bounded sequences V = {(m,t),LEN C C:sup{|z,| : n e N} < oo}
Then ||z||s = sup{|zn| : n € N} < 0o} defines a norm on V' (see Definition 5.38 and Theorem 5.39).
We consider the sequence (e, )nen € V where e,, = (8in)ren € V is the sequence whose nth term is

1 and all other terms are 0. Tt is not hard to see that Y- e,y = Y en = (1, %7 %, i, ...) for every
neN neN
bijection ¢ : N — N. However, anN” en| = Z 1 =o0.
neN
Euler’s number ¢
Theorem 4.71. The sequence (zn)nen C R defined by
1\n
T, = <1+—) , neN,
n
converges and
IR !
=1 (1 7) =S = 41
=% + n Z n! (4.15)

n=0

is called Buler’s number (e = 2,71828182...).

Proof. Exercise 4.12. We show the assertion in several steps:

1\ 1
W2<(1+-) <Y 538 nz4
k=0 """

(i) The sequences (zy)nen and (sn)nen where s, 1= Y 4o & converge.
(iii) Finally we show (4.15).
(i) Let us show the second in equality in (4.15). For all n € N we have
1\" = (n) 1 = n! 1 "1
1 _) - IR I L D
(1+7) =% (k) S D B By
k=0 k=0, , k=0

<1

To show the last inequality in (4.15) let n > 4. Then, using 2F < k! for all k > 4, which can be
shown easily by induction, we find

Uyl L1 &1 16 < 16 u
— -k _ —4 —k
Aol mtr @ St =gt
k=0 k=0 k=4 k=4 k=0
N—— ~—
=16 <ok
16 > 16 27 16 1 16 67
< 240Ntk 2 2 2 98 23
=% " kg) R 2

The first inequality holds since (2 )nen is monotonically increasing as is shown below and (1+%)2 =
2.25 > 2.

(i) Since the sequence (s, )nen is monotonically increasing and bounded from above by (i), it
converges.
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To show that the sequence (s, )nen converges, it suffices to show that is monotonically increasing
because it is bounded from above by (i). Since a, > 1> 0, n € N, the monotonicity follows from

Qny1 _ 1+# "(1+ 1 ): nn+1)+n ”(1+ 1 )
an 1+1 n+1 nn+1)+n+1 n+1
1 " 1 n 1
= (1-——— (1 7> <(1- 2 (1 )
( n2+2n+1> Jrn+1 7( (n+1)2> Jrn-%—l
n® +3n2 +3n+2

S |
nd +3n2+3n+1 <b

where in the second line we used the Bernoulli inequality (3.2).

(iii) It follows from part (i) that
1
im z, < lim s, = -,
Jim o < Jim s = 3

To show the converse inequality, we show that for each n € N there exists an m € N such that
Ty > Sp. For fixed n € N and m > n it follows that

1\m 1 I (m\ 1 "1
o= (1+0) -2 5 =2 (V) -2w
k=0 k=0 k=0

m! 1 =\ 1
- Z(m—k)!m"ﬁikzzoﬁ

k=0
n m
1 m! m! 1
= * ( F 1) + Z mk
kN \(m —k)Im (m — k)l m*
k=0 k=n+1
~
st <0 !
- ( m! ) 1
“R)mk +1
= (m — k)Im/ n"
Using that "'”’lj <1,0<j<m, we can estimate
1> m! _m mfkt+1>m mfn+1>(mfn+1)"
(m —k)!m* — m mb “m mn - mn ’

(m—n+1)"
rra—

Since = (1 — "T’l) tends to 1 for m — oo, we can find an M € N such that 0 <

n
1-— (1 - %) < m, m > M. Hence for all m > M

n

n=1yn 1 nl 1
T =S 2 ;((1— —) 1)+ = T T 7O o

4.6 Cantor’s construction of R
There are several methods to introduce the real numbers. For the method using Dedekind cuts see

for instance [Rud76, Appendix to Chapter 1]. Cantor’s construction of R uses Cauchy sequences

on Q.
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For a sequence (gn)nen we say that Q — lim,, o ¢, = 0 if and only if for every e € Q with € > 0
there exists N € N such that |g,,| < € for every n > N.?

Definition 4.72. A relation ~ on a set X is called equivalence relation it is reflexive, symmetric
and transitive.

Let Cg be the set of all Cauchy sequences in Q. On Cq we define the relation
(@n)nen ~ (Yn)nen = Q= lim |on —yn| =0.
n—00
It is easy to see that ~ is an equivalence relation on Cp. We define

R :=Co/~ = {[(zn)nen] : (Tn)nen € Co}-
Note that each ¢ € Q is identified with the equivalence class [(¢)nen] € R.
Together with the operations + and -
[(In)neN] + [(yn)nEN] = [(In + yn)neN]y
[(@n)nen] - [(yn)nen] = [(Tn - Yn)nen],

R is a field. We define an order on R by

[(#n)nen]; [(Yn)nen] € R,

[(@n)nen] >0 <= 3reQp INgeN Vn>Ny z, >r.

It can be shown that +, -, < are well-defined (i.e., if (2n)nen and (y,)nen are Cauchy sequences
in Q, then so are (2, + Yn)nen and (2y, - Yn)nen, and the definitions above do not depend on the
sequence chosen to represent the equivalence classes) and that R indeed is an ordered field.

It remains to be shown that R has the least upper bound property.

First we note that in Q the Archimedean property (Theorem 3.16) holds. Indeed, let z,y > 0 in
Q. Then there exist p,q,7,s € N such that z = £, y = L. Then 2(¢r)z = 2pr > r > £ =y. Since
every Cauchy sequence in Q is bounded in Q, also R has the Archimedean property.

Using the Archimedean property the following proposition is proved (see Exercise 3.3).

Proposition 4.73. For all every pair of real numbers a < b there exists an x € Q such that
a<z<b.

Theorem 4.74. R has the least upper bound property.

Proof. Let M C R such that M # () and M is bounded from above. Since M is bounded there
exists an upper bound b € R of M. Since M # (), there exists an element a € R that is not an
upper bound of M (take for example a = o — 1 for an arbitrary element & € M. We construct a
sequence of intervals R

[a,b] =: [ao, bo] D [a1,b1] D [az,bs] ...

—a

as follows: If ¢ := 252 is an upper bound of M, then we set [a1,b1] = [a1, ], otherwise [a1,b1] =
le,b1], and so on. For eachn € N, b, is an upper bound of M, but a,, is not. Moreover, b, —a,, = 2;71417
n € N. By the proposition above, we can choose in each interval [a,,b,] some ¢, € Q such that

ay, < ¢ <M < by. Obviously, (¢n)nen is Cauchy sequence in Q because

lem —cnl <27, n>m,

2Note that we cannot use the definition of limit from Section 4.2 since it is based on a metric and R is already
used in the defintion of a metric. A way around that would be to define a Q-metric on a set X as a function
dg : X x X — Q which satisfies the conditions in Defintion 4.1 and then us dg to define convergence. Note that all
theorems proved in this chapter which do not involve R explicitly remain valid.
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therefore (¢,)nen represents an element ¢ = [(¢p)nen] in R.

Finally, we show that ¢ is the least upper bound of M in R. Let v € M. Since for all n € N we
have that a < by, it follows that o < lim, o b, = ¢, hence ¢ is an upper bound of M. Let d be
an arbitrary upper bound of M. Then d > a,, n € N. Therefore we have d > lim,_,~ a, = ¢,
therefore ¢ is the least upper bound of M. [m}
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Chapter 5

Continuous functions

5.1 Continuity

Definition 5.1. Let (X,dx) and (Y,dy) be metric spaces, D C X and 29 € D. A function
f:D =Y is called continuous in zo

= Ve>036>0VzeD: (dx(z,20) <5 = dy(f(x), f(z0)) <e).

The function f is called continuous (in D) if it is continuous in every zo € D. If f is called
discontinuous in zg € D if it is not continuous in zg € D.

In other words: f is continuous in zo € D
< Ve>036>0 f(Bs(zo) ND) C Be(f(z0))- (5.1)

In the special case X =Y = R or C with the usual metric, a function f : R D D — R is continuous
inxg €D if

Ve>030>0VeeD: (lo—mo| <5 = |f(z)— f(x)| <e).
Geometric Interpretation. If f is continuous in zo, then for every strip S at f(zo) there exists
an interval I5 at zo such that the graph of f over I lies in the strip S..
In other words, when « is changed sufficiently little about x¢, then the function value remains as
close as we want to the function value f(zo).
Examples 5.2.
(i) Let a e Rand f: R — R, f(z) =a. Obviously, f is continuous.
(ii) id: R — R, id(z) = @, is continuous in R.

Proof. Let &y € R and € > 0. Then for all z € R such that |z — 29| < ¢ := ¢ it follows that
lid(z) —id(zo) | = |z — xo| < e. o

iii) Analogously, for arbitrary metric spaces (X,dx), (Y,dy), a € Y the functions f : X —
Y, f(z) = a, and idx : X — X, id(z) = x, are continuous.
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flwo) + ¢4
flzo) 4
flzo) — e

~
20— 0 Is x0+ 9

FIcUuRrE 5.1: For every strip S: centred at f(xo) there exists an interval I5 such that the graph Gy of f
above I lies in S-.

(iv) Let (X,dx) be a metric space. For a € X let Then f, : X = R, f(z) = d(a,x), is continuous
in X.
More generally, let (Y, dy) be a metric space and define a metric on X x Y by

d((z1,91), (22,92)) = Vd(21,22)* + d(y1,2)?, (x1,91), (v2,92),€ X x Y.

For (a,b) € X x Y the function f: X xY — R, f(z,y) = dxxy((z,y),(a,b)) is continuous in
X xY.

(v) Let (X,]-|) be a normed space. Then f: X — R, f(z) = ||z|, is continuous in X. (This is a
special case of (iv) with a = 0.)

Proof. Let g € X and € > 0. Then for all z € X we have the implication
lz ==zl <6 = [f(z) = flxo)l = [llz]] = llzoll | < lz — w0l <e. o

22, is continuous in R.

(vi) f:R—=R, f(z)

Proof. Let g € R and € > 0. Let ¢ := min{1,
that

}. Then for z € R with |z — x| < 4 it follows

e
T+2z0

f (@) = F(ao)| = |2% = w0l* = | — wo| |+ wo| < | — wo| (|2 — wo| +2]0]) <e.

<6< T <0<t O

(vii) The Heaviside function
1, z>0
‘R - R, =< =
f 1) {0, x <0,

is not continuous in z = 0.

Proof. Assume that there exists a § > 0 such that | f(z) — f(0)| < 3 for all # € R with |z — 0] < 1.
This contradicts |f(—3) — f(0)] =1> 1. O
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I T I T

Example 5.2 (v): f(z) = |z| Example 5.2 (vi): f(z) = 2?

h(zx)

xr

Example 5.2 (vii): Heaviside function h(z) = sin(z~!) (Exercise 6.2)
FIGURE 5.2: The functions in the first row are continuous, the functions in the second row are not.

(viii) The Dirichlet function

1, z€Q,
0, zeR\Q,

[iRSR, f<x>:{
is nowhere continuous in R.
Proof. Exercise 5.4. [m}

Definition 5.3. Let (X,dx), (Y,dy) be metric spaces. A function f : X O D — Y is called
Lipschitz continuous with Lipschitz constant L if

zyeD = dy(f(z),f(¥) < Ldx(z,y).
Lipschitz continuity is stronger than continuity.
Theorem 5.4. FEvery Lipschitz continuous functions is continuous.

Proof. Let (X,dx), (Y,dy) be metric spaces and f : X D D — Y Lipschitz continuous with
Lipschitz constant L > 0. Let 2o € D and € > 0. Then for all z € D with dx (z,z9) < £ it follows
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that

dy (f(2), f(z0)) < Ldx(z,y) <e. o

The next theorem gives a criterion for continuity of a function in a point in terms of sequences.

Theorem 5.5. Let (X,dx), (Y,dy) be metric spaces, DC X, f: X DD =Y, z9 € D. Then f is
continuous in xq if and only if for every sequence (&, )nen € D which converges to xo the sequence
(f(@n))nen €Y converges to f(wo).

Proof. “=" Let f be continuous in zg € D and (z,)nen C D with z, — z9, n — co. Let € > 0.
Then there exists a § > 0 such that f(Bs(xzo) N D) C B:(f(xo)). Since ,, — xg, n — 0o, there
exists an N € N such that z,, € Bs(xg), n > N. Therefore dy (f(xn), f(z0)) < &, n > N which
implies that f(z,) = f(z0), n — oo.

“«<="  Assume that f is not continuous in zy. Then there exists an € > 0 such that

V6 >0 3z eD: dx(z,x0) <d A dy(f(z), f(x0)) >e.

In particular, we find a sequence (z,,)nen such that
1
Vn €N 3z, € D dx(zn,20) < - A dy (f(zn), f(20)) 2 €.
Hence x,, — 9 but f(z,) 4 f(xo), in contradiction to the assumption. [m]
The previous theorem states that continuous functions and limits commute:
Jirp, @) = F(Jim, o).
Next we show that continuity is compatible with algebraic operations.

Definition 5.6. Let X be a set, Y a vector space over a field F, Dy, D, C X, and f: Dy =Y,
9:Dy =Y, X€F. Let Dygig := Dy ND,. Using the algebraic structure on Y we define and sum
of two functions and the product with a scalar by

M+9:Darg =Y, (M +9)(@) = M(x) +g(2).
If Y is a field we set Dyg := Dy N Dy, Dy :={x € X : x € Dy N Dy, g(x) # 0} and
g

f9:Drg =Y, (f9)(x) = f(z)9(x),
!

%:DgaYA, %(r) ::‘—A

Theorem 5.7. Let (X,dx) be a metric space, (Y, | -||) a normed space over a field F and f: X 2
Dy —Y,g: X DDy =Y functions and X € F. Let xg € Dy ND, such that f and g are continuous
in xg. Then

(i) Af + g is continuous in o.
IfY is a field, then
(ii) fg is continuous in xg.

(iii) ﬁ is continuous in xq if g(xo) # 0.

Proof. Exercise 5.1. [m}
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Corollary 5.8. Let (X,dx) be a metric space and (Y, || -||) a normed space. Then the set
C(X,Y):={f: X =Y continuous }

is a linear subspace of the vector space YX = {f: X - Y}.
IfY =R or Y =C, then often the notation C(X) is used instead of C(X,R) or C(X,C).

Example. Since the functions f: R — R, f(z) = 1, and id : R — R are continuous, Theorem 5.7
implies that all polynomials

P:R—R, zHZanx"

n=0

are continuous in R.

Example. Let F be a field, m,n € N. For the multi-index a = (a1,...,a,) € N" we define
ol =>4 ) ak and a* = 2t -+ a8 for @ = (21,...,3,) € F™.
A polynomial of degree m with coefficients in F is a function
P:F*—F, P(z) = Z Cat®,
la|<m

such that there exists at least one a € N such that |a| = m and ¢4 # 0.

A function R : Dr C F* — F is called a rational function if there exist polynomials P,Q : F* — F
such that

Rzg, D= {w € F": Qx) £ 0}.

If F is equipped with a norm, in particular, when F = R or F = C, then all polynomials and all
rational functions on F" are continuous by Theorem 5.7 and the fact that the maps

FxF—F, (z,y)—z+y, FxF—F, (zy)—zy
are continuous with the norm on F x F defined by [|(z,y)|| = /[|=([? + [ly[|.

Theorem 5.9. Let (X,dx), (Y,dy), (Z,dz) be metric spaces and f : X DDy —»Y, g:Y DDy —
Z functions such that R(f) C Dy. Let xg € Dy. If f is continuous in xo and g is continuous in
f(xo) then go f is continuous in xg.

Proof. We will use the criterion of Theorem 5.5 to prove the continuity of go f in zg. Let (2, )nen C
Dy such that x,, — x¢ for n — co. Then f(z,) — f(xo) because f is continuous in xo. Since g is
continuous in f(xo) it follows that

(g0 f)lwn) = lim g(f(wn)) = g( lim f(zn)) = g(f(x0)) = (9 f)(o)-

lim lim
n—o0 n—o00

Therefore, by Theorem 5.5, g o f is continuous in xg. [m}
Remark. The continuity of g o f does imply neither the continuity of f nor of g.

e f Heaviside function, g : R — R,g = 0. Then go f and g are continuous, but f is not
continuous in 0.

e f:R — R, f(x) = 22, g Heaviside function. Then g o f and f are continuous, but g is not
continuous in 0.
If, however, R(f) = Dy, then continuity of g o f and f implies that g is continuous.
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e If we choose f = g = Heaviside function, or f = g = Dirichlet function, then neither f nor g
is continuous but their composition is.

Definition 5.10. Let (X, dx) be a metric space and M C X. A point z¢ € X is called a limit point
(or cluster point) of M if there exists a sequence (2, )neny € M \ {20} such that lim, o 2, = @g.
In other words:

Ve>03dz. e M: 0<dx(z,2:) <e

Remark. e A limit point of M does not necessarily belong to M, for example, 1 is a cluster
point of the interval (0,1) C R but 0 ¢ (0, 1).

e Not every point 2 € M is a limit point of M. For example, if [M| < co then M contains non
limit point.

o Let (z,)nen be a sequence in a metric space X and M := {z,, n € N}. Then each limit point
of M is a cluster value of z,,, but the converse is not true. For example, consider the sequence

(zn)nen C R defined by z,, =1, n € N. Then 1 is a cluster value of the sequence, but it is
not a limit point of the corresponding set M.

Definition 5.11. Let (X,dx), (Y,dy) metric spaces, f : X D Dy — Y a function and zo a limit
point of Dy. A point a € Y is called limit of f in xg if

Ve>036>0VeeDy: (o <dx(v.m) <6 = dy(f(z),a) < 5)‘

Theorem 5.12 shows that the limit is uniquely determined and we write
11320 f(z)=a.

Remark. The existence of the limit of f in 2o does not imply that f is defined in .
The next theorem gives a criterion for the existence of the limit of a function in terms of sequences.
Theorem 5.12. Let (X,dx), (Y,dy) metric spaces, f : X O D — Y a function and xo a limit
point of D. Then limy—z, f(z) = a if and only if for every sequence (zn)nen C D\ {@o} which
converges to xy the sequence (f(xn))nen CY converges to a.

Proof. “==" Assume that lim,_,,, f(z) = a exists. Let (z,)nen C D\ {0} such that x,, — ¢
for n — oo and let € > 0. By assumption there exists a 6 > 0 such that

z€D A 0<dx(z,20)<d = dy(f(z),a)<e.

Since (z,)nen converges to zg, there exists an N € N such that 0 < dx (z,,,29) < §, n > N, hence
dy (f(xy),a) < e, n> N. Therefore f(z,) converges to a.

‘=" Assume lim,_, f(z,) = a for each sequence (2, )nen C D\ {0} with lim,, e 2, = 0.
Assume lim,_,,, f(2) # a. Then there exists an ¢ > 0 such that for every n € N there exists an
zp, € D such that
1
0 < dx(zn,x0) < » and dy (f(zn),a) > e.
Since by construction the sequence (2, )nen C D\ {zo} converges to g, this is a contradiction to

the assumption. [m}
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Theorem 5.13. Let (X,dx), (Y,dy) metric spaces, f : X 2 D —'Y a function and xo a limit point
of D. Then f is continuous in zo if and only if the limit of f in xo exists and limy 4, f(z) = f(x0).
Proof. This follows immediately from Theorem 5.5 and Theorem 5.12. [m}

Note that the existence of the limit in 2 is not sufficient for continuity of f in xzy. For example,
for the function

. 0, z#0

[RoR, f@)={% TF0

1, z=0

the limit of f in x( exists and is equal to 0 but f is not continuous in zg.

Theorem 5.14. Let (X,dx), (Y,dy) metric spaces, f : X 2 D =Y a function and xo ¢ D a limit
point of D. If the limit of f in xo ewists, then f has a unique continuous extension f : DU{zo} — Y.

Proof. By Theorem 5.5 the function
~ -~ x), zeD
Fipufed sy, fa =10
limg sy f(z), =m0

is a continuous extension of f. For any continuous extension f of f to DU {z0} it follows that
f(z) = f(z) = f(z) for all z € D and by continuity of f and f

f(wo) = lim f(z) = lim f(z) = f(zo),
therefore the continuous extension of f is unique. [}

Theorem 5.15 (Cauchy criterion). Let (X,dx), (Y,dy) be metric spaces, Y a complete metric
space, f: X DD — Y a function and xo a limit point of D. Then f has a limit in xo if and only if

Ve>036>0Va,yecDy:
(o <dx(z,30) <8 A 0 <dx(y,m0) <6 = dy(f(2), f(¥)) < ) (5.2)

Proof. Exercise 5.2.
O

If X is R or any other ordered field with a norm, also one-sided limits are defined.

Definition 5.16. Let (Y,dy) be a metric space, (a,b) C R an interval and f : (a,b) - Y a
function. For a < xy < b we define

flzot) = Tlgx;n fxy=yeY

if limy, o0 f(2n) = y for every sequence (zy,)nen C (xo,b) such that z,, — x for n — co. Analo-
gously

flxo—) == Jim fx)=yeY

for a < xg < b if im0 f(z,) = y for every sequence (z,)nen C (a, o) such that z,, — x for
n — oo.
The function f is called

right continuous at xo if f(xzo+) = f(x0),
left continuous at xg if f(xzo—) = f(zo).
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Proposition 5.17. Let (Y,dy) be a metric space, (a,b) € R and zo € (a,b). For a function
fi(a,b) =Y the following is equivalent:

(i) f is continuous in xg.

(ii) f is left and right continuous in xo, that is, f(zo+) = f(zo—) = f(z0).

Example. Let f: R = R, f(z) := [z] := max{k € Z : k < z}. The function f is continuous in
R\ Z, it is right continuous in Z but not left continuous in Z.

Proof. Let zg € Z. Then

mli\H;n f(z) = o = f(20), J}I;n f(z) =20 — 1= f(z0) — 1 # f(20)- ]

Definition 5.18. Let D C R. A function f: D — R is called

(i) monotonically increasing =  flx)>fly) ifz >y,

)
(ii) strictly monotonically increasing <=  f(z) > f(y) if z >y,
(i) (strictly) monotonically decreasing, if — f is (strictly) monotonically increasing.
)

(iv) (strictly) monotonic, if it is either (strictly) monotonically increasing or (strictly) monotoni-
cally decreasing.

Examples. The functions f: R - R, f(z) =z, g: R >R, g(z) =[z], h: Ry = R, h(z) = /z,
are monotonically increasing.

Definition 5.19. Let (X,dx) and (Y,dy) be metric spaces. A function f: X O D — Y is called
bounded if R(f) is bounded in Y.

Theorem 5.20. Let (a,b) C R and [ : (a,b) — R monotonic. Then [ has one-sided limits in
every xg € D.

Proof. Without restriction we assume that f is monotonically increasing. Let 2y > a and let
s :=sup{f(z) : a <z < xo}. We will show that lim, »,, f(z) = s. To this end, let € > 0. Since s
is the supremum of {f(z) : a < @ < xo} there exists an z. € (a,x) such that s —e < f(z.) < s.
Since f is monotonically increasing it follows that s —e < f(z) < s for all © € (z.,x). This
shows that f the left limit in 2 exists. Analogously it is shown that the right limit in x( exists for
a<mzyg<b. O

Theorem 5.21. If f : (a,b) — R is monotonic then it has at most countably many discontinuities.
Proof. Without restriction we assume that f is monotonically increasing. Let o € (a,b) be a
discontinuity of f. Since f is monotonic, we have that the one-sided limits of f in xy exist and,
again by the monotonicity of f, that f(zo—) < f(2zo+). By Proposition 3.19 there exists an gy € Q
such that f(zo—) < qo < f(zo+). Since Q is countable and for each ¢ € Q there is at most one
z € (a,b) such that f(z—) < ¢ < f(xz+), f can have at most countably many discontinuities. O

Definition 5.22. Let (Y, dy) be a metric space and D C R an unbounded set. If D is unbounded
from above, then a function f: D — Y as the limit a :=lim,_, f(z) at oo if

Ve>03RER: YoeD (zzR = dy(f(z),a)<5).

If D is unbounded from below, then the limit of f at —oc is defined analogously.
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Of course, f does not need to have limits a £oco, as for example the function f: R = R, f(z) =
(z — [=])(1 = (x — [x])) shows.

Definition 5.23. Let (X, dx) be a metric space, D C X and z a limit point of D. Then f: D — R
has the limit oo at xp, denoted by lim, 4, f(z) = oo, if

VRER IS >0: YzeD (dx(m,acg)<6 . f(w)>R)A

—o0 is the limit of f at g, denoted by lim,_,4, f(z) = —o0, if 0o is the limit of — f at ag.

5.2 Properties of continuous functions

In this section some important properties are discussed, for example the intermediate value theorem
which basically says that real intervals have no holes.

Theorem 5.24 (Intermediate value theorem). Let a <b e R and f : [a,b] = R a continuous
function. Without restriction we assume f(a) < f(b). Then for each v € [f(a), f(b)] there exists
an ¢ € [a,b] such that f(c) =~.

In other words: The image of an interval under a continuous real function is convex in R, that is,
it is an interval.

Proof. Let ¢ := sup{z € [a,b] : f(z) <~}. In particular, f(z) > v for all z € (c,b]. We will show
that f(c) = . Assume that f(c) < . Thene := - f(c) > 0. Since f is continuous in ¢, there exists
a d > 0 such that |f(z) — f(c)| < ¢ for all z € [a,b] such that |z — ¢| < 6. Without restriction we
can choose ¢ small enough that ¢+ 8/2 € [a,b]. Then f(c+ g) < fle)+|f(@) = fle)] < fle)+e <.
This contradicts the definition of c.

Analogously, if f(c¢) > v, then € := f(¢) —~ > 0. Since f is continuous in ¢, there exists a § > 0
such that | f(z) — f(c)| < e for all z € [a,b] such that |z —¢| < 0. Then f(zx) > f(c)—|f(x)— f(c)| =
f(¢) —e >~ for all z € (¢ — 4, c] which also contradicts the definition of c. O

The intermediate value theorem implies that the image of a continuous function defined on an
interval is again an interval (see also Theorem 8.41).

Theorem 5.25. Fvery polynomial in R with odd degree has at least one zero.

Proof. Let P(z) = Z;ZD ama™ such that a, # 0. Then x is a zero of P if and only if zg is a zero
of the polynomial f = ai"P4 For x # 0 we have that

Qp— a
f(z) =a"g(x) with g(z)=1+ Indpty o B
an [
Since g(xz) — 1 for z = 0o and z — —o0 and limy oo 2" = 00, limg—, o 2" = —o0, there exist

2+ € R such that f(z_) <0 and f(z4) > 0.
Since the polynomial f is continuous, Theorem 5.24 implies that there exists an zy € (z_, z4) such
that f(zo) =0. O

Theorem 5.26. Let I C R a interval and f: I — R continuous. Then

[ ingective <= [ strictly monotonic.

Proof. Exercise 5.5 “<=" clear.
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“=" Let f:I — R continuous and injective. We define the set
A={(z,y) eI xI:z <y}
Note that A is convex, that is
pp2€A =  {pi+tlpe—p1):0<t<1}C A
By assumption, the function
prA=R o(x,y) = fla) - f(y)

has no zeros. Assume that f is not monotonic. Then there exist p1 = (z1,41) and ps = (22,¥2) in
A such that ¢(p1) < 0 and ¢(p2) > 0. Since the function

Y :[0,1] = R, (t) = p(p1 +t(p2 — p1))

is continuous and ¢(0) < 0 and (1) > 0, then intermediate value theorem (Theorem 5.24) implies
that there exists an ¢y € (0, 1) such that

0="1(to) = ¢(p1 + to(p1 — p2)),
in contradiction to the assumption that ¢ # 0 on A. O
Theorem 5.27. Let I C R be an interval, f : I — R a strictly monotonic function. Then f is
invertible in the sence that there exists a (unique) function f=1: R(f) — I such that fo f~1 = idg,

and f~' o f =id;. The function f~* is strictly monotonic and continuous.

Proof. Existence, uniqueness and monotonicity of f~! are clear. It remains to be shown that f~!
is continuous. To this end, let p € I such that p is not boundary point and let € > 0. Since I is an
interval, we can assume without restriction that  is so small that (p — e, p+¢) C I. Monotonicity
of f implies that there exists a 6 > 0 such that

flp—e)<flp)—d<f(p) < flp)+d<flp+te)
By monotonicity of f~ we obtain for all y € D(f~') = R(f):
ly—f)l <6 = p-e<f')<pte

The proof for p being a boundary point of I is analogous. [m}
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Definition 5.28. Let (X, dx) be a metric space. A subset K C X is called compact if and only if
every sequence (Z,)nen C K contains a subsequence which converges in K.

Proposition 5.29. An interval I C R is compact if and only if there exist a < b € R such that
I=[a,b].

Proof. “<=" Leta<beRandI = [a,b]. By the theorem of Bolzano-Weierstraf every sequence
(Zn)nen in I contains a convergent subsequence (zn, )ren. Since a < xp, < b for all k € N, it
follows that a < limg_oc Zpn, <b.

“=="  Assume for example that I = (a,b]. Then the sequence (a + %)ngw does not converge in
1. O

Theorem 5.30. Let (X,dx) be a metric space, K C X compact and f : K — R a continuous
function. Then f attains its infimum and supremum, that is,

3p,geK: VeeK f(p)<f(z)<flq).

Proof. We show that f attains its supremum. Let s := sup{f(z) : # € K}. Then there exists a
sequence (2 )nen such that f(z,) — s. Since K is compact, there exists a subsequence (2, )ken
and a ¢ € K such that z,, — ¢ for k — co. It follows that
f(g) = f(lim z,,) = lim f(z,,)=s,
k—oo k—oo

in particular s < oo.
Applying the above to the function —f it follows that f attains its infimum. O

max f(I) o

min f(I) Y

FIGURE 5.3: Intermediate value theorem (Theorem 5.24) and theorem of the minumum and maximum
(Theorem 5.30): The continuous function f attains a minimum and a maximum on the closed interval
I = [a,b]. The image of the interval I is again an interval: [min f(I), max f(I)].

Corollary 5.31. Let K be compact, f : K — R such that f(z) > 0 for all x € K. Then
inf{f(z): 2 € K} >0.
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Definition 5.32. Let (X, dx) and (Y, dy) be metric spaces and D C X. A function f: D — Y is
called uniformly continuous if

Ve>036>0Ve,yeD: (dx(z,y) < = dy(f(z), f(y)) <e).

Obviously, every uniformly continuous function is continuous.

If f is continuous in D then the ¢ in the definition of continuity may depend both on ¢ and the
point z at which the function is considered. If f is uniformly continuous, then the same ¢ is good
enough for all zy in D.

Examples. e Every Lipschitz continuous function is uniformly continuous.

e f:[0,1] = R, f(z) = y/z is uniformly continuous but not Lipschitz continuous (see Exer-
cise 5.6).

e f:(0,1] &R, f(z)= % is not uniformly continuous.
Theorem 5.33. A continuous function on a compactum is uniformly continuous.
Proof. Let (Y, dy) be a metric space, K a compact subset of a metric space (X,dx) and f: K —Y

a continuous function. We will show that f is uniformly continuous. Assume that f is not uniformly
continuous. Then there exists an € > 0 such that

1
VneN Jan,yn € Ko dx(wn,ya) <~ A dy(f(za): f(yn)) 2 €.

Since K is compact, the sequence (m,L),,LEN contains a convergent subsequence (m,Lk)keN that con-

verges to some p € K. Since d(2n,,Yn,) < ﬁ for all k € N it follows that also the subsequence

(Yny )ken converges to p. The continuity of f implies
lim f(zn,) = f(p) = lim f(yn,),
k—o0 k—o0

in contradiction to the assumption f(zy,,) — f(2n,) > ¢ for all k € N. O

5.3 Sequences and series of functions

In this section we consider sequences and series of functions. We will consider two types of conver-
gence of sequences of functions: pointwise convergence and uniform convergence.

Definition 5.34. Let X be a set, (Y, dy) a metric space and (f,)nen € VX a sequence of functions
fn: X — Y. The sequence converges pointwise to the function f: X — Y if lim,,—,o fn(z) = f(2)
for every z € X, i.e.,

Ve>0 VeeX INeEN Vn>N: d(fu(z),f(z)) <e.

The following example shows that a pointwise convergent function is not necessarily as “close” to
the limit function as might be expected.

Example 5.35. Let
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n21'., ()SLL'S%7
fo R=R, falz)={2n-n’z, +<z<2,
0, z>%

n—00

Obviously, f,(z) —— 0 for all z € R, hence f,, — 0 pointwise (see 5.7).

The following example shows that the limit function of a pointwise convergent sequence of contin-
uous functions is not necessarily continuous.

Example 5.36. Let f, : R =R, f,(z) = %

Obviously, every f,, is continuous in R and for all € R we have f,, : R = R, f,(2) — sign(x)
for n — oo, hence the pointwise limit function is not continuous.

FIGURE 5.4: The pointwise limit of the sequence (fy)nen with the continuous functions f,(x) = naz(l +
|na|)~! is the non-continuous function sign(-), see Example 5.36.

‘We need a stronger notion of convergence that guarantees that the limit of continuous functions is
again continuous.

Definition 5.37. Let X be a set and (Y, dy) be a metric space. A sequence (f,)nen of functions
fn: X = Y is called uniformly convergent to a function f: X — Y if

Ve>0 INeN VeeX Vn>N: d(fu(z) f(z)) <e.
In contrast to the definition of pointwise convergence, the N depends only on &, not on z.

Definition 5.38. For a set X and a normed space (Y, || - ||) we set
B(X,Y)={f:X — Y bounded}.
The supremum norm of a function f € B(X,Y) is

[[flloo := sup{[lf ()]l : = € X}.
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FIGURE 5.5: Uniform convergence (Definition 5.37): For every € > 0 there exists an N € N such that the
graphs of all f, with n > N lie in an e-tube about the graph of the limit function f.

If f: X = Y is unbounded, we set || f||oo := 0.

Remark.
e f, — funiformly = f, — f pointwise.
e f, — f pointwise < f,(z) = f(z), z € X.

o fn, = funiformly <= ||f, — flloc = 0.

Theorem 5.39. (i) (B(X,Y), |
K.

“|loo) is @ normed space over K when'Y is a normed space over

(ii) If Y is a complete normed space, then (B(X,Y), | - |ls) @ complete normed space, i.e. a
Banach space.

Proof. (i) Cleartly, ||flloo € RS and [Aflle = |A|[[flloc for all f € B(X,Y) and A € K. Let
fig€ B(X,Y) and z € X. Then

[(f + )@ = () + g@)| < [f @) + llg@)]l-

Taking the supremum over all € X yields the triangle inequality in B(X,Y): [|f + gllec <
[[£llse + llglloo-

(ii) Let (fn)nen be a Cauchy sequence in B(X,Y). We have to show that it converges to some
f € B(X,Y). Let € > 0. By assumption, there exists an N € N such that || fn — fmlleo < § for
all m,n > N. In particular, for each € X, the sequence (f,(z))nen is a Cauchy sequence in Y,
hence convergent because Y is a Banach space. Therefore, the function

FiX Y. f@) = lim fula)

is well defined. We will show that (fy,)nen converges uniformly to f. For m,n > N and z € X we
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have
[fn(@) = @) < lfn(@) = (@) + [ fm (@) = f(@)]]
S fo = Fmlloo + lfm(@) = f@)II < % + [ fm(z) = f(@)I-

Taking the limit m — oo yields that || f,(x) — f(z)| < §. Therefore for n > N

VeeX |fulz) - fl@)] <e. (5.3)
Taking the supremum over all z € X finally yields || f, — floc < § < ¢ for all n > N. In particular,
f is bounded because

[f@)] < |fn@)]+1f(@) = fn@)] < Ifnlle + % <00,

and (fn)nen converges uniformly to f by (5.3). O
Theorem 5.40. Let (X, dx) be a metric space, (Y, ||-||) a normed space and f,, : X — Y continuous

and f: X =Y. If fn Eji» f, then f is continuous.
unif.

In other words: The uniform limit of continuous functions is continuous.

Proof. Let 29 € X and € > 0. Then there exists an N € N such that || fx — fll < §. Since fy is
continuous, there exists a § > 0 such that || fx (x) — fx(xo)|| < § for all x € X with dx (z,20) < 9.
Hence we obtain for all z € X with dx (z,z0) < d
[£() = fo)ll < [[f(2) = S (@) + I x(2) = f(@o)ll + [ fx(wo) = f (o)l
<N = Inlloe + 1N () = (o)l + [1fx = flloo < o

The above theorem shows that for a uniformly convergent sequence of continuous functions the
limits commute:

lim lim f,(z) = lim lim f,(z).
n—00 Lo T—To N—00

If the sequence (fy,)nen converges only pointwise, then, in general, the limits cannot be commuted,
as Example 5.35 shows.

Theorem 5.39 and Theorem 5.40 show that the set of all bounded continuous functions on a metric
space X together with the supremum norm are a Banach space. Since every continuous function
on a compact metric space is bounded, we obtain

Theorem 5.41. Let (X,dx) be a compact metric space and (Y,| - ||) a normed space. Then
(C(X,Y), || - [lo) %s a Banach space.

Since series are special case of sequences, we have the notion on pointwise and uniform convergence
also for series of functions:

oo oo
Z fn converges pointwise <<= VzeX Z fn(z) converges in Y,

n=1

n=1

oo

Z fn converges uniformly <= the sequence of the partial sums
n=1

n
(Z fk) converges uniformly.
="/ neN

Since (B(X,Y), || - ||) is a Banach space, we obtain the following criterion for convergence of a
series of functions.
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Theorem 5.42 (Weierstraf3 criterion). Let X be a set, (Y,| - ||) be a complete normed space
and (fo)nen € B(X,Y). If Y02 | falle < 00, then the series Y oo | fn converges uniformly to a
function f € B(X,Y) and for each x € X the series Y . 1 fn(x) converges absolutely in'Y .

Proof. Let & > 0. Then there exists an N € N such that >-_ ||fk]ls < € for all m,n > N. The
triangle inequality yields

R
k=m

The Cauchy criterion (in the complete normed space (B(X,Y),| - ||o) shows that the series of
functions converges absolutely in (B(X,Y),| - |l«) which is equivalent to uniform convergence.
Since for every z € X

n
OQS’ZanHoc < g m,n > N.
c=m

Solf@I < Y el < oo,
k=1 k=1

also the assertion on pointwise absolute convergence is proved. [m}

5.4 Power series

Definition 5.43. Let a € C and (¢p)nen € C. Then
S ealz—a) (54)
n=0

is called a power series centred in a (or a power series in (z — a)) with coefficients in ¢,.
The radius of convergence of the power series (5.4) is

R :=sup{t € R: (¢,t")nen is bounded}.

Depending on the coefficients, the series (5.4) converges for all z € C, for no z € C, or for z a subset
of C.
Theorem 5.44. Let R be the radius of convergence of the power series (5.4).

(i) For z € C such that |z — a| > R, the series (5.4) diverges.

(ii) For z € C such that |z — a| < R, the series (5.4) is absolutely convergent.

For 0 <r < R On B,(a) the series converges uniformly to the continuous function

By(a) = C, Z ch(zfa)",
n=0
Proof. (i) Since by assumption (cn|z — a|™)nen is not bounded, the series diverges (Theorem 4.48).

(ii) Let r € R such that » < R. Then there exists a ¢t such that » < t < R. By definition of R there
exists an M such that |¢,t"| < M for all n € N. For each z € C with |z — a| < r <t we obtain

o . wl(T\ _ 2 (TN
len(z = a)™| < lenr™| < |ent™| : <M )
n
Therefore, [|¢,(-—a)|loc < A (%) where ||| is the supremum norm of bounded functions on B, (a).

By the Weierstra$} criterion (Theorem 5.42) the series of polynomials (5.4) converges uniformly on
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B,(a) and for fixed z the series converges absolutely. Since all polynomials are continuous, the
function
o0
By(a) »C, z— 2 cn(z—a)®

n=0

is continuous (Theorem 5.40). [m]

Theorem 5.45. Let R be the radius of convergence of the power series (5.4). Then

(i) R = (limsup {/ ‘cn‘)71!
n

() R= lim 1%

n—o0 |Cpt1

if the limit exists

Proof. (i) Let R := (limsup 3/ \cn|)714 R = R follows immediately from the root test and the

characterisation of R in Theorem 5.44:

~ [<1 if|z—a| <R
limsup {/|cn(z — a)?| = |z — a|limsup {/|c,| = |z — a|R { | | ’
n n

>1 if|z—a| >R}

with the convention that R~ = 0 if R = 000 and R~! = oo if R = 0.
(ii) follows analogously with the ratio test. O

The following theorem follows immediately from Theorem 4.48 and Theorem 4.69 (Cauchy product).

Theorem 5.46. Let

an(z —a)" and ch(z —a)"
n=0 n=0

complex power series in (z—a) with radii of convergence Ry and R, respectively. Then for all z € C
with |z — a| < min{R., R4}

(i h,z(z - /L)") + (i cn(z — a,)") _
n=0 =
(é ba(z — a,)“') . (g enlz — {,)n) _

Let R be the radius of convergence of (5.4). We know that for |z — a| < R the series is absolutely
convergent and that for |z —a| > R it is divergent. For |z—a| = R the series can diverge or converge.

-
(b + ) (= — a)",
=0

(i ekd,L,k) (z—a)™
k=0

Mz i

Il
o

n

Examples 5.47. Even when the function represented by a power series is continuous in the limit
points of the interval of convergence, the series does not need to converge.
oo
(i) Z z". The radius of convergence is R = 1. The series diverges for z = +1.

n=0

Note that 3°,,_, 2" = i for [2| < 1 and 17671) =1
)
(ii) Z 2" The radius of convergence is R = 1. The series diverges for z = £land ), _, 22" =
n=0
1= for |z| < 1 and H»(IT)Z =1
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sl n
(iii) Z —. The radius of convergence is R = 1. The series diverges for z = 1 and is condition-
n
n=0
ally convergent for z = —1.
From Theorem 5.44 we already know that a power series defines a continuous function on the the
open ball of convergence. Next we will show that f is continuous in that points z with [z —a| = R

for which the power series converges.
To this end we use

Remark (Summation by parts). Let (a,)nen, and (bn)nen, be sequences in C and define
n
A_4:=0, A, ::Zakﬁ n € N.
k=1

Then obviously we have a,, = A,, — A,,—; =: AA,,. The following rules can be verified straighfor-
wardly:

(i) Product rule: A(AB)y, = (AAy)By + Ap-1ABy,

——
i=AgBr—Ak-1Br_1

" "
(i) Y AAk-Bi=AnBa— Y Ar1ABy,

k=0 k=0
n n-1
(iil) Y ar-Bi=AnBa+ Y ApABrya,
k=0 k=0
n n—1
(iv) Then for 0 < m < n it follows that Z apbr = Z Ap (b — brg1) + Anby — Ay 1byy.
k=m k=m

Theorem 5.48 (Abel’s theorem). Let (¢,)nen € R and assume that the power series
o
Z en(z—a)” (5.5)
n=0
converges in I := [a — R, a + R]. Then the series converges uniformely in I and its limit is a
continuous function.

Proof. It suffices to prove the uniform convergence because all partial sums are polynomials, hence
continuous, and by Theorem 5.40 the uniform limit of continuous functions is continuous. Obviously,
it suffices to show uniform convergence on [a, a+ R] and [a— R, a]. Let us apply the transformation
of the variable
z—a
£=22
Then, obviously, the series in (5.5) converges uniformly on [a,a + R] if and only if

o0

S et

n=0

converges uniformly on [0,1]. Let us show uniform convergence on [0,1]. To this end fix ¢ > 0 and
choose m € N such that for all n > m

n
ch <e.

k=m
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Such m exists because the series > ;o cx = > p_q 1¥¢y, converges by assumption. Now define

{0, k<m,
ag ==

g, k>m.
Then
S m—1 o
D" = >y st
k=0 k=0 k=0

Summation by parts applied to Ay = Z,k;zl ay, By = &F for ¢ € [0,1] yields

n n—1 n—1
> ar € = AB, =Y Ap(€F - ) = A,6m = Y Ap(gF -
k=0 k=0 k=0

=AAL By

n—1

=4, - (1-8) Y A
k=0

Using that |Ay| < € by assumption we obtain for 0 < ¢ <1

n n—1
Dot | S [Aule" + (1= 3 Mg <€+ (1= g =2=
k=0 k=0

Obviously, the inequality is also true in the case £ = 1. In summary, we showed that the series
converges uniformly on [0, 1], hence the series in (5.5) converges uniformly on [a, a + R]. To show
that it converges uniformly on [a — R, a], we apply the substitution

z—a

£ = T [}

The exponential function is defined as a power series.

Definition 5.49. The ezponential function is defined by

oo

and the sine and cosine functions are defined by
n,2n+1 n,2n

cos: C— C, ZHi(ng'

n=0

. o~ ()
sin: C — C, z»—)é —,
— (2n+1)

These functions are well-defined by Theorem 5.45 and continuous in C by Theorem 5.44.

Theorem 5.50 (Properties of exp). For the function exp : C — C, exp(z) := i % and the
Euler’s number e defined in Theorem 4.71 gilt: =

(i) exp(2) = exp(z), z€C,

(ii) exp(z +w) = exp(z) exp(w), z,w e C,

(iii) exp(n) =¢", ne€Z,
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(iv) exp(z) #0, z€C,
(v) |exp(iz)] =1, ze€R.
Proof. Exercise 5.11. m}
Theorem 5.51 (Euler’s formula).
exp(iz) = cos(z) + isin(z), 2z €C, (5.6)

consequently

cos(z) = %(cxp(iz) +exp(—iz)), sin(z) = 21 (exp(iz) — exp(—iz)). (5.7)

i

In particular, it follows for all z € R that exp(z) = (CXp((L'/Q))z > 0. Directly from the defintion
of exp we obtain that it is monotonically increasing in [0,00). Using the fact that exp(—z) =

(exp(z)) " and that exp is positive, it follos that exp is monotonically increasing in R.

Proof. Let z € C. Since exp, sin and cos are absolutely convergent on C, we have

2n 4. n . n—1 N
. . (1z)k o (lz)zk (lz)2k+1
exp(iz) = lim 3 5= lim (3 @t (2k+1)!)
k=0 k=0 k=0

L (—1)ka2k n-1 kzzkﬂ)

o (=1
= Jm (3 25! *kzzo 2+ 1)

n n-1 (—1)k 521

k2K
= J (32 )+ i (3 () = o) s,
k=0 k=0

Formulae (5.7) follow because sin(z) = sin(—z) and cos(—z) = cos(z) which follows directly from
the definition. [m]

Definition 5.52. The function R — R, 2 — exp(z) is continuous and by Theorem 5.50 monoton-
ically increasing with range R(exp) = R, hence by Theorem 5.26 it is invertible and the inverse is
continuous. The inverse function is called the (natural) logarithm denoted by

In: (0,00) = R.

Remark. Sometimes the logarithm is denoted by log instead of In.

Uniqueness of the power series representation
For the proof of the uniqueness of the power series representation of a function we need the following

technical lemma.

Lemma 5.53. Let Yo" cn(z—a)™ be a comples power series with radius of convergence R. Then

for every m € Ny and every r € (0, R) there exists an M > 0 such that for all z € C with |z—a| < r:

‘ i cn(z—a)?

n=m

< M|z —al™.
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Proof. Let m € N. Then the series Y 0o cn(2—a)" and > oo ¢, (2 —a)" ™™ have the same radius
of convergence. For |z — a| < r Lemma 4.60 implies

00

0 o
| Z cn(z—a)"| <|z—al™ Z leallz —a|"™ ™ < |z —a|™ Z cplr™T™
n=m n=mo X n=m
~ <
=|z—a™ Z [Cngmlr™ . O

n=0

————
=:M<oo, since T<R

Theorem 5.54. Let > 0" o by(z — a)" and Yo" ca(z — a)™ be complex power series with radii of
convergence Ry, and R. respectively. If

o o
S balz—a)" =) ealz—a)", |z—a| <7,
n=~0 n=0

for some 0 < r < min{Ry, R}, then a, = b, n € Ny.

Proof. Without restriction we assume a = 0. By Theorem 5.44 it suffices to show that ZZC:D by 2" =
0 for all |z| < r implies b, =0, n € Ng. Let N := min{n € N : ¢, # 0}. Then, by the proof of
Theorem 5.44, there exists an M > 0 such that for all z € C with |z| < r

byzN = ‘ib,,z"’—szN‘ = ‘ i b 2"

n=0 n=N+1

<Nt

=0

in particular |z| > % for all 0 < |z| < r. Since |z| can be chosen arbitrarily small, this implies

by =0. [m]

Another proof for the uniqueness of the power series representations follows from the Taylor expan-
sion.
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Chapter 6

Integration and Differentiation in
R

6.1 Differentiable functions

Continuity of a function f in a point z¢ implies that the function values f(z) do not deviate too
much from f(zo) if 2 is close to xq.

In this section we investigate the local behaviour of functions further. We will consider mainly
functions f : D O R — R. A function is called differentiable in a point zy if it can be approximated
by an affine function. More generally, a function is n times differentiable if it can be approximated
locally by a polynomial of degree n. This is the main assertion of Taylor’s theorem.

f (o)

FICGURE 6.1: Geometric interpretation of the difference quotient in the case F = Y = R: The difference
x) — f(wo)

quotient - is the slope of the secant of the graph of f through the points (zo, f(zo0)) and

T — xo
(z, f(z)). For & — zo the secant becomes the tangent of the graph of f in the point (zo, f(z0)); f'(z0) is
the slope of the tangent.

Definition 6.1. Let F =R or C, (Y, - ||) a normed space over F and z¢ € D a limit point of the

85
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set D C F. A function f: D — Y is called differentiable in x( if there exists a function ® : D — Y
continuous in xg such that

f(@) = f(xo) = (x)(x — xo), z€D. (6.1)

Then ®(zg) =: f'(xo) is called the derivative of f at xy. The function is called differentiable if
every point of D is a limit point of D and f is differentiable in every point zy € D. In this case,
the function

f iD=y, x> f(z)
is called the derivative of f.
Note that the function ® depends on f and .

Theorem 6.2. Let F =R or C and (Y, |- ||) a normed space over F. Let xg € D CF such that z
is a limit point of D and let f : D — Y. Then the following is equivalent:
(i) f is differentiable in x.

(ii) There exists an a € Y and a function ¢ : D — Y which is continuous in xo with ¢(xg) = 0
and

f(x) = f(wo) + a(x — o) + @(x)(z — x0), x €D. (6.2)
(iii) The following limit exists:

b:= lim (@) = J(o) (6.3)

xro T — g
If f is differentiable in xq, then f'(xo) =a="b.

Proof. “(i) = (ii)” Leta:= f'(zo)and ¢ : D =Y, ¢(z) = ®(z)— f'(x0). Then ¢ is continuous
in o and p(zg) = ®(2¢) — f'(x0) = 0 by definition of f’(x() and obviously ¢ satisfies (6.2).
“(ii)) = (ili)” By assumption

a:'_liﬂm o(x) +a= lim M:h

Tz T — X
“(iil) = (1)”  Since the limit in (6.3) exists, the function
f@=f@o) i o
®:D—Y, (I)(m)::{b Tz—z9 llfzox

5 if v =2
is continuous in zo. Obviously it satisfies (6.1) and f'(z¢) = ®(xo) = b. O

The characterisation of differentiability in Definition 6.1 is useful for proofs and can be extended
to functions f between normed spaces. The characterisation (ii) of Theorem 6.2 gives a geomet-
ric interpretation of the derivative (see Remark 6.4) and (iii) is useful to calculate derivatives of
functions.

Corollary 6.3. If f is differentiable in xo then f is continuous in x.

Proof. This follows immediately from (6.1) because

Jlim (£(z) = f(z0) = (lim ®(@))( lim (@~ 20)) =0. D
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Note that the converse is not true, for example the absolute value function on R is continuous in 0
but not differentiable. There exist functions that are continuous on R but nowhere differentiable,

0o cos(15%ma)
neo — 3> T ER.

for example the Weierstra$ function f(z) ="

NotatiAon. Other notations for f'(zo) and f' are & f(wo), L (xo), Df(wo) and L f, 4L Df,
respectively.

Remark 6.4. Theorem 6.2 shows that f is differentiable in z if and only if it can be approximated
by a linear function at zy, that is, there exists a linear function

L:F—Y, L(z) = f(xo) + a(x — x0)
such that f(z) — L(z) tends to 0 faster than x — 2 for  — x¢. The constant a is then f’(xq).
Remark 6.5. The space of all linear functions from F to Y is denoted by L(F,Y’). Note that every
a €'Y induces the linear map F — Y, z — ax.
Let f:F DD — Y be differentiable. The differential df of f is the map
df : D — L(F,F), ey d,f:F—F, hes f(z)h.

Since the differential dz of the function F — F, z + z is the identity, it follows that df = f'dz.

Examples 6.6. e f:R = R, f(z) = a™ for n € Ny is differentiable in R with f’(z) = 0 if
n =0 and

f'(z) = na"t, n>1.

Proof. For n = 0 the assertion is clear. Now let n > 1 and fix o € R. For 2 € R\ {0,z0} it
follows from the formula for the geometric sum (4.5) that

@) = flao) o —af "1 () ED
T — xo T —xp r 1 . T
J=0
For x — x( this tends to nmS’IA [}

o [:]0,00) = R, f(z) =/ is differentiable in (0, 00) with
ey = L L
fiz) =5 7
It is not differentiable in 0 (see Exercise 6.1).

o [:R—R, f(x) = || is not differentiable in 0.

.z =0 .
proo. lig 5 =1#-1- i B

[m]

0
—0°

Example 6.7. The exponential function C — C,z — exp(z) is differentiable with derivative
/
exp’ = exp.
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Proof. First we show that exp is differentiable in z = 0. For z # 0

exp(z) —exp(0)  exp(z) —1 1 /o= z2F 1= 2F 2*
= - (Y2 ) =232 =
z—0 z ( k! ) z ; k!

(k+ 1)

=~

i=0
It is easy to see that radius of convergence of the last series is oo, therefore it is uniformly convergent
which implies

oo

k e k
/ =1 _2 = i i =
/(0) = im 3 7=y, kzzol‘i% Gr b

=

Now let zy € C arbitrary. It follows that

- - -1
exp/(20) = exp(z) — exp(2o) _ exp(zo)eXp(z 20)
zZ— 2y Z— %0
Z220 exp(z0) exp’ (0) = exp(z0)- [m]

Theorem 6.8. Let F =R or C and (Y, | - |ly) a normed space over F. Let xg € D C F such that
o is a limit point of D and assume that f,g: D — Y are differentiable in xo. Then

(i) For all o € F the linear combination f + g is differentiable in xo with
(af +9) (z0) = af'(z0) + ¢'(x0). (6.4)
(ii) IfY =T then the product fg is differentiable in xo with
(fg)'(wa) = f'(w0)g(x0) + f(z0)g (wo)- (6.5)

(iii) If g(zo) # 0 then the function é is differentiable in xo with

N f(@o)g(xo) — flao)g' (x0)
(5) 0= (o) ‘ (©0)

Proof. Let @ and ®4 as in (6.2), that is, ®y and ®, are continuous in zy and
f(@) = fxo) = Of(x)(x —20), €D,
9(z) = glwo) = @y (2)(x — z0),  x€D.

(i) follows from

(af +9)(@) = (af + g)(z0) = a(f(z) = f(x0)) + g(x) — g(z0)
[a{?’j-(z) + (Dg(z)] (z — z0).
.

artg(@)

Since ®n 4 is continuous in zo and tends to af’(xo) + ¢’ (o) for @ — xo, the function af + g is
differentiable in ¢ by (6.2) and (6.4) holds.

(ii) follows similarly:
(f9)(@) = (f9)(wo) = f(x)g(x) — f(wo)g(xo)
= (f(2) = f(=0))g(@) + f(zo)(g(z) — g(wo))
= [@1(@)g(@) + F(20)0,(x)]| (2 — 0).

=Py,
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Since @y, is continuous at ¢ and it tends to f'(x0)g(xo) + f(x0)g'(xo) for & — xo, the function fg
is differentiable in zy and (6.5) holds.

(iif) by (ii) it suffices to show that (1)’ (z0) = — 28 This follows from
L1 _g@)—gl@) _ Py(x) (@ - a0)
g(x)  glwo)  g(x)g(zo)  g(x)g(wo)
e Pa(®) g (@0) po o s
because m — ;’(;”O‘;Q for  — xo. O

Corollary 6.9. Polynomials and rational functions are differentiable.

Theorem 6.10 (Chain rule). Let F=R or C and f :F 2Dy - F, g: F 2 Dy — Y functions
such that f(Dy) C Dy. Let xo € Dy be a limit point of D and f(xo) be a limit point of Dy. If f is
differentiable in o and g is differentiable in f(xo) then go f is differentiable in xo with derivative

(g0 f)(w0) = ¢'(f(w0)) ' (wo)-

Proof. By assumption on f and g there exist functions ®; : Dy — F continuous in z¢ and @, :
Dy — R continuous in f(xo) such that

f(@) = f(2o) = ®s(x)(z —w0),  Py(wo) = ['(20),
g(x) — g(z0) = Dy(@)(x — 20),  Ry(z0) = g (20)-
Therefore
(g0 f)(@) = (go f)xo) = g(f(x)) = g(f(0)) = Py(f(2))(f(x) — f(w0))
@y (Pf(2)) Py () (2 — o).
NCASEA it i)

=P

gof(x)

Since @40 is continuous in ¢ and tends to g'(f(xo))f' (zo) for @ — xo, the assertion is proved. [

Examples.

o [f:Ry =R, f(z)=Vad+42z+7.
The function f is a composition of differentiable functions, therefore it is differentiable. Using
chain rule we obtain

1
Vad +422+7

e f:Ry R, f(r):\/i3+\/@+7

As a composition of differentiable functions, f is differentiable. Chain rule yields

S = (3% +42).

N a2 1111 3 Viz
f'(x) =3Vz '§ﬁ+§\/ﬁ427§ﬁ+m»

For functions defined on intervals in R we can define one-sided differentiability.

Definition 6.11. Let (Y] - ||) be a normed space over R and D C R, zp € D such that zg
is a limit point of D N [z9,00). Then f is called differentiable from the right if there exists a
function ® : DN [zg,00) — R, continuous in z¢ such that f(z) — f(z0) = ®(z)(x — x¢) for all
2 € DN [xo,00). In this case, f! (x0) := ®(x0) is called the derivative from the right of f in xzo. f
is called differentiable from the right if it is so in every point @ € D. The derivative from the left is
defined similarly.
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Definition 6.12. Let F =R or C, (Y, | - ||) a normed space over F and zy € D C F such that z is
a limit point of D. We define fl%(xy) = f(axo). If f is differentiable in zo we set fI1(zo) = f/(z0).
Inductively, higher order derivatives are defined: Assume that 1, f11 .. f[*=2 are differentiable
in D and that f[*=1] is differentiable in zo, then f is called n-times differentiable in o and

7o) s= o faw) = (7))

is the nth derivative of f at xo. The function f is called n-times differentiable if it is n-times
differentiable in every « € D. In this case, the function

D=y, oz f(2)

is the nth derivative of f.
If the nth derivative of f is continuous, then f is called n-times continuously differentiable.

The following vector spaces of functions are defined:
C™"(D):=C"(D,Y):={f:D—Y : f is n-times continuously differentiable},

C=(D) = ﬁ cm(D,Y).

n=0
Remark. Obviously C>* C C"*1(D) C C"(D,Y) C C°(D)=C(D), neN.

Differentiation in Banach spaces

In this section the definition of differentiabilty is generalized to functions f between (subsets of)
normed spaces. All normed spaces in this subsection are assumed to be real or complex vector
spaces.

Definition. Let X and Y be normed spaces over F =R or C. A map 7': X — Y is called linear
if forall z,y € X and A e F

T(z+My) =T(z)+ T (y).
The linear map T': X — Y is called bounded if and only if
[T == sup{[IT|| : 2 € X, [l]| =1} < 0.

In this case, |T|| is called the norm of T. The set of all bounded linear maps from X to Y is
denoted by L(X,Y). It is easy to check that (L(X,Y), || -|) is a normed space over F.

Remark. Let T € L(X,Y).
(i) [|Tz|| < ||T||jz| for all z € X.

Proof. If x # 0, then || Tz| = | T || lz]| < ||T| [|z|]. The assertion is clear if z = 0. O

[l
(ii) If Y is a Banach space, then L(X,Y) is a Banach space.

Proof. Note that for a linear map 7' € L(X,Y)) its restriction to the unit ball Bx in X is bounded
and that [|T]| = ||T|px ||« (i.e., the norm of T as a linear map is equal to the supremum norm of
the restriction of T' to Bx). Let (T),)nen be a Cauchy sequence in L(X,Y’). Then the sequence of
the restrictions to Bx are a Cauchy sequence in B(Bx,Y) (the set of all bounded functions from
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Bx to Y with the supremum norm). By Theorem 5.39 there exists an Te B(Bx,Y) such that
the restrictions of T}, converge uniformly to 7. T' can be extended to a linear function 7' on X by
setting 70 = 0 and Tz = HyHTﬁ It is not hard to check that T" is well-defined, linear, bounded

and that ||T,, — T|| — 0 for n — oc. O

(iii) If dim X < oo then every linear function 7' : X — Y is bounded because the unit ball Bx in
X is compact (by the Heine-Borel theorem, Theorem 8.33).

Now let us assume that X is a vector space over F with an inner product (-,-). Then X becomes
a normed space if we set ||z|| = (z,z) for all z € X.

Definition 6.1°. Let X be a Banach space over F and Y be normed space over F, D C X and
2o € D a limit point of D. A function f : D — Y is called differentiable in xq if there exists a
function ® : D — Y continuous in zg such that

f(x) = f(x0) = () (x — x0). (6.17)

Then ®(x0) =: f'(z0) is called the Fréchet derivative of f at xg. The function is called differentiable
if every point of D is a limit point and f is differentiable in every point zy € D. In this case, the
function

f:D— L(X,Y), z = f'(z)
is called the Fréchet derivative of f.
Note that the function ® depends on f and xg and that f'(z¢) € L(X,Y).

Theorem 6.2°. Let X and Y be normed spaces. Let zp € D C X such that z( is a limit point of
D and let f: D — Y. Then the following is equivalent:

(i) f is differentiable in x.
(ii) There exists an A € L(X,Y) and a function ¢ : D — Y which is continuous in zo with

lim ”"7(“”) =0 and
x> l2=oll

F(@) = f(z0) + A(w — 30) + 9(z), zED. (6.2))
(6.2)
(iii) There exists a B € L(X,Y) such that
i @) = (o) = Bz = w0)|

z—zo |z — o

=0. (6.3")

If f is differentiable in z¢, then f'(z¢) = A = B.

Proof. “(i) = (ii)” Let ¢:D =Y, ¢(z) = (®(z) — D(x0))(z — o) and A := f'(z0) = P(z).
Then ¢ is continuous in =g and

= lim [|[®(x) — ®(zo)|| =0

r—T0

because ® is continuous in xg. Moreover, by definition of ¢,

f(@) = f(zo) = 2(z)(z — 20) = B(x0)(x — z0) + p(),
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so ¢ satisfies (6.27).
“(i) = (i) Let z € D. By the Hahn-Banach theorem® there exists a linear functional
1y + X — F such that ¢, (5=2-||) = 1 and [|¢),|| = 1. Let ® : D — L(X,Y) be defined by

lle—z0

Av + [z — ol T a(v) p(w), @ # 0,

O(z): X =Y, Px)v= {
Awv, T = x0.

® is continuous in xy because

lim [[9(x) — ®(w0)]| = lim sup{| [l —zo] "' (0) p(a) | : v € X, o]l = 1}
T—To T—To

IN

Jim sup{||z — aol| Mo | o]l (@) s v € X, o] =1}
0

. -t _
Jim e — a0l (e = 0
by assumption on ¢. Obviously, ® satisfies (6.1"). Hence f is differentiable in z¢ and f’(zo) = ®(x0).

“(ii)) <= (ili)” The equivalence is obvious with A = B. O

If X is an inner product space with scalar product (-,-) such that ||z||? = (z,z), € X, then the

function ® in the proof “(ii)) = (i)” is given by

A e — 2ol 22 — 20 .1 - .
B): X oY, e { v+ |l = 2ol "2z — 30, 0) 9(x), @ # a0,
Av, T =T
Corollary. The derivative f'(xo) is uniquely determined.
Proof. Assume that there exist A, B € L(X,Y) and ¢4, ¢p : D — Y such that
f(@) = f(@o) = Al — 20) + pa(z — 20) = Bz — 20) + 5z — 70)

and lim H‘f’ﬁ(,x)u = lim Hf’_’i(,a_”)u = 0. it follows that
AT T A ool
z)—¢@ A—B)(xz— -
0 iy LA =0l YA BN )] _ 4 pyleman)y
e=a0 |z — ol @ [l = ol ==w0 lz = ol

Let v € X with [[v|| = 1. For every A € F there exists an 2 € X such that Av = xg —z. Obviously,
H’fff"” =1for all A # 0 and @\ — o for A — 0. Therefore

B o To || _ T _
a1 = -5 a5 o
This implies that ||A — B|| = sup{||(A — B)v| : v € X, |Jv|| = 1} = 0, therefore A = B. O

As for functions defined on a subset of I we have the following corollary.
Corollary 6.3’. If f is differentiable in z then f is continuous in xg.

Proof. This follows immediately from (6.2") because
lim [ f(z) = f(zo)|| = lim [[o() = p(z0)]| = 0. o
=T =T

Obviously, product and chain rule hold also for functions between Banach spaces (see Theorem 6.8
and Theorem 6.10).

'Let X be a normed space over F, U C X a subspace of X and u/ : U — F a bounded linear map. Then there
exists a bounded linear extension u: X — F of v/ such that |lu| = [|«/||.
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6.2 Local behaviour of differentiable functions

In this section we prove theorems about the local behaviour of real valued functions with domain in
R. In particular, criteria for maxima and minima of functions in terms of the derivative are given.
For the proof, the mean value theorem is used. We start with a special case of the mean value
theorem.

Theorem 6.13 (Rolle’s theorem). Let a < b € R and f : [a,b] = R be a continuous function
such that f is differentiable in (a,b). If f(a) = f(b), then there exists a p € (a,b) such that

f'p) =0.

Proof. If f is constant, the assertion is clear. Now assume that f is not constant. Without
restriction we assume that f(z) < 0 for at least one z € (a,b). Then 0 is not the minimum of f. By
Theorem 5.30 f attains its minimum, hence there exists a p € (a,b) such that f(p) = min{f(z) :
z € D}. Since f is differentiable in p there exists a @ : [a,b] — R that is continuous in p and that
satisfies
f(@) = fp)=2@) (@ —p), @)=/

Since f(z) — f(p) > 0 for all € D by definition of p, it follows that

®(z) = flx)—f(p) <0, forz>p,

T —p >0, forz<p.

This implies that f’(p) = ®(p) = 0 because the continuity of ® in zg yields

0 < lim ®(z) = ®(p) = lim ®(x) < 0. [}

< lim B(z) = 2(p) = lin B(x) <

Theorem 6.14 (Mean value theorem). Let a < b € R, f: [a,b] = R continuous and differen-
tiable in (a,b). Then there exists a p € (a,b) such that

fO) = fla) _ o
ﬁ*f(?)»

Proof. The function

f(0) — fla)
b a (z—a)

is continuous in [a,b], differentiable in (a,b) and h(a) = h(b) = 0. By Rolle’s theorem (Theo-
rem 6.13) there exists a p € (a,b) such that

h:la,b] >R, h(z) = f(z) — f(a) —

0=HP)=f{- w o

Theorem 6.15. Let f : (a,b) — R differentiable. Then
(i) f/=0 <= [ is constant.
(ii) f' >0 <= is monotonically increasing.
f' <0 <= is monotonically decreasing.
(iii) f'>0 == [ is strictly monotonically increasing.

f'<0 = [ is strictly monotonically decreasing.

Note that in (iii) the converse implication is not true: f:R — R, 2+ 23, is strictly increasing but

F1(0) =0.
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Proof. (i) “«<="is clear. To show “=" fix an arbitrary ¢ € (a,b). By the mean value theorem,
for every ¢ € (a,b) \ {c} there exists an p, € (a,b) such that

f(e) = f(q) = f'(pg)(c - q).

Since f’ = 0 it follows that f(q) = f(c) for all ¢ € (a,b).
(ii) We prove only the first equivalence.

“<=" Let a < x < y < b. Then there exists a p € (z,y) such that f(y)— f(z) = f'(p)(y — z). Since
f'(p) > 0 and y — z > 0 it follows that f(y) > f(z).
“==" Since for a < < y < b every difference quotient

for f'(z) = limy~ oz 7f(y;:£(r).

(iif) is proved as the analogous statement in (ii).

w is nonnegative, the same is true

The assertions about (strictly) decreasing functions are proved similarly. O
Remark. Let f: (a,b) — R differentiable and assume that f’(zo) > 0 for some zo € (a,b). Then

it follows that there exists an § > 0 such that f(r) < f(zo) < f(s) for all r,s € Bs(z¢) with
r < xg < s because

lim
Tow0 X — T

Hence there exists a § > 0 such that ﬂlﬁ%l > 0 if |z — 2| < § and the assertion follows. Note
however, that f(r) < f(zo) < f(s) for r < 2y < s in a neighbourhood U of zy does not imply that
f is locally increasing at xo. A counterexample is

f:R=R, f(z) =2+ 22%(1 + (sinz™!)?).

The function f is everywhere differentiable with

1'(0) = limw:l>0

=0

and for z € R\ {0}

f'(z) =1+ 4a(1+ (sina™")?) + 4sina ™" cosz ™!
=1+4z(1+ (sinz™')?) + 2sin(2z) !

Since the second term tends to zero for z — 0 and the last term oscillates between —2 and 2,
there is not interval J around 0 such that the restriction of f to J is either strictly positive or
strictly negative. Therefore, by Theorem 6.15, f is not strictly monotonic at 0. Note, however,
that f(z) < f(0) < f(y) for <0 <y in a neighbourhood of 0. (See also Exercise 6.9.)

Definition 6.16. Let (X, dx) be a metric space, p€ D C X and f: D — R. Then f(p) is a local
mazimum of f if

36>0 VzeDNBs(p) f(z) < f(p). (6.7)
f(p) is a global mazimum of f if
VeeD f(@) < f(p). (6.8)

If in (6.7) or (6.8) strict inequality holds for & # p, then the maximum is called isolated. The value
f(p) is local or global minimum of f if it is a local or global maximum of —f. f(p) is called a
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0.001 +

—0.02 0 0.02

FIGURE 6.2: The function f(z) = z®(1 + (sinz")?) in the left picture has a global isolated minimum at

0 but there is no right neighbourhood J of f such that f|; is monotonically increasing.
The function g(z) = = + 22%(1 + (sinz™')?) in the right picture has derivative ¢’(0) = 1 but it is not
monotonic locally at 0.

local extremum if it is a local minimum or maximum, it is called a global extremum if it is a global
minimum or maximum.

If X = R, then we say that f is locally increasing at p € D if there exists an § > 0 such that
the restriction of f to Bs(p) N'D is increasing. The notions strictly locally increasing and (strictly)
decreasing are defined analogously.

If a function is arbitrarily often differentiable and not all derivatives in a point p vanish, then it is
locally at p either monotonic or it has an isolated local extremum as Theorem 6.18 shows.

Lemma 6.17. Let (a,b) C R and p € (a,b). Let f : (a,b) — R differentiable and assume that
f'p) =0.

(i) If there exists a & > 0 such that
f'@)(@—=p)>0, we-dp+0)\{p}

then f has an isolated local minimum at p. In particular this is the case when f is strictly
increasing locally at p.

(ii) If f" has an isolated local minimum at p, then f is strictly increasing locally at p.

Proof. (i) By assumption f'(z) > 0 for z € (p,p+4) and f’(z) < 0 for x € (p — d,p). Therefore
f is strictly increasing in (p,p + ) and strictly decreasing in (p — 4, p) which implies f(z) > f(p)
forallz € (p—6&,p+ )\ {p}.

(ii) By assumption, there exists a § > 0 such that f'(z) > 0 for all z € (p — d,p + 9) \ {p}, hence
f is strictly increasing in (p — &,p+ ). O

Theorem 6.18. Let (a,b) C R, p € (a,b) and n € N, n > 2. If f: (a,b) — R is (n — 1)-times
differentiable and n-times differentiable in p and

) £ 0, Mep)=0, k=0,...,n—1,

then exactly one of the following statements holds:

Last Change: Fri 24 Sep 2021 05:45:34 PM -05

96 6.2. Local behaviour of differentiable functions

FI1GURE 6.3: If f looks like the function on the left, then its derivative looks like the function on the right
and vice versa.

n even,  f"(p) = [ has an isolated local minimum at p
n even  fI" (p) <0 = [ has an isolated local mazimum at p
n odd f"l(p) >0 = f is strictly increasing locally at p
n odd fM(p) <0 = f s strictly decreasing locally at p.

Proof. We show only the case when f("/(p) > 0. By assumption, f*~2I " (p) > 0, therefore f[”’Z]/ is
strictly increasing locally at p. Lemma 6.17 (i) implies that fI"~2(p) has an isolated local minimum
at p. By Lemma 6.17 (ii) it follows that f[*=3 is strictly increasing locally at p. Inductively we
obtain: f["‘Zk] has a an isolated local minimum at p and f["‘z""l] is strictly increasing locally at
p. Depending on whether n is even or odd, f = fl% has an isolated local minimum at p or it is
strictly increasing locally at p. O

The theorem implies that locally at p the function f behaves like the function
@ fUp) e —p)".

This will be discussed in more detail in the section about Taylor expansion in Chapter 7.
When all derivatives of f at a point p vanish f does not necessarily behave as described in the
theorem above. An example is the function

fiR=R, f(z)=a%sin(z™!) forz#0, f(0)=0.
Corollary 6.19. Let f: (a,b) = R and p € (a,b) such that f is differentiable in p and f’'(p) = 0.

(i) f"(p) >0 = [ has an isolated local minimum in p.

(i)  f"(p) <0 = [ has an isolated local maximum in p.

Proof. The proof is analogously to the proof of Rolle’s theorem. Without restriction we assume
that f has a local minimum at p. By assumption the function D — R, z +— %:Z)(p) is continuous

in p with value f’(p). Therefore the claim follows from

0 < fim L8 =@ _
P z,/'p

NP

Definition 6.20. Let F = R or C, (Y,| - ||) a normed space over F and let f : F D D — Y be
differentiable in a point p € D. The p is called a critical point of f if f'(p) = 0.
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All candidates for local extrema of a function f : [a,b] — R are:

e the critical points of f,
e points where f is not differentiable,
e the end points of the interval where f is defined.
Theorem 6.21 (Inverse function theorem). Let F =R or C and z9 € D C F such that xg is

a limit point of D. Assume that f : D — F is injective and differentiable in xo. Moreover, assume
that f=1 is continuous in yo := f(wo). Then

71 differentiable in yo <= f'(z0) #0.
In this case

1

P o)) (6.9)

(57 (wo) =
Proof. “==" If f~!is differentiable in yo, then chain rule yields

1= (ngc(f71 o f)(wo) = (f 1) (F(20)) f'(xo) = (S 71 (o) F'(f ™" (0))-

In particular, f'(zo) # 0 and formula (6.9) holds.

“e=" First we show that yo = f(xo) is a limit point of Dy—1 = R(f). Since g is a limit point of
D there exists a sequence (z,)nen € D\ {zo} that converges to zg. The injectivity and continuity
of f imply that (f(zn)nen € Dy-1 \ {yo} and that it converges to yo. Let @ as in the definition of
continuity of f, i.e., ® is continuous in x¢ and

1@) = f(a0) = ¥@)@ —z0), Blao) = f(z0) £0. (6.10)

Since f is injective, ®(x) # 0 for all € D and we obtain from (6.10) (with f(z) = y)

1
S7HW) = 7 ) = = (4 — o)
— (')
—z—z0
Since f~! is continuous in yo and @ is continuous in zo = f~!(yo), the assertion is proved. m}

Example 6.22. The derivative of In : (0,00) — R defined in Definition 5.52 is
In'(z) = ! x>0
' (z) = —, x> 0.
Proof. Since the logarithm is the inverse of the real exponential function and exp’(z) # 0 for all

2 € R, the theorem of the inverse function(Theorem 6.21) yields

B o 1 o 1 1
(@) = exp/(In(z)) ~ exp(In(z)) = o

Example 6.23 (Inverse functions of trigonometric functions). By Exercise 5.1 the functions
sin and cos are differentiable on R and the tangent tan := S is differentiable on R\{(k+4)7 : k € Z}
with derivatives
L ’ : ! 1 2
sin’ = cos, cos’ = —sin, tan’ = — =1+ tan”.

cos?
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Hence the restrictions
sin : [-7/2,7/2] = R, cos: [0,7] - R, tan : [-7/2,7/2] - R

are strictly monotonic (see definition of 7 in Exercise 5.11) and therefore invertible with inverse
functions

arcsin: [—1,1] - R, arccos : [—1,1] = R, arctan : R — R.

Their derivatives are

arcsin’(z) = arccos’ (z) = — ze(-1,1),
arctan’(z) = ! zeR
VT TR

Note that arcsin and arccos are not differentiable in £1.

Theorem 6.24 (Generalised mean value theorem). Let f,g : [a,b] — R continuous and
differentiable in (a,b). Then there exists a p € (a,b) such that

(f(0) = f(a)g'(p) = (9(b) — 9(a)) f'(p)-

If g'(z) # 0, z € D, then g(a) # g(b) and

Proof. Let
W) = [f@) - (@) [90) - 9(a)] — [g(z) — 9(@)] [£(B) - f(a)].

Then h is differentiable in (a,b) and h(a) = h(b) = 0. Therefore, by Rolle’s theorem, there exists
an p € (a,b) such that

0="n(p) = f'(p)[g(d) — 9(a)] — g'(p) [f(b) — f(a)].

Note that g(a) # g(b) because otherwise, by Rolle’s theorem, there would exist a p € (a,b) such
that ¢'(p) = 0. O

Theorem 6.14 follows from Theorem 6.24 for the special case g = id.

Theorem 6.25 (I’'Hospital’s rules). Let —o0 < a < b < o0 and f,g: (a,b) — R differentiable
functions such that g'(z) # 0 for all € (a,b). Assume that one of the conditions holds:

(i) f(z) =0, g(x) =0 forz\ a,
(ii) g(z) = oo for z \, a,

f'(@
g'(z)

f(=)

implies the existence of lim and
Na g(x)

then the existence of lim
v

Cr@ @
@) B @)

Analogous statements hold for x /7 b.
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Proof. (i) If a # —oco then f and g can be extended continuously to [a,b) by setting f(a) =
g(a) = 0. Since g’ # 0, g is either strictly increasing or decreasing, hence g(z) # 0 for all x € (a,b)
(Darboux’s theorem, see Exercise 6.6). The generalised mean mean value theorem (Theorem 6.14)
implies that for every x > 0 there exists an p, € (a,z) such that

f@) _ f@) = f(a) _ f'(ps)

g9(x) — g(z) —gla) ~ g'p2)’
For an arbitrary sequence z, N\, a, n — o0 in (a,b) it follows that p,, — a, hence the statement is
proved.
Now let a = —oco. Without restriction we assume b < 0. Then the functions (b=1,0) — R, t
FtY), t e g(t™1). satisfy assumption (i) for z /b (with b = 0). Therefore

f@) o fE) e L P fe)

lim —— = lim = lim
em=co g(z)  tr0g(t7h) 70 Lgt-1) 0 g/ (k1)L emce g'(a)

El

(ii) Again, we first consider the case a # —oco. Without loss of generality we can assume g > 0
and ¢’ < 0 in (a,b), the latter again by Darboux’s theorem (Exercise 6.6). Let C' = lim,~q %
and fix € > 0. Then there exists ¢’ > 0 such that a + ¢’ < b and

f'(=)
g'(z)

The generalised mean value theorem (Theorem 6.14) implies for a <z <p < a+ 9§’

f(z) - f(p)
g(z) — g(p)

C-e< <C+e, z € (a,a+ ).

C-e< <C+e.

A little bit of algebra shows

ey U@ =g@)(C =) _f@ _ . ., (B -9®)(C=c)

g(z) g(z) g(z)

Since g(x) — oo for & \, a, there exists a dy > 0 such that

C—2{5<M < C+2¢, z € (a,a+9).
g(x)
The case a = —oo can be treated similarly. [m}

Similarly it can be shown that

. @)
im =
N g(z)
T (o
if f,g9: (a, 8) = R are differentiable functions with ¢’(x) # 0 in («, 8) and lim g(z) = lim f@) =
o oo g'(x)

oo (see Exercise 6.9).

Inequalities

Definition 6.26. Let / C R a nonempty real interval. A function f: I — R is called convex if
FOa+ (1= Ny) M@ +1-Nf@), e @b, re 1]

A function f is called concave if —f is convex.
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Af(@)+ (L= f(y)
FAz + (1= Ny)

B

Az +(1—Ny ¥

FIGURE 6.4: Convex function: f(Az + (1 —A)y) < Af(z) + (1 —A)f(y) for all < y in the domain of f:

Note that Az + (1 — Ny € [z,y] for A € [0,1].

Theorem 6.27. Let I C R be a nonempty open interval and f: I — R twice differentiable. Then
f convex = f">0
Proof. “<=" Note that f’ is monotonically increasing on I because f” > 0. Let x,y € I, without
restriction & < y. Then for all A € (0,1) it follows that
p=Ar+ (1 - Ny € (z,y).
By the mean value theorem (Theorem 6.14) there exist p, € (x,p) and p, € (p,y) such that

f(p;:i’(z) = Fpe) < F'oy) = f(y; :;‘(p)A 6.11)
Inequality (6.11) yields
(y—2)f(p) < f@)y—p)+ fW)p—2) =Af(2)y —2) + (1 - Nf)(y —2)

since
y—p=y—Az—(1-Ny=XNy—z),
p—x=Xx+(1-Ny—z=(1-XN(y—z).

“=" Now assume that f is convex. We will show that f’ is monotonically increasing. Let

z,y € I, without restriction < y. For A € (0,1) let p be defined as above. Since f is convex it
follows that

0<Af(@) + (1= Nf(y) - fp)
Multiplication by y — x gives

0< Ay —2) f(z)+ (1L -Ny—=2) fly) - (y—2) f(p)
=y—p =p—=z y—ptp—z

= -plf@) -]+ -2)f) - f@)
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Hence, for all p € (z,y):

f) - 1@ _ f)— W)
p—z =  y-p

Since f is differentiable in [ it is in particular continuous in I and it follows that

7o) = tim L0 @) o SW) = T0) )~ (@)
PN p—x PN y—p y—ax
o I @) fy) = fp)
= p—ua < lim v—p =f'(y)- O

Examples. exp : R — R is convex since exp” = exp > 0.
In:R; — R is concave since In"(z) = —2z72 < 0, 2 € Ry.

Theorem 6.28 (Young’s inequality). Let p,q € (1,00) such that

1 1
S4o-1
p q
Then for all a,b > 0:
1 1
ab < —a” + = b7, (6.12)
P q

Proof. If ab = 0, then inequality (6.12) is clear. Now assume ab > 0. Since the logarithm is concave
and % + % =1 is follows that

1 1 1 1
m(; a + ;zﬂ) > 2 In(a”) + (") = In(a) + In(b) = In(ab).

Since exp : R — R is monotonically increasing, application of exp on both sides of the above
inequality proves (6.12). O

Theorem 6.29 (Hélder’s inequality). Let F =R or C, p,q € (1,00) such that L + % = 1. For

@ = (z;)j=, let

lell := (i ) (6.13)

Then for all z = (ac])]”:1 Ly =(y; )]":l e F" the following inequality holds:
n
> lwyil < N2l - lyllo-
j=1

Proof. If z =0 or y = 0 then the inequality (6.13) clearly holds.
Now assume z,y # 0. The Young inequality (6.12) with

yields

lzillysl Ll 1|t
lzllplylly = 2 I=lp g [lylld
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Taking the sum over j =1,...,n gives
1 - 11 ¢ 11 1,1
e eyl < = —5 > el +=-—35 ) " = —+- =1 O
TeTls Tl 2 Wil S ) Talp 2 Tl 2 =5ty
—— ——
=ll=ll7 =llyllg
=1 =1
In the special case p = ¢ = 2 we obtain the Cauchy-Schwarz inequality.

Corollary 6.30 (Cauchy-Schwarz inequality). LetF =R orC andn € N. Forz = (z;)}_;, y =
(W) € F" let

n
(@)= 7
j=1
be the Euclidean inner product on F. Then

[z, ) < lzl2 llylla-

Theorem 6.31 (Minkowski inequality). Let F = R or C and p € (1,00). For all z,y € F™ it
follows that

lz+ylly < lallp + llyllp- (6.14)

Proof. If z +y = 0 then (6.14) clearly holds.
Now assume z +y # 0. Let ¢ € (1, 00) such that % + 5 = 1. The Holder inequality (6.13) yield

n
I+ gl = D lwj +yil - o + w57
=1

n n
< Sl +y P Lyl e P
= T =1

=Y

A

=p I3

A~

n —_— L n 1
lellp (D T + sl D9) 4 fyllp (D fog + w5007 7

j=1 j=1

IN

17llq

(Izllp + 19llp) 1+ yllz -

B
Since p — g =p(l- é) =1 division by ||z + y||; proves (6.14). O
Note that the Minkowski inequality is the triangle inequality for || - ||,:

Corollary 6.32. (F6n, || - ||,) is normed space for p € (1,00).
6.3 The Riemann-Stieltjes integral in R

A motivation for integration is to determine the area under the graph of a nonnegative function
defined on an interval (a,b) C R.
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FIGURE 6.5: Geometric interpretation of the Riemann integral.

In the special case that f is piecewise constant, the area is Ay = Z}I':l filej—cj—r) if f(x) = ¢; for
z € (¢j —¢j—1). In the general case, the integral will be defined as the limit of integrals of piecewise
functions that approximate f in a suitable sense.

In this section we always assume that —oco < a < b < co.

Definition 6.33. A partition of [a,b] is a finite set of points P := {z, ..., 2, } such that
a=x0 <z < <Tp1 <Tp=>

If P, P" are partitions of [a,b] and P C P’, then P’ is called a refinement of P.

Obviously, if P,Q are partitions of [a, b], then P U Q is a common refinement of both P and Q.

In the following we will always assume that « : [a,b] — R is an increasing function. In particular,
« is bounded because

—o0 < afa) < a(z) < alb) < oo, z € [a,b].

Definition 6.34. Let [a,b] € R, f : [a,b] — R a bounded function. Given a partition P =
{z0,21,..., 2} C [a,b] we define for j =1,...,n:
Aa;j = afz;) — afzj-1),
inf{f(x) : @ € [wj—1, 2]},
sup{f(x) : @ € [wj1, 2]},

we define the sums
s(foa, P) =Y miAa;,  S(fa,P)i=Y M;Aq;
j=1 j=1
and the numbers

b
fda :=sup{s(f,a, P) : P partition of [a, b},

*b
fda :=inf{S(f,a, P) : P partition of [a,b]}.

a
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Note that
n
> Aaj = a(b) - afa).
=1

Remark 6.35. Let m, M € R such that m < f < M. Then for a fixed partition P of [a,b]:
m(a(b) - a(a)) < s(f.a. P) < S(f.a, P) < M(a(b) - a(a)).

hence
b
/ fda > m(a) — ala)) > —oo,
xb
fda < M(a(b) — a(a)) < oco.

Lemma 6.36. Let f: [a,b] — R be a bounded function.
(i) Let P, P’ be partitions of [a,b] such that P C P'. Then
s(f,a, P) < s(f,a, P') < S(f,e, P') < S(f,, P).

b *b
(ii) /fdag fda.

Proof. (i) The middle estimate follows from Remark 6.35. Let us show the first estimate. The
last estimate is proved analogously.
Let P = {zg,1,...,2,}. If P = P’ then the estimate is clear. Now assume P 7 P’. It suffices to
show the estimate in the case when P\ P’ = {y}, for the case P\ P’ = {y1, ...,y,} follows then
by induction. Let k € {1,...,n} such that 2,1 <y < xx. Then
my, = inf{f(z) : @ € [wp_1,y]} > mq,
mj = inf{f(z) : = € [y, zk]} > ms
and it follows that
s(f.0, P') = s(f,0, P)
=m;; (a(y) — a(zr-1)) + mif (alzr) — aly)) — mi(a(ar) — a(ze-1))
= (my, — m)(aly) — alwx-1)) + (mf —my)(a(ar) - aly)) > 0.
— —m——— —— ——
>0 >0 >0 >0
(ii) For partitions Py, P» it follows by (i) that
s(fia, Pr) < s(f,a, PLUPR) < S(f.a, PLUP) < S(f,a, Ps).

Taking the supremum over all partitions P; on the left hand side and the infimum over all partitions
P, on the right side proves the assertion. [}

Definition 6.37. A bounded function f : [a,b] — R is called Riemann-Stieltjes integrable (or
simply integrable) with respect to « if
b *b
/ fda= fda.
va a
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/abfda = /*:fda: :l}da

is called the Riemann-Stieltjes integral of f.

In this case

Remark 6.38. In the case when a = id, the integral is called the Riemann-integral. For positive
functions f the integral of f is the area between the graph of f and the z-axis. The following

notation is used:
b b
/ fda=: / f(z) da(z),

/abfda::/abfdw::/abf(w)dw if a=id.

R(e) :={f:[a,b] - R : f is Riemann-Stieltjes integrable with respect to a},
R :=R([a,b]) :={f:[a,b] = R : fis Riemann integrable},

Notation.

Remark 6.39. If « is constant, then obviously every bounded function f is Riemann-Stieltjes

b
integrable with respect to o and / fda=0.
a

Theorem 6.40 (Riemann criterion). Let f : [a,b] = R a bounded function. Then f € R(a) if
and only if

Ve >0 3P. partition of [a,b] :  S(f,a, P.) — s(f,a,P:) <e.

Proof. “<=" Let e > 0 and P: as above. By Lemma 6.36 (ii) it follows that

*b b
0< fda—/fda <S(f,a,P) —s(f,a,P) <e.

N

<S(fie,Pe)  Zs(fioPe)
Since € > 0 is arbitrary, the assertion is proved.
“==" Assume that f is Riemann-Stieltjes integrable with respect to a and let ¢ > 0. By Defini-
tion 6.34 there exist partitions Pp, P of [a, b] such that

b b -
/ Jda—s(f.0,P) < 5, S(f,a,PQ)—/ fda <t
Addition of the inequalities gives
e>S(f,a,Ps) — s(f,a, P1) > S(f,, LU P>) — s(f,a, P UP>) > 0. [m]

Theorem 6.41. Every continuous function f : [a,b] — R is Riemann-Stieltjes integrable.

Proof. We use the Riemann criterion to show the integrability of f. Let € > 0. In the case when
« is constant, the assertion follows immediately from Remark 6.39. Now assume that « is not
constant. In particular, it follows that a(a) # a(b). Since f is continuous on the compact set [a, b],
it is uniformly continuous (Theorem 5.33), so there exists an § > 0 such that

veyelot fr-yl<8 = 1f@) I < spra

Last Change: Fri 24 Sep 2021 05:45:34 PM -05

106 6.3. The Riemann-Stieltjes integral in R

Now choose n large enough such that

b—a

n

and define the partition P = {zo,z1,...,2,} by

b—a )
rj=a+] s j=0,...,n.
n
Then
- = € a(b) — afa)
S(f,a,P) — s(f,a,P) = ];(]MJ —mj)Aa; < 7:21 m — =
By the Riemann criterion (Theorem 6.40) f is integrable. [m]

Theorem 6.42. If f : [a,b] = R is monotonic and « is increasing and continuous, then [ € R(a).
Proof. Let € >0 and n € N such that

nHa(b) — a(@)|f(0) - f(a)] <e.
Since « is continuous there exists a partition P = {xo, x1,...,2,} of [a,b] such that

Aaj = a(b) — ala)

n

s j=1,...,n.
Without restriction we assume that f is increasing. Then

flaj—1) =m; < M; = f(z;), j=1,...,n,

and therefore

n

S(f0 P) = (£, P) = (M, —my)ay < 3 (Flay) — fay1)) 2U
=1 j=1
=n"1(f(0) — fla))(a(b) — afa)) <
by the choice of n. Therefore f is integrable by the Riemann criterion (Theorem 6.40). O

Theorem 6.43 (Properties of the Riemann-Stieltjes integral).

(i) Let f : [a,b] = R and let ¢ € (a,b). Set f1 := flads fo:= flep and a1 = alja,, a2 =
aliey- Then f € R(a) if and only if fi € R(aa) on [a,c] and fa € R(az) on [¢,b]. In this

case
b ¢ b
/fduz/fda+/fda.

Now let f,g € R(c) and v € R.

(ii) f+~g € R(a) and

b b b
/f+"/gda:/fda+'y/gda.
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(iil) If f < g then

b b
/fdag/gda.

(iv) If f € R(a1) and f € R(az) on [a,b] then f € R(ay + yaz) on [a,b] then

/:f d(al+vaz):/abf d011+’)’/abfda2.

Proof. Exercise. O

Theorem 6.44. If f : [a,b] — R is bounded and has only finitely many discontinuities and « is
continuous at every point where f is discontinuous, then f is integrable with respect to «.

Proof. By theorem 6.43 (i) we can write the interval [a, b] as union of smaller intervals each of which
contains only one discontinuity of f. We may even assume that the discontinuity of f is at the
boundary of the interval. Without restriction we will assume that f is continuous in (a, b] and that
a is continuous at a. Let € > 0 and M > sup{|f(z)| : # € [a,b]}. Since « is continuous in a, there
exists 0 < 0 < (b— a)/2 such that |a(a) — a(t)| < 557 for all t € [a,a + 24]. Since f is continuous
in I =[a+4,b], it is integrable there. So we can choose a partition P of I such that

€
Sl alr, P) = s(flr,alr, P) < 5
Then Q := P U {a} is a partition of [a,b] and

5(f,0,Q) — s(f,0,Q) = (sup{f(t) ctefaatd)y —inf{f(t):teaat 6]})(a(a +0) — afa)
+S(flr,alr, P) = s(flr,alr, P)

€ €
2M - =e.
<*MortaTe
Hence f is integrable on [a, b] by the Riemann criterion (Theorem 6.40). O

Theorem 6.42 and Theorem 6.44 and show that every function f : [a,b] — R that is either monotonic
or has only finitely many discontinuities is Riemann integrable.

Theorem 6.45. Let f € R(«) and m,M € R such that R(f) C [m,M]. If ® : [m,M] — R is
continuous, Then h = ® o f € R(a).

Proof. Let € > 0. Since ® is uniformly continuous on [m, M] there exists a § € (0,¢) such that
-yl <d = |®(x)—-P(y)| <e, z,y € [a,b] (6.15)

Let M;j,m; for f as in Definition 6.34 and m/, M the analogon for h.
Since by assumption f € R(«), there exists a partition P of [a, b] such that

S(f,a,P) - s(f.a, P) < 6. (6.16)
Let A:={j: M; —m; <&}, B:={j: M;—m;>6}. Then

y T ’ 3
jeA = M;-mj<e by (6.15)
jeB = Mj—mj<2[®|.
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\_/

a=zo q a2 b=xp T

FIGURE 6.6: The function f has only finitely many discontinuities. Use [a,b] = [a,p1] U -+ U [gn, b] such
that f restricted to these subintervals has sigularities only at the boundaries of these subintervals.
From (6.16) it follows that

(6.16)

M; —m; 1
> Aay <3 =T Aay < 5 (S(f.0,P) = s(fa, P) <6
JEB JEBN——
<1

Therefore h € R(a) by the Riemann criterion (Theorem 6.40) because
S(h,o, P) — s(h, o, P) = Z(AIJ’ —m})Aa; + Z(]\I; —m})Aa,
JEA JEB
< e(a(b) — ala)) +2[[®[leb < (a(b) — ala) +2[P|l)

and ¢ > 0 was arbitrary. [}

Theorem 6.46. Let f € R(«). Then also |f| € R(a) and

\/nbfda\s/nbm da.

Proof. Since |- |: R — R is continuous, |f| € R(c) by Theorem 6.45. Chose ¢ € {£1} such that

b
c/ fda >0.
a

By Theorem 6.43 (ii) and (iii) it follows that

/:fda|:c/:fda:/ab\chag/:mda. ]

<Ifl

Theorem 6.47. Let f,g € R(a). Then also f* and fg € R(a).
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Proof. Since R — R, 2 + 2 is continuous, Theorem 6.45 implies that f2 € R(a). In order to see
that fg € R(a) note that fg = X[(f +9)* — (f — 9)*]. O

Theorem 6.48. Let a: [a,b] — R be increasing and differentiable with o' € R. If f : [a,b] = R is
bounded, then f € R(«) if and only if fa' € R. In this case

/ab fda= Lb fo/ dz. (6.17)

Proof. Let € > 0. Since o/ € R, there exists a partition P. = {z¢,z1,...,2,} of [a,b] such that
S(a',P.) — s(e/,P.) < ¢

By the mean value theorem, for all j = 1,...,n there exists t; € [z;_1,z;] such that Aa; =
o (t;)Az;. For arbitrary s; € [z;_1,2;] we have

’Zf S5 AaJ Zf (s5)a (s ATJ)—’Zf SJ o ( 7(1(9J)]AT/‘

=a(t )m,

<HfH>o)Z ) = /()] A | < [1Fl (S(', P) = s(e/ ) ) < 2l .

Since the s; are chosen arbitrarily in [x;_1,x;], we can chose them such that 0 < S(f, o, P.) —
Z;l:l f(sj)Aa; < e. Then the above inequality implies

S P <2+ 3 )0y < et 2l e+ 30 M5 (s A,
j=1 j=1
<e(l+Ifllee) + S(fa', Pe). (6.18)
Analogously, if we chose the s; such that 0 < S(fo/, P.) — z]":l f(sj)a’(sj)Az; < e, then the
above inequality implies

S(fo, Po) <e(L+Iflleo) + S(f. 0, Pe). (6.19)
Inequalities (6.18) and (6.19) imply

IS(fo', Pe) = S(f, 0, P2)| < e(L+ || f]loe)- (6.20)
Analogously

Is(fo/, Pe) = s(f,a, Po)| < e(1+ [ fllo) (6.21)

can be shown. From the inequalities (6.20) and (6.21) if follows that f € R(«) if and only if fo/ € R
and in this case, formula (6.17) holds. O

Theorem 6.49 (Change of variables). Let [a,b] and [A, B] nonempty intervals in R and ¢ :
[A, B] = [a,b] a monotonically increasing bijection. Suppose that « : [a,b] — R is monotonically
increasing and that f € R(«a). Let

Bi=aop:[A, Bl =R, g:=fop:[A, Bl =R

/jgdﬁ:[fdw

Then g € R(B) and
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Proof. Since ¢ is increasing, also 8 is an increasing function on [A, B]. The bijection ¢ induces a
bijection between the partitions of [A, B] and the partitions of [a, b]:

©* : {P: partition of [A, B]} — {P : partition of [a,b]},
{zo, @1, mn} = {e(r0), (1), plan)

Since S(g,8,P) = S(f o p,a0 ¢, P) = S(g,8,¢*P) and analogously s(g, o, P) = s(g, 8, ¢*P) for
every partition P of [A, B] it follows that

*b b b b
fda:/ gdp, /fda:/gdﬁ. [m]
a a a v a

Corollary 6.50. In the special case when o =id and 3 = ¢ is differentiable such that ¢’ € R, we
obtain the transformation formula

B @ (B)
[ toometa= [ @
JA J(A)

6.4 Riemann integration and differentiation

Theorem 6.51 (Intermediate value theorem of integration). Let f : [a,b] — R continuous
and g : [a,b] — R Riemann integrable with g > 0. Then there exists a p € [a,b] such that

/ ' f@gte)de = 1) / 2)de

Proof. Since f is continuous on the compact interval [a,b], there exist m, M € R such that R(f) =
[m, M] (Theorem 5.24 and Theorem 5.30). It follows that mg < fg < Mg because g > 0. By

Theorem 6.43 we obtain
m/ z)dx </ f(z)g(z)da < ]\[/ g(x) da.
a a

Hence there exists an p € [m, M] such that

/ duLf/]‘ g(x) da.

By the intermediate value theorem (Theorem 5.24) there exists a p € [a,b] such that f(p) = p. O

Notation 6.52. If f: [a,b] — R is Riemann integrable, we set

/(;af(m)dm::Oﬁ /baf(m)dm::f/a.bf(m)d'r

Theorem 6.53. Let f: [a,b] — R Riemann integrable. Let

= / fydt,  telab).

Then F, is continuous in [a,b]. If f is continuous in xo € [a,b], then F, is differentiable in o and

Fy(wo) = f (o).
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Proof. Since f is integrable, it is bounded in [a,b]. Let M > |f| and # < y € [a,b]. Then the
continuity of F,, follows from

[Fa(e) = Fa(y)| =

"y ry
[ 0| < [Misorac<any -l
Ja Ja
Now assume that f is continuous in o € [a,b] and let € > 0. Then there exists a § > 0 such that
[t —x| <6 = |f(xo) — f(2x)] <e, x € [a,b].

Theorem 6.46 implies for x € [, 20 + 6] N [a, b]:

Fa(rz - fa(zﬂ) _ f(g;n)' - /1 F) = (o) da
0 T =0 |Jz,
1 z
<o | U sy ar<e
<e
Analogously for = € [zg — 8, z0] N [a, b]. [}

The proof shows that F), is even Lipschitz continuous.

Definition 6.54. Let f : [a,b] — R Riemann integrable. A differentiable function F : [a,b] — R is
called an antiderivative of f if

F(@)=f(z).  x€labl.
In this case we write

F(z) :/f(z) dz.

Proposition 6.55. Let f : [a,b] — R Riemann integrable and F an antiderivative of f. Then
G : [a,b] = R is an antiderivative of f if and only if F — G = const.

Proof. Assume that F' — G = ¢ € R. Then G is differentiable and G’ = F' = f.
Now assume that G is an antiderivative of f. Then (F—G)’' = f— f = 0. Therefore F — G = const.
by Theorem 6.15. [m}

Theorem 6.56 (Fundamental theorem of calculus). Let f : [a,b] — R continuous and F :
la,b] = R an antiderivative of f. Then

b
/ F(t) dt = F(b) — F(a).

Proof. Let F, be the antiderivative of f defined in Theorem 6.53. By Proposition 6.55 there exists
a constant ¢ such that F' = F, — ¢, hence

b
F(b) = F(a) = (F(b) —¢) = (F(a) = ¢) = Fu(b) = Fu(a) = / f(t) di. o

Corollary 6.57. If F': [a,b] — R is continuously differentiable, then
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The fundamental theorem implies two methods to find the integral of a given function.

Theorem 6.58 (Substitution rule). Let f : [a,b] — R continuous, ¢ : [A, B] — [a,b] continu-
ously differentiable. Then

B b
[ oo wa= [ faas.
A a

Proof. Let F be an antiderivative of f. Then F o ¢ is an antiderivative of (f o )¢’ because by the
chain rule

(Fop)(y)=FeW)e' (),= fle)¢' (), yelA Bl

The Fundamental Theorem of Calculus implies

B
/A (Fop) )¢ (y) dy = (F o p)(B) — (Fop)(A) = F(p(B)) — F(p(A))

Corollary. Let f: [a,b] — R continuous and ¢ € R. Then

B+c "B
(i) / f(x) dm:/ flx+c)da if [A+¢,B+c] C [a,b],
JAte Ja

(ii) /C:B f(z) dz = /AB flex) da if [cA,e¢B] C [a,b].
Theorem 6.59 (Integration by parts). Let f,g: [a,b] — R be continuously differentiable. Then
b b
[ F@at) do+ [ g @) do = @0

Proof. The formula follows immediately from the Fundamental Theorem of Calculus because fg is
an antiderivative of f’g + fg'. O

Improper integrals

Until now, we considered integrals of bounded functions on bounded and closed intervals. Next we
want to extend the integral also to functions that are defined on open or halfopen intervals and
possibly unbounded.

Definition 6.60. Let D C R be an interval. A function f : D — R is called locally Riemann

integrable if for every compact interval [a, 8] C [a,b] the restriction f|(, g is Riemann integrable.
For a locally integrable function f its improper integral [}, f dx of f is defined by

b
(i) if D = (a,b]: / fdz = lim/ f(z)dz if the limit exists,
D t™Na Jy
(ii) if D = [a,b) analogously,
(iii) if D = (a,b): for arbitrary c € (a,b):

¢ ¢
dz =1 dz =1i d if both limits exist.
/Df z 'Q‘I‘ll/t f(z)dz f%/L f(z)dz if both limits exis
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Remark. (i) If f is Riemann integrable then its Riemann integral and its improper Riemann
integral are equal. Therefore we use the notation f: f(z) dz also for improper integrals.

(ii) The properties of Theorem 6.43 hold also for improper integrals. In particular, the definition
in (iii) does not depend on the chosen c.

<1 =5 s>1,
Examples 6.61. (i) —dz =151 s
oz diverges to oo, s < 1.

Proof. For 3> 1 and s # 1 we have that

/ﬁldr—[ 1 T75+1]3*67H171 Boroo {%1 —s+1<0,
1

fiad —s+1" 1 —s+1 00, —s+1>0.
51
Fors:lweﬁnd/ —de:[lnz]?:lnﬂ%ooforﬂﬁoo O
12
1 1
1 — s<1,
(i) Sdr={T® .
o xf diverges to oo, s> 1.
Proof. Analogously as in (i). O
>~ 1
(iii) T3 de=m

Proof. Let ¢ € R arbitrary. For a < ¢ and b > ¢ we have that
1 b T
——dz = arctanm‘ = arctanb — arctanc 2222 © _ arctan c,
. 1+a2 e 2
c 1
c a——o0 m
/ — dz = arctanw‘ = arctanc — arctana ——— arctanc — ~.
o 1+ @ 2
Therefore the improper integral exists and

> 1 ™ T
—— dax = = — arctanc + arctanc — — = 7. O
oo L+ a? 2 2

Proposition 6.62. Let —co < a < b < 0o and f : (a,b) — R such that the improper integral
b b

/ |f(z)|dz converges. Then also/ f(z)dz converges.

Proof. Let ¢ € (a,b). We use apply the Cauchy criterion for convergence of a continuous function

(see Theorem 5.15) to the continuous function F(z) := ff f(t)dt. For arbitrary a < 8 € (a,b) it
follows that

B B8
|F(8) - F(a)| = ‘/ 0 dt‘ < / If()] dt >0 ifa,B—aoraf— b |
a a
Proposition 6.63 (Monotone convergence). Let f : [a,b) — R be a positive Riemann integrable

b
function. Then [ f dt converges if and only if f is bounded.
a
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Proof. For @ € [a,b) let F(z) = [ f dt and set s = sup{F(z) : z € [a,b)}. If s < oo, then for

every ¢ > 0 there exists an ¢ € [a,b) such that F(z¢) > s —e. Since F is monotonically increasing

it follows that F(z) € (s —€,s) for all z > o, hence 1intF(x) = s. If s = oo, then it follows
T

analogously that lint F(x) = oo. O
z—

Theorem 6.64 (Integral test for convergence of series). Let [ :[0,00) = R be a monotoni-
cally decreasing function. Then

0 0o
Z f(n) converges <= / f(z)dz  converges.
n=1 J1

Proof. Since f is decreasing, it follows that
k1

e [ foa<sw, ke
Jk
Summation from 1 to n yields
n+1 n+1 n
S s [ swasysw, ke
k=2 1 k=1
Therefore the series converges if and only if the integral converges. O

Example 6.65. Let s > 1. Since by Theorem 6.64
o0 e 00

/ 7% de < Zn"g <1+ / % dx,

J1 n=1 J1

we have the chain of strict inequalities

1 > s
< nt < —.
s—1 Zn s—1

n=1

For s > 1let ((s) = > n”;n~%. (is called the Riemann zeta function.

For series we could proof that the convergence of Z;’;l a, implies that a,, — oo for n — co. For
improper integrals, however, this is no longer true as the following example show.

Example 6.66 (Fresnel integral).

N , .
/ sin(t?) dt = lim / sin(f?) df = lim / sin®) gy,
0 b—o0 0 booo 2 o \/ﬂ

where we used the substitution u = 2. To see that the integral converges we write b = 7n + s with
neNand s e [0,7). Then

b . n m . am+s s
sin(u) / sin(u) / sin(u)
—du = E — du+ du.
o Vu = Jrmey VU wm Vu

For n — 0o, the sum sum converges by the Leibniz criterion for alternating series (Theorem 4.54)

while the absolute value of the last integral is smaller than % There exist functions that are

unbounded but whose integral is finite:
/ 2t sin(t*) dt = / sin(u?) du < oo,
Jo Jo

where we used the same substitution as above.
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sin(t?)

2t sin(t4)
FIGURE 6.7: The function does not tend to zero, yet its integral is finite.

6.5 Differentiation and integration of sequences of functions

Theorem 6.67. For alln € N let f,, : [a,b] — R be continuous and assume that (f)nen converges
uniformly. Then

lim /b fn(z)dz = /b ILm fu(z) da. (6.22)

Proof. Let f be the uniform limit of (f,)nen. Then f is continuous by Theorem 5.40 and Riemann
integrable by Theorem 6.41. Equation 6.22 follows from

1/:fn dz—/abf dZ‘:/ablfn—f\ dzé/aben—me da

Sb-a)|fa—fl- O

Example 6.68. In Theorem 6.67 pointwise convergence of the f, is not enough. For n € N let

2 - < L
2ncz, 0<z<g5,
fal(z) =< 2n — 2n2a, 217 <z < %
1
0, 2> 50

We saw in Example 5.35 and Exercise 5.7 that the sequence of functions converges pointwise to 0.
Obviously

/Dcof(z)dz:() but /Oocfn(z)dz:%, neN.

Remark. Theorem 6.67 implies that the integral is a continuous linear operator from the space of
the continuous functions on [a,b] to R:

b
/; C(la, b, R) - R, f»—>/ () dt.

Theorem 6.69. For all n € N let f, : [a,b] = R be continuously differentiable and assume that
the sequence of the derivatives (f})nen converges uniformly and there exists a p € [a,b] such that
(fn(p))nen converges. Then the sequence (fn)nen converges pointwise to a continuously differen-
tiable function f :[a,b] — R and

flx)= i( lim f,)(z) = ngr; fi(z), z € [a,b]. (6.23)

dz ‘n—oo
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Proof. Note that if the f,, converge uniformly, then the restrictions f,|p to any subinterval D C [a, b]
also converges uniformly. For all n € N and z € [a,b] we have that f,(z) = f: f1(t) dt, therefore
we can define f as the pointwise limit of the sequence (f)nen by

R o o
F@) = T fu(p) + lim / Ft) At = Tim fu(p) + / lim £ (1)t

where the last equality follows from Theorem 6.67. Therefore, f is a continuously differentiable
function and satisfies (6.23). O

Note that in the preceding theorem all assumptions are necessary. For example, the sequence
(fn)nen defined by

sin(na)

fo(z) = z €R,

n
converges uniformly to 0, but the sequence of its derivatives f},(x) = cos(nz) does not even converge

pointwise.

Corollary 6.70. Let f be defined by a power series Y o o cn(x — a)™ with radius of convergence
R. Then the formal integral and the formal derivative of f

o S
n—1 Cn ntl
E (T —a d g c—a
nen(x — a) an i (z—a)
n=1 n=0

have the same radius of convergence R and are power series representations of f' and [ fdz,
respectively, in Br(a).

Proof. The assertion about the radius of convergence follows easily from Theorem 5.45. All other
assertions follow from Theorem 6.67 and Theorem 6.69. [}

Example 6.71. The power series representation of In(1 + z) is

> (7>n+1
E ", x| <1, (6.24)
n
n=1
and 11 11
e e g T 5.
In(2) 3 + 371 + 5 F (6.25)

The first formula follows because for |z| < 1 we have
@ x o rx 2, (—yn gt
In(l+2) = / —— dt= / (—t)" dt = / (—t)"dt=) ~——.
J1 1+t J1 nz:% 712:%. 1 nz:% n+1

Since the logarithm is continuous at +1 = 2 and the series (6.24) converges also for = 1, formula
(6.25) follows from Abel’s theorem (Theorem 5.48).
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Chapter 7

Taylor series and approximation of
functions

7.1 Taylor series

Assume that the function f has the power series representation
f@) =3 calw—a)" (7.1)

with radius R > 0.
We already know that f can be differentiated arbitrarily often on Bg(a) (Corollary 6.70). Note
that

0 k X
icn(m—a)":{ ) >n,

dxk ("%'k)' colz —a)"*, k<n.

This implies that

dr k! ok
Tizkf(a):i(k,k);"k(w*“) = klcy.
If we insert the resulting formula for the coefficients ¢, into the power series representation of f we
obtain
oo

@)=Y = @) @ - o (7.2)

n=0

Therefore the coefficients of the power series representation (7.1) of f in a are determined by the
derivatives of f in a. In particular, the power series representation of f in Br(a) is unique.

The questions we address in this chapter are whether every function can be approximated by a
polynomial and whether every C'™ function has a power series representation.

Definition 7.1. Let D C R an interval, f : D — R n-times differentiable at some p € D. Then
the polynomial

n gl
sy =y (7.3)
k=0
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is called the nth Taylor polynomial (or the n-jet) of f at p. If f € C>°(D) (i.e., if f is arbitrarily
often differentiable), then the power series

. . o S
0 =) =3 Lt (7.4)
k=0
is the Taylor series (or jet) of f at p. For n € N and 2 € D we define the remainder term
Rn(x) = f(x) = 4, f(z —p), (7.5)

Remark 7.2. o f(x)=jyf(x—p)+Ra(z), neN zeD,

! a
o M) = @Jp'f(o)q 0<k<n,

e RHp) =0, 0<k<n,

n

Formula (7.5) is only the definition of the remainder term. This representation of f is useful because
|R,| can be expressed in terms of the (n + 1)th derivative of f (if it exists). Hence, when f(+V
can be estimated, then the nth Taylor polynomial is a good approximation of f.

Theorem 7.3 (Taylor’s theorem). Let D C R and interval and f € CU(D) (ice., f is
(n + 1)-times continuously differentiable in D), and let p, x € D. Then

J(@) =jy fz—p) + Ru(x)

with

I

Fu(e) = / (@ — " 1) d. (7.6)

“Jp
Proof. We prove formula (7.6) by induction. Since j;' f is a polynomial of degree less or equal to n,
it follows that fI+1 = RL’L“L Note that

Rip) = f"p)  and  RIp) =0, 0<k<n.

Integration by parts yields

.

/I(z — "R () dt = {(z - t)”RL;L](t)L + n/l (z —t)" 'R dt.

=p

For n > 1 the term in brackets vanishes. Integrating the left hand side n-times by parts we obtain

/(T — 4RI dt = / TR dt = nl(Bo() — Ra(p)) = nlRa(a). o

Using the intermediate value theorem of integration (Theorem 6.51) it follows that there exists an
£ between x and p such that

[n+1] 2 [n+1]
Ry = 0 [ - PO e
! » !

For real valued functions the formula above is true even if f"*1) is not continuous as the next
theorem shows.
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Theorem 7.4 (Lagrange form of the remainder term). Let D C R and interval and [ €
Cl"N(D) (i. e., f is n-times continuously differentiable in D), and assume that f") is differentiable.
For p and x € D there exists £ between p and x (excluding p and x) such that

[n+1]
R, (z) = JZTTE)&-!)(;K7 L (7.7)

Proof. Let x € D. For x = p there is nothing to show. Now assume z > p. (The proof for z < p
is analogous.) By assumption R, (defined in (7.5)) is (n + 1) times differentiable on D. By the
generalised mean value theorem (Theorem 6.24) there exist p < 41 < -++ < & < @ such that

Ru(z) _ Rn(z) — Ra(p) __1 R(&)
A e T R S
L R@-R)  _ 1 RI&)
n+1 (& —pm—0n (n+1Dn (& —p)"!
_ __ 1 R
(n+1! &—p
1 Re)-Re) 1 REge) ()
(m+1)! (& —p)—0 (n+1)! 1 (n4+1)!
Setting & = &,4+1 shows (7.7). O

Remark 7.5. Formula (7.6) is also true for complex functions f, but the Lagrange form (7.7) holds
only for real valued functions f (because the proof uses the generalized mean value theorem).

Definition 7.6. Let X, Y normed vector spaces, D C X, f,g: D — Y and p limit point of Dy .
7
The Landau symbols O and o are defined by

(i) f(z) = Og(@)), = — . if
35650 3050 VaeD: [e-pl<s = @) <Clg)].

(i) f(z) =o(g(x)), z — p, if Jlﬁim I @l =

2 gty =

Using the Landau symbols, Theorem 7.4 says
(f = Ru)(@) = O((z = p)"*') and  (f — Ru)(z) = o((z —p)") for = —p,
that is, f — R, vanishes of order (x — p)™ as © — p.
Remark 7.7. The radius of convergence of the Taylor series of an arbitrarily often differentiable
function can be 0. If the Taylor series converges on an interval, it does not necessarily converge to

f. But if f has a power series representation, then it is its Taylor series.

The Taylor series of the exponential function and sin and cos are the power series given in Defini-
tion 5.49. Another important example is the binomial series.

Definition 7.8. For a € R and k € N the generalised binomial coefficients are defined to be
a\ _ala=1)---(a—k+1) oy
k) k! ’ o)
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For o € Ny this definition coincide with Definition 2.18. As in the proof of Proposition 2.19 it can
be shown that

a—1 4 a—-1\ ([«

k—1 k T \k)

(142) = i (:“)w 2] < 1. (7.8)

n=0

Example 7.9. For a € R

Proof. For a € Ny, the assertion is already proved in Theorem 2.22. Now assume that o ¢ Ng. The
power series in (7.8) has radius of convergence R = 1 because

« a \7' n+1
:| ‘*}1 for n — oo.
n)\n+1 a—n

Let f(z) =Y o, (¢)a", 2] < 1. Then

A+a2)f'(x) =1 +x) in(i)x"’l =(1+x) ia(i: Dx”’l

n=1 n=1
X fa—1 L fa—1 a—1
_ - n-1) _ - s
7a(1+r)(1+2(n_1)r )7a(1+2(< ) <n—1>) )
n=2 n=2
= a(l + Z <Z>x"> = a'z (( )1" = af(z).
n=1 n=0
Let ¢(z) = % |z| < 1. By the result above we find that ¢ is constant because
(L4 2)* (@) — f(@)a(l +2)°~
o —
¢'(x) = (1+z)2 =0
Since f(0) =1 = (14 0)* it follows that ¢ = 1, hence f(z) = (1 + 2)°, |z| < 1. [m]

Special cases:

k=0 k=0
= (1/2 1 1 1-3
i) a=4:  VItz=Y bl gog— — g2 3.
(i) a=3: 1+x k,o( )z 1+21 74" +2‘4<6I ¥
1 L (—1/2 1 1-3 1-3-5 ,
i — 1. :2 k_o1-= i - 3
W) a=-3 7 H( k )I L=3e 33 “ 516" '

From (ii), for instance, it follows that
1 1 1-3 1-3-5
e VIFl=ld e — 2 2990 4
VRV = S 56 2468

because the series converges converges also for x = 1 by the Leibniz criterion (Theorem 4.54) and
is equal to v/2 by Abel’s theorem (Theorem 5.48).
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Calculating with Taylor series

1—cosz 1
Example 7.10. lim ¥ =_.
z—0 € 2

1 — cos(x). Since f(0) = f'(0) =0 and f”(0) = 1 it follows from equation (7.7)

Proof. Let f(z) =
2 + 23 p(x) where ¢(z) is bounded by 4[| f"” |l = 4. Therefore

that f(z) = 3

. l—cosz Nt 1
i 7 =l G avle)) = 5
Note that the limit can also be found by applying I'Hospital’s rule twice.

Theorem 7.11. Let D C R be an interval, p € D and f,g : D — R. If [ and g are n-times
differentiable in 0 then

B+ =dtf+ise (e =3 (351 ive)- (7.9)
If f,g € C*°(D), then
Jo(f +9) =jof +idog,  Jo(fg) =jof - jog (Cauchy product).

Proof. The first formula in (7.9) follows immediately from the linearity of the differentiation (The-
orem 6.8). For the second formula, we define f and g by

f=isf+f 9=ita+g.
Obviously ﬂ"'] (0) = 0 and g¥1(0) = 0 for 0 < k < n. It follows that
fro=i8f- it + (Fa+3ig -

Since the derivatives of order 0 < k£ < n of the terms in brackets are 0, it follows that

Jo(f-9)=Jo (o f - Jog)- ]
. In(1+x) . > il N R
Example 7.12. The Taylor series of e at 0 is ;(7) (; E)l .

Proof. The Taylor series of In(1 + z) and (1 +2)~! at 0 are for |z| <1

00 o © [ \n
1+2)7 =3 ()",  In(l+a2) :/ A+t~tde=Y" ()" ot
n=0 0 amontl
Therefore we obtain the desired Taylor series as the Cauchy product of the two series:
oo oo o n-1
g (=)ramtty nek (N
(Z( )T)(Z n+1 )_ Z(Z< ) k+1)m
n=0 n=0 n=1 k=0
o "
==X g)e o
n=1 k=1

Example 7.13. The function R — R, @ — x(1 + 2 — cosz) has a local minimum at 0.
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Proof. The jets are
jal+a—cosz)=ax+... = jx(l+z—cosz)) =a*+...,
so the function behaves locally like 22 and has therefore a local minimum at 0. [}

Example 7.14. Use the method of undetermined coefficients to find the Taylor series of tan at 0.

Solution. We have to determine coefficients a;, j € Ny such that locally at 0
)
Jotanz = Z a,z".
n=0

Since tan(0) = 0 it follows that ag = 0. We know that tan’(z) = 1 + (tan(z))? and

d R el _ N n
LS e = 3 nant = 30+ Danaa”,
n=0 n=1 n=0
oo 5 © n
1+ (Z a,".r") =1+ Z(Z aka",k)m"
n=0 n=0 k=0
Comparison of the coefficients yield the recursion formula for the a,:
n—2
ap=0, ag=1, na,= Zaka",k,l, n>2.
k=1
In particular, as, = 0 for all n € N. [m}

The following theorem generalises the chain rule.

Theorem 7.15. Let Dy, Dy C R be intervals, f : Dy — R and g : Dy — R n-times differentiable
functions such that f(Dy) C Dy. Moreover let p € Dy and q := f(p) € Dy. Then

in(go ) =345 ((Grg) o Gy f —q)-
If f and g are arbitrarily often differentiable, then
.jp(!] of)= jD((qu) ° (7pf - Q))

Proof. Without restriction, we can assume p = ¢ = 0. If g is a polynomial, then the assertion
follows from Theorem 7.11. If g is not a polynomial then we define g by g = ji'g + 9. We obtain
Jo(go f) =4o((Gog)e f+gof)=1is((gg) e f) +jo(ge f)
(A
=0 by product and chain rule
=Jo((G59) 045 f)- ]

Example 7.16. The fourth Taylor polynomial of f(z) = cos(1 — ﬁ) is1— %w“.

Proof. Using the power series representation of the cosine (Definition 5.49) and the geometric series

- 1 ) . .
to represent 7= as a power series, we find

1 . 1 1
jacos(z) =1— =224+ =zt ja1 = —z2 + 2
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Therefore we obtain

st (@) = gg(1 = 5(=a® +a*)?) + g5 (~a® +2")")
=j¢ (1 — L(a* + higher order term) + 5 (higher order term))
1
=1- 51'4. O

7.2 Construction of differentiable functions

Definition 7.17. Let D C R an open interval and f : D — R. Then f is called analytic if for
every point p € D there exists a € > 0 such that f has a convergent power series representation
(centred in p) in B.(p).

By definition, every analytic function is a C*° function, but not every C'*° function is analytic as
the following example shows:

Theorem 7.18. The function
_1 .
p:RoR, o(a) = {exp( L), z#0,

lies in C*°(R) and ¢[™(0) = 0 for all n € N. In particular, the Taylor series of ¢ at 0 converges in
all of R but it is equal to ¢ only in the point 0.

Ficure 7.1:  The non-analytic C*° function ¢ (see Theorem 7.18). Although the plot gives another
impression, ¢ has an isolated global minmum at 0.

Proof. Step 1: For all k € Ny exists a polynomial Py, (of degree n = 3k) such that

oM(@) = Pz Vexp(—z72),  z#£0.

‘We prove the assertion by induction on k. It is clearly true for k = 0. Assume now that we know
the assertion already shown for some k € Ny. Then we find that

@) = (A exp(-a72))
=(—272Pj(z™) + 22 *Pu(z 7)) exp(—22).

=Pepr(z71)
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Obviously, P41 is a polynomial in 27! of degree deg(Pyi1) = deg(Py) +3 = 3(k +1). Step 2:
ili)% z % exp(—z~2) = 0 for all k € Ng. We show the assertion by induction on k. It clearly holds
for k = 0. For k =1 it follows by I'Hospital’s rule:

L -1 —2

. -1~ - . —T . — L
limz™ e 27 = lim —— = lim ————— = limze =z =0.
=0 20 o327 220 _9p—3 032 =0

Now assume that the assertion holds for all 0 < k < n for some n € Ny. Then, again with the help
of I'Hospital’s rule and the induction hypothesis, we obtain

p—n—1 C(n 4 1)z—"—2
lim 2" 'e™:% = lim — = lim (n+1) -
x—0 z=0 @37 z—0 —2r—3exZ
_ntl lim 2~ ("D e73% =0,
2 10

Step 3: All derivatives of ¢ in 0 exist and ©*(0) = 0 for all k € No.
Again, the assertion is proved by induction. For k = 0 the assertion follows directly from the
definition of ¢. If k =1 then

P(0) = ¢'(0) = lim pla) =) _ lim pla) _ lim 27" exp(—z7%) = 0.

20 0 z—0 T z—0

Assume that the assertion is true for some k& € N. Then, by induction hypothesis and the results
of step 1 and step 2,

o
[k+1] _ ¥
PETN0) = lim = In—

= lim 27 1P, (z71) exp(—z~2) = 0.
z—0

It follows that all coefficients of the Taylor series of ¢ in 0 are 0, therefore its radius of convergence
is 0o. Since p(x) = 0 if and only if 2 = 0 it follows that ¢(z) = j§°p(z) if and only if z = 0. O

Theorem 7.19. Let r, £ > 0. Then there exists a function 1 € C*°(R) such that 0 <1 <1 and
Plx)=1 <= |z| < (@) =0 <= |z|>r+e.
Proof. We use the function ¢ from Theorem 7.18 to construct ¢. First we define the function

, x>0,

LR —> R, (x) =
p n(z) c<0.

By the theorem above, € C*°(R) (but it is not analytic in 0). Next we define

T
pe :R=R, pe(x) = W
The function p. satisfies 0 < p. <1 and

pe(r) =0 <= z<0, pe(z) =1 <= z>e.
Finally,
YRR, P@)=1-pe(jx|—r)

has the desired properties (note that 1 is differentiable of arbitrary order at 0 because it is locally

constant at 0).
[m]
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The existence of a function as in Theorem 7.19 implies that if a function is known only locally at
a point, nothing can be deduced about the global behaviour of the function.

For instance, let f, g be arbitrary functions on R and ¢ as in Theorem 7.19. Let
h=(1—%)f +g.
Then h(z) = f(z) for |z| > r+ ¢ and h(z) = g(z) for |z| <r.
The next theorem says that every power series is the Taylor series of a C'™ function. Of course, the

radius of convergence may be 0 and the Taylor series does not need to represent anywhere apart
from the point in which we calculate the Taylor expansion.

Theorem 7.20 (Borel’s theorem). Let (¢n)nen, C R. Then there exists a function [ € C™(R)
such that

Jof@) = 3 cus”.

n=0
Proof. Let ¢ be the function of Theorem 7.19 with r = ¢ = % For a > 1 define
¢ R-R, &(e) = o v(an).

Then —a~ ! < &a < a ! and

1
Lo(z) =2 = |az| < 7 () =0 <= laz| > 1.
Note that &, (z) = « for |z| sufficiently small. We construct f as the series

k

Ck (fak (I)) .

M3

fz) =

B
I

0

‘We have to show that the a; can be chosen such that for all n € Ny the series of the formal
derivatives is uniformly convergent. Then f is arbitrarily often differentiable at 0 and the formal
nth derivatives of f equal its nth derivative (Theorem 6.69). That the Taylor series of f equals the
given power series is then clear because &, (z) = x locally at 0.
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Set € := £;. Since for all k € Ny and all n € Ny the function (€¥)[" is arbitrarily often differentiable,
it is bounded on the compact interval [—1,1] (Theorem 5.30). Outside of the interval it is zero,
therefore there exist constants M, such that

IEH) oo < M.

For a > the chain rule yields

dar e
dzn 55;(‘) =ay k(fk)["](akl'), k, n € Np,
hence
av nk
Az Sar|| <@ Mk, k, n € Ny,

For fixed k € Ny we can find a; > 1 such that
\ck\lLZ*k,Mnk <27% foralln<k.

Hence, for fixed n € Ny, we have that

dar k s
[9%3 <2 for all k > n.
dzﬂ' Ak o
Therefore, the series of the formal derivatives of f converges. [}

7.3 Dirac sequences

Definition 7.21. A Dirac sequence is a sequence of continuous functions (6, )nen on R such that
(D1) 6, >0, neN.

00
(D2) / Op(z)dz=1, neN
(D3) For all n,e > 0 there exists an N € N such that

—n 00
/ On () dx+/ On(z)dz <e, m>N.

o n

Example 7.22. Let ¢ : R — [0, 00) an arbitrary Riemann integrable function such that ]f; 6(z)dx =
1. Then the sequence of functions (8, )nen defined by

0 R—= R, d,(z) =ndé(nz)
is a Dirac sequence.

Proof. Property (D1) is clear. Property (D2) follows with the substitution ¢ = na:

/715,,(1')d1':/71n5(nx)dz:[ZJ(t)dt: 1.

Let n,e > 0. Since ¢ is positive and integrable, there exists an R > 0 such that f;c d(x) do < 5.
Therefore for nn > R:

/ 6T,,(:c)d:c:/ né(nw)dw:/ 6(t)dt<3
Jn Jn Jnn 2

Analogously for [~ §,(z) dz. [m]

oo
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Definition 7.23. Let f,g : R — R be integrable functions. Then the convolution f % g of f and g
is defined by

fxg:R=R, (fxg)(z / ft)g(z —t) dt.
Note that the convolution is commutative since the transformation s = z — ¢ yields
(Feae) = [0t as= [ e 9ale) ds = g+ Do)
)

Theorem 7.24 (Dirac approximation). Let f : R — R be bounded and locally integrable (i. e.,
for every compact set K C R the restriction f|x is integrable). Let K C R a compact interval such
that f|k is continuous in K. Let (6, )nen be a Dirac sequence and define

Falz) = (60 * ) /f (z — 1) dt = / fz —1)6, (1) dt.

Then fn|x — flx uniformly.

Proof. For the proof of the uniform convergence we have to estimate

hoa) = ) = [ fa=080) dt - 7o)

[ T fa—0ou) di— L " H@)oa(t) dt

= [ a0 - ) a

independently of z for # € K. Let ¢ > 0. Since f is uniformly continuous on K, there exists a
7> 0 such that

ftf<n, zeD = |flz—t)— f(z)l<e.
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(Note that z — ¢ does not necessarily belong to K.) By assumption, f is bounded. Let M € R such
that | f| < M and choose N € N such that

Ul 00 €
—_— > N.
/7005,1(1&) dt+/n 0, (t) dt < S n>N.

fal@) — F@)] < / / / @ —t) — F@lon(t) dt

Since |f(x —t) — f(z)| < 2M it follows that

Then

-n 00
/m +/n |f(@—1) = f(2)[dn(t) dt<2MW —.

and |f(z —t) — f(z)] < e for [z —¢| < n implies

[ise=0 - s@i.0 a <

"
We have shown that || f,|x — f|k|l~ < &, n > N. Since £ was arbitrary, the theorem is proved. O

In the proof we have used that there exists an > 0 such that |f(z —t) — f(z)| < e for all z € K
and [t| < 7. Such an 7 can be found as the minimum of np, 74 and - where np is such that
[f(z—t)— f(z)| <eforall z € K and |t| < n such that  — t € K (uniform continuity of f in K),
and 74 are such that |f(z+) — f(y)| < €/2 for all y € R such that |z — y| < n where z+ are the
endpoints of K.

Proposition 7.25. There exists a Dirac sequence (0n)nen such that the restrictions d,|(_1,1) are
polynomials.

Proof. Define the sequence (8, )nen by 0, : R — R with

Sl -2t ol <1, 't
On(x) = e a7 lel <1, where ¢, := / (1 7562)" dz.
0, [z > 1, J-1

oo
Obviously, all §,, are continuous on R, d,, > 0 and / 0n(z)dz = 1. It remains to show property
—

(D3) of Dirac sequences. First we estimate the constants ¢,,:

1 1 1
cn:2/ (1 —a%)m dz:2/ IT+2)"1—a) dzZ?/ (I—a)" dz:i.
0 0 0 n+1
Now for 0 <n <1
oo 1 1
/ 6n(m)dx:/ el1— ) de < 2L (17,) dz
n 7 2.
n+1
=),
which tends to 0 for n — oo. If n > 1 then fnm On(z) dz = 0 by definition of d,. O

Theorem 7.26 (Weierstraf3 approximation theorem). A continuous function on a compact
interval is the uniform limit of polynomials on the compact interval.
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Proof. First we show the assertion for continuous functions f such that
[0 =R, f(0) = f(1) =0.

We can extend f continuously to R by setting f(z) = 0 for z € R\ [0,1]. Let (d,)nen as in
Proposition 7.25. By Theorem 7.24 the sequence f,, := d,, * f converges to f uniformly. We have to
show that the restrictions fy|jo,1) polynomials. Since d,[(_1,1) are polynomials of degree 2n, there
exists a representation

Salw—1) = go(t) + gr(B)a - + gan(t)a™, @, t€[0,1].

Hence for all z € [0,1]:
o0 1
5@ = [ gwia =0 = [ i
1
= /0 F@)(g0(t) + 1)z + gm(t)z?") dt = ap + ayz - + agx™

with coefficients a; := fol f(t)g;(t) dt.

Now let g : [a,b] — R an arbitrary continuous functions. Let ¢ : [0,1] = R, ¢(y) = a + y(b— a),
and define

[0 =R, f@) = (g09)(@) - (9(a) — 2(g(a) — g(b).

By what we have prove so far, there exists a sequence (P,)nen of polynomials that converges
uniformly to f. For n € N and x € [a,b] define Q,(z) := P,(¢~ () + (9(a) — ¢~ (z)(g(a) — g(b)).
Then (Qn)nen converges uniformly to g on [a, b]. ]

The theorem can be generalised to the so-called Stone-Weierstral theorem, see Theorem 8.38. (See
[Rud76, Theorem 7.32]).
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Chapter 8

Basic Topology

8.1 Topological spaces

Recall that a metric space (X, d) is a set X together with a function
d: X x X —[0,00),

such that d(z,y) = d(y,z), d(z,y) =0 <= 2 =yand d(z,y) < d(z,z)+d(z,y) forall z,y,z € X.
For arbitrary > 0 and a € X we defined

B, (a) :={zx € X : d(a,x) <1} =: open ball with centre at a and radius r,

K, (a) :={z € X : d(a,z) <r} =: closed ball with centre at a and radius r.
IfY C X, then (Y,dy) with dy = d|yxy is also a metric space. dy is called the induced metric.
A sequence (z,)nen is called convergent if there exists an p € X such that

Ve>0 INeN: n>N = ux, € B:(p).
A sequence (z,)nen is called a Cauchy sequence if for every & > 0 there exists an N € N such that
mn >N = d(xm,z,) <e.

‘We showed that every convergent sequence sequence is a Cauchy sequence, but not every Cauchy
sequence converges. A metric space in which every Cauchy sequence converges is called a complete
metric space.

Metric spaces are special cases of the more abstract concept of topological spaces.

X X

FI1GURE 8.1: Examples for balls in the met- Ficure 8.2: ...and the induced balls in

ric space X ... the subspace Y. (The right lower X-ball in
the left picture does not induce a ball in Y
because its centre does not belong to Y.)
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Definition 8.1. A topological space (X,0) is a set X together with a subset O C P(X) of the
power set of X such that

(i) X, 0eo0.
(@) Up,...,U, €0 = UyN---NU, €O.
(ili) Ux€ O, A€ A = UycpUr€ 0.

O is called the topology of X and its members are called open sets of X.

By definition, X and () are open, the finite intersection of open sets is open, the arbitrary union of
open sets is open.

Definition 8.2. Let (X, O) be a topological space and let p € X. A set V' is called a neighbourhood
of p if there exists an open set U such that pe U C V.

Lemma 8.3. Let (X,0) be a topological space and U C X.

(i) U is open if and only if for each p € U there exists an open set V such thatp e V C U.
(i) U is open if and only if it is a neighbourhood of each p € U.
Proof. (i) Assume that U is open and let p € U. Then we can choose V = U.
Now assume that for each p € U there exists an open V,, such that p € Vj, CU. Then U = UpeU Vo,

hence U is open as union of open sets.
(ii) Follows immediately from (i). [m]

Definition 8.4. Let (X, O) be a topological space and Y C X. Then X induces subspace topology
on Y by

UCYisopeninY <<= dVeO:U=VnNnY.
It is not hard to see that Y with the induced topology is indeed a topological space.

Definition 8.5. A topological space (X,0) is called a Hausdorff space (or Ty space) if for all
2,y € X with x # y there exist neighbourhoods V;, of z and V,, of y such that V, NV, = 0.

Examples 8.6. (i) Let X be an arbitrary set and define O = {0, X}. Then (X,0) is a topo-
logical space. It is Hausdorff if and only if | X| < 1.
(ii) Let X be an arbitrary set and define O = P(X). Then (X, O) is a Hausdorff space.
(iii) Every subspace of a Hausdorff space is again a Hausdorff space.
The topology in example (i) is called the trivial topology, the topology in example (ii) is called the
discrete topology.

Example 8.7 (Topology induced by a metric). Let (X, d) be a metric space. Then d induces
a topology on X: a set U C X is open if and only if

VpeU >0 B.p) CU.
It can be shown (Exercise 8.2) that X with the induced topology is indeed a topological space with

the Hausdorff property, that the open balls are open sets and that the closed balls are closed sets
(see Definition 8.8).
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Whenever we speak of a metric space as a topological space, we refer to the topology induced by
the metric. For example, the topology in R is generated by the open intervals. Note, however, that
not every open set is an open interval.

Definition 8.8. Let (X, 0) be a topological space and let A C X. A point p is called a boundary
point of A if for every neighbourhood U, of p

ANU,#0 and (X\A)NU, #£0.

The set of all boundary points of A is denoted by 0A.

The interior of Ais A° := A\ 0A.

The closure of A is A := AUOA.

The set A is called closed if it contains all its boundary points (i.e. 94 C A).

Note that a boundary point does not necessarily belong to A. For example, if A is an open set,
then ANJA = 0.

Proposition 8.9. Let (X, 0) be a topological space. Then a subset A C X is closed if and only if
X\ A is open.

Proof. Assume that A is closed and let p € X \ A. If every neighbourhood of p would have non-
empty intersection with A, then p € 9A C A (note that every neighbourhood of p contains p ¢ A).
Therefore there exists an neighbourhood of p that has empty intersection with A, hence X \ 4 is
open.

Now assume that X \ A is open and let p € X \ A. Then there exists a neighbourhood U of p such
that UN A =0, hence p ¢ 0A O

It follows that X and () are closed, the finite union of closed sets is open, the arbitrary intersection
of closed sets is open.

Remark 8.10. Let X be a topological space and Y C X. Then a set A C Y is closed in Y if and
only if there exists B C X such that B is closed in X and BNY = A.

Indeed, since A is closed in Y, Y\ A is open in Y, hence, by definition, there exists an U € X, such
that U is open in X and UNY =Y \ A. Then B:= X \ U is closed in X and BNY = A.

Lemma 8.11 (de Morgan’s laws). Let X and A be sets and My € X, A € A. Then

X\UM=NE&E\M), X\ M=J&E\M).

AEA AEA AEA AEA

Proposition 8.12. Let (X, 0) be a topological space and A C X. Then A° is the union of all open
sets that are contained in A and A is the intersection of all closed subsets of X that contain A

Corollary 8.13. (i) The interior of a set is open. A is open if and only if A° = A.
(ii) The closure of a set is closed. A is closed if and only if A= A.

Proof of Proposition 8.12. Let B be the union of all open subsets of A. Then B is open and we
have to show that B = A°.

If p € A° there exists an open neighbourhood U of p that U N (X \ A) = 0, that is, pe U C A. In
particular p lies in the union of all open sets contained in A, so we have shown A° C B.
Obviously, B is open and contained in A, therefore, for each p € B there exists an open set U such
that p e U C B C A, hence p € A° which proves B C A°.

The second part of the proposition follows from Proposition 8.9 and de Morgan’s laws. [m}
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Note that there are sets that are neither closed nor open, for example [0,1) C R. Moreover, a
set can be both closed and open, for examples, in a non-empty topological space with the discrete
topology every set is open and closed.

Proposition 8.14. Let (X, d) be a metric space with topology induced by the metric d. Let A C X.
Then p € A if and only if there exists a sequence (an)nen C A that converges to p.

Proof. Assume that p € A. Then B%(p) N A # ( for all n € N. In particular we can choose a
sequence (an)nen C A such that d(an,p) < %

Now assume that p ¢ A. Since X \ 4 is open, there exists an ¢ > 0 such that B.(p) N A = 0,
i.e.d(a,z) > ¢ for all a € A. Therefore there exists no sequence in A that converges to p. O

Definition 8.15. Let (X, ) be a topological space and let A C X. A point p € X is called a
limit point of A if U N (A\ {p}) # 0 for every neighbourhood U of p. A set A is called perfect if it
contains all its limit points.

Definition 8.16. The set A is said to be dense in X if A = X.

For example, Q is dense in R.

Recall that a function f: X — Y between metric spaces is called continuous if and only if for every
e >0 and p € X there exists an § > 0 such that f(Bs(p)) C B:(f(p)), that is, the preimage of a
neighbourhood of f(p) is a neighbourhood of p.

Definition 8.17. A function f: X — Y between topological spaces is called continuous at p € X
if and only if for every neighbourhood U of f(p) the set f~1(U) is a neighbourhood of p. The
function f is called continuous if it is continuous in every p € X.

Proposition 8.18. A function f: X — Y is continuous if and only if preimages of open sets are
open.

Proof. Assume that f is continuous and let V' C Y be open. Let p € f~1(V). Then V is a
neighbourhood of f(p). Since f is continuous, f~'(V) is a neighbourhood of p, hence it contains
an open set U such that p € U C f~1(V). By Lemma 8.3 (i) f~!(V) is open.

Now assume that f~1(V) is open for every open set V' C Y. Let p € X and V a neighbourhood
of f(p). Then V contains an open neighbourhood V' of f(p) and f~*(V’) is open by assumption.
Therefore f~1(V) contains a neighbourhood of p which implies that f is continuous in p. [}

If X is a topological space, then id : X — X is continuous. Compositions of continuous functions
are continuous.

Definition 8.19. A homeomorphism between two topological spaces X and Y is an bijective
function f: X — Y such that both f and f~! are continuous.

Note that in general the continuity of f does not imply the continuity of f~!. For example,
f:N—= Q, f(zr) =z is continuous, f~! is not (when N carries the discrete topology and Q the
topology induced by its metric).

Definition 8.20. Let (X,Ox) and (Y, Oy) be topological spaces. Then we can define a topology
O on X xY as follows: A subset W C X x Y is called open if and only if it is the union of sets of
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the form U x V with U open in X and V open in Y. Obviously, the projections
prx: X xY =X, (z,y) e~z pry : X xY =Y, (z,y)—y,

are continuous when X x Y carries the product topology.

8.2 Compact sets

Definition 8.21. Let X be a topological space and A C X. A family & = (Ux)aea of open sets
in X is called an open cover of A if A C(Jyc Ux. The open cover U is called finite if A is a finite
set. An open cover U contains an open cover V if every member of V is also a member of U.

A Hausdorff space X is called compact if every open cover of X contains a finite subcover. A subset
A of X is called compact if and only if it is compact in the topology induced by X. Obviously, this
is the case if and only if every cover of A with open sets in X contains a finite subcover.

Examples. (i) The empty set is compact in every topological space.
(ii) Let X be a Hausdorff space and M C X a finite subset. Then M is compact.
(ili) The set M = (0,1) is not compact in R with the usual topology.
Proof. For n € Nlet U, := (£,1). Then (0,1) € U;~, Un and (Un)nen contains no finite
subcover of (0,1). [m]

Remark 8.22. A Hausdorff space is compact if and only if the following is true: If A = (Ay)rea
is a family of closed sets such that (., Ax = 0, then there exists a finite set T' C A such that
ﬂxer Ax=0.

Next we show that all compact sets are closed, and that closed subsets of compact sets are compact.

Theorem 8.23. Let X be a Hausdorff space and A C X. Then

(i) X compact, A closed in X = A is compact.
(ii) A compact = A is closed.

Proof. (i) Let A = (Ax)xea a family of closed subsets of A such that (o5 Ax = 0. Then every
Ay is also closed in X (see Remark 8.10), therefore there exists a finite set I' C A such that
Maer Ax = 0. Hence A is compact by Remark 8.22.

(ii) We show that X \ A is open. Let p € X \ A. Since X is Hausdorff space, for every a € A there
exist open neighbourhoods U, of a and V, of p such that U, NV, = (. Since A is compact, there

exist aj,...,a, € A such that A C U?:l Us;- Let V = ﬂ;:L Vi, Then V is open, p € V and
n n
VnAcvnlJU, =JVNnU, =0. O
j=1 j=1

Note that the implication (ii) is not necessarily true if X is not Hausdorff. For example, if X = {1, 2}
with the trivial topology. Then X is compact and the subset {1} is compact but not closed.

Definition 8.24. Let (X,d) be a metric space. A set M C X is called totally bounded if for every
& > 0 there exist x1,...,z, € M such that M C U]n:l Be(x;).

If M is totally bounded, then M is bounded. The reverse implication is not necessarily true.
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Proposition 8.25. Let (X,d) be a metric space and A C X. Then A is totally bounded if and
only if every sequence in A contains a Cauchy subsequence.

Proof. If A= (), then the assertion is clear.

Assume that A is totally bounded and let = (z,,)nen C A. Since A is totally bounded there exist
q1, -..qn € X such that A C U;;l Bi(q;). Therefore there exists in j € {1,...n} and a subsequence
21 = (21,n)nen Of z such that 1 C Bi(p1) (with p; = ¢;). By the same argument, applied to the
sequence z1, there exists a ps € A and a subsequence x5 of 1 such that 2o C B%(p2)4 We can now

choose inductively a sequence (p;)jen € X and a sequence of subsequences &), = (Zg,n)nen Of
such that p; and z; as chosen above, x; C B%(pk} and 141 is a subsequence of zj, for all k € N.
Then the sequence (&, ,)nen is a subsequence of z and, by construction, it is a Cauchy sequence.

Now assume that A is not totally bounded. We will construct a sequence (2, )nen C A that contains
no Cauchy sequence. Since A is not totally bounded there exists an ¢ > 0 such that A Ujle Be(p;)
for every finite sequence (p; _le C A. Choose z; arbitrary in A. By assumption on A, we can
choose zj, € A inductively such that zp11 ¢ Ule B.(z;) and A Z Uf;l Be(z;). By construction
d(zp, zy) > € for all m,n € N, hence (z,,)nen does not contain a Cauchy sequence. O

Definition 8.26. A topological space X is called sequentially compact if every sequence in X
contains a convergent subsequence.

The following is a generalisation of the Bolzano-Weierstraf theorem (Theorem 4.40). Note that it
is true in an arbitrary topological space (not necessarily a metric space).

Theorem 8.27. Every compact metric space is sequentially compact.

Proof. Let X be a compact metric space and 2 = (2, )nen be a sequence in X. Assume that = does
not contain an convergent subsequence. Then for every € > 0 and every y € X the open ball B (y)
contains only finitely many members of the sequence z. Since X is compact there exist y1,...,yn
such that = C X C U;l:l Bc(y;) implying that 2 has only finitely many members. O

Corollary 8.28. Let (X,d) be a metric space and A C X compact. Then A is closed and totally
bounded.

In a metric space, the reverse of Theorem 8.27 is true.
Theorem 8.29. Let (X, d) be a metric space and A C X sequentially compact. Then A is compact.

Proof. Since A is sequentially compact, it is totally bounded by Proposition 8.25. Now let U =
(Ux)A € A be an open cover of A. We have to show that U/ contains a finite cover of A. First we
show the existence of a § > 0 such that for every y € X the ball Bs(y) is contained in a Uj.

Assume that no such 4 exists. Then there exists a sequence y = (yn)nen such that there exists no
A € A with Bi(y,) C Ux. Since A is sequentially compact, y contains a convergent subsequence;
without restriction we can assume that y itself converges to some yo € A. Since U is an open cover
of A, we can choose § > 0 and A\g € A such that yo € Bs(yo) C Uy,. Since the sequence y converges
to yo, we can choose n large enough such that d(yn,y) < % and % < %, see Figure 8.3. It follows
that B1(ya) € Bs(yo) C Un,- m|

Corollary 8.30. Every interval of the form [a,b] is compact in R since it is sequentially compact
by the Bolzano-Weierstraf§ theorem (Theorem 4.40).
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Uy,

Fiaure 8.3: A sequentially compact metric space is compact (Theorem 8.29).

For the proof of the Heine-Borel theorem (Theorem 8.33) we use the following two auxiliary lem-
mata.

Lemma 8.31 (Tube lemma). Let K be compact space, X a topological space, p € X, U C X x K
open in the product topology such that {p} x K C U. Then there exists an open set V.C X such

that V. x K CU.
V% V x K

/i

p X

FIGURE 8.4: Tube lemma (Lemma 8.31).

Proof. Let k € K. Then there exist an open neighbourhood Wy, of k and an open neighbourhood

Vi of p such that (p,k) € Vi, x Wi C U. Since K is compact, there are ky,...,k, € K such that
KcC U';Zl W, Let V = 07:1 Vi, Then V x K C U;’:l(Vk] X Wy,) CU. O

Lemma 8.32. (i) The product of finitely many Hausdor[f spaces is again a Hausdorff space.

(i) The product of finitely many compact spaces is again a compact space.

Proof. It suffices to show the assertion for two topological spaces X and Y.

(i) Assume that X and Y are Hausdorff spaces and let (z1,y1) # (z2,92) € X x Y. If 21 # 22
then there are disjoint open neighbourhoods U; of z; and Us of x3. Therefore Uy x Y and Us x Y
are disjoint neighbourhoods of (z1,y1) and (22,y2). If 21 = @2, then y; # y» and as before we can
find disjoint neighbourhoods of (z1,y1) and (z2,y2).
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(i) Let U = (Ux)aea be an open cover of X x Y. Let p € X. Since {p} x Y is compact for every
p €Y, there exist Ai,..., A, such that {p} x Y C [Jj_, Uy, By the tube lemma there exist an
open neighbourhood V,, of p such that V,, x Y C U’IL:] Uy, . Since X is compact, it can be covered
by finitely many such V},, hence U contains a finite subcover of X x Y. [m]

Theorem 8.33 (Heine-Borel theorem). A subset of R™ is compact if and only if it is bounded
and closed.

Proof. Let A CR. If A is compact, then it is bounded and closed by Theorem 8.23. Now assume
that A is bounded and closed. Since A is bounded, it lies in a closed cube C' = [ay, b1] X - - - X [ay,, by ).
By Lemma 8.32, C' is compact, hence A is compact by Theorem 8.23.

Note that this equivalence is not true for an arbitrary metric space (X,d) because the bounded
metric d’ := min{1,d} induces the same topology on X. Hence boundedness says nothing about
compactness. For arbitrary metric spaces we have the following characterisation:

Theorem. Let (X,d) be a metric space. A subset A of X is compact if and only if it is complete
and totally bounded.

In the rest of this section we prove theorems for continuous functions on compact sets.

Theorem 8.34. Let X a compact space, Y a topological space and f : K — Y a continuous
function. Then f(X) is compact.

Proof. Let U = (Ux)rea be an open cover of f(X). Then (f~'(Ux))rea is an open cover of X.
Therefore there exist a finite subset I' C A such that (f~'(Ux))aer is an open cover of X. Hence
(Ux)aer be an open cover of f(X) subordinate to . O

As a corollary we obtain the following theorem.

Theorem 8.35. Let X a compact space, Y a Hausdorff space and f : X — Y a continuous
bijection. Then f~' is continuous.

Proof. By Theorem 8.34 and Theorem 8.23 (ii) for every closed set A in X the set f(A) is closed
inY. [m}

Note the we proved this theorem for intervals in Theorem 5.27.

Theorem 8.36. Let X be a non-empty compact metric space and f : X — R a continuous function.
Then f is bounded and has a mazimum and a minimum.

Proof. By Theorem 8.34, f(X) is a compact subset in R, hence it is bounded and closed. Let
M := sup{f(z) : @ € K}. Then there exists a sequence z = (z,)nen € K such that f(z,) - M
for n — oco. Since K is compact, z contains a convergent subsequence. Without restriction we
can assume that x converges to a g € K. By continuity of f we obtain M = lim,_o f(z,) =
f(limy o0 (2n)) = f(z0), hence the range of f has a maximum. Analogously we can show that
R(f) has a minimum. O

Theorem 8.37. Let X,Y be metric spaces, K C X compact and f: X — Y continuous in every
point of K. Then f is uniformly continuous on K.
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Proof. Let € > 0. We have to show the existence of a 6 > 0 such that for all z € X and y € K

dz,y) <6 = d(f(z),f(y) <e.

Continuity of f in K implies that for every y € K there exists a 6(y) > 0 such that

dlz,y) <26(y) = d(f(x),f(y) <e

Since K is compact, there exist y1,...,y, € K such that (Bj(,,))}—; is an open cover of K. Let
0 = min{d(y;) : j = 1,...n}. If 2 € X such that d(z,y) < ¢ for some y € K, then there
exists a j such that d(z,y;) < d(z,y) + d(y,y;) < 20;. Therefore d(f(x), f(y)) < d(f(z), f(y;)) +
A(f(ys), f(y)) < 2e. o

Theorem 8.38 (Stone-Weierstra3). Let K be a compact Hausdorff space and C(K) the space
of all real or complex valued functions on K together with the supremum norm || -||. Let F € C(K)
such that

(i) F contains a constant function not equal to 0;
(ii) F separates the points in K, i. e., for all x1, v2 € K exists an f € F such that f(z1) # f(z2);

(iii) if f € F, then also f € F (f denotes the complex conjugate of f, defined by f(x) = f(z), = €

Then the algebra generated by F is dense in C(K).

8.3 Connected sets

Definition 8.39. A topological space X is called connected if it is not the disjoint union of two
non-empty open sets.

Equivalent formulations are:

(i) A topological space X if it is not the disjoint union of two non-empty closed sets.
(ii) X does not contain a set that is open and closed.
(iii) If A, B C X are open, A # (), X = AU B, then B = (.

Theorem 8.40. Let D CR, D #0. Then

D is connected <= D is an interval.

Proof. “=" Assume that D is not an interval. Then there exist a < x < b such that a,b € D
and ¢ D. Then D, := D N (—o0,z) and Dy, := D N (x,00) are open in D and D is the disjoint
union of D, and Dy, therefore D is not connected.

“<=" Let D be an interval and A, B C D open in D such that D is the disjoint union of A and
B. Assume that A # (. We have to show that B is empty. Let

1, z€A,

Obviously, f is continuous. If B # (), then {0, 1} lies in the range of f. By the intermediate value
theorem (Theorem 5.24) there exists a p € D such that f(p) = %, in contradiction to the definition
of f. [m]
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Theorem 8.41. Let X,Y be topological spaces and f : X — Y a continuous function. If X is
connected, then f(X) is connected.

Proof. Let U # () be subseteq of f(X) such that U is open and closed. We have to show that
U = f(X). By assumption on U there exists an open set V and a closed set A in Y such that
U=f(X)NnV and A= f(X)N A. By continuity of f it follows that

O£ ) =fV) = 714 -

openin X closed in X
Since X is connected, it follows that f~1(U) = X, hence U = f(X). O

As a corollary we obtain the generalised intermediate value theorem:

Theorem 8.42 (Intermediate value theorem). Let X be a connected topological space and
f:X — R a continuous function. Then f(X) is an interval.

Definition 8.43. A topological space X is called arcwise connected if for all x,y € X there exists
a continuous function f : [0,1] — X such that f(0) =z, f(1) =y.

Theorem 8.44. An arcwise connected space is connected.

Proof. Let X be a arcwise connected topological space. Assume that X is no connected. Then there
exist U,V non-empty open subsets of X. Let p € U and ¢ € V' and choose a continuous function
f:[0,1] = X such that f(0) = p and f(1) = q. Since f is continuous, the sets U’ = f~(U) C [0,1]
and V' = f~1(V) C [0, 1] are open. Define the function

g:[0,1] = R, g(z) =0 < z €U, g(x)=1 < z eV

Then g is continuous because all preimages under g are open. Since g(0) = 0 and g(1) = 1, the
intermediate value theorem implies that there exists an ¢ € [0, 1] such that g(t) = %, in contradiction

to the definition of g. [m}

Corollary 8.45. Let (V. ||-||) be a metric space, @ €V a convex set. Then Q is arcwise connected,
in particular, it is connected.

Note that there are connected spaces that are not arcwise connected.

Last Change: Thu 07 Jul 2011 09:03:22 AM -05



Chapter 9. Exercises 141 142

(e) Show that Q is countable.

6. (a) Show that the power set PN is not countable.
(b) Let A, B be sets. Show or give a counterexample:
(i) P(ANB)=PANPB.
Chapter 9 (ii) P(AUB)=PAUPB.

7. Show the following formulas:

Exercises @ Y= () e

1 &1
(b) ;(71)‘”%:2%# neN.

k=1

Exercises for Chapter 2 8. Forn € No y m € N define

1. For sets A, B and C show at least two of the following statements:

(a) AN(BUC)=(ANB)U(ANC), a(m,n) = #{(z1, ..., xm) € NJ' Z:lﬂm <n},
(b) AUBNC)=(AUB)N(AUC). '
(c) A\(BUC)=(A\B)n(A\O0), b(m,n) = #{(x1, ..., m) ENG = Y x; =n}.
(d) A\N(BNC)=(A\B)U(A\O). =

(a) Show that a(m,n) =b(m+ 1,n), m € N, n € Ny.
2. (a) Find the power sets of (a) L =10, (b) M ={0}, (c) N={1,2,3}.

n+m
(b) Let N = {1,2,3} and consider the relation C on PN. Is C reflexive, transitive, symmetric? (b) Show that a(m,n) = ( m ) ,meN, neNy.
Does C define a total order on PN?

3. (a) Forsets A, B and C show: Hint: Show that a(m,n — 1) 4+ a(m — 1,n) = a(m,n) and use induction on n+m.

e AN(BUC)=(ANB)U(ANCQC),

e AU(BNC)=(AUB)N(AUCQ). Exercises for Chapter 3
(b) For sets A, B C X show: 1
e X\(AUB)=(X\A)N(X\B),
e X\(ANB)=(X\A)U(X\B) 1. Let (K,+, -,>) be an ordered field and a, z, 2/, y, ¥’ € K. Show the following statements from

Corollary 3.9. Justify every step.
4. Let X, Y and Z be sets and f: X — Y, g:Y — Z functions.

(ili)r <y = z+a<y-+a,
Show:

(ivz<y ANd' <y = z+2 <y+y,
(a) If g is injective, then Vr<y ANa>0 = a-z<a-y,

PR S r<yNa<0 = a-x>a-y
f is injective <= g o f injective. Y ’

Vij0<z<yAO0<2' <y = 0<a’ - z<y vy,

(b) If f is surjective, then (ix)z >0 = 271 >0,

g surjective <= go f surjective. x0<z<y = 0<y'<al
(xi)z >0Ay <0 = zy <0.
5. (a) Show that the countable subset of a countable set is countable or finite.
(b) Show that the countable union of countable sets is countable. 2. Find the infimum and supremum of the following sets in the ordered field R. Determine if they
. . have a maximum and a minimum.
(¢) Show that the direct product of countable sets is countable.
(d) Find a bijection Ny x No — No. (a) {z€eR:IneN z=n?},
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(b)

lo] cxelRy,
1+ |z

{reR:3IneN (IJ:%JFH(I‘F(*l)")},
{wER::1:2§2}ﬂQ.

For every x € Ry there exists an n € Ny withn <z <n+1.
(Proposition 3.19).
Every interval in R contains a rational number. (Proposition 3.20).

@ does not have the least upper bound property.
Let X CR, X # 0, and £ € R an upper bound of X. Show that
E=supX <= VeeRydz.eX {—e<ua.<E

‘What is the analogous statement for inf X7

Let X, Y C R non empty sets such that
VeeX JyeY : y<u.
Does that imply inf Y < inf X? Proof your assertion.

Muestre que para todo z € C\ {0} existen exactamente dos nimeros (1, (> € C tal que
G=G=z.

Sean a,b,c € C, a # 0. Muestre que existe por lo menos un z € C tal que

az? 4+ bz+c=0.

Exercises for Chapter 4

1

1. (a)

(b)

2. (a)

(b)

Let (X, d), X # 0, be a metric space and M C X. Show that the following are equivalent:
(i) M is bounded.
(ii) 3z € X Ir>0: M C B.(x).
(ili) YzeX 3r>0:M C By(x).
For M C R show that M is bounded as subset of the ordered field (R, >) if and only if M
is bounded as subset of the metric space (R,d) where d(z,y) = |z — y|.

Let (X,d), X # 0, be a metric space and let (2y,)nen and (yn)nen be sequences in X.
Show: If there exists an a € X such that

lim z, =a= lim y,,
n—o0 n—oo

then
lim d(zp,y,) = 0.
n—o00

Is the converse also true (proof or counterexample)?

Let (X, d) be a metric space and p : N — N a bijection. Show: If (z,,),en € X converges,
then (z,(n))nen € X converges and has the same limit.
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3. (a) Let z, =+v1+n~', neN. Show that (z,)nen is a Cauchy sequence in R.

(b) Do the following sequences in R converge? If so, find the limit. Prove your assertions.
. . n
(i) (an)nen with a, = o €N,

on
(i) (an)nen with a, = —, ne€ N,
n:

(iil)  (bp)nen with b, = V14+n"1+n=2, neN,
(iv) (dn)nen withd, =vVn2+n+1-n, neN,

4. Let ¢ € Ry and x, := /G, Yn = ¥/n, n € N. Do the sequences (2, )nen and (yn)nen converge?

If so, find the limit.

5. Let (an)nen C R be a sequence such that a,, # 0 for all n € N. Show or find a counterexample:

(i)If there exists an N € N and ¢ € R, (ii)If there exists an N € N and ¢ € R,
q < 1, such that q < 1, such that
An1 Ani1
—|<¢, neN, n=>N, —|<¢ mneN n=>N,
Ay, [
then lim,, o0 an = 0. then lim, . a, = 0.
5. The Fibonacci sequence (an)nen is defined recursively by
a=1, a1=1, Gny1=0an+an_1, neN.
Moreover, let o < 7 be the solutions of 22 —z — 1 = 0 and
a
2y = L neN.
an
(a) Show that (an)nen does not converge in R.
1
b) a,=—=(""" —o"), neN
() o= )
(¢) limyoozn = 0.
. If it exists, find the value of
1+ !
1+ ! 7
1+ !
1+..
i.e. the limit of the sequence (z,,)nen with
1
zy:=1 and z,41:=1+—, n>1

Cr

8. (a) Let (zn)nen C R and define sequences (yx)ren, (2k)ken in RU {00} by

Yk = sup{x, : n >k}, zp = inf{z, : n >k}, keN.
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Show that (yx)ren and (zx)ren converge in R U {£oo} and that

lim yi = limsup x,, lim z; = liminf z,.
k—o0 k—o0

(b) Find a sequence (a;,)nen such that
inf{a, : n € N} <liminf{a, : n € N} < limsup{a, : n € N} < sup{a, : n € N}.
In this case, must the set {a, : n € N} have a maximum?

9. Let K be an ordered field with the Archimedean property. Show that K has the least upper
bound property if and only if every Cauchy sequence converges.

10. Let (a,)nen be a sequence in a normed space and (by)nen be defined by
L
S
k=1

Show or find a counterexample:

(a) (@n)nen converges ==  (bn)nen converges.

(b)  (bn)nen converges = (a@n)nen converges.
11. Cauchy’s condensation test.

(a) For a monotonically decreasing sequence (an)nen C ]Ri show

E a, converges <= g 2"agn converges.
neN neN

N
(b) Do the series Z nlogyn)~! and Z L \/_ converge? Prove your answer. (Use

what you know from the calculus courses about the logarithm.)
12. The Euler number e.
For n € Nlet a, = (1+ %)" and s, = Y00 -
(a) Show that 2F < k! for all k > 4 and that
I\ =1
< - < — .
1< (1+2) ) k,<3 neN

(b) Show that the sequences (a,)nen and (sp)nen converge.
(c) Show that

hm( 7) :i% neN.

13. Find the 5-adic and 7-adic representation of 61 . Proof!
That is, find Ny, Ny € Z and (an)5L_y, C {() 1,...,4} and (bn)oZ_n, € {0, 1, ..., 6} and
such that

n=—N,

o0 o
Soansm =Y b7

n=—Na n=—N,
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14. Do the following series converge? Proof your answer.

o (nl)? o n2
® > Gy n ()"
n—1 ot
(c) an, where by, 1= W’ bami1 = —70,
n—2
o0
(d) nz::l(a + %)n where a € R.

15. (a) Forn € N let a,, := b, :=
but Y ¢, diverges.

T+ and ¢, := Y j_o Akbn—k. Show that > 07 a, converges,

b) Let (an)nen € R a monotonically decreasing sequence such that ~_, a, converges in R.
n=1
Show that

lim na, =0.
n—oo

Exercises for Chapter 5

1
1. For j = 1,...,n let (Xj,||-|;) be normed spaces over F where F = R or C. Recall that
(X1 x - x X, |- w1th
s esa)ll o= ol 4 + [zl
is a normed space over F.
(a) Show that for all j = 1,...,n the projection pr; is continuous where

Ty Xy X X Xy = X, (T, @) T

(b) Let f=(fi,...,fn) : V= X1 x---X,, where V is a normed space (that is f; : V — X
and f(v) = (f1(v),..., fn(v))).

Show that f is continuous if and only if every f; is continuous.

(c) Let X be a normed space, F =R or C, and f: Dy - F, g¢: Dy — F continuous. Let
Dyy = Dy NDy. Then fg: Dyy = F, (fg)(z) = f(z)g(z) is continuous. If g(zx) # 0,
x € Dyg, then § :Dyg — F, %(z) = % is continuous.

2. Proof the Cauchy criterion (Theorem 5.15):
Let (X,dx), (Y,dy) be metric spaces, Y complete, f: X O D — Y a function and z( a limit
point of D. Then f has a limit in z if and only if
Ve>036>0Vax,ye Dy:
(0 <dx(e,20) <8 A 0<dx(y,m) <6 = dy(f(2), () <<)-
3. Let (X, d) be a metric space and f,g : X — R continuous functions. Show that the following
functions are continuous:

S:X =R, S(x):=min{f(z), g(z)},
T:X =R, T(x):=max{f(z), gx)}.

Last Change: Mon 01 Aug 2011 03:54:30 PM -05



Chapter 9. Exercises 147 148

4. Where are the following functions are continuous? Proof your answer. 10. Show the following properties of the exponential function (Theorem 5.50):
(a) f:]0,00) 2> R, x~/z, (a) exp(z) = exp(z), zeC,
(b) g:C—R, zw|z+22, (b) exp(z + w) = exp(z) exp(w), z,weC,
—/=z, —-1<z<0, (¢) exp(n)=e", nei,
h:[-1,11U{2} = R, =z~ {7, 0<a<l, (d) exp()#O z€C,
z, T =2. (e) |exp(iz)] =1 <= z€R.
1, z€Q,
(d) D:R—=R, D(z):= {0.’ 2 €R\Q, 11. (a) Show the following identities for x,y € C:
Hint: Show that R\ Q is dense in R, that is, for every € R there exists a sequence (i) sin®(z) + cos®(w) = 1.
(Zn)nen C R\ Q such that lim, ooz, = z. (ii) sin(z + y) = cos(x) sin(y) + cos(y) sin(x),

iii) cos(z + y) = cos(x) cos(y) — sin(z) sin(y),
5. Prove Theorem 5.26 and Theorem 5.27: (iti) ( ) () cos(y) (z) sin(y)

Let I = (a,b) a nonempty real interval and f : I — R a function. (b) Show that {z € Ry : cosz =0} # 0.
(a) Assume that f is continuous. Then f is injective if and only if f is strictly monotonic. Let m:=2-inf{z € Ry : cosz = 0}.
(b) If f is strictly monotonically increasing or decreasing, then it is invertible and its inverse (¢) For z € R show:

f~1: f(I) = R is continuous. . .
(i) sinz=0 < 3ke€Z x=kn

6. Show that f :[0,00) = R, @+ /z, is uniformly continuous but not Lipschitz continuous. (i) cosz=0 = kel z=krt3

7. Do the following sequences of functions converge pointwise? Do they converge uniformely? If Hint. Without proof you can use
they converge, find the limit function. y .
1-Z <ese <1-T+ 2 203
n?x, 0<z< %,
a n:R—=R, w(@)=<2n—n?z, L<a<2 .
@ 1 falz) 0 Dl " Exercises for Chapter 6
else
na 1
(b) fu:R=R, fulz) = Trna?
nT 1. Show that the following functions are differentiable and find the derivative. Prove your asser-
(¢) fu:R=R, fulz) = 1T tions.
n’x :R R, z
@ fu RSB fala) = T ® wiky SR, 203/,
+ne (b) w:R—=R, z~ /|z],
8. Let DCR, f: D — R a function and (a,)nen € R\ {0} a sequence that converges to 0. Define (¢) cos:R—R, sin:R—-R,

Jn: D= Rby fu(x) =anf(z), z €D. Hint. Prove Euler’s formula (Theorem 5.50): exp(iz) = cos(z) + isin(z) for z € C.

(a) (fn)nen converges pointwise to g : D — R, g(z) = 0. 2. For k € Nlet f : R — R defined by
(b)  (fn)nen converges uniformely if and only if f is bounded on D.

1
2k sin—, xz#0,
T

9. Find the radius of convergence of fr(z) = ;
0, z=0.

: o (=1)"(22)" . n!

i) Z n ’ ii) Z nn B For which k is fj. differentiable? For which k is fj continuously differentiable?
n=1 n=1
oo gn y3n 3. Exponential functions. For fixed a € R* = (0,00) define the function

z
iif) (Vn—1)"2", iv) -

T; 1 3" pa:C—C, pa(z) = exp(z1n(a)).
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(a) For ae€R*' and g € Q show
Palg) = a’. (*)
(b) Show that p, is differentiable and find its derivative.
Recall. For a € RT and n € N we have defined

n
a = H a, a® =1, ot = unique positive solution of 2" = a.
n=1
Therefore a? :=((a”)7)" is defined for all ¢ = 2 € Q with m € N, n € No, o € {+1}.
Remark. Because of the identity (+) one defines

a® := exp(zIn(a)), aeRt, zeC.

'S

. Let f: [a,b] — [a,b] be continuous and differentiable in (a,b) with f’(z) # 1, z € (a,b). Show
that there exists exactly one p € [a, b] such that f(p) = p.

ot

. Let f:[0,00) — R be differentiable, f(0) =1 and f’(z)f(z) > 0 for all z € [0,00). Show that
f is increasing.

6. (a) Darbouz’s Theorem. Let f: D — R be a differentiable function of the nonempty interval
D = (a,b) € R. Show that for every ¢ € R with
inf{f'(z) : 2 € D} < q < sup{f'(z) : z € D}.
there exists a ¢ € (a,b) such that f'(c) = q.
(b) Let D = (a,b) a nonempty interval and f : D — R a differentiable function with an isolated
global minimum at zy € D. Is the following statement true:
There exist ¢,d € (a,b) such that ¢ < zyp < d and f'(z) <0, = € (¢,x0) and f'(z) >0, x €
(2o, d).
7. Find all local and global extrema of
2sinx
- [0 R =—
filboo) =R, fl2) = 5
8. Determine if the following limits exist. If they exist, find their value.
i _ Y3 _ g2
(a) TIL)HOIO(T 3 —x? 4 1),
. TN
(b) QILHOL (1 + E) with = € R,

: . 1z
(c) ilg})(1+al(‘,lrall?1?) ,

(@) lim (ﬁ - :—zb) with a,b € R\ {0}.

x—1
9. Sean —o0o < a < B < ooy f,g: (a, B) — R funciones derivables con ¢'(z) # 0 en (a, ) y

ti o) = Jin 5

= 00. Muestre que lim m =00
zNa g(x)

10. Let (an)nen € R and suppose that a, > 0 for all n € N. Show:

0
vV n
E converges.
n

o0
E a, converges =—>
k=1 k=1
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11. Leta < ¢ <b € R, a: [a,b] = R a monotonic functions and f, g : [a,b] — R bounded functions.

(a) (Theorem 6.43 (i)) Show that f is Riemann-Stieltjes integrable with respect to « if and
only if the restrictions fi := f|(4,c] and fa := f|(c,5 are so and that in this case:

[f(z) da:/:mz) da+[ﬁ<z) da.

(b) Suppose there exists a set M = {a1,...,a,} C [a,b] such that « is continuous in M and
f(z) = g(z) for all z € [a,b] \ M. Then f € R(«) if and only if g € R(«); in this case

/: f(z) da = /ab g(z) da.

12. Let a € Ry and let f : R — R, f = exp. Use Riemann sums s(f, P) and S(f,P) to find

/exp(z) dz.

0

; . . > sint oy
13. (a) Does the improper integral - dt exist?
0

1
(b) Does / D(t) dt exist, where D is the Dirichlet function
0

1 ifzeQn(o,1],

D:[0,1] = R, D(”):{o if 2 €[0,1]\ Q.

14. For k,m € N find the integrals
/ sin(kx) cos(ma) dz, / sin(kz) sin(ma) dz.

15. (a) Find lim ¥l
n—oo
(b) Find lim 1 nl.
n—o00 N
16. For n € N define
fni(0,00) = R, fo(z) =2n(V22 —1).

(a) Find the pointwise limit of (fy)nen.
(b) Show that (fn)nen converges uniformly on every compact interval in (0, 00).

(¢) Does (fn)nen converge uniformly in (0, 00)?
Hint. Write f, as an integral.

17. Recall that (C([0,1]), ]| - |ls) is a Banach space. Show that

T:C([0,1]) = C, f»—)/lfdm
0

is a bounded linear map and find ||T'||. Show that T is continuous. Is it differentiable? If so,
find its derivative.
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Exercises for Chapter 7

1

1.

o

(a) Use power series to find

> n > n
= ; CESIL

m 1.1 1
- = e E
1 ngznﬂ 37577

(a) Sea f: (7g,g) — R, f(z) = —log(cos z). Muestre que
22 2, 3 T
@) -] < sRf e [-15)

. Let D C R be an interval, p € D, n € Ny and f € C™(D,C). Let P be a polynomial of degree

< n such that
PH@p) = fWp). k=0.1...n.
Show that P = j; f where j; f is the nth Taylor polynomial of f in p.

(a) Find the Taylor series at p = 2 and determine its radius of convergence of
1
I0= =9e 9

(b) Find the limit (without using I'Hospital’s rule)
1 z —sinz
im —
=0 e —1—1x —x2/2

(a) Let f: (7 g g) — R, f(x) = —log(cos x). Show that

f@ 2] < 2, we [T,

(a) Show that the following function is arbitrarily often differentiable and find its Taylor series
at 0. What is its radius of convergence? Where is the Taylor series equal to ¢?

exp(-a72), @ #0,

¢:R=R, )=
0, z=0.
(b) Show that the following function is arbitrarily often differentiable and find its Taylor series
at 0. What is its radius of convergence?

g:R—R, g(:c):z

. cos(n’x)
=0

on

. If f:[-1,1] = R is continuous, then

1i111[ ! f(z) dz =7 f(0).

t—0 J_ t2 + 22
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Exercises for Chapter 8

1

1.

o

Let (X, d) a metric space and define O C PX by
UeO :« VpeU 3>0 B:p) CU.

Show that (X, Q) is a topological space with the Hausdorff property.

Show that for » > 0 and @ € X the open ball B,.(a) is open and the closed ball K, (a) is closed.
Let Sy(a) := {x € X : d(x,a) = r}. Show that

0B,(a) C Sp(a) and By(a) C K.(a). (%)
Is equality in (x) true?
(a) Find the interior and the closure of

M = {(z,sina™") : x € R\ {0}} C R

(b) Let (X,0) be topological space and M C X. Can (9M)° = () be concluded?

. Show that every open subset of R is the disjoint union of at most countably many open intervals.

. Let K, A C R" such that K is compact and A is closed. Then there are p € K and a € A such

that

lp—al <l|qg— x|, geK, x€ A

. Let X be a topological space, A, B closed subsets of X such that AUB and AN B are connected.

Are A and B connected?

. Let A be a closed subset of R™ uach that JA is connected. Show that A is connected. (Hint:

Use Exercise 8.5).
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(n, k), 18
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lim inf, lim sup, 47

max, 9

min, 9

sup, 9

C, complex field, 29

Fi ={z>0},F ={z>0},25
N={12...}, 13

P(N), 8

Q, 21

Ry = {z > 0},R% = {z >0}, 25, 29
Z,21

707 L(X,Y), 90

B, (a), 34, 131
B(X,Y), 75
C(X,Y), 67
C™(D,Y), 90

G(f), graph of f, 10
K,(a), 34, 131
O(X), 119

R(a), 105

R, R([a,b]), 105
R(f), range of f, 10
Rez, Imz, 30
d(z,y), 33

e, 46, 59

f] 4 10

o(X), 119

cos, see cosine

exp, see exponential function
In, 82

sign, 25

sin, see sine

tan, 97

absolute value, 25

absolutely conditionally, 53
absolutely convergent, 53
addition, 22

almost all, 35

analytic function, 123
antiderivative, 111
Archimedean property, 27, 61
arcwise connected, 140
axiom, Peano, 13

ball, 34, 131

Banach space, 39

Bernoulli’s inequality, 26
bijective, 10

binomial coefficients, 18, 119
binomial expansion, 19
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Greek Alphabet

A table with the hand written greek alphabet can be found at
http://www.greece.org/gr-lessons/gr-english/Gif/script.gif or at
http://www.xanthi.ilsp.gr/filog/chl/alphabet/alphabet.asp .

« B 5 0 £, € ¢ 7 9, 0
A B T A E Z H S}
alpha | beta | gamma | delta | epsilon | zeta eta theta
L K A o v 13 o m
I K A M N = (6] I
iota | kappa | lambda my ny xi | omikron pi
4 o T v », ¢ X P w
P z T T P X v Q
rho | sigma tau ypsilon phi chi psi omega
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